A Higher Structure Identity Principle

Dimitris Tsementzis

(cww B. Ahrens, P. North, M. Shulman)

October 28, 2017
Main Idea

Theorem (HoTT Book, Theorem 9.4.16)

For any univalent precategories (=categories) \mathcal{C} and \mathcal{D}, the type of categorical equivalences $\mathcal{C} \simeq_{\text{precat}} \mathcal{D}$ is equivalent to $\mathcal{C} =_{\text{UniCat}} \mathcal{D}$

$$(\mathcal{C} \simeq_{\text{precat}} \mathcal{D}) \simeq (\mathcal{C} =_{\text{UniCat}} \mathcal{D})$$
Main Idea

Theorem (HoTT Book, Theorem 9.4.16)

For any univalent precategories (=categories) \(\mathcal{C} \) and \(\mathcal{D} \), the type of categorical equivalences \(\mathcal{C} \equiv_{\text{precat}} \mathcal{D} \) is equivalent to \(\mathcal{C} = \text{UniCat} \mathcal{D} \)

\[
(\mathcal{C} \equiv_{\text{precat}} \mathcal{D}) \simeq (\mathcal{C} = \text{UniCat} \mathcal{D})
\]

Pre-Theorem

For any univalent models \(\mathcal{M} \) and \(\mathcal{N} \) of an \(\mathcal{L} \)-theory \(\mathcal{T} \), the type of \(\mathcal{L} \)-equivalences \(\mathcal{M} \equiv_{\mathcal{L}} \mathcal{N} \) is equivalent to \(\mathcal{M} = \text{UniMod}(\mathcal{T}) \mathcal{N} \)

\[
(\mathcal{M} \equiv_{\mathcal{L}} \mathcal{N}) \simeq (\mathcal{M} = \text{UniMod}(\mathcal{T}) \mathcal{N})
\]
Main Idea

Pre-Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L}-theory \mathbb{T}, the type of \mathcal{L}-equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} \simeq_{\text{UniMod}(\mathbb{T})} \mathcal{N}$.

L-theory \mathbb{T} = A theory \mathbb{T} over a FOLDS signature
L-equivalence = FOLDS L-equivalence
univalent model = Model of \mathbb{T} where FOLDS isomorphism is equivalent to identity

UniMod(\mathbb{T}) = The type of univalent models

The Setting: Two-Level Type Theory (2LTT)
Main Idea

Pre-Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L}-theory \mathbb{T}, the type of \mathcal{L}-equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} =_{\text{UniMod}(\mathbb{T})} \mathcal{N}$.

\mathcal{L}-theory $\mathbb{T} =$ A theory \mathbb{T} over a FOLDS signature \mathcal{L}
Main Idea

Pre-Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L}-theory \mathbb{T}, the type of \mathcal{L}-equivalences $\mathcal{M} \simeq_\mathcal{L} \mathcal{N}$ is equivalent to $\mathcal{M} = \text{UniMod}(\mathbb{T}) \mathcal{N}$.

\mathcal{L}-theory $\mathbb{T} = \text{A theory } \mathbb{T} \text{ over a FOLDS signature } \mathcal{L}$

\mathcal{L}-equivalence = FOLDS \mathcal{L}-equivalence
Main Idea

Pre-Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L}-theory \mathbb{T}, the type of \mathcal{L}-equivalences $\mathcal{M} \simeq_\mathcal{L} \mathcal{N}$ is equivalent to $\mathcal{M} = \text{UniMod}(\mathbb{T}) \mathcal{N}$.

