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Introduction Sketches Sketches and Alignment Theories and Alignment Reasoning Translations

Background and Perspective

Project Experience
Consultant: Senior Hadoop Analyst for PNC Financial Services. 2015

Consultant: Statistical analysis and model development for Flexible
Plan Investments, Bloomfield Hills, MI. 2014–2016

Established Shepherd Laboratory for Big Data Analytics

Co-Investigator with S. Bringsjord (RPI) and J. Hummel (UIUC): Great
Computational Intelligence. AFOSR. 2011–14

PI with N. Yanofsky (CUNY): Quantum Kan Extensions. IARPA.
2011–12

Analyst. Passive Sonar Algorithm Development. ONR. 2010

Technical Lead. Exposing/Influencing Hidden Networks. ONR.
2009–10

PI: Robust Decision Making. AFOSR. 2008–2010
Analyst: TradeNet Integration into Global Trader. ONI. 2009
PI with S. Awodey (CMU): Categorical Logic as a Foundation for
Reasoning Under Uncertainty. Phase I–II SBIR. MDA. 2005–8
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Aspects of Knowledge Technologies

Mathematical Logic (1879)
Availability of automated theorem provers (Prover9, Vampire, . . . )
High computational complexity of some predicate calculus fragments
Complexity of the syntactic category used for knowledge alignment
Challenging to develop a human interface

Databases + SQL (1968)
Excellent software infrastructure
Limited notion of context/view (a single table), static schema, . . .

Semantic Web OWL/RDF + Description Logic (1999)
Excellent software infrastructure (Apache Jena, Protégé, . . . )
Lack of modularity: meta-data, instance data and uncertainty integrated into
a monolithic ontology
Limited compositional algebra: (disjoint) unions of ontologies
Need for constraint-preserving maps

Sketch Theory (1968/2000) + Q-Trees (1990)
Few software tools (however, see www.mta.ca/∼rrosebru/project/Easik)
Mature mathematical framework including sketch and model maps
Visual/graphical modeling
Deduction system?
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Sketches: Historical Timeline

1943: Eilenberg and Mac Lane introduce category theory

1958: Kan introduces the concept of adjoints

1963: Lawvere characterizes quantifiers and other logical operations as adjoints

1968: C. Ehresman introduces sketch theory

1985: KL-ONE — First implementation of a description logic system

1985: Barr and Wells publish Toposes, Triples and Theories

1989: J. W. Gray publishes Category of Sketches as a Model for Algebraic Semantics

1990: Barr and Wells publish Categories for Computing Science

1995: Carmody and Walters publish algorithm for computing left Kan extensions

1999: RDF becomes a W3C recommendation

2000: Johnson and Rosebrugh apply sketch data model to database interoperability

2000: DARPA begins development of DAML

2001: Dampney, Johnson and Rosebrugh apply sketches to view update problem

2001: W3C forms the Web-Ontology Working Group

2004: RDFS and OWL become W3C recommendations

2008: Johnson and Rosebrugh release Easik software

2009: OWL2 becomes a W3C recommendation

2012: Johnson, Rosebrugh and Wood use sketches to formulate lens concept of view
updates
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Sketch (G ,D,L, C)

All semantic constraints in a sketch are expressed using graph maps.

A sketch (G ,D,L, C) consists of:

An underlying graph G and sets
D of diagrams B → G

L of cones L → G

C of cocones C → G
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Categorical Semantics of Sketches

Vertices are interpreted as objects

Edges are interpreted as morphisms

Classes of constraints (cones and cocones) are distinguished by the
shapes of their base graphs.

Classes of sketches are distinguished by their classes of constraints.

Like logics and OWL species, these have different expressive powers.

Small sample of the sketch semantics landscape

Sketch Partial Stoch. Čencov Prob. 0 Dempster Fuzzy Convex
Class Set Func. Matrices Cat. Refl. Shafer Sets Sets

linear • • • • • • • •
Finite Limit • • × × × × • •

Finite Coproduct • • • • • • • •
Entity-Attribute • • × × × × • •

Mixed • • × × × × • •
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Questions

EA sketch instance data (models) can be implemented using
relational database features such as foreign keys and triggers.

What features are required to store instance data for more expressive
classes of sketches?

What technologies support management of large, distributed models
of sketches?

