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Program: “Categorify” a quantum mechanical description of states
and processes.

We propose to represent:
configuration spaces of physical systems by groupoids (or
stacks), based on local symmetries
process relating two systems through time by a span of
groupoids, including a groupoid of “histories”
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We are “doing physics in” the †-monoidal (2-)category Span(Gpd).
This relates to more standard picture in Hilb by two representations:

Degroupoidification (Baez-Dolan): D : Span1(Gpd)→Hilb,
explains “Physics in Hilb”
2-Linearization (Morton): captures more structure by
Λ : Span2(Gpd)→2Hilb, suggests “Physics in 2Hilb.”

Both invariants rely on a pull-push process, and some form of
adjointness.
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Definition
A groupoid G is a category in which all morphisms are invertible.

Often, we consider groupoids IN spaces, manifolds, etc. (i.e. with
manifolds of objects, morphisms).

Example
Some relevant groupoids:

Any set S can be seen as a groupoid with only identity morphisms
Any group G is a groupoid with one object
Given a set S with a group-action G × S→S yields a
transformation groupoid S//G whose objects are elements of S; if
g(s) = s′ then there is a morphism gs : s→ s′

Any groupoid, as a category, is a union of transformation
groupoids (represents “local symmetry”)
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A stack is a groupoid taken up to (Morita-)equivalence
this coincides with Morita equivalence for C? algebras, in the case
of groupoid algebras.
equivalent groupoids are “physically indistinguishable”. (E.g. full
action groupoid; skeleton, with quotient space of objects - no need
to decide which is “the” stack)

Our proposal is that configuration spaces for physical systems should
be (topological, smooth, measured, etc.) stacks.

Note: “configurations” here are roughly “pure states” E.g. energy levels
for harmonic oscillator.
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Definition
A span in a category C is a diagram of the form:

X

s
���������

t
��

???????

A B

We’ll use C = Gpd, so s and t are functors (i.e. also map morphisms,
representing symmetries).
Spans can be composed by weak pullback. (a modified “fibred
product”) Span(Gpd) gets a monoidal structure from the product in
Gpd, and has duals for morphisms and 2-morphisms.
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We can look at this two ways:

Span C is the universal 2-category containing C, and for which
every morphism has a (two-sided) adjoint. The fact that arrows
have adjoints means that Span(C) is a †-monoidal category
(which our representations should preserve).
Physically, X will represent an object of histories leading the
system A to the system B. Maps s and t pick the starting and
terminating configurations in A and B for a given history (in the
sense internal to C).

(These reasons are closely connected: adjointness is the reversal of
time orientation of histories.)
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Degroupoidification works like this:
To linearize a (finite) groupoid, just take the free vector space on its
space of isomorphism classes of objects, CA (or L2(A) for more
physical situations).

Then there is a pair of linear maps associated to map f : A→B:
f ∗ : CB→CA, with f ∗(g) = g ◦ f (precomposition)

f∗ : CA→CB, with f∗(g)(b) =
∑

f (a)=b
# Aut(b)
# Aut(a) g(a) (weighted image

of functions)
(There are also integral versions; versions with U(1)-phased
groupoids, etc. for more physical situations)

These are adjoint with respect to a naturally occurring inner product.
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Definition
The functor

D : Span(Gpd)→ Vect

is defined by
D(G) = C(G)

and
D(X , s, t) = t∗ ◦ s∗

This gives multiplication by a matrix counting (with “groupoid
cardinality”) the number of histories from x to y :

D(X )([a],[b]) = |(s, t)−1(a,b)|g

This is a “sum over histories”. (For more physics, such as action
principle, use U(1)-groupoids.
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Degroupoidification ignores the fact that Gpd is a 2-category (with
groupoids, functors, and natural transformations).
The 2-morphisms of Span2(Gpd) are (iso. classes of) spans of span
maps:

