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Differential Geometry via Modal HoTT

Felix Wellen
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∞-Groupoids
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Add a modality ℑ...

HoTT+ℑ

∞-Groupoids

Smooth Manifolds
Formal Smooth
∞-Groupoids

Schemes

Sh(Ringop)

ℑ
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ℑ∶ Sh(Ringop) → Sh(Ringop)

For ℱ ∈ Sh(Ringop), ℑ(ℱ) is given by:

ℑ(ℱ)(𝐴) ≔ ℱ(𝐴red)

where 𝐴red denotes the quotient of a ring by all nilpotents.
Why?
For a 𝑘-scheme 𝑆:

{Tangent vectors at 𝑘-points} ≅ 𝑆(𝑘[𝑋]/𝑋2)

But: (𝑘[𝑋]/𝑋2)red ≅ 𝑘, so:

ℑ(𝑆)(𝑘[𝑋]/𝑋2) = 𝑆((𝑘[𝑋]/𝑋2)red) = 𝑆(𝑘)

Conclusion: ℑ removes differential geometric information!
ℑ is a left and right adjoint idempotent monad known by the
names coreduction, deRham-stack and infinitesimal shape.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ℑ∶ Sh(Ringop) → Sh(Ringop)
For ℱ ∈ Sh(Ringop), ℑ(ℱ) is given by:

ℑ(ℱ)(𝐴) ≔ ℱ(𝐴red)

where 𝐴red denotes the quotient of a ring by all nilpotents.

Why?
For a 𝑘-scheme 𝑆:

{Tangent vectors at 𝑘-points} ≅ 𝑆(𝑘[𝑋]/𝑋2)

But: (𝑘[𝑋]/𝑋2)red ≅ 𝑘, so:

ℑ(𝑆)(𝑘[𝑋]/𝑋2) = 𝑆((𝑘[𝑋]/𝑋2)red) = 𝑆(𝑘)

Conclusion: ℑ removes differential geometric information!
ℑ is a left and right adjoint idempotent monad known by the
names coreduction, deRham-stack and infinitesimal shape.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ℑ∶ Sh(Ringop) → Sh(Ringop)
For ℱ ∈ Sh(Ringop), ℑ(ℱ) is given by:

ℑ(ℱ)(𝐴) ≔ ℱ(𝐴red)

where 𝐴red denotes the quotient of a ring by all nilpotents.
Why?

For a 𝑘-scheme 𝑆:

{Tangent vectors at 𝑘-points} ≅ 𝑆(𝑘[𝑋]/𝑋2)

But: (𝑘[𝑋]/𝑋2)red ≅ 𝑘, so:

ℑ(𝑆)(𝑘[𝑋]/𝑋2) = 𝑆((𝑘[𝑋]/𝑋2)red) = 𝑆(𝑘)

Conclusion: ℑ removes differential geometric information!
ℑ is a left and right adjoint idempotent monad known by the
names coreduction, deRham-stack and infinitesimal shape.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ℑ∶ Sh(Ringop) → Sh(Ringop)
For ℱ ∈ Sh(Ringop), ℑ(ℱ) is given by:

ℑ(ℱ)(𝐴) ≔ ℱ(𝐴red)

where 𝐴red denotes the quotient of a ring by all nilpotents.
Why?
For a 𝑘-scheme 𝑆:

{Tangent vectors at 𝑘-points} ≅ 𝑆(𝑘[𝑋]/𝑋2)

But: (𝑘[𝑋]/𝑋2)red ≅ 𝑘, so:

ℑ(𝑆)(𝑘[𝑋]/𝑋2) = 𝑆((𝑘[𝑋]/𝑋2)red) = 𝑆(𝑘)

Conclusion: ℑ removes differential geometric information!
ℑ is a left and right adjoint idempotent monad known by the
names coreduction, deRham-stack and infinitesimal shape.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ℑ∶ Sh(Ringop) → Sh(Ringop)
For ℱ ∈ Sh(Ringop), ℑ(ℱ) is given by:

ℑ(ℱ)(𝐴) ≔ ℱ(𝐴red)

where 𝐴red denotes the quotient of a ring by all nilpotents.
Why?
For a 𝑘-scheme 𝑆:

{Tangent vectors at 𝑘-points} ≅ 𝑆(𝑘[𝑋]/𝑋2)

But: (𝑘[𝑋]/𝑋2)red ≅ 𝑘,

so:

