A Higher Structure Identity Principle

Dimitris Tsementzis

(cww B. Ahrens, P. North, M. Shulman)

October 28, 2017

Dimitris Tsementzis

A 🖓

3

Theorem (HoTT Book, Theorem 9.4.16)

For any univalent precategories (=categories) C and D, the type of categorical equivalences $C \simeq_{precat} D$ is equivalent to $C =_{UniCat} D$

$$\begin{pmatrix} \mathcal{C} \simeq_{\textit{precat}} \mathcal{D} \end{pmatrix} \simeq \begin{pmatrix} \mathcal{C} =_{\textit{UniCat}} \mathcal{D} \end{pmatrix}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (HoTT Book, Theorem 9.4.16)

For any univalent precategories (=categories) C and D, the type of categorical equivalences $C \simeq_{precat} D$ is equivalent to $C =_{UniCat} D$

$$\left(\mathcal{C}\simeq_{\textit{precat}}\mathcal{D}
ight) \quad\simeq\quad \left(\mathcal{C}=_{\textit{UniCat}}\mathcal{D}
ight)$$

Pre-Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L} -theory \mathbb{T} , the type of \mathcal{L} -equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} =_{\mathsf{UniMod}(\mathbb{T})} \mathcal{N}$

$$\left(\mathcal{M}\simeq_{\mathcal{L}}\mathcal{N}\right) \quad \simeq \quad \left(\mathcal{M}=_{\mathsf{UniMod}(\mathbb{T})}\mathcal{N}\right)$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Pre-Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L} -theory \mathbb{T} , the type of \mathcal{L} -equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} =_{\text{UniMod}(\mathbb{T})} \mathcal{N}$.

イロト 不得 トイヨト イヨト 二日

Pre-Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L} -theory \mathbb{T} , the type of \mathcal{L} -equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} =_{\text{UniMod}(\mathbb{T})} \mathcal{N}$.

 \mathcal{L} -theory $\mathbb{T} = \mathsf{A}$ theory \mathbb{T} over a FOLDS signature \mathcal{L}

イロト 不得 トイヨト イヨト 二日

Pre-Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L} -theory \mathbb{T} , the type of \mathcal{L} -equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} =_{\text{UniMod}(\mathbb{T})} \mathcal{N}$.

 \mathcal{L} -theory $\mathbb{T} = A$ theory \mathbb{T} over a FOLDS signature \mathcal{L}

 \mathcal{L} -equivalence = FOLDS \mathcal{L} -equivalence

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pre-Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L} -theory \mathbb{T} , the type of \mathcal{L} -equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} =_{\text{UniMod}(\mathbb{T})} \mathcal{N}$.

 \mathcal{L} -theory $\mathbb{T} = A$ theory \mathbb{T} over a FOLDS signature \mathcal{L}

 \mathcal{L} -equivalence = FOLDS \mathcal{L} -equivalence

univalent model = Model of $\ensuremath{\mathbb{T}}$ where FOLDS isomorphism is equivalent to identity

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pre-Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L} -theory \mathbb{T} , the type of \mathcal{L} -equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} =_{\text{UniMod}(\mathbb{T})} \mathcal{N}$.

 $\mathcal{L}\text{-theory }\mathbb{T}=\mathsf{A}\text{ theory }\mathbb{T}\text{ over a FOLDS signature }\mathcal{L}$

 \mathcal{L} -equivalence = FOLDS \mathcal{L} -equivalence

 $\mbox{univalent model} = \mbox{Model}$ of $\ensuremath{\mathbb{T}}$ where FOLDS isomorphism is equivalent to identity

UniMod(\mathbb{T}) = The type of univalent models

E Sac

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pre-Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L} -theory \mathbb{T} , the type of \mathcal{L} -equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} =_{\text{UniMod}(\mathbb{T})} \mathcal{N}$.

 \mathcal{L} -theory $\mathbb{T} = A$ theory \mathbb{T} over a FOLDS signature \mathcal{L}

 \mathcal{L} -equivalence = FOLDS \mathcal{L} -equivalence

univalent model = Model of $\ensuremath{\mathbb{T}}$ where FOLDS isomorphism is equivalent to identity

UniMod(\mathbb{T}) = The type of univalent models

The Setting: Two-Level Type Theory (2LTT)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

2LTT internalizes the set-theoretic semantics of HoTT.

3

(日) (同) (三) (三)

2LTT internalizes the set-theoretic semantics of HoTT.