How would relevant algorithms need to be reformulated in a
distributed setting?
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Presentations

A sketch | first-order theory | ontology is a presentation of knowledge.

Presentations generate additional knowledge needed for alignment
(e.g., ‘uncle = brother ◦ parent’)

Framework Alignment Tool

Ontology rules
Sketch S theory of a sketch T (S)
Logical theory T syntactic category CT

Different presentations may generate ‘equivalent’ structures.

Theory of a (linear) sketch
Carmody-Walters algorithm for computing left Kan extensions: generalizes
Todd-Coxeter procedure used in computational group theory
Complexity difficult to characterize: can depend on order of constraints

www.bakermountain.org/talks/cmu2017.pdf ralphw@bakermountain.org 28 October 2017 8/28

http://www.bakermountain.org/talks/cmu2017.pdf


Introduction Sketches Sketches and Alignment Theories and Alignment Reasoning Translations

Civics Sketch S1

First formulation of a civics concept:

Two classes: People and Elected officials

People have Elected representatives via r .

Elected officials are instances of people via u.

Elected officials represent themselves via a diagram.

Sketch

Graph Diagram Theory

Elected People

u

r

Elected People

Elected

u

r
id

Elected People

u

r

id id

u ◦ r

The diagram truncates the infinite list of composites (property chains).

u ◦ r r ◦ u u ◦ r ◦ u r ◦ u ◦ r · · ·
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Civics Sketch S2

Alternative formulation of the civics concept:

One class: Citizens

Citizens have elected representatives via e.

Elected officials represent themselves via a diagram.

Sketch

Graph Diagram Theory

Citizens

e

Citizens Citizens

Citizens

e

e
e

Citizens

id

e

Number and names of vertices in S1 and S2 differ.

The edges u and r of S1 have no corresponding edges in S2.

The edge e of S2 has no corresponding edge in S1.
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Alignment of the Civics Sketches

X X

X

f

f
f

Elected People

Elected

u

r
id

Citizens Citizens

Citizens

e

e
e

S1 Elected People

u

r

S2
Citizens

e

V

X

f

T1 Elected People

u

r

id id

u ◦ r

T2Citizens

id

e

T

Elected People

u

r

id id

u ◦ r
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Sketch Alignment: Questions

What algorithms are available for computing the theory of a sketch?

Carmody-Walters for linear sketches
Others?
Lazy algorithms?

To what extent can the sketch alignment problem be automated?

Find appropriate intersection(s)/views
Rename of vertices and edges

Can instance data be used to support sketch alignment?
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First-Order Civics Theories T1 and T2

T1

Sorts: People, Elected
Function symbols:

u : Elected −→ People r : People −→ Elected

Axiom: elected officials represent themselves

⊤ ⊢x (r(u(x)) = x)

T2

Sorts: Citizens
Function symbols:

e : Citizens −→ Citizens

Axiom: elected officials represent themselves

⊤ ⊢x (e(e(x)) = e(x))

www.bakermountain.org/talks/cmu2017.pdf ralphw@bakermountain.org 28 October 2017 13/28

http://www.bakermountain.org/talks/cmu2017.pdf


Introduction Sketches Sketches and Alignment Theories and Alignment Reasoning Translations

Alignment of Logical Theories

Provable equivalence: applicable to theories over the same signature

Theories T1 and T2 are Morita equivalent if their categories of models
ModT(D) (in any category D of the appropriate class) are equivalent.

ModT1(D) ∼= ModT2(D)

Theories are Morita equivalent iff their syntactic categories are.

CT1
∼= CT2

This solves the alignment problem for the civics theories.

It can be difficult to use in practice.

Types are interpreted as equivalence classes of formulae
Functions and relations are interpreted as provable equivalence classes
Syntactic categories are typically infinite, even for simple theories
No general algorithm
Could one develop a lazy algorithm?
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First-Order Logic: Sequent Calculus

Structural Rules1

(ϕ ⊢~x ϕ)
(ϕ ⊢~x ψ)

(

ϕ[~s/~x ] ⊢~y ψ[~s/~x ]
)

(ϕ ⊢~x ψ) (ψ ⊢~x χ)

(ϕ ⊢~x χ)

Implication

((ϕ ∧ ψ) ⊢~x χ)

(ϕ ⊢~x (ψ ⇒ χ))