ℑ(𝑆)(𝑘[𝑋]/𝑋2) = 𝑆((𝑘[𝑋]/𝑋2)red) = 𝑆(𝑘)

Conclusion: ℑ removes differential geometric information!
ℑ is a left and right adjoint idempotent monad known by the
names coreduction, deRham-stack and infinitesimal shape.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ℑ∶ Sh(Ringop) → Sh(Ringop)
For ℱ ∈ Sh(Ringop), ℑ(ℱ) is given by:

ℑ(ℱ)(𝐴) ≔ ℱ(𝐴red)

where 𝐴red denotes the quotient of a ring by all nilpotents.
Why?
For a 𝑘-scheme 𝑆:

{Tangent vectors at 𝑘-points} ≅ 𝑆(𝑘[𝑋]/𝑋2)

But: (𝑘[𝑋]/𝑋2)red ≅ 𝑘, so:

ℑ(𝑆)(𝑘[𝑋]/𝑋2) = 𝑆((𝑘[𝑋]/𝑋2)red) = 𝑆(𝑘)

Conclusion: ℑ removes differential geometric information!

ℑ is a left and right adjoint idempotent monad known by the
names coreduction, deRham-stack and infinitesimal shape.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ℑ∶ Sh(Ringop) → Sh(Ringop)
For ℱ ∈ Sh(Ringop), ℑ(ℱ) is given by:

ℑ(ℱ)(𝐴) ≔ ℱ(𝐴red)

where 𝐴red denotes the quotient of a ring by all nilpotents.
Why?
For a 𝑘-scheme 𝑆:

{Tangent vectors at 𝑘-points} ≅ 𝑆(𝑘[𝑋]/𝑋2)

But: (𝑘[𝑋]/𝑋2)red ≅ 𝑘, so:

ℑ(𝑆)(𝑘[𝑋]/𝑋2) = 𝑆((𝑘[𝑋]/𝑋2)red) = 𝑆(𝑘)

Conclusion: ℑ removes differential geometric information!
ℑ is a left and right adjoint idempotent monad known by the
names coreduction, deRham-stack and infinitesimal shape.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The modality ℑ

Internally, ℑ is given by the following list of axioms:
(i) For any type 𝐴, there is a type ℑ𝐴 and a map 𝜄𝐴 ∶ 𝐴 → ℑ𝐴.
(ii) (𝐴 is coreduced) ∶≡ (𝜄𝐴 is an equivalence)
(iii) For any type 𝐴, ℑ𝐴 is coreduced.
(iv) For any 𝐵∶ ℑ𝐴 → 𝒰, such that ∏𝑎 ∶ℑ𝐴 𝐵(𝑎) is coreduced, a

map 𝑠∶ ∏𝑎 ∶ℑ𝐴 𝐵(𝑎) is defined by 𝑠0 ∶ ∏𝑎 ∶𝐴 𝐵(𝜄𝐴(𝑎)).
(v) Coreduced types have coreduced identity types.

(iv) may be specialized to:
For any coreduced 𝐵

_ ∘ 𝜄𝐴 ∶ (ℑ𝐴 → 𝐵) → (𝐴 → 𝐵)

is an equivalence.
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Internal differential geometric notions

Definition
Let 𝐴 be a type.
(a) For two points 𝑥, 𝑦 ∶𝐴, let

(𝑥 ∼inf 𝑦) ∶≡ (𝜄𝐴(𝑥) =ℑ𝐴 𝜄𝐴(𝑦)).

(Say: “𝑥 is infinitesimally close to 𝑦”)
(b) For 𝑎∶𝐴, the type

𝔻𝑎 ∶≡ (∑
𝑥 ∶𝐴

𝑥 ∼inf 𝑎)

is called the formal disk at 𝑎.
(c) The type

T∞𝐴 ∶≡ ∑
𝑎 ∶𝐴

𝔻𝑎

is called the formal disk bundle of 𝐴.
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First properties
Lemma
Let 𝐴 and 𝐵 be types and 𝑓 ∶ 𝐴 → 𝐵 a map.

(a) For 𝑥, 𝑦 ∶𝐴, there is an induced map

̃𝑓𝑥,𝑦 ∶ (𝑥 ∼inf 𝑦) → (𝑓(𝑥) ∼inf 𝑓(𝑦)).

(b) For 𝑎∶𝐴, there is an induced map

𝑑𝑓𝑎 ∶ 𝔻𝑎 → 𝔻𝑓(𝑎).