One level of 2LTT is a **fibrant** fragment of **fibrant types** which consists of $\Pi, \Sigma, +, \mathbf{1}, \mathbf{0}, \mathbb{N}$, intensional =, propositional truncation || - || and a hierarchy of univalent universes \mathcal{U} .

2LTT internalizes the set-theoretic semantics of HoTT.

One level of 2LTT is a **fibrant** fragment of **fibrant types** which consists of $\Pi, \Sigma, +, \mathbf{1}, \mathbf{0}, \mathbb{N}$, intensional =, propositional truncation || - || and a hierarchy of univalent universes \mathcal{U} .

The other level of 2LTT is the **strict** fragment of **pretypes** which consists of $+^{s}$, $\mathbf{0}^{s}$, \mathbb{N}^{s} , a strict equality \equiv with UIP and function extensionality, a hierarchy of strict universes \mathcal{U}^{s} . It shares the type constructors Π , Σ , $\mathbf{1}$ with the fibrant fragment.

2LTT internalizes the set-theoretic semantics of HoTT.

One level of 2LTT is a **fibrant** fragment of **fibrant types** which consists of $\Pi, \Sigma, +, \mathbf{1}, \mathbf{0}, \mathbb{N}$, intensional =, propositional truncation || - || and a hierarchy of univalent universes \mathcal{U} .

The other level of 2LTT is the **strict** fragment of **pretypes** which consists of $+^{s}$, $\mathbf{0}^{s}$, \mathbb{N}^{s} , a strict equality \equiv with UIP and function extensionality, a hierarchy of strict universes \mathcal{U}^{s} . It shares the type constructors Π , Σ , $\mathbf{1}$ with the fibrant fragment.

The rules for the type constructors are the usual ones, and we also have a rule that allows us to consider any fibrant type as a pretype, i.e. the fibrant universes \mathcal{U} can be thought of as subuniverses of \mathcal{U}^s , as well as rules that ensure that Σ and Π preserve fibrancy, and that the fibrant universes are closed under strict isomorphism.

イロト 不得 トイヨト イヨト 二日

s-categories

For a pretype X, we can write isfibrant(X) for the pretype $\sum_{Y \in U} (Y \equiv X)$.

Definition (Definition 27, 2LTT)

A pretype A is **cofibrant** if for any fibration $p : X \to Y$, the induced map $(A \to X) \to (A \to Y)$ is a fibration.

Definition (Definition 7, 2LTT)

A s-category is given by the following data

- **①** A pretype C of *objects*
- **2** For each x, y: C a pretype C(x, y) of arrows
- Solution For each x: C an arrow 1: C(x, x)
- A composition operation ◦: C(y, z) → C(x, y) → C(x, z) that is strictly associative and for which 1_x is a strict left and right unit.

A s-category **cofibrant** if its pretypes of objects and arrows are cofibrant.

- 3

・ロン ・四 ・ ・ ヨン ・ ヨン

Invented by Makkai in his 1995 paper.

A 🖓

Invented by Makkai in his 1995 paper.

The **signatures** \mathcal{L} of FOLDS are (cofibrant) inverse categories with finite fan-out and of finite height.

Invented by Makkai in his 1995 paper.

The **signatures** \mathcal{L} of FOLDS are (cofibrant) inverse categories with finite fan-out and of finite height.

The **contexts** are finite functors $\Gamma: \mathcal{L} \to \mathbf{Set}$ and formulas, sentences, sequents etc. in context are defined inductively in the usual way, taking a bit of care with the binding of variables.

Invented by Makkai in his 1995 paper.

The **signatures** \mathcal{L} of FOLDS are (cofibrant) inverse categories with finite fan-out and of finite height.

The **contexts** are finite functors $\Gamma: \mathcal{L} \to \mathbf{Set}$ and formulas, sentences, sequents etc. in context are defined inductively in the usual way, taking a bit of care with the binding of variables.

An \mathcal{L} -theory \mathbb{T} is a pretype of \mathcal{L} -sentences.

An example

di = ci

3

<ロ> (日) (日) (日) (日) (日)

An example

< 4 →

3

An example

Some terminology and notation

э

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

We want to define a type of \mathcal{L} -structures **Struc**(\mathcal{L}).

3

-

・ロト ・得ト ・ヨト ・

We want to define a type of \mathcal{L} -structures **Struc**(\mathcal{L}).