Equality

(⊤ ⊢x (x = x))

((~x = ~y) ∧ ϕ ⊢~z ϕ[~y/~x ])

Quantification2

(

ϕ ⊢~x ,y ψ
)

((∃y)ϕ ⊢~x ψ)

(

ϕ ⊢~x,y ψ
)

(ϕ ⊢~x (∀y)ψ)

Conjunction

(ϕ ⊢~x ⊤) ((ϕ ∧ ψ) ⊢~x ϕ) ((ϕ ∧ ψ) ⊢~x ψ)
(ϕ ⊢~x ψ) (ϕ ⊢~x χ)

(ϕ ⊢~x (ψ ∧ χ))

Disjunction

(⊥ ⊢~x ϕ) (ϕ ⊢~x (ϕ ∨ ψ)) (ψ ⊢~x (ϕ ∨ ψ))
(ϕ ⊢~x χ) (ψ ⊢~x χ)

((ϕ ∨ ψ) ⊢~x χ)

Distributive Law3

((ϕ ∧ (ψ ∨ χ) ⊢~x (ϕ ∧ ψ) ∨ (ϕ ∧ χ))

Frobenius Axiom3

((ϕ ∧ ((∃y)ψ) ⊢~x (∃y) (ϕ ∧ ψ))

Excluded Middle

(⊤ ⊢x (ϕ ∨ ¬ϕ))
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Syntactic Categories

Let T be a regular theory. There is a regular category CT that has a
model of T.

objects: α-equivalence classes of formulae-in-context: {~x .ϕ}
where ϕ is regular over T

morphisms : T-provable equivalence classes [θ] with {~x.ϕ}
[θ]

// {~y .ψ}

θ ⊢~x,~y ϕ ∧ ψ ϕ ⊢~x (∃~y ) θ θ ∧ θ[~z/~y ] ⊢~x,~y,~z (~z = ~y )

composition: {~x.ϕ}
[θ]

//

[(∃~y)(θ∧γ)]
##❍

❍

❍

❍

❍

❍

❍

❍

❍

{~y .ψ}

[γ]

��

{~z .χ}

identity: {~x.ϕ}
[ϕ∧(~x′=~x)]

// {~x ′. ϕ[~x ′/~x ]}
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Syntactic Categories (Continued)

CT contains a model of T.

sorts A {x .⊤} for x : A

types 1 {[].⊤}

A1 × · · · × An {~x .⊤} for xi : Ai

function symbols f : A1 × · · · × An → B {~x.⊤}
[f (x1,...,xn)=y ]

// {y .⊤}

for xi : Ai and y : B

relation symbols R ֌ A1 × · · · × An {~x.R(~x)} // {~x .⊤}
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Soundness

Soundness Theorem: Let T be a Horn theory and let M be a model
of T in a cartesian category. If ϕ ⊢~x ψ is provable from T in Horn
logic, then the sequent is satisfied in M.

Proof: Induction on inference rules using the categorical properties
used to define semantics of terms- and formulae-in-context.

We can replace Horn and cartesian with other combinations:

Logic Category

Regular Regular
Coherent Coherent
First-order Heyting
Classical first-order Boolean coherent
Linear ∗-autonomous
Intuitionistic higher-order Topos
S4 modal (predicate) sheaves on a topological space
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Completeness

Completeness Theorem: Let T be a regular theory. If ϕ ⊢~x ψ is a
regular sequent that is satisfied in all models of T in regular
categories D, then it is provable from T in regular logic.

Proof: Construct the syntactic category CT with a generic model MT

category of models
of T in D

∼=
category of regular functors

CT → D

ModT(D) ∼= Reg(CT, D)

We can replace regular theories and categories with:

Logic Category

Cartesian Cartesian
Coherent Coherent
First-order Heyting

The Completeness Theorem also holds if we replace D by Set.
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Proof of (u(x) = u(y)) ⊢x ,y (x = y) for Civics Theory T1