X
s

~~~~~~~~~~
t

  
@@@@@@@@

A Y //oo

σ

OO

τ

��

B

X ′
s′

``@@@@@@@@ t ′

>>~~~~~~~~

These have duals, just like the 1-morphisms.
We want a representation of Span2(Gpd) that captures more than D,
and preserves the adjointness property for both kinds of morphism.
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First, this representation lives in 2Hilb:

Definition
A finite dimensional Kapranov–Voevodsky 2-vector space is a
C-linear abelian category generated by finitely many simple objects. A
2-Hilbert space (Baez) is an abelian H?-category.

That is, 2-vector spaces have a “direct sum” ⊕, and hom(x , y) is a
vector space for objects x and y . A 2-Hilbert space, in addition, has
hom(x , y) a Hilbert space, and a star structure:

hom(x , y) ∼= (hom(y , x))∗

which we think of as finding the “adjoint of a morphism”.
A 2-linear map is a functor preserving all this structure.
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Lemma

If B is an essentially finite groupoid, the representation category
Rep(B) is a 2-Hilbert space.

The “basis elements” (generators) of [B,Vect] are labeled by ([b],V ),
where [b] ∈ B and V an irreducible rep of Aut(b).
Baez, Freidel et. al. conjecture the following for the infinite-dimensional
case (incompletely understood):

Conjecture
Any 2-Hilbert space is of the following form: Rep(A), the category of
representations of a von Neumann algebra A on Hilbert spaces. The
star structure takes the adjoint of a map.

This includes the example above, by way of the groupoid algebra
Cc(X ).
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In this context:
For our physical interpretation A is the algebras of symmetries of
a system. The algebra of observables will be its commutant -
which depends on the choice of representation!
Basis elements are irreducible representations of the vN algebra -
physically, these can be interpreted as superselection sectors.
Any representation is a direct sum/integral of these.
Then 2-linear maps are functors, but can also be represented as
Hilbert bimodules between algebras. The simple components of
these bimodules are like matrix entries.
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Definition
A state for an object A in a monoidal category is a morphism from the
monoidal unit, ψ : I→A.

A ∈ Hilb: state determines a vector by ψ : C→H
A ∈ 2Hilb: a state determines an object (e.g. a representation of
groupoid/algebra - an irreducible one is a superselection sector)
A ∈ Span(Gpd), the unit is 1, the terminal groupoid, so

1 !← S Ψ→ A

is a “groupoid over A”, actually Ψ

A state in Span(Gpd) determines either of the others, using D or Λ.
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Theorem

If X and B are essentially finite groupoids, a functor f : X→B gives two
2-linear maps:

f ∗ : Λ(B)→Λ(X)

namely composition with f , with f ∗F = F ◦ f and

f∗ : Λ(X)→Λ(B)

called “pushforward along f ”. Furthermore, f∗ is the two-sided adjoint
to f ∗ (i.e. both left-adjoint and right-adjoint).

In fact, there are left and right adjoints, f∗ and f!, but the Nakayama
isomorphism:

N(f ,F ,b) : f!(F )(b)→ f∗(F )(b)

is given by the exterior trace map (which uses a modified group
average).
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Definition
Define the 2-functor Λ as follows:

Objects: Λ(B) = Rep(B) := [B,Vect]
Morphisms Λ(X , s, t) = t∗ ◦ s∗ : Λ(a) −→ Λ(B)

2-Morphisms: Λ(Y , σ, τ) = εL,τ ◦ N ◦ ηR,σ : (t)∗ ◦ (s)∗→(t ′)∗ ◦ (s′)∗

Picking basis elements ([a],V ) ∈ Λ(A), and ([b],W ) ∈ Λ(B), we get
that Λ(X , s, t) is represented by the matrix with coefficients:

Λ(X , s, t)([a],V ),([b],W ) '
⊕

[x ]∈(s,t)−1([a],[b])

homRep(Aut(x))(s∗(V ), t∗(W ))

This is a intertwiner space is the categorified analog of the counting
done by D: this constructs a Hilbert space as a direct sum over
histories (generally, direct integral).
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In the case where source and target are 1, there is only one basis
object in Λ(1) (the trivial representation), so the 2-linear maps are
represented by a single vector space. Then it turns out:

Theorem
Restricting to homSpan2(Gpd)(1,1):

A
!

����������
!

��
????????

1 X

s

OO

t
��

1

B
!

__???????? !

??��������

where 1 is the (terminal) groupoid with one object and one morphism,
Λ on 2-morphisms is just the degroupoidification functor D.

The groupoid cardinality comes from the modified group average in N.
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Example
In the case where A = B = FinSet0 (equivalently, the symmetric
groupoid

∐
n≥0 Σn - note no longer finite), we find

D(FinSet0) = C[[t ]]

where tn marks the basis element for object [n]. This gets a canonical
inner product and can be treated as the Hilbert space for the quantum
harmonic oscillator (“Fock Space”).
The operators a = ∂t and a† = Mt , generate the Weyl algebra of
operators for the QHO. These are given under D by the span A:

FinSet0

∪?
xxrrrrrrrrrr

id &&LLLLLLLLLL

FinSet0 FinSet0

and its dual A†. Composites of these give a categorification of
operators explicitly in terms of Feynman diagrams.
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The image of this picture under Λ involves representation theory of the
symmetric groups as Λ(FinSet0) ∼=

∏
n Rep(Σn), and gives rise to

“paraparticle statistics”:
C
��

wwooo
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������
��
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������

��
//
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Example
An Extended TQFT (ETQFT) is a (weak) monoidal 2-functor

Z : nCob2→2Vect

where nCob2 is a 2-category of cobordisms.

One construction uses gauge theory, for gauge group G (here a finite
group). Given M, the groupoid A0(M,G) = hom(π1(M),G)//G has:

Objects: Flat connections on M
Morphisms Gauge transformations

Then A0(−,G) : nCob2→Span2(Gpd), and there is an ETQFT
ZG = Λ ◦ A0(−,G).
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This relies on the fact that cobordisms in nCob2 can be transformed
into products of cospans:

nCob2 Span2(Top)

S1
iA //

i1
��

(A
∐

D)

ι1

��

S1 ∐
S1

i′A⊗iD
oo

i2
��

Y
ι3 // M Y

ι4oo

S1 ∐
S1

i2
//

i2

OO

Y

ι2

OO

S1

i1

OO

i1
oo

Then A0(−,G) maps these into Span2(Gpd).
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View S1 as the boundary around a system (e.g. particle).
Irreducible objects of ZG(S1) ' [G//G,Vect] are labelled by
([g],W ), for [g] a conjugacy class in G and W an irrep of its
stabilizer subgroup
For G = SU(2), this is an angle m ∈ [0,2π], a particle; and an
irrep of U(1) (or SU(2) for m = 0) is labelled by an integer j
This theory then looks like 3D quantum gravity coupled to
particles with mass and spin. with mass m and spin j
Under the topology change of the pair of pants, a pair of such reps
is taken to one with nontrivial representations (superselection
sectors) for all [mm′] for any representatives of [m], [m′] (each
possible total mass and spin for the combined system).

Dynamics (maps between Hilbert spaces) space arises from the
2-morphisms - componentwise in each 2-linear map.
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