\mathcal{L}-theory $\mathbb{T} = A$ theory \mathbb{T} over a FOLDS signature \mathcal{L}

\mathcal{L}-equivalence = FOLDS \mathcal{L}-equivalence

univalent model = Model of \mathbb{T} where FOLDS isomorphism is equivalent to identity
Pre-Theorem

For any univalent models \(M \) and \(N \) of an \(\mathcal{L} \)-theory \(T \), the type of \(\mathcal{L} \)-equivalences \(M \simeq_{\mathcal{L}} N \) is equivalent to \(M = \text{UniMod}(T) N \).
Main Idea

Pre-Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L}-theory \mathbb{T}, the type of \mathcal{L}-equivalences $\mathcal{M} \simeq_\mathcal{L} \mathcal{N}$ is equivalent to $\mathcal{M} = \text{UniMod}(\mathbb{T}) \mathcal{N}$.

L-theory $\mathbb{T} = \text{A theory } \mathbb{T} \text{ over a FOLDS signature } \mathcal{L}$

L-equivalence $= \text{FOLDS } \mathcal{L}$-equivalence

univalent model $= \text{Model of } \mathbb{T} \text{ where FOLDS isomorphism is equivalent to identity}$

$\text{UniMod}(\mathbb{T}) = \text{The type of univalent models}$

The Setting: Two-Level Type Theory (2LTT)
2LTT (Annenkov, Capriotti, Kraus, 2017)

2LTT internalizes the set-theoretic semantics of HoTT.
2LTT (Annenkov, Capriotti, Kraus, 2017)

2LTT internalizes the set-theoretic semantics of HoTT.

One level of 2LTT is a **fibrant** fragment of **fibrant types** which consists of $\Pi, \Sigma, +, \mathbf{1}, \mathbf{0}, \mathbb{N}$, intensional $=$, propositional truncation $||-||$ and a hierarchy of univalent universes \mathcal{U}.
2LTT (Annenkov, Capriotti, Kraus, 2017)

2LTT internalizes the set-theoretic semantics of HoTT.

One level of 2LTT is a **fibrant** fragment of **fibrant types** which consists of Π, Σ, $+$, 1, 0, \mathbb{N}, intensional $=$, propositional truncation $||-||$ and a hierarchy of univalent universes \mathcal{U}.

The other level of 2LTT is the **strict** fragment of **pretypes** which consists of $+^s$, 0^s, \mathbb{N}^s, a strict equality \equiv with UIP and function extensionality, a hierarchy of strict universes \mathcal{U}^s. It shares the type constructors Π, Σ, 1 with the fibrant fragment.
2LTT (Annenkov, Capriotti, Kraus, 2017)

2LTT internalizes the set-theoretic semantics of HoTT.

One level of 2LTT is a **fibrant** fragment of **fibrant types** which consists of $\Pi, \Sigma, +, 1, 0, \mathbb{N}$, intensional $=$, propositional truncation $\| - \|$ and a hierarchy of univalent universes U.

The other level of 2LTT is the **strict** fragment of **pretypes** which consists of $+^s, 0^s, \mathbb{N}^s$, a strict equality \equiv with UIP and function extensionality, a hierarchy of strict universes U^s. It shares the type constructors $\Pi, \Sigma, 1$ with the fibrant fragment.

The rules for the type constructors are the usual ones, and we also have a rule that allows us to consider any fibrant type as a pretype, i.e. the fibrant universes U can be thought of as subuniverses of U^s, as well as rules that ensure that Σ and Π preserve fibrancy, and that the fibrant universes are closed under strict isomorphism.
s-categories

For a pretype X, we can write $\text{isfibrant}(X)$ for the pretype $\sum_{Y:U}(Y \equiv X)$.

Definition (Definition 27, 2LTT)

A pretype A is **cofibrant** if for any fibration $p: X \to Y$, the induced map $(A \to X) \to (A \to Y)$ is a fibration.

Definition (Definition 7, 2LTT)

An **s-category** is given by the following data

1. A pretype C of objects
2. For each $x, y: C$ a pretype $C(x, y)$ of arrows
3. For each $x: C$ an arrow $1: C(x, x)$
4. A composition operation $\circ: C(y, z) \to C(x, y) \to C(x, z)$ that is strictly associative and for which 1_x is a strict left and right unit.

