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Main Idea

Theorem (HoTT Book, Theorem 9.4.16)

For any univalent precategories (=categories) C and D, the type of
categorical equivalences C 'precat D is equivalent to C =UniCat D(

C 'precat D
)
'

(
C =UniCat D

)

Pre-Theorem

For any univalent models M and N of an L-theory T, the type of
L-equivalences M'L N is equivalent to M =UniMod(T) N(

M'L N
)
'

(
M =UniMod(T) N

)
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Main Idea

Pre-Theorem

For any univalent models M and N of an L-theory T, the type of
L-equivalences M'L N is equivalent to M =UniMod(T) N .

L-theory T = A theory T over a FOLDS signature L

L-equivalence = FOLDS L-equivalence

univalent model = Model of T where FOLDS isomorphism is equivalent to
identity

UniMod(T) = The type of univalent models

The Setting: Two-Level Type Theory (2LTT)
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2LTT (Annenkov, Capriotti, Kraus, 2017)

2LTT internalizes the set-theoretic semantics of HoTT.

One level of 2LTT is a fibrant fragment of fibrant types which consists
of Π,Σ,+, 1, 0,N, intensional =, propositional truncation || − || and a
hierarchy of univalent universes U .

The other level of 2LTT is the strict fragment of pretypes which consists
of +s , 0s ,Ns , a strict equality ≡ with UIP and function extensionality, a
hierarchy of strict universes U s . It shares the type constructors Π,Σ, 1
with the fibrant fragment.

The rules for the type constructors are the usual ones, and we also have a
rule that allows us to consider any fibrant type as a pretype, i.e. the fibrant
universes U can be thought of as subuniverses of U s , as well as rules that
ensure that Σ and Π preserve fibrancy, and that the fibrant universes are
closed under strict isomorphism.
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s-categories

For a pretype X , we can write isfibrant(X ) for the pretype Σ
Y :U

(Y ≡ X ).

Definition (Definition 27, 2LTT)

A pretype A is cofibrant if for any fibration p : X → Y , the induced map
(A→ X )→ (A→ Y ) is a fibration.

Definition (Definition 7, 2LTT)

A s-category is given by the following data

1 A pretype C of objects

2 For each x , y : C a pretype C(x , y) of arrows

3 For each x : C an arrow 1: C(x , x)

4 A composition operation ◦ : C(y , z)→ C(x , y)→ C(x , z) that is
strictly associative and for which 1x is a strict left and right unit.

A s-category cofibrant if its pretypes of objects and arrows are cofibrant.
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FOLDS (First-Order Logic with Dependent Sorts)

Invented by Makkai in his 1995 paper.

The signatures L of FOLDS are (cofibrant) inverse categories with finite
fan-out and of finite height.

The contexts are finite functors Γ: L → Set and formulas, sentences,
sequents etc. in context are defined inductively in the usual way, taking a
bit of care with the binding of variables.

An L-theory T is a pretype of L-sentences.
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An example
Lrg

Γ // Set

2 I

i
��

τ_

��

τ {τ}

��

1 A

d
		

c

��

g
j

��

T

��

f {

��

C

��

{f , g}

d
		

c

��

0 O z y x {x , y , z}

di = ci

Γ = x , y , z : O, f : A(x , y), g : A(z , z), τ : I (g , z)

Form(x : O) ∀g : A(z , z).∃τ : I (g , z).> ∼ ∀g : A(z , z).I (g , z)
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Some terminology and notation

r(K ) L K//Loo ∂K = L(K ,−)

n = H(L) R

i
��

n − 1 A

		��

m K

��

L≤K ,L<K , . . .

1 X

��

X ≤ K

0 O
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Semantics of FOLDS in 2LTT

We want to define a type of L-structures Struc(L).

D(Lrg) Lrg R(Lrg)

. . .

(
Σ

x : O
A(x , x)

)
→ U I

i

��

. . . Σ
A : O×O→U

. . . A

d





c

��

ReedyFib(Lrg,U)

Σ
O : U

. . . O

We would like D(L) ≡ R(L) but the situation is not that simple.
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Semantics of FOLDS in 2LTT
FK

����

K

��

MF
A

K

��

lim

(
A//L cod // L F // U

)
A

�� ��U . . . . . .