 $\mathcal{L}_{\mathsf{rg}}$

We want to define a type of \mathcal{L} -structures **Struc**(\mathcal{L}).

$$\mathfrak{D}(\mathcal{L}_{\mathsf{rg}})$$
 $\mathcal{L}_{\mathsf{rg}}$

We want to define a type of \mathcal{L} -structures **Struc**(\mathcal{L}).

$$\mathfrak{D}(\mathcal{L}_{\mathsf{rg}})$$
 $\mathcal{L}_{\mathsf{rg}}$

Image: A matrix of the second seco

We want to define a type of \mathcal{L} -structures **Struc**(\mathcal{L}).

$$\mathfrak{D}(\mathcal{L}_{\mathsf{rg}})$$
 $\mathcal{L}_{\mathsf{rg}}$

A 🖓

3

We want to define a type of \mathcal{L} -structures **Struc**(\mathcal{L}).

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We want to define a type of \mathcal{L} -structures **Struc**(\mathcal{L}).

3

-

・ロト ・得ト ・ヨト ・

We want to define a type of \mathcal{L} -structures **Struc**(\mathcal{L}).

3

-

・ロト ・得ト ・ヨト ・

We want to define a type of \mathcal{L} -structures **Struc**(\mathcal{L}).

We would like $\mathfrak{D}(\mathcal{L}) \equiv \mathfrak{R}(\mathcal{L})$ but the situation is not that simple.

	Tsemen	

< 🗗 🕨 🔸

Theorem

 $\mathfrak{D}(\mathcal{L}) \simeq \mathfrak{R}(\mathcal{L})$ as s-categories.

3

< 47 ▶ <

Theorem

 $\mathfrak{D}(\mathcal{L}) \simeq \mathfrak{R}(\mathcal{L})$ as s-categories.

We define the type of \mathcal{L} -structures as $Struc(\mathcal{L}) = \mathfrak{D}(\mathcal{L})$ but we will use the equivalence of the above theorem to transfer constructions from $\mathfrak{R}(\mathcal{L})$.

Theorem

 $\mathfrak{D}(\mathcal{L}) \simeq \mathfrak{R}(\mathcal{L})$ as s-categories.

We define the type of \mathcal{L} -structures as $Struc(\mathcal{L}) = \mathfrak{D}(\mathcal{L})$ but we will use the equivalence of the above theorem to transfer constructions from $\mathfrak{R}(\mathcal{L})$.

Similarly, we denote by $Mod(\mathbb{T})$ the type of \mathcal{L} -structures satisfying all the sentences of \mathbb{T} .

The \mathcal{L}_{cat} -theory \mathbb{T}_{cat}

$$dt_0 = dt_2 \ ct_1 = ct_2 \ dt_1 = ct_0$$

 $ds = dt \ cs = ct$

<ロ> (日) (日) (日) (日) (日)

3

The $\mathcal{L}_{\mathsf{cat}}\text{-}\mathsf{theory}\ \mathbb{T}_{\mathsf{cat}}$

 \mathbb{T}_{cat} is the \mathcal{L}_{cat} -theory with the usual axioms of category theory expressed in relational form using E_A as the equality on arrows.

The $\mathcal{L}_{\mathsf{cat}}\text{-}\mathsf{theory}\ \mathbb{T}_{\mathsf{cat}}$

 \mathbb{T}_{cat} is the \mathcal{L}_{cat} -theory with the usual axioms of category theory expressed in relational form using E_A as the equality on arrows.

Theorem

If E_A is interpreted as the identity type on A then

$$\mathsf{Mod}(\mathbb{T}_{cat}) \simeq \sum_{O: \ U} \sum_{A: \ O \to O \to U} \sum_{\substack{x, y, z: \ O \\ I: \ \prod_{x: \ O} A(x, x)}} \sum_{A(x, y) \to A(y, z) \to A(x, z)} (\dots)$$

Generalized Isomorphism?

Let \mathcal{M} : **Mod**(\mathbb{T})

3

э.

Image: A mathematical states and a mathem

Generalized Isomorphism?

Let \mathcal{M} : **Mod**(\mathbb{T})

FOLDS \mathcal{L} -equivalence

3

→ ∃ →

• • • • • • • •

FOLDS *L*-equivalence

Definition

$$\mathsf{isverysurjective}(m) =_{\mathsf{df}} \prod_{\mathcal{K} \,\colon\, \mathcal{L}} \mathsf{issurjective}(\mathcal{P}_{\mathcal{K}} \to \mathcal{M}_{\mathcal{K}}^{\mathcal{P}} \times_{\mathcal{M}_{\mathcal{K}}^{\mathcal{M}}} \mathcal{M}_{\mathcal{K}})$$

Theorem (Makkai, 1995)

If
$$\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$$
 then $\mathcal{M} \models \phi \Leftrightarrow \mathcal{N} \models \phi$

2

<≣⇒

・ロト ・回ト ・ヨト

FOLDS pre-isomorphism

Fix \mathcal{M} : **Mod**(\mathbb{T}) and K : \mathcal{L} . Let a, b : \mathcal{M}_K .