A s-category is **cofibrant** if its pretypes of objects and arrows are cofibrant.
FOLDS (First-Order Logic with Dependent Sorts)

Invented by Makkai in his 1995 paper.
FOLDS (First-Order Logic with Dependent Sorts)

Invented by Makkai in his 1995 paper.

The **signatures** \mathcal{L} of FOLDS are (cofibrant) inverse categories with finite fan-out and of finite height.
FOLDS (First-Order Logic with Dependent Sorts)

Invented by Makkai in his 1995 paper.

The signatures \mathcal{L} of FOLDS are (cofibrant) inverse categories with finite fan-out and of finite height.

The contexts are finite functors $\Gamma : \mathcal{L} \to \textbf{Set}$ and formulas, sentences, sequents etc. in context are defined inductively in the usual way, taking a bit of care with the binding of variables.
FOLDS (First-Order Logic with Dependent Sorts)

Invented by Makkai in his 1995 paper.

The signatures \mathcal{L} of FOLDS are (cofibrant) inverse categories with finite fan-out and of finite height.

The contexts are finite functors $\Gamma : \mathcal{L} \to \text{Set}$ and formulas, sentences, sequents etc. in context are defined inductively in the usual way, taking a bit of care with the binding of variables.

An \mathcal{L}-theory \mathbb{T} is a pretype of \mathcal{L}-sentences.
An example

\[\mathcal{L}_{rg} \rightarrow \Gamma \rightarrow \text{Set} \]

\[
\begin{array}{ccc}
2 & 1 & 0 \\
\downarrow & \downarrow & \downarrow \\
i & A & O \\
c & \downarrow & \downarrow & \downarrow \\
d & g & z & \downarrow \\
\end{array}
\]

\[di = ci \]
An example

\[\mathcal{L}_{rg} \to \Gamma \to \text{Set} \]

\[
\begin{array}{cccccc}
2 & \quad I \\
\downarrow & \downarrow \downarrow \downarrow \downarrow \downarrow \\
1 & A & T & T \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & O & i & g & f & \{ f, g \} \\
\end{array}
\]

\[
di = ci
\]

\[
\Gamma = x, y, z: O, f: A(x, y), g: A(z, z), \tau: I(g, z)
\]
An example

\[\mathcal{L}_{rg} \rightarrow^\Gamma \rightarrow \text{Set} \]

\[
\begin{array}{cccc}
2 & 1 & 0 \\
I & A & O \\
i & c & x \\
\downarrow & \downarrow & \downarrow \\
\iota & g & \{\tau\} \\
\downarrow & \downarrow & \downarrow \\
\tau & f & \{f, g\} \\
\downarrow & \downarrow & \downarrow \\
\tau & c & \{x, y, z\} \\
\downarrow & \downarrow & \downarrow \\
\tau & d & \{x, y, z\} \\
\end{array}
\]

\[di = ci \]

\[\Gamma = x, y, z : O, f : A(x, y), g : A(z, z), \tau : l(g, z) \]

\[\text{Form}(x : O) \quad \forall g : A(z, z). \exists \tau : l(g, z). \top \sim \forall g : A(z, z). l(g, z) \]
Some terminology and notation

\[r(K) \quad \mathcal{L} \leftarrow K \sqcup \mathcal{L} \quad \partial K = \mathcal{L}(K, -) \]

\[n = H(\mathcal{L}) \quad R \]

\[n - 1 \quad A \]

\[m \quad K \]

\[1 \quad X \quad X \leq K \]

\[0 \quad O \]
Semantics of FOLDS in 2LTT

We want to define a type of \mathcal{L}-structures $\text{Struc}(\mathcal{L})$.

$D(\mathcal{L}) \equiv R(\mathcal{L})$ but the situation is not that simple.
Semantics of FOLDS in 2LTT

We want to define a type of \mathcal{L}-structures $\text{Struc}(\mathcal{L})$.

