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To the memory of my great and inspiring friend  
Solomon Feferman (1928 – 2016) 

Check out:   http://math.stanford.edu/~feferman  



Solomon Feferman’s

Operationally Based Axiomatic Programs


• The Explicit Mathematics Program
• The Unfolding Program
• A Logic for Mathematical Practice
• Operational Set Theory (OST)

• Aim: To have a straightforward and principled transfer of the
notions of indescribable cardinals from set theory to admissible
ordinals.

• Problem: The approach leaves open the question as to what is the
proper analogue for admissible ordinals — if any — of a cardinal κ
being Πmn-indescribable for m > 1.

“Advances in Proof Theory: In honor of Gerhard Jäger’s 60th birthday”
Lecture at Bern, 13 –14 December 2013. 



On Mathematical Practice

• Most of current mathematics is based on non-constructive set-

theoretical principles, but in fact strikingly little of what is implicit
in those principles is actually used (except, of course, in set theory
itself).

• For example, the bulk of mathematical analysis may be developed
within the finite type structure over the natural numbers N — and
indeed within type level three.

• Transfinite types appear in set theory by transfinite iteration of the
powerset operation.  But where such iteration is used at all in
analysis, it is applied only to operations within a given type.

• Practice may be regarded as deficient in that it does not pursue the
potential resources of transfinite types; this view is borne out by
recent results concerning determinateness of Borel games (cf. the
results of Donald A. Martin,1975).

Solomon Feferman. "Theories of finite type." In: J. Barwise (ed.), 
Handbook of Mathematical Logic, North-Holland, 1977, pp. 913–971. 



The Role of Logic

• Viewed logically, the main existential principles within any given

type S are comprehension axioms or choice axioms.

• The former assert that for each property φ of elements of S there
exists the set of all objects in S having the property φ.

• The class of properties considered may be described precisely
within a formal language and, again quite strikingly, the defining
properties which are actually used are of very low logical
complexity (in several senses).

• This makes an informative logical analysis of practice even more
feasible.

Solomon Feferman."Theories of finite type.” p.914 

Much more discussion can be read in that chapter. 
Note that classical logic is emphasized. 



Errett Bishop’s Prolog to 

“Constructive Analysis” (1967)


• This book is a piece of constructivist propaganda designed to
show that there does exist a satisfactory alternative (to classical
mathematics). To this end, we develop a large portion of abstract
analysis within a constructive framework.

• This development is carried through with an absolute minimum of
philosophical prejudice concerning the nature of constructive
mathematics.

• There are no dogmas to which we must conform. Our program is
simple: to give numerical meaning to as much as possible of
classical abstract analysis.  Our motivation is the well-known
scandal, exposed by Brouwer (and others) in great detail, that
classical mathematics is deficient in numerical meaning.  



Bishop’s Book Prolog (Continued)

• The task of making analysis constructive is guided by three basic

principles.
• First , to make every concept affirmative.

(Even the concept of inequality is affirmative.)
• Second, to avoid definitions that are not relevant.                                         

(The concept of a pointwise continuous function is not relevant; a continuous
function is one that is uniformly continuous on compact intervals.)

• Third, to avoid pseudogenerality .                                                     
(Separability hypotheses are freely employed.)

• The book thus has a threefold purpose:
• (1) to present the constructive point of view,
• (2) to show that the constructive program can succeed, and
• (3) to lay a foundation for further work.

These immediate ends tend to an ultimate goal to hasten
the inevitable day when constructive mathematics will be

the accepted norm.




Bishop’s Book Prolog (Continued)

• We are not contending that idealistic mathematics is worthless from

the constructive point of view.

• This would be as silly as contending that unrigorous mathematics is
worthless from the classical point of view.

• Every theorem proved with idealistic methods presents a challenge: to
find a constructive version, and to give it a constructive proof.

The Revised Book: 

Errett Bishop and Douglas Bridges.  “Constructive Analysis.”  Springer-Verlag, 
Grundlehren der mathematischen Wissenschaften, vol. 279, 1985, xii + 477 pp. 

Softcover reprint 2011. 

Note: A Google Scholar search for bishop bridges constructive   
turns up a truly vast literature. 



Martin-Löf’s Intuitionistic Theory of Types

• The theory of types with which we shall be concerned is intended to be a

full scale system for formalizing intuitionistic mathematics as developed,
for example, in the book by Bishop.

• The language of the theory is richer than the languages of traditional
intuitionistic systems in permitting proofs to appear as parts of
propositions so that the propositions of the theory can express properties
of proofs — and not only individuals — like in first order predicate logic.