Theorem

D(L) ' R(L) as s-categories.

We define the type of L-structures as Struc(L) = D(L) but we will use
the equivalence of the above theorem to transfer constructions from R(L).

Similarly, we denote by Mod(T) the type of L-structures satisfying all the
sentences of T.
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The Lcat-theory Tcat

2 ◦
t0

��
t1

��
t2 00

I

i
��

EA
t

�� s
ww

dt0 = dt2 ct1 = ct2 dt1 = ct0

Lcat 1 A

c
��

d
		

ds = dt cs = ct

0 O ci = di

Tcat is the Lcat-theory with the usual axioms of category theory expressed
in relational form using EA as the equality on arrows.

Theorem

If EA is interpreted as the identity type on A then

Mod(Tcat) ' Σ
O : U

Σ
A : O→O→U

Σ
◦ : Π

x,y,z : O
A(x ,y)→A(y ,z)→A(x ,z)

I : Π
x : O

A(x ,x)

(. . . . . . )
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Generalized Isomorphism?

Let M : Mod(T)

MQ

""

MR

��

q r ???

MA

�� ww

��

##

a_

��

bB

��

a ∼= b?

MK

##

MK ′

{{

x ∂a = ∂b

MO
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FOLDS L-equivalence

P

v.s.
m

����

v.s. n

�� ��

M'L N =df Σ
〈P,m,n〉

( )

M N

Definition

isverysurjective(m) =df Π
K : L

issurjective(PK → MPK ×MMK
MK )

Theorem (Makkai, 1995)

If M'L N then M |= φ⇔ N |= φ
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FOLDS pre-isomorphism
Fix M : Mod(T) and K : L. Let a, b :MK .

Definition (Pre-isomorphism)

A pre-isomorphism from a to b is given by the following cospan of spans

M
s
��

M Pm
oo

n
//M

∂K

t

OO

b

==

a

aa

where 〈m,P, n〉 is a FOLDS equivalence.

Theorem (Makkai, 1995)

If a is pre-isomorphic to b then M |= φ[a]⇔M |= φ[b]
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FOLDS isomorphism
Fix M : Mod(T) and K : L. Let a, b :MK .

Definition (FOLDS isomorphism)

A FOLDS isomorphism is a pre-isomorphism 〈m,P, n〉 such that:

1 For any f : K → A we have M Pmoo n //M

Mq ∂A

∼

OO

[id,Mf (b)]

::

[id,Mf (a)]

dd

2 For any A > K we have MA ×MMA
MPA

∼←− PA
∼−→MA ×MMA

MPA
We write a ∼= b for the type of FOLDS isomorphisms.

Lemma
∼=: MK →MK → U is reflexive.

Corollary

idtoisoa,b : a =MK
b → a ∼= b
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Univalent Models

Fix M : Mod(T)

Definition (Univalence for M)

K -univalent univK (M) =df Π
a,b : MK

isequiv(idtoisoa,b)

m-univalent univm(M) =df Π
K : L≥m

univK (M)

univalent univ(M) =df Π
K : L

univK (M)

Definition (Type of Univalent Models)

UniModm(T) =df Σ
M : Mod(T)

univm(M)

UniMod(T) =df Σ
M : Mod(T)

univ(M)
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Some Results

Theorem

If r(K ) = H(L) then a ∼= b ' 1

Corollary

If r(K ) = H(L) then univK (M) ' isprop(MK )

Theorem

Let H(L) ≥ n ≥ m, K : L=n and M : UniModm(T). Then MK is an
m-type.

Theorem

Let Tcat be the Lcat-theory of categories. Then we have:

UniMod1(Tcat) ' PreCat

UniMod(Tcat) ' UniCat
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A Higher Structure Identity Principle

We began with:

Theorem

For any univalent models M and N of an L-theory T, the type of
L-equivalences M'L N is equivalent to M =UniMod(T) N .

And now we can obtain the precise version:

Theorem (A Higher Structure Identity Principle, in progress)

For any M,N : UniMod(T) for a FOLDS L-theory T we have

M'L N ↔ M =UniMod(T) N
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Thank you
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