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The ‘Hilbert space’ quantum formalism

Hilber space stuff: continuum, field structure of com-
plex numbers, vector space over it, inner-product, etc.

WHY?

von Neumann: only used it since it was available.

Model theory: one can do almost anything with it.

Schrödinger (1935): the stuff which is the true soul of
quantum theory is ‘how quantum systems compose’.
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tensor product structure
the other stuff = ?

Conceptually: not about properties of the individual,
but about relationships among the individuals

Mathematically: axiomatize an ‘abstract tensor prod-
uct’ without reference to underlying spaces

1. Game plan: Which assumptions (i.e. which struc-
ture) on ⊗ is needed to deduce physical phenomena?

2. Additional question: Does such an interaction struc-
ture appear elsewhere in “our classical reality”?
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Outcome 2b: The structure is a true (quantum) logic:

- I can give you a demo backstage -



A MINIMAL LANGUAGE
FOR QUANTUM REASONING

Abramsky & Coecke (2004) A categorical semantics for quantum protocols.
arXiv:quant-ph/0402130

Coecke (2005) Kindergarten quantum mechanics.
arXiv:quant-ph/0510032



— (physical) data in the language —
Systems:

A B C

Processes:

A
f

-A A
g

-B B
h

-C

Compound systems:

A⊗B I A⊗ C f⊗g
-B ⊗D

Temporal composition:

A
h◦g

-C := A
g

-B
h

-C A
1A -A



— graphical notation —

g ◦ f ≡
g

f
f ⊗ g ≡ f fg

Roger Penrose (1971) Applications of negative dimensional tensors.
In: Combinatorial Mathematics and its Applications. Academic Press.

André Joyal & Ross Street (1991) The geometry of tensor calculus I.
Advances in Mathematics 88, 55–112.
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(g ◦ f )⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h)

=
f h

g k

f h

g k

peel potato and then fry it,
while,

clean carrot and then boil it
=

peel potato while clean carrot,
and then,

fry potato while boil carrot
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— adjoint —

f : A→ B
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— adjoint —

f† : B → A

f

B
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— asserting (pure) entanglement —
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— sliding —
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In QM: cups = Bell-states, caps =Bell-effects, π-rotations = transpose
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⇒ quantum teleportation



Applying “decorated” normalization 3

=
f

f

f f

⇒ Entanglement swapping



classical data flow?

f

=

f

g

g

‘

⇒ gate teleportation computation



— dagger compact categories —

Thm. [Kelly-Laplaza ’80; Selinger ’05] An equa-
tional statement between expressions in dagger com-
pact categorical language holds if and only if it is
derivable in the graphical notation via homotopy.



— dagger compact categories —

Thm. [Kelly-Laplaza ’80; Selinger ’05] An equa-
tional statement between expressions in dagger com-
pact categorical language holds if and only if it is
derivable in the graphical notation via homotopy.

Thm. [Selinger ’08] An equational statement between
expressions in dagger compact categorical language
holds if and only if it is derivable in the category of
finite dimensional Hilbert spaces, linear maps, tensor
product, and adjoints.



— dagger compact categories —

In words: Any equation involving:

• states, operations, effects

• unitarity, adjoints (e.g. self-adjoint), projections

• Bell-states/effects, transpose, conjugation

• inner-product, trace, Hilbert-Schmidt norm

• positivity, completely positive maps, ...

holds in quantum theory if and only if it can be derived
in the graphical language via homotopy.



A SLIGHTLY DIFFERENT LANGUAGE
FOR NATURAL LANGUAGE MEANING

Coecke, Sadrzadeh & Clark (2010) Mathematical Foundations for a Compo-
sitional Distributional Model of Meaning.
arXiv:1003.4394
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grammar

How do we/machines compute meaning of sentences?
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— the from-words-to-a-sentence process —

Information flow within a verb:

verb

object subject

Again we have:

=



— going non-symmetric —
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Alice hates Bob
meaning vectors of words

grammar

f
f

states

measurements



— analogy: “non-local” info-flows —
English (& French):

Hindi:

Persian:

Arabic (and Hebrew):

Mehrnoosh Sadrzadeh (2008) Pregroup analysis of Persian sentences.



THE EXTENDED LANGUAGE:
COMPLEMENTARITY & CLASSICALITY
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Coecke, Pavlovic & Vicary (2006, 2008) quant-ph/0608035, 0810.0812
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— observables —

Theorem 1. In any dagger symmetric monoidal cate-
gory families of spiders and dagger special commuta-
tive Frobenius algebra are in bijective correspondence.