• This makes it possible to strengthen the axioms for existence,
disjunction, absurdity and identity.

• In the case of existence, this possibility seems first to have been indicated
by William Howard.

Per Martin-Löf. "An intuitionistic theory of types: Predicative part." In: Logic Colloquim ’73, 
 H. E. Rose and J. C. Shepherdson, eds., North-Holland, 1975, pp. 73-118. 

B. Nordström, K. Petersson and J. M. Smith. "Martin-Löf’s Type Theory." In: Handbook of
Logic in Computer Science, vol. 5, Oxford University Press, 2000, pp.1-37.  



The Question of Universes

• The present theory was first based on the strongly impredicative axiom

that there is a type of all types, in symbols, V∈V, which is at the same
time a type and an object of that type.

• This axiom had to be abandoned, however, after it had been shown to
lead to a contraction by Jean-Yves Girard.  (And there is a related,
independent result of John Reynolds.)

• The incoherence of the idea of a type of all types whatsoever made it
necessary to distinguish — like in category theory — between small
and large types.

✽ ✽  ✽
Gerhard Jäger “The Operational Penumbra: Some Ontological Aspects”, 

2017, in preparation. 

Informally speaking, universes play a similar role in explicit 

mathematics as admissible sets in weak set theory and sets Vκ 

(for regular cardinals ) in full classical set theory. 



Russell & Church’s Strict Typing

• All variables and operations must be given types, as in:

λx:A.F(x) : A ￫ B.
Suppose	F = λx:ℝ.(((x∙ℝx)+ℝx)+ℝ1ℝ) and so  F : ℝ ￫ ℝ,

Then	F(5) = 31 and  F(-1) = 1  but 
F(i) = undefined and  F(j) = ??

Suppose F = λx: ℍ.(((x∙ℍx)+ℍx)+ℍ1ℍ) and so  F : ℍ ￫ ℍ,

Then	F(5) = 31 and  F(-1) = 1  and also 
F(i) = i and  F(j) = j, 

because ℝ ⊆ ℂ ⊆ ℍ. 
( ℝ = reals, ℂ = complexes, ℍ = quaternions ) 



Curry’s Polymorphic Typing

• Variables are not given types, as in λx.F(x) : A ￫ B, and we

have to take care that F respects types A	and B.  

• And it may turn out that also λx.F(x) : C ￫ D, where C	and D

are quite different types.  Prime example: λx.x : A ￫ A.

This was the approach in Martin-Löf’s original presentation, 
and I was very puzzled as to how UNTYPED lambda

expressions were expected to know how to BEHAVE 


with respect to different types of arguments.


As Martin-Löf showed, however, the formal theory was sound,

but for me the SEMANTICS seemed questionable.


But we shall now look at a specific MODEL.



Axiomatizing λ-Calculus


NOTE: The third axiom will be dropped in favor of a theory 
employing properties of a partial ordering. 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Definition.  λ-calculus — as a formal theory — has rules 
for the explicit definition of functions  

via well known equational rules and axioms:

α-conversion
λX.[...X...] = λY.[...Y...]

(λX.[...X...])(T) = [...T...]

λX.F(X) = F

β-conversion

η-conversion

F. Cardone and  J.R. Hindley. Lambda-Calculus and Combinators in the 20th Century. 
In: Volume 5, pp. 723-818, of Handbook of the History of Logic, Dov M. Gabbay and John 
Woods eds., North-Holland/Elsevier Science, 2009.



Using Gödel Numbering


In words:  X* consists of all the sequence numbers 
representing all the finite subsets of the set X. 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˙ Definitions. (1) Pairing: (n,m) = 2n(2m+1). 

(2) Sequence numbers:〈〉= 0 and

  〈n0,n1,...,nk-1,nk〉= (〈n0,n1,...,nk-1〉, nk). 

(3) Sets: set(0) = ∅ and  set((n,m))= set(n)∪{ m }.

(4) Kleene star: X* = { n | set(n) ⊆ X }, for sets X ⊆ ℕ.



The Powerset of the Integers


(1) The powerset  P(ℕ)  = { X|X⊆ℕ }is a topological space with
the sets Un = { X|n ∈ X*} as a basis for the topology.

(2) Functions Φ:P(ℕ)n ⟶  P(ℕ) are continuous iff, for all m ∈ ℕ,
we have m ∈ Φ(X0,X1,…,Xn-1)* iff  there are ki ∈ Xi* for each of
the i<n, such that m  ∈  Φ(set(k0), set(k1),…, set(kn-1)).