1 (u(x) = u(y)) ⊢x,y (u(x) = u(y)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Id
2 (u(x) = u(y)) ⊢x,y ⊤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⊤
3 ⊤ ⊢x (r(u(x)) = x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . axiom
4 ⊤ ⊢x,y (r(u(x)) = x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sub (3)
5 ⊤ ⊢x,y (r(u(y)) = y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sub (3)
6 (x = y) ∧ (r(x) = z) ⊢x,y,z (r(y) = z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq1
7 (u(x) = u(y)) ∧ (r(u(x)) = x) ⊢x,y,z (r(u(y)) = x) . . . . . . . . . . . . . . . . . . . . . . . .Subs (6)
8 (u(x) = u(y)) ∧ (r(u(x)) = x) ⊢x,y (r(u(y)) = x) . . . . . . . . . . . . . . . . . . . . . . . . . Subs (7)
9 (x = y) ⊢x,y (y = x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . previous proof
10 (r(u(y)) = x) ⊢x,y (x = r(u(y))) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Subs (9)
11 (u(x) = u(y)) ∧ (r(u(x)) = x) ⊢x,y (x = r(u(y))) . . . . . . . . . . . . . . . . . . . . . Cut (8), (10)
12 (x = y) ∧ (y = z) ⊢x,y,z (x = z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . previous proof
13 (x = r(u(y))) ∧ (r(u(y)) = y) ⊢x,y,z (x = y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Subs (12)
14 (x = r(u(y))) ∧ (r(u(y)) = y) ⊢x,y (x = y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Subs (13)
15 (u(x) = u(y)) ⊢x,y (r(u(x)) = x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cut (2), (4)
16 (u(x) = u(y)) ⊢x,y (u(x) = u(y)) ∧ (r(u(x)) = x) . . . . . . . . . . . . . . . . . . . . . .∧I (1), (15)
17 (u(x) = u(y)) ⊢x,y (x = (r(u(y))) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cut (16), (11)
18 (u(x) = u(y)) ⊢x,y (r(u(y)) = y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cut (2), (5)
19 (u(x) = u(y)) ⊢x,y (x = r(u(y))) ∧ (r(u(y)) = y) . . . . . . . . . . . . . . . . . . . . .∧I (17), (18)
20 (u(x) = u(y)) ⊢x,y (x = y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Cut (19), (14)
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Prover9 Proof

Input file:
formulas(assumptions).

all x (r(u(x)) = x).

end of list.

formulas(goals).

all x all y (u(x) = u(y)) -> (x = y).

end of list.

Proof:
1 (all x r(u(x)) = x) ....................# label(non clause). [assumption].

2 (all x all y u(x) = u(y)) -> x = y .................# label(non clause)
# label(goal). [goal].

3 r(u(x)) = x. ...................................................[clausify(1)].

4 u(x) = u(y). ........................................................[deny(2)].

5 c2 != c1. ...........................................................[deny(2)].

6 x = y. ............................ [para(4(a,1),3(a,1,1)),rewrite([3(2)])].

7 $F. .........................................................[resolve(6,a,5,a)].

The shorter proof by contradiction uses classical first-order logic.

First-order horn logic has lower computational complexity.
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Sketch Inference Strategies

How do we show that a property P , that is not an explicit constraint,
holds in a sketch?

Add a constraint for P then show that the resulting sketch is Morita
equivalent to the original one.

This could change the sketch class (e.g., from linear to finite limit)

Show that P holds in every model then apply a completeness theorem.

Translate the sketch into a Morita equivalent theory, then use a
sequent calculus.

Show that P holds in the theory T (S) of the sketch

Express P as a constraint D then determine if T (S) satisfies the
constraint D → T (S)

Express P as satisfaction of a Q-tree.
P may be expressible using different Q-trees.
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Q-Sequences and Q-Trees (Freyd-Scedrov 1990)

P. Freyd and A. Scedrov. Categories, Allegories. 1990

A Q-sequence Q = (A, a,Q) in a category D consists of lists of
objects A0, . . . , An

morphisms ai : Ai → Ai+1 for 0 ≤ i < n

quantifiers Q0, . . . , Qn

A0

Q0

| A1

Q1

| · · ·
Qn−1

| An

Qn

|

σQ is: A1

Q1

| · · ·
Qn−1

| An

Qn

|

A morphism A0
f0

−→ B satisfies Q if one of the following holds:

n = 0 and Q0 = ∀

n > 0, Q0 = ∀, and for every commutative triangle A0
a0

//

f0
  ❆

❆

❆

❆

A1

f1
~~

B

, the

morphism A1
f1

−→ B satisfies σQ

n > 0, Q0 = ∃, and there exists a commutative triangle A0
a0

//

f0
  
❆

❆

❆

❆

A1

f1
~~

Bfor which A1
f1

−→ B satisfies σQ

Q-trees generalize Q-sequences by allowing branching.