Theorem 2. (Coecke-Pavlovic-Vicary) In FdHilb dag-
ger special commutative Frobenius algebra are exactly
orthonormal bases, namely those of copyable elts.

Coecke & Pavlovic (2007) Quantum measurement without sums. In: Mathe-
matics of Quantum Computing and Technology. quant-ph/0608035

Coecke, Pavlovic & Vicary (2008) A new description of orthogonal bases.
Mathematical Structures in Computer Science. 0810.0812
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Coecke & Duncan (2008) Interacting quantum observables. arXiv:0906.4725
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— environment —

‘ground’ =

f

=
g ⇔

f

=

g

f g

Thm. ⇒ mixed states, CP maps, class. probs in Hilb.

Coecke & Perdrix (2010) Environment and class. chan. ... arXiv:1004.1598



— environment —

‘ground’ =

f

= ⇔
f

=f

Thm. ⇒ mixed states, CP maps, class. probabilities.

Coecke & Perdrix (2010) Environment and class. chan. ... arXiv:1004.1598



Prop 1:

=
Prop 2:

=



Destructive measurement:

=

Non-destructive measurement:

= =



Indeed measurement:

=
Indeed controlled unitary:

=



— key distribution —
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— phase groups and universality for QC—

Translation to circuits and determinism for so-called
measurement based quantum computations:

Example 18. The ubiquitous CNOT operation can be computed by the pattern
P = X3

4Z2
4Z2

1M0
3 M0

2 E13E23E34N3N4 [5]. This yields the diagram,

DP =
H

H

H

π, {3}

π, {2}

π, {2}

π, {3}π, {2}

,

where each qubit is represented by a vertical “path” from top to bottom, with
qubit 1 the leftmost, and qubit 4 is the rightmost.

By virtue of the soundness of R and Proposition 10, if DP can be rewritten
to a circuit-like diagram without any conditional operations, then the rewrite
sequence constitutes a proof that the pattern computes the same operation as
the derived circuit.

Example 19. Returning to the CNOT pattern of Example 18, there is a rewrite
sequence, the key steps of which are shown below, which reduces the DP to
the unconditional circuit-like pattern for CNOT introduced in Example 7. This
proves two things: firstly that P indeed computes the CNOT unitary, and that
the pattern P is deterministic.

H

H

H

π, {3}

π, {2}

π, {2}

π, {3}π, {2}

∗!
H

H

H

π, {3}

π, {2}

π, {2}
π, {2} π, {3}

∗! H

H

H

π, {3}
π, {3}

π, {2}

π, {2}

π, {2}

∗!
π, {2}

π, {2}
π, {2}

∗!
π, {2}π, {2}

π, {2} π, {2}
∗!

One can clearly see in this example how the non-determinism introduced by
measurements is corrected by conditional operations later in the pattern. The
possibility of performing such corrections depends on the geometry of the pat-
tern, the entanglement graph implicitly defined by the pattern.

Definition 20. Let P be a pattern; the geometry of P is an open graph γ(P) =
(G, I,O) whose vertices are the qubits of P and where i ∼ j iff Eij occurs in the
command sequence of P.

Definition 21. Given a geometry Γ = ((V,E), I, O) we can define a diagram
DΓ = ((VD, ED), ID, OD) as follows:

Ross Duncan & Simon Perdrix (2010) Rewriting measurement-based quantum
computations with generalised flow. ICALP’10.



— phase groups and quantum non-locality—

Toy qubits vs. true quantum theory in one language:

Spekkens’ qubit QM
stabilizer qubit QM

=
Z2 × Z2

Z4
=

local
non-local

Bob Coecke, Bill Edwards & Rob Spekkens (2010) Phase groups and the ori-
gin of non-locality for qubits. arXiv:1003.5005



— entanglement classification —

Tripartite SLOCC-classes as comm. Frobenius algs:

GHZ = |000〉 + |111〉
W = |001〉 + |010〉 + |100〉 =

‘special’ CFAs
‘anti-special’ CFAs

=

=

=

Coecke & Aleks Kissinger (2010) The compositional structure of multipartite
quantum entanglement. ICALP’10. arXiv:1002.2540
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Taking (de)composition as primitive (vs. an individual
entities’ properties) we get very far with very little!

An ‘interaction logic’ is also present in natural lan-
guage (= also the source of ‘static’ orthodox logic).

Overall stance: Quantum ‘richness’ is not going to be
understood by ‘weakening’ standard logical tools, but
by considering radically different (classical?) ones.

Logic indeed (vs. quantum (non-)logic): Automa-
tion is demonstrated via the quantomatic software.

Dixon, Duncan & Kissinger. http://dream.inf.ed.ac.uk/projects/quantomatic/