(3) The application operation F(X), defined below, is continuous
as a function of two variables.

Note: These basic facts are very easy to prove, and we 
will find that the powerset is a very rich space.  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Embedding Spaces as Subspaces

Note: This embedding theorem is originally due to:

• P. Alexandroff,  Zur Theorie der topologischen Raume,
C.R. (Doklady) Acad. Sci. URSS, vol. 11 (1936), pp, 55-58. 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Theorem. Every countably based T0-space X is  
homeomorphic to a subspace of P(ℕ).

Proof Sketch:  Let a subbasis for the topology of X be { O n | n ∈ ℕ } .
Define  ε:X  ￫ P(ℕ) by  ε(x) = { n ∈ ℕ |  x ∈ O n }.

By the T0-axiom, this mapping is one-one onto a subspace of P(ℕ). 
Check first that the inverse image of opens of P(ℕ) are open in X. 

Notice next that ε(O n) = ε(X) ∩ { S ∈  P(ℕ) | n ∈ S } .
Hence, the image of a open of X is an open of the subspace. 

Therefore, ε is a homeomorphism to a subspace. Q.E.D. 

Moreover: Continuous functions between subspaces come from those of P(ℕ).



Enumeration Operators Given as Sets


• Enumeration operators are the continuous functions on the powerset. 
• If the function  Φ(X0,X1,…,Xn-1) is continuous, then the abstraction term
λX0.Φ(X0,X1,…,Xn-1) is continuous in all of the remaining variables.

• If Φ(X) is continuous, then λX.Φ(X) is the largest set  F such that for

all sets T,  we have F(T)= Φ(T).  And, therefore, generally  F ⊆ λX.F(X).
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Application:

F(X) = { m | ∃n ∈ X*.(n,m) ∈ F }  

Abstraction:

λX.[...X...] =

{0}∪{ (n,m) | m  ∈ [... set(n)...] }



Enumeration Operators form the Model
This model clearly satisfies the rules of  α, β-conversion (but not η)  

and could easily have been defined in 1957!! 

    

John R. Myhill:  Born: 11 August 1923, Birmingham, UK 
Died: 15 February 1987, Buffalo, NY 

     

John Shepherdson: Born: 7 June 1926, Huddersfield, UK 
Died: 8 January 2015, Bristol, UK 

      

Hartley Rogers, Jr.: Born:  6 July, 1926, Buffalo, NY 
Died: 17 July, 2015, Waltham, MA 

   
•  John Myhill and John C. Shepherdson, Effective operations on partial recursive functions, 
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 1 (1955), 
pp. 310-317.
    

•  Richard M. Friedberg and Hartley Rogers Jr., Reducibility and completeness for sets of 
integers, Mathematical Logic Quarterly, vol. 5 (1959), pp. 117-125.   Some earlier  results 
are presented in an abstract in The Journal of Symbolic Logic, vol. 22 (1957), p. 107.
    
    

•  Hartley Rogers, Jr., Theory of Recursive Functions and Effective Computability, 
McGraw-Hill, 1967, xix + 482 pp.  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Some Lambda Properties & Computability
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Theorem. For all sets of integers F and G we have:

λX.F(X) ⊆ λX.G(X) iff  ∀X.F(X) ⊆ G(X),

λX.(F(X)∩ G(X)) = λX.F(X) ∩ λX.G(X),

and

λX.(F(X)∪ G(X)) = λX.F(X) ∪ λX.G(X).

Definition.  A continuous operator Φ(X0,X1,…,Xn-1)
is computable  iff  in the model this set is RE:  
F = λX0λX1…λXn-1.Φ(X0,X1,…,Xn-1).



Fixed Points and Recursion
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Three Basic Theorems.
• All pure λ-terms define computable operators.

• If Φ(X) is continuous and if we let ∇ = λX.Φ(X(X)), then the
set  P = ∇(∇) is the least fixed point of Φ.

• The least fixed point of a computable operator is computable.

A Principal Theorem.   These computable operators:
Succ(X)={n+1|n ∈ X }, 

Pred(X)={n|n+1 ∈ X }, and  
Test(Z)(X)(Y)= {n ∈ X|0 ∈ Z }∪{m ∈ Y|∃ k.k+1 ∈ Z },

together with λ-calculus, suffice for defining all RE sets.