We would like $D(\mathcal{L}) \equiv R(\mathcal{L})$ but the situation is not that simple.
Semantics of FOLDS in 2LTT

We want to define a type of \mathcal{L}-structures $\text{Struc}(\mathcal{L})$.
Semantics of FOLDS in 2LTT

We want to define a type of \mathcal{L}-structures $\textbf{Struct}(\mathcal{L})$.

$$\mathcal{O}(\mathcal{L}_{rg}) \quad \mathcal{L}_{rg}$$

We would like $\mathcal{O}(\mathcal{L}) \equiv \mathcal{R}(\mathcal{L})$ but the situation is not that simple.
We want to define a type of \mathcal{L}-structures $\textbf{Struc}(\mathcal{L})$.
We want to define a type of \mathcal{L}-structures $\text{Struc}(\mathcal{L})$.

$$ \mathcal{O}(\mathcal{L}_{rg}) \quad \mathcal{L}_{rg} $$

$$ \cdots \sum_{A: O \times O \rightarrow \mathcal{U}} \cdots $$

$$ \sum_{O: \mathcal{U}} \cdots $$

$$ \sum \cdots $$

$$ I \downarrow i $$

$$ A \downarrow c \downarrow d $$

$$ O $$

$$ \ReedyFib(\mathcal{L}_{rg}, \mathcal{U}) $$
We want to define a type of \mathcal{L}-structures $\text{Struc}(\mathcal{L})$.

$$\Delta(\mathcal{L}_{rg})$$

$$\ldots \left(\sum_{x} A(x, x) \right) \rightarrow \mathcal{U}$$

$$\ldots \sum A: O \times O \rightarrow U \ldots$$

$$\ldots \sum O: U \ldots$$

$$\sum O: U$$

$$\text{ReedyFib}(\mathcal{L}_{rg}, \mathcal{U})$$

We would like $\Delta(\mathcal{L}) \equiv \mathcal{R}(\mathcal{L})$ but the situation is not that simple.

Dimitris Tsementzis
Semantics of FOLDS in 2LTT

We want to define a type of \mathcal{L}-structures $\text{Struct}(\mathcal{L})$.

$$\mathcal{O}(\mathcal{L}_{\text{rg}})$$

$$\mathcal{L}_{\text{rg}}$$

$$\mathcal{K}(\mathcal{L}_{\text{rg}})$$

$$\ldots \left(\sum_x A(x, x) \right) \rightarrow \mathcal{U}$$

$$\ldots \sum_{A: O \times O \rightarrow \mathcal{U}} \ldots$$

$$\sum_{O: \mathcal{U}} \ldots$$

$$\sum_{O: \mathcal{U}} \ldots$$

$$I$$

$$i$$

$$A$$

$$A$$

$$c$$

$$d$$

$$O$$

$$O$$

$$O$$

Dimitris Tsementzis

October 28, 2017 9 / 19
Semantics of FOLDS in 2LTT

We want to define a type of \mathcal{L}-structures $\text{Struc}(\mathcal{L})$.

\[D(\mathcal{L}_{rg}) \quad \mathcal{L}_{rg} \quad R(\mathcal{L}_{rg}) \]

\[\ldots \left(\sum_{x: O} A(x, x) \right) \rightarrow U \]

\[\ldots \sum_{A: O \times O \rightarrow U} \ldots \]

\[\sum_{O: U} \ldots \]

\[\text{ReedyFib}(\mathcal{L}_{rg}, U) \]
We want to define a type of \mathcal{L}-structures $\text{Struc}(\mathcal{L})$.

We would like $\mathcal{D}(\mathcal{L}) \equiv \mathcal{R}(\mathcal{L})$ but the situation is not that simple.
Semantics of FOLDS in 2LTT

\[\lim \left(A/\mathcal{L} \xrightarrow{\text{cod}} \mathcal{L} \xrightarrow{F} \mathcal{U} \right) \]

Theorem \(D(L) \cong R(L) \) as s-categories.