www.bakermountain.org/talks/cmu2017.pdf ralphw@bakermountain.org 28 October 2017 23/28

http://www.bakermountain.org/talks/cmu2017.pdf


Introduction Sketches Sketches and Alignment Theories and Alignment Reasoning Translations

Sketch Inference

In civics sketch S1, we may conclude

that Elected is a subclass of People.
Graph Diagram

Elected People

u

r

Elected People

Elected

u

r
id

In Cat, the indicated f0 satisfies the given Q-sequence.

Q-Sequence

T (S1)

f0

• •
u

∀
•

• •

+

∃
•

• •

∀

Elected People

u

r

id id

u ◦ r

There are two commutative triangles A0
a0

//

f0
##❍

❍

❍

❍

A1

f1
{{

T (S1)
In both cases, f1 satisfies σQ.

www.bakermountain.org/talks/cmu2017.pdf ralphw@bakermountain.org 28 October 2017 24/28

http://www.bakermountain.org/talks/cmu2017.pdf


Introduction Sketches Sketches and Alignment Theories and Alignment Reasoning Translations

Sketch Inference: Questions

Categories, Allegories 1.398. Equivalence functors between categories
preserve and reflect satisfaction of those Q-trees all of whose functors
separate objects.

Morita equivalent sketches (those having equivalent theories) satisfy
the same Q-trees.

Categories, Allegories 1.3(10). For any elementary property on diagrams
preserved and reflected by equivalence functors, there is a finitely presented
Q-tree all of whose functors separate objects.

A completeness theorem for sketches?

What algorithms have been developed for verifying satisfaction of Q-trees?

Different Q-trees can express the same constraint. Is there a notion of
map/equivalence between Q-trees?

www.bakermountain.org/talks/cmu2017.pdf ralphw@bakermountain.org 28 October 2017 25/28

http://www.bakermountain.org/talks/cmu2017.pdf


Introduction Sketches Sketches and Alignment Theories and Alignment Reasoning Translations

Transforming Sketches into First-Order Theories

Sketches are related to first-order logical theories by theorems of the form:
Given any sketch S of class X , there is a logical theory T of class Y for
which S and T have equivalent classes of models.

D2.2 of Johnstone’s Sketches of an Elephant: A Topos Theory Compendium
gives explicit constructions of T from S and conversely.

Class of Fragment of
Sketches Predicate Calculus Logical Connectives

finite limit cartesian =, ⊤, ∧, ∃∗

regular regular =, ⊤, ∧, ∃
coherent coherent =, ⊤, ∧, ∃, ⊥, ∨
geometric geometric =, ⊤, ∧, ∃, ⊥,

∨

σ-coherent σ-coherent =, ⊤, ∧, ∃, ⊥,

∞
∨

i=1finitary σ-coherent
∗ In cartesian logic, only certain existentially quantified formulae are allowed.
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Example: Transforming the Civics Sketches to Theories

General construction (D2.2 of Sketches of an Elephant by P.T. Johnstone)

Vertices become sorts
Edges become function symbols
No relation symbols
Diagrams become axioms
Cones and cocones induce axiom schema

S1 induces T1 and S2 induces T2

Add a finite limit constraint to S1

Elected

ElectedElected

Person

id

id

u

u
u

All induced sequents are derivable in T1

⊤ ⊢x

(

u(x) = u(x)
)

(

(x = y) ∧ (u(x) = u(y)) ∧ (x = y)
)

⊢x,y (x = y)
(

(u(x) = y) ∧ (u(x ′) = y)
)

⊢x,x′,y ∃x0
(

(x0 = x) ∧ (u(x0) = y) ∧ (x0 = x ′)
)
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Sketch Translations: Questions

The proof in 2.2.1 of Johnstone’s Sketches of an Elephant of the
existence of a Morita equivalent sketch for a logical theory (both of
suitable classes) is not a direct construction.

Is there an explicit (finite) construction?

What classes of sketches correspond to OWL dialects?

How could such mappings be used to solve the ontology alignment
problem?

transform ontologies to sketches + instance data
align the sketches
transform back to ontologies (if necessary)
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