Pairing and Relations


Note: Under this definition we have P(ℕ) = P(ℕ) × P(ℕ)
in the category of topological spaces.   However, the 

isomorphisms P(ℕ) ≅ P(ℕ) + P(ℕ) and P(ℕ) ≅ P(ℕ) ￫ P(ℕ)
are not true, and they need more discussion. 
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Definition. Pairing functions for sets in P(ℕ) can be

defined by these enumeration operators: 

Pair(X)(Y)={2n|n ∈ X } ∪ {2m+1|m ∈ Y }

Fst(Z)={n|2n ∈ Z }  and  Snd(Z)={m|2m+1 ∈ Z }.

Convention. Every subset of P(ℕ) can be regards as a binary relation,
and for all A ⊆ P(ℕ) we write X	A		Y iff (X,Y) ∈ A.



Partial Equivalences as Types


Note: It is better NOT to pass to equivalence classes and 
the corresponding quotient spaces.  But we can THINK in those terms 

if we like, as this is a very common mathematical construction.
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Definition. By a type over P(ℕ) we understand

a partial equivalence relation A ⊆ P(ℕ) where, 
for all X,Y,Z ∈ P(ℕ), we have 
X	A	Y implies Y	A	X, and

X	A	Y and Y	A	Z imply X	A	Z.
Additionally we write X:A iff X	A	X.

Definition.  For subspaces  X ⊆ P(ℕ), we write

[X] = {(X,X)| X ∈ X },    
so that we may regard subspaces as types.



The Category of Types
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Definition. The exponentiation of types A,B ⊆ P(ℕ)
is defined as that relation where 

F(A  ￫ B)G iff ∀X,Y. X A	Y implies F(X)	B	G(Y).

Theorem. The exponentiation (= function space) 

of two types is again a type, and we have 

F:A  ￫ B implies ∀X. X:A implies F(X):B.

Theorem. Types do form a category — expanding 
the topological category of subspaces.

Definition. For each type	A the identity type on A is defined as 

that relation such that  Z(X≡AY)W iff Z	A	X	A	Y	A	W.



Products and Sums of Types
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   Definition. The product of two types A,B ⊆ P(ℕ) 
is defined as that relation where 

X(A  × B)Y iff Fst(X)A	Fst(Y) and  Snd(X)	B	Snd(Y).

Theorem. The product of two types is again a type, and we have 

X:(A  × B) iff Fst(X):A and Snd(X):B	.

Definition. The sum of two types A,B ⊆ P(ℕ) 
is defined as that relation where X(A  + B)Y iff

either ∃X0,Y0[X0A	Y0 & X = ({0},X0) & Y = ({0},Y0)]
 or                            ∃X1,Y1[X1B	Y1 & X = ({1},X1) & Y = ({1},Y1)].

      
Theorem. The sum of two types is again a type, and we have 

X:(A  + B) iff either Fst(X) = {0} & Snd(X): A 

              or Fst(X) = {1} & Snd(X): B.



Isomorphism of Types


   
Note: Types do form a (bi) cartesian closed category — whereas 


the topological category of subspaces does not.
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Definition. Two types A,B ⊆ P(ℕ) are isomorphic,

in symbols A ≅ B, provided there are mappings 

F:A  ￫ B and G:B  ￫ A	where

∀X:A. X A	G(F(X)) and ∀Y:B. Y B	F(G(Y)). 

Theorem. If types A0 ≅ B0	and A1 ≅ B1, then

    (A0 × A1) ≅ (B0  × B1), and 

    (A0  + A1) ≅ (B0  + B1), and 

 (A0 ￫ A1) ≅ (B0  ￫ B1).



Checking Isomorphisms
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Theorem. We have these algebraic laws for all types A,B,C:

 (A × B) ≅ (B  × A),

(A   + B) ≅ (B    + A),

((A × B)× C) ≅ (A  ×(B× C)),

((A	+ B)+ C) ≅ (A +(B+ C)),

(A  ×(B+ C)) ≅ ((A × B)+(A × C)),

((A × B)￫ C) ≅ (A ￫(B￫ C)),

(A ￫(B × C)) ≅ ((A ￫B)×(A￫ C)), and

((A + B)￫ C) ≅ ((A ￫C)×(B￫ C)).

Roberto Di Cosmo. "Isomorphisms of Types: from λ-calculus to information retrieval and 
language design." Progress in Theoretical Computer Science, Birkhäuser, 1995, 235 pp.  
Softcover reprint 2011.



Dependent Products


In words: Equivalent parameters produce equivalent types. 