We define the type of \(L \)-structures as \(\text{Struc}(L) = D(L) \) but we will use the equivalence of the above theorem to transfer constructions from \(R(L) \).

Similarly, we denote by \(\text{Mod}(T) \) the type of \(L \)-structures satisfying all the sentences of \(T \).
Semantics of FOLDS in 2LTT

\[
\begin{align*}
F_K & \\
& \downarrow \\
\lim \left(A/\mathcal{L} \xrightarrow{\text{cod}} \mathcal{L} \xrightarrow{F} \mathcal{U} \right) & \\
\downarrow K & \\
\mathcal{U} &
\end{align*}
\]

Theorem

\[\mathcal{D}(\mathcal{L}) \simeq \mathcal{R}(\mathcal{L}) \text{ as s-categories}. \]
Semantics of FOLDS in 2LTT

\[
\begin{align*}
F_K & \quad \Rightarrow \\
\lim_{M_A^F} & \quad \text{lim} \left(A/\mathcal{L} \xrightarrow{\text{cod}} \mathcal{L} \xrightarrow{F} U \right) \\
K & \quad \Rightarrow \\
U & \quad \Rightarrow
\end{align*}
\]

Theorem

\[\mathcal{D}(\mathcal{L}) \simeq \mathcal{R}(\mathcal{L})\text{ as s-categories.}\]

We define the type of \(\mathcal{L}\)-structures as \(\text{Struc}(\mathcal{L}) = \mathcal{D}(\mathcal{L})\) but we will use the equivalence of the above theorem to transfer constructions from \(\mathcal{R}(\mathcal{L})\).
Semantics of FOLDS in 2LTT

\[
\begin{array}{c}
F_K \\
\downarrow \\
M^F_A \\
\downarrow \\
K \\
\downarrow \\
U
\end{array}
\quad \text{lim} \left(A//\mathcal{L} \xrightarrow{\text{cod}} \mathcal{L} \xrightarrow{F} \mathcal{U} \right)
\quad \begin{array}{c}
K \\
\downarrow \\
A \\
\vdots \\
\vdots
\end{array}
\]

Theorem

\[\mathcal{D}(\mathcal{L}) \simeq \mathcal{R}(\mathcal{L}) \text{ as s-categories.} \]

We define the type of \(\mathcal{L} \)-structures as \(\text{Struc}(\mathcal{L}) = \mathcal{D}(\mathcal{L}) \) but we will use the equivalence of the above theorem to transfer constructions from \(\mathcal{R}(\mathcal{L}) \).

Similarly, we denote by \(\text{Mod}(\mathcal{T}) \) the type of \(\mathcal{L} \)-structures satisfying all the sentences of \(\mathcal{T} \).
The \mathcal{L}_{cat}-theory \mathbb{T}_{cat}

\[
\begin{array}{c}
\text{2} & \circ & l & E_A \\
\text{1} & t_2 & A & s \\
\text{0} & t_0 & c & d \\
\end{array}
\]

\[
dt_0 = dt_2 \quad ct_1 = ct_2 \quad dt_1 = ct_0
\]

\[
ds = dt \quad cs = ct
\]

\[
\text{ci} = \text{di}
\]
The \mathcal{L}_{cat}-theory \mathbb{T}_{cat}

\[
\begin{array}{cccc}
2 & 1 & 0 \\
\circ & \circ & \\
E_A & i & A \\
i & t & c \\
\end{array}
\]

\[d t_0 = d t_2 \quad c t_1 = c t_2 \quad d t_1 = c t_0 \]
\[d s = d t \quad c s = c t \]
\[c i = d i \]

\mathbb{T}_{cat} is the \mathcal{L}_{cat}-theory with the usual axioms of category theory expressed in relational form using E_A as the equality on arrows.
The \mathcal{L}_{cat}-theory \mathbf{T}_{cat}

\[
\begin{array}{ccc}
2 & \circ & I \\
\downarrow & & \downarrow \\
1 & t_0 & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow \\
0 & t_1 & s & \downarrow & \downarrow \\
\circ & t_2 & \downarrow & \downarrow \\
\circ & \circ & \circ & \circ & \circ
\end{array}
\]

E_A

$dt_0 = dt_2 \quad ct_1 = ct_2 \quad dt_1 = ct_0$

$ds = dt \quad cs = ct$

$ci = di$

\mathbf{T}_{cat} is the \mathcal{L}_{cat}-theory with the usual axioms of category theory expressed in relational form using E_A as the equality on arrows.