(c) If 𝑓 is an equivalence, then for 𝑎∶𝐴,

𝑑𝑓𝑎 ∶ 𝔻𝑎 → 𝔻𝑓(𝑎)

is an equivalence.
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Let 𝐴 and 𝐵 be types and 𝑓 ∶ 𝐴 → 𝐵 a map.
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Towards a theorem

Definition
A type 𝑉 is called homogeneous if

(i) There is a point 𝑒∶𝑉 .
(ii) For any 𝑥∶𝑉 , there is an equivalence

𝜓𝑥 ∶ 𝑉 → 𝑉

such that 𝜓𝑥(𝑒) = 𝑥.

Examples
(a) Groups
(b) Pseudogroups
(c) Loopspaces
(d) Connected H-spaces
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The triviality theorem

Theorem
Let 𝑉 be a homogeneous type and 𝔻𝑒 the formal disk at its point.
Then the following commutes:

𝑇∞𝑉 𝑉 × 𝔻𝑒

𝑉

≃

Proof: 𝑑𝜓𝑥 ∶ 𝔻𝑒 → 𝔻𝜓𝑥(𝑒) is an equivalence.
𝔻𝜓𝑥(𝑒) and 𝔻𝑥 are equivalent by transport along 𝜓𝑥(𝑒) = 𝑥.
So, for any 𝑥∶𝑉 there is an equivalence 𝜑𝑥 ∶ 𝔻𝑒 → 𝔻𝑥.
(𝑥, 𝑑) ↦ (𝑥, 𝜙−1(𝑑))∶ (∑𝑥 ∶𝑉 𝔻𝑥) → 𝑉 × 𝔻𝑒 is an equivalence.
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Thank you for your attention!
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One morphism property

Definition
A map 𝑓 ∶ 𝐴 → 𝐵 is called formally étale if the naturality square

𝐴 ℑ𝐴

𝐵 ℑ𝐵

𝜄𝐴

𝑓 ℑ𝑓

𝜄𝐵

is a pullback square.
Remark
For smooth manifolds formally étale maps correspond to local
diffeomorphisms.
For noetherian schemes, they correspond to étale maps.
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Structured spaces

Definition
Let 𝑉 be a homogeneous type. A type 𝑀 is called a 𝑉 -Manifold,
if there is a span of formally étale maps

𝑉 𝑀

𝑊ét ét

.

Theorem (needs Univalence)
Any 𝑉 -Manifold has a locally trivial formal disk bundle witnessed
by a classifying map

𝜒𝑀 ∶ 𝑀 → BAut(𝔻𝑒)
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Cartan Geometry

Remark
If we have a delooping BG of a group 𝐺 with a map
𝜑∶ BG → BAut(𝔻𝑒), we can ask if there is a lift:

𝑀 BAut(𝔻𝑒)

BG

𝜒𝑀

𝜑

For example, such a lift for 𝐺 = 𝑂(𝑛) is a Pseudo-Riemannian
structure on 𝑀 .
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The topos of formal smooth ∞-groupoids

There is an embedding:

𝒞∞ ∶ (smooth manifolds)op ↪ ℝ-algebras

We extends the image 𝒞∞({ℝ𝑛 ∣ 𝑛 ∈ ℕ })
to get the site of formal cartesian spaces

{𝒞∞(ℝ𝑛) ⊗ℝ (ℝ ⊕ 𝑉 )⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶(ℝ𝑛×𝔻𝑉 )op

∣ 𝑛 ∈ ℕ and 𝑉 nilpotent, dimℝ𝑉 < ∞}op

with a topology respecting the smooth structure on the ℝ𝑛s and
inducing identities on infinitesimals.
On representables _red is given by reduction of ℝ-algebras:

(ℝ𝑛 × 𝔻𝑉 )red = ℝ𝑛
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∣ 𝑛 ∈ ℕ and 𝑉 nilpotent, dimℝ𝑉 < ∞}op

with a topology respecting the smooth structure on the ℝ𝑛s and
inducing identities on infinitesimals.
On representables _red is given by reduction of ℝ-algebras:

(ℝ𝑛 × 𝔻𝑉 )red = ℝ𝑛
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Differential Cohesive Toposes

ℜ ℑ &

∫ ♭ ♯

⊣ ⊣

⊣ ⊣
⊂ ⊂

ℑ, ∫ and ♯ are reflections.
ℜ, & and ♭ are coreflections.
∫ and ℜ preserve finite products.