Note: (A ￫B) = ∏X:A.B.
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Definition. Let T be the class of all types.
For each A ∈ T,  an A-indexed family of types

is a function B:	P(ℕ) ￫ T, such that
∀X0,X1. X0 A	X1 implies B(X0) = B(X1).

Definition. The dependent product of an A-indexed 
family of types, B, is this equivalence relation: 

F0(∏X:A.B(X))F1 iff

∀X0,X1. X0 A	X1 implies F0(X0)	B(X0) F1(X1).



Dependent Sums

Note: (A × B) = ∑X:A.B. 
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Definition. The dependent sum of an A-indexed 
family of types, B, is this equivalence relation:

Z0(∑X:A.B(X))Z1 iff

∃X0,Y0,X1,Y1[X0A	X1 &	Y0B(X0)Y1 &

Z0 = (X0,Y0) & Z1 = (X1,Y1)]

Theorem. The dependent products and 
dependent sums of indexed families of types 

are always again types.



Systems of Dependent Types 
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Definition. We say that A,B,C,D form 

a system of dependent types iff 
• ∀X0,X1.[X0 A  X1 ⇒ B(X0) = B(X1)], and

• ∀X0,X1,Y0,Y1.[X0 A  X1 & Y0 B(X0) Y1 ⇒ C(X0,Y0) = C(X1,Y1)], and

• ∀X0,X1,Y0,Y1,Z0,Z1.[X0 A  X1 & Y0 B(X0) Y1 & Z0 C(X0,Y0) Z1 ⇒
D(X0,Y0,Z0) = D(X1,Y1,Z1)],

provided that A ∈ T, and B,C,D	are functions on P(ℕ) to T
of the indicated number of arguments.

Theorem. Under the above assumptions on the 
system A,B,C,D, we will always have

∏X:A	.∑Y:B(X).∏Z:C(X,Y).	D(X,Y,Z) ∈ T.



Polymorphic Types


Example: λX.λY.(X,Y): ∩(A ￫(B￫(A × B)))
        A , B	

Example: Scott	=∩(A ￫((Scott ￫ A)￫A)) types the numerals.
A  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Theorem. The class T of all types is a complete lattice, because
it is closed under arbitrary intersections.

Theorem.  Any monotone Φ : T￫T has a least & greatest fixed point.

Definition. The Scott numerals (1963) in the λ-calculus are:

0 = λX.λF.X , 1 = λX.λF.F(0), 2 = λX.λF.F(1), etc., and
succ = λY.λX.λF.F(Y), and

pred = λY.Y(0)(λX.X).



Propositions as Types


Example: Given F:(A ￫ (A ￫ A)), then asserting
∏X:A.∏Y:A.∏Z:A. F(X)(F(Y)(Z)) ≡A F(F(X)(Y))(Z)

is the same as asserting that F is an associative binary operation.
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Definition. Every type	P ∈ T can be regarded as a proposition,
where asserting (or proving P) means finding evidence E:P.

Convention: Under this interpretation of logic, 

asserting (P × Q) means asserting a conjunction,
asserting (P  + Q) means asserting a disjunction,

asserting (P ￫ Q) means asserting an implication,

asserting (∏X:A.P(X)) means asserting a  
universal quantification, and


asserting (∑X:A.B(X)) means asserting an 
existential quantification.



A Possible New Area for Application

Asymptotic Differential Algebra and 

Model Theory of Transseries
by

Matthias Aschenbrenner, Lou van den Dries, and 
Joris van der Hoeven

Princeton University Press, 2017, xxi + 833 pp.

Preface: We develop here the algebra and model theory of the differential 
field of transseries, a fascinating mathematical structure obtained by iterating 

a construction going back more than a century to Levi-Civita and Hahn.  
It was introduced about thirty years ago as an exponential ordered field by 
Dahn and Göring in connection with Tarski’s problem on the real field with 

exponentiation, and independently by Écalle in his proof of  
the Dulac Conjecture on plane analytic vector fields.



Some Conclusions 
• Enumeration operators over P(ℕ) model λ-calculus and

are characterized by a simple topology.


• The large category of types over P(ℕ) inherits much topology.

• λ-calculus over P(ℕ) plus the arithmetic combinators
provides a basic notion of computability.


• The category of types over P(ℕ) thus also inherits
aspects of computability.


• Polymorphism for types then gives an abstract foundation
for defining inductive and co-inductive data structures.

• Propositions-as-types then will enforce using constructive logic.
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The model can in this way function as a laboratory for

exploring these ideas in a very concrete fashion.