Theorem

If E_A is interpreted as the identity type on A then

\[
\text{Mod}(\mathbf{T}_{\text{cat}}) \simeq \sum_{O : \mathcal{U}} \sum_{A : O \to O \to \mathcal{U}} \circ : \sum_{x,y,z : O} A(x,y) \to A(y,z) \to A(x,z) (\ldots \ldots)
\]

$\circ^*: A(x,y) \to A(x,z)$
Generalized Isomorphism?

Let $\mathcal{M} : \text{Mod}(\mathbb{T})$
Generalized Isomorphism?

Let $\mathcal{M} : \text{Mod}(\mathbb{T})$

\[\begin{array}{ccc}
\mathcal{M}_Q & \rightarrow & \mathcal{M}_R \\
\downarrow & & \downarrow \\
\mathcal{M}_A & \rightarrow & \mathcal{M}_K' \\
\downarrow & & \downarrow \\
\mathcal{M}_K & \rightarrow & \mathcal{M}_O
\end{array}\]

$q \quad r \quad ???$

\[\begin{array}{ccc}
a & \rightarrow & b \\
\downarrow & & \downarrow \\
x & \rightarrow & \partial x
\end{array}\]

$a \cong b?$

$\partial a = \partial b$
FOLDS \mathcal{L}-equivalence

$\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N} = \text{df } \sum \langle P, m, n \rangle \left(\begin{array}{c} m \text{ v.s.} \vspace{0.5cm} \begin{array}{c} \mathcal{M} \\ \text{v.s.} \end{array} \\ n \text{ v.s.} \\ \mathcal{N} \end{array} \right)$
FOLDS \mathcal{L}-equivalence

\[
\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N} \quad \overset{=\text{df}}{=} \quad \sum_{\langle P, m, n \rangle} \left(\begin{array}{c}
P \\
m \ & \overset{\text{v.s.}}{\downarrow} \\
\mathcal{M} \\ \\
\mathcal{N} \\
& \overset{\text{v.s.}}{\downarrow} \\
& n \\
\end{array} \right)
\]

Definition

\[
\text{isverysurjective}(m) = \text{df} \prod_{K: \mathcal{L}} \text{issurjective}(\mathcal{P}_K \rightarrow \mathcal{M}^\mathcal{P}_K \times \mathcal{M}^\mathcal{M}_K \mathcal{M}_K)
\]

Theorem (Makkai, 1995)

If $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ then $\mathcal{M} \models \phi \iff \mathcal{N} \models \phi$
FOLDS pre-isomorphism

Fix $\mathcal{M} : \text{Mod}(\mathcal{T})$ and $\mathcal{K} : \mathcal{L}$. Let $a, b : \mathcal{M}_\mathcal{K}$.

Definition (Pre-isomorphism)

A **pre-isomorphism** from a to b is given by the following cospan of spans

\[
\begin{array}{c}
\mathcal{M} \\
\downarrow s \\
\mathcal{P} \\
\downarrow \downarrow m & t & n \\
\mathcal{M} & \partial \mathcal{K} & \mathcal{M} \\
\end{array}
\]

where $\langle m, \mathcal{P}, n \rangle$ is a FOLDS equivalence.