Definition (Pre-isomorphism)

A pre-isomorphism from a to b is given by the following cospan of spans

where $\langle m, \mathcal{P}, n \rangle$ is a FOLDS equivalence.

Theorem (Makkai, 1995)

If a is pre-isomorphic to b then $\mathcal{M} \models \phi[a] \Leftrightarrow \mathcal{M} \models \phi[b]$

FOLDS isomorphism

Fix $\mathcal{M} : \mathbf{Mod}(\mathbb{T})$ and $\mathcal{K} : \mathcal{L}$. Let $a, b : \mathcal{M}_{\mathcal{K}}$.

Definition (FOLDS isomorphism)

A FOLDS isomorphism is a pre-isomorphism $\langle m, \mathcal{P}, n \rangle$ such that:

• For any $f: K \to A$ we have $\mathcal{M} \xleftarrow{m} \mathcal{P} \xrightarrow{n} \mathcal{M}$ $[id, \mathcal{M}_f(a)] \xrightarrow{\sim} \int \mathcal{M} [id, \mathcal{M}_f(b)]$ $\mathcal{M} \amalg \partial A$ • For any A > K we have $\mathcal{M}_A \times_{M_A^{\mathcal{M}}} M_A^{\mathcal{P}} \xleftarrow{\sim} \mathcal{P}_A \xrightarrow{\sim} \mathcal{M}_A \times_{M_A^{\mathcal{M}}} M_A^{\mathcal{P}}$

We write $a \cong b$ for the type of FOLDS isomorphisms.

FOLDS isomorphism

Fix $\mathcal{M} : \mathbf{Mod}(\mathbb{T})$ and $\mathcal{K} : \mathcal{L}$. Let $a, b : \mathcal{M}_{\mathcal{K}}$.

Definition (FOLDS isomorphism)

A **FOLDS** isomorphism is a pre-isomorphism $\langle m, \mathcal{P}, n \rangle$ such that:

• For any $f: K \to A$ we have $M \xleftarrow{m} \mathcal{P} \xrightarrow{n} \mathcal{M}$ $[\mathrm{id}, \mathcal{M}_f(a)] \xrightarrow{\uparrow} [\mathrm{id}, \mathcal{M}_f(b)]$

2 For any A > K we have $\mathcal{M}_A \times_{M_A^{\mathcal{M}}} M_A^{\mathcal{P}} \stackrel{\sim}{\longleftarrow} \mathcal{P}_A \stackrel{\sim}{\longrightarrow} \mathcal{M}_A \times_{M_A^{\mathcal{M}}} M_A^{\mathcal{P}}$ We write $a \cong b$ for the type of FOLDS isomorphisms.

Lemma

$$\cong$$
: $\mathcal{M}_{\mathcal{K}} \to \mathcal{M}_{\mathcal{K}} \to \mathcal{U}$ is reflexive.

(日) (周) (三) (三)

FOLDS isomorphism

Fix $\mathcal{M} : \mathbf{Mod}(\mathbb{T})$ and $\mathcal{K} : \mathcal{L}$. Let $a, b : \mathcal{M}_{\mathcal{K}}$.

Definition (FOLDS isomorphism)

A FOLDS isomorphism is a pre-isomorphism $\langle m, \mathcal{P}, n \rangle$ such that:

• For any $f: K \to A$ we have $M \xleftarrow{m} \mathcal{P} \xrightarrow{n} \mathcal{M}$ $[\mathrm{id}, \mathcal{M}_f(a)] \xrightarrow{\uparrow} [\mathrm{id}, \mathcal{M}_f(b)]$ $\mathcal{M} \amalg \partial A$

2 For any A > K we have $\mathcal{M}_A \times_{M_A^{\mathcal{M}}} M_A^{\mathcal{P}} \stackrel{\sim}{\longleftarrow} \mathcal{P}_A \stackrel{\sim}{\longrightarrow} \mathcal{M}_A \times_{M_A^{\mathcal{M}}} M_A^{\mathcal{P}}$ We write $a \cong b$ for the type of FOLDS isomorphisms.

Lemma

$$\cong : \mathcal{M}_{\mathcal{K}}
ightarrow \mathcal{M}_{\mathcal{K}}
ightarrow \mathcal{U}$$
 is reflexive.