Theorem (Makkai, 1995)

If a is pre-isomorphic to b then $\mathcal{M} \models \phi[a] \iff \mathcal{M} \models \phi[b]$
FOLDS isomorphism

Fix \(\mathcal{M} : \text{Mod}(\mathbb{T}) \) and \(K : \mathcal{L} \). Let \(a, b : \mathcal{M}_K \).

Definition (FOLDS isomorphism)

A **FOLDS isomorphism** is a pre-isomorphism \(\langle m, \mathcal{P}, n \rangle \) such that:

1. For any \(f : K \to A \) we have

 \[
 \mathcal{M} \xleftarrow{m} \mathcal{P} \xrightarrow{n} \mathcal{M} \\
 [\text{id}, \mathcal{M}_f(a)] \sim \mathcal{M} \amalg \partial A \leftrightarrow \mathcal{M} \\
 [\text{id}, \mathcal{M}_f(b)]
 \]

2. For any \(A \succ K \) we have

 \[
 \mathcal{M}_A \times_{\mathcal{M}_A^\mathcal{M}} \mathcal{M}_A^\mathcal{P} \xleftarrow{\sim} \mathcal{P}_A \xrightarrow{\sim} \mathcal{M}_A \times_{\mathcal{M}_A^\mathcal{M}} \mathcal{M}_A^\mathcal{P}
 \]

We write \(a \cong b \) for the type of FOLDS isomorphisms.
FOLDS isomorphism

Fix $\mathcal{M} : \text{Mod}(\mathbb{T})$ and $K : \mathcal{L}$. Let $a, b : \mathcal{M}_K$.

Definition (FOLDS isomorphism)

A **FOLDS isomorphism** is a pre-isomorphism $\langle m, \mathcal{P}, n \rangle$ such that:

1. For any $f : K \to A$ we have

$$
\begin{array}{c}
\mathcal{M} \\
\mathcal{M} \sqcup \partial A
\end{array}
\xymatrix{ M \ar[r]^m & \mathcal{P} \ar[r]^n \ar@{->}@/^/[d]^\sim & M \\
\mathcal{M} \sqcup \partial A \ar@{->}@/_/[u]_{[\text{id}, \mathcal{M}_f(a)]} \ar@{->}@/^/[u]_{[\text{id}, \mathcal{M}_f(b)]}}
$$

2. For any $A > K$ we have $\mathcal{M}_A \times_{\mathcal{M}_A^\mathcal{M}} \mathcal{M}_A^\mathcal{P} \xymatrix{ \sim & \mathcal{P}_A \ar[r] \ar[l] & \mathcal{M}_A \times_{\mathcal{M}_A^\mathcal{M}} \mathcal{M}_A^\mathcal{P}}$

We write $a \sim b$ for the type of FOLDS isomorphisms.

Lemma

$\sim : \mathcal{M}_K \to \mathcal{M}_K \to \mathcal{U}$ is reflexive.
FOLDS isomorphism

Fix $\mathcal{M} : \text{Mod}(\mathbb{T})$ and $K : \mathcal{L}$. Let $a, b : M_K$.

Definition (FOLDS isomorphism)

A **FOLDS isomorphism** is a pre-isomorphism $\langle m, P, n \rangle$ such that:

1. For any $f : K \to A$ we have $M \xleftarrow{m} P \xrightarrow{n} M$

 \[
 \begin{array}{c}
 \mathcal{M} \xleftarrow{m} \mathcal{P} \xrightarrow{n} \mathcal{M} \\
 \downarrow \sim \\
 \mathcal{M} \cap \partial A \\
 \end{array}
 \]

 $[\text{id}, M_f(a)] \sim [\text{id}, M_f(b)]$

2. For any $A > K$ we have $\mathcal{M}_A \times_{M_A^P} M_A^P \leftarrow \mathcal{P}_A \rightarrow \mathcal{M}_A \times_{M_A^P} M_A^P$

We write $a \cong b$ for the type of FOLDS isomorphisms.

Lemma

$\cong : \mathcal{M}_K \to \mathcal{M}_K \to \mathcal{U}$ is reflexive.

Corollary

$idtoiso_{a,b} : a =_{M_K} b \rightarrow a \cong b$
Univalent Models

Fix $\mathcal{M} : \text{Mod}(\mathbb{T})$

Definition (Univalence for \mathcal{M})

- K-univalent

 $\text{univ}_K(\mathcal{M}) = \text{df} \prod_{a, b : \mathcal{M}_K} \text{isequiv}(\text{idtoiso}_{a, b})$

- m-univalent

 $\text{univ}_m(\mathcal{M}) = \text{df} \prod_{K : \mathcal{L} \geq m} \text{univ}_K(\mathcal{M})$

- univalent

 $\text{univ}(\mathcal{M}) = \text{df} \prod_{K : \mathcal{L}} \text{univ}_K(\mathcal{M})$

Definition (Type of Univalent Models)

- $\text{UniMod}_m(\mathbb{T}) = \text{df} \sum_{\mathcal{M} : \text{Mod}(\mathbb{T})} \text{univ}_m(\mathcal{M})$

- $\text{UniMod}(\mathbb{T}) = \text{df} \sum_{\mathcal{M} : \text{Mod}(\mathbb{T})} \text{univ}(\mathcal{M})$
Some Results

Theorem

If \(r(K) = H(\mathcal{L}) \) then \(a \cong b \cong 1 \)
Some Results

Theorem

\[If \, r(K) = H(\mathcal{L}) \, then \, a \cong b \cong 1 \]

Corollary

\[If \, r(K) = H(\mathcal{L}) \, then \, \text{univ}_K(\mathcal{M}) \cong \text{isprop}(\mathcal{M}_K) \]
Some Results

Theorem

If \(r(K) = H(\mathcal{L}) \) then \(a \cong b \cong 1 \)

Corollary

If \(r(K) = H(\mathcal{L}) \) then \(\text{univ}_K(\mathcal{M}) \cong \text{isprop}(\mathcal{M}_K) \)

Theorem

Let \(H(\mathcal{L}) \geq n \geq m, K : \mathcal{L}^{=n} \) and \(\mathcal{M} : \text{UniMod}_m(\mathcal{T}) \). Then \(\mathcal{M}_K \) is an \(m \)-type.
Some Results

Theorem

If \(r(K) = H(\mathcal{L}) \) then \(a \cong b \cong 1 \)

Corollary

If \(r(K) = H(\mathcal{L}) \) then \(\text{univ}_K(\mathcal{M}) \cong \text{isprop}(\mathcal{M}_K) \)

Theorem

Let \(H(\mathcal{L}) \geq n \geq m \), \(K : \mathcal{L}^{=n} \) and \(\mathcal{M} : \text{UniMod}_m(\mathcal{T}) \). Then \(\mathcal{M}_K \) is an \(m \)-type.

Theorem

Let \(\mathcal{T}_{cat} \) be the \(\mathcal{L}_{cat} \)-theory of categories. Then we have:

\[
\text{UniMod}_1(\mathcal{T}_{cat}) \cong \text{PreCat} \\
\text{UniMod}(\mathcal{T}_{cat}) \cong \text{UniCat}
\]
We began with:

Theorem

*For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L}-theory \mathbb{T}, the type of \mathcal{L}-equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} = \text{UniMod}(\mathbb{T}) \mathcal{N}$.***
A Higher Structure Identity Principle

We began with:

Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L}-theory \mathbb{T}, the type of \mathcal{L}-equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} = _{\text{UniMod}(\mathbb{T})} \mathcal{N}$.

And now we can obtain the precise version:

Theorem (A Higher Structure Identity Principle, in progress)

For any $\mathcal{M}, \mathcal{N} : \text{UniMod}(\mathbb{T})$ for a FOLDS \mathcal{L}-theory \mathbb{T} we have

$$\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N} \iff \mathcal{M} = _{\text{UniMod}(\mathbb{T})} \mathcal{N}$$
Thank you