Corollary

$$\mathsf{idtoiso}_{a,b}: a =_{\mathcal{M}_K} b \to a \cong b$$

Univalent Models

Fix \mathcal{M} : **Mod**(\mathbb{T})

Definition (Univalence for \mathcal{M})

K-univalent	$univ_{\mathcal{K}}(\mathcal{M}) =_{df} \prod_{a,b: \ \mathcal{M}_{\mathcal{K}}} isequiv(idtoiso_{a,b})$
m-univalent	$univ_m(\mathcal{M}) =_{df} \prod_{K \colon \mathcal{L}^{\geq m}} univ_K(\mathcal{M})$
univalent	$univ(\mathcal{M}) =_{df} \prod_{\mathcal{K} : \mathcal{L}} univ_{\mathcal{K}}(\mathcal{M})$

Definition (Type of Univalent Models)

$$\begin{aligned} & \mathsf{UniMod}_m(\mathbb{T}) =_{\mathsf{df}} \underbrace{\sum_{\mathcal{M}: \; \mathsf{Mod}(\mathbb{T})} \mathsf{univ}_m(\mathcal{M})}_{\mathcal{M}: \; \mathsf{Mod}(\mathbb{T})} \\ & \mathsf{UniMod}(\mathbb{T}) =_{\mathsf{df}} \underbrace{\sum_{\mathcal{M}: \; \mathsf{Mod}(\mathbb{T})} \mathsf{univ}(\mathcal{M})}_{\mathcal{M}: \; \mathsf{Mod}(\mathbb{T})} \end{aligned}$$

< (17) × <

Theorem

If $r(K) = H(\mathcal{L})$ then $a \cong b \simeq 1$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Theorem

If $r(K) = H(\mathcal{L})$ then $a \cong b \simeq 1$

Corollary

If $r(K) = H(\mathcal{L})$ then $univ_{\mathcal{K}}(\mathcal{M}) \simeq isprop(\mathcal{M}_{\mathcal{K}})$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem

If $r(K) = H(\mathcal{L})$ then $a \cong b \simeq \mathbf{1}$

Corollary

If
$$r(K) = H(\mathcal{L})$$
 then $univ_{\mathcal{K}}(\mathcal{M}) \simeq isprop(\mathcal{M}_{\mathcal{K}})$

Theorem

Let $H(\mathcal{L}) \ge n \ge m$, $K \colon \mathcal{L}^{=n}$ and $\mathcal{M} \colon \mathbf{UniMod}_m(\mathbb{T})$. Then \mathcal{M}_K is an *m*-type.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem

If $r(K) = H(\mathcal{L})$ then $a \cong b \simeq \mathbf{1}$

Corollary

If
$$r(K) = H(\mathcal{L})$$
 then $univ_{\mathcal{K}}(\mathcal{M}) \simeq isprop(\mathcal{M}_{\mathcal{K}})$

Theorem

Let $H(\mathcal{L}) \geq n \geq m$, $K \colon \mathcal{L}^{=n}$ and $\mathcal{M} \colon \mathbf{UniMod}_m(\mathbb{T})$. Then \mathcal{M}_K is an *m*-type.

Theorem

Let \mathbb{T}_{cat} be the \mathcal{L}_{cat} -theory of categories. Then we have:

 $\mathsf{UniMod}_1(\mathbb{T}_{\mathit{cat}})\simeq\mathsf{PreCat}$ $\mathsf{UniMod}(\mathbb{T}_{\mathit{cat}})\simeq\mathsf{UniCat}$

A Higher Structure Identity Principle

We began with:

Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L} -theory \mathbb{T} , the type of \mathcal{L} -equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} =_{\text{UniMod}(\mathbb{T})} \mathcal{N}$.

- 3

イロト イヨト イヨト

A Higher Structure Identity Principle

We began with:

Theorem

For any univalent models \mathcal{M} and \mathcal{N} of an \mathcal{L} -theory \mathbb{T} , the type of \mathcal{L} -equivalences $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N}$ is equivalent to $\mathcal{M} =_{\mathsf{UniMod}(\mathbb{T})} \mathcal{N}$.

And now we can obtain the precise version:

Theorem (A Higher Structure Identity Principle, in progress)

For any \mathcal{M}, \mathcal{N} : **UniMod**(\mathbb{T}) for a FOLDS \mathcal{L} -theory \mathbb{T} we have

 $\mathcal{M} \simeq_{\mathcal{L}} \mathcal{N} \quad \leftrightarrow \quad \mathcal{M} =_{\mathsf{UniMod}(\mathbb{T})} \mathcal{N}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Thank you

3

<ロ> (日) (日) (日) (日) (日)