
Turing Categories and Realizability

Chad Nester

Joint work with Robin Cockett

University of Ottawa

October 27, 2017

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Restriction Categories

A restriction category is a category in which every map
f : X → Y has a domain of definition f : X → X satisfying:

[R.1] ff = f

[R.2] f g = g f

[R.3] f g = f g

[R.4] fg = fgf

Restriction categories are understood as categories of partial
maps, where f tells us which part of its domain f is defined on.

For example, sets and partial functions form a restriction
category, with f(x) = x if f(x) ↓, and f(x) ↑ otherwise.

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Restriction Categories

Each homset in a restriction category is a partial order. For
f, g : X → Y say f ≤ g ⇔ fg = f .

A map f : X → Y in a restriction category X is called total in
case f = 1X . The total maps of a restriction category form a
subcategory, total(X).

Notice that if g is total, then f = f 1 = f g = fg. If a
restriction category X has products, the projections are total, so
f = 〈f, 1〉 = 〈f, 1〉π1 = 1 = 1, and the restriction structure is
necessarily trivial.

We want limits and restriction structure, so we usually work
with “restriction limits”.

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Restriction Categories

A restriction category has restriction products in case for every
pair A,B of objects there is an object A×B together with total
maps π0 : A×B → A, π1 : A×B → B such that whenever we
have maps f : C → A and g : C → B, there is a unique map
〈f, g〉 : C → A×B with 〈f, g〉π0 = gf and 〈f, g〉π1 = fg.

C
f

{{
〈f,g〉
��

g

##
A

≥
A×Bπ0

oo
π1

// B
≤

A restriction category has a restriction terminal object, 1 in
case for each object A there is a unique total map !A : A→ 1
such that for all f : A→ B, f !B ≤ !A.

A restriction category with both of these is called a cartesian
restriction category.

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Turing Categories

A partial applicative system in a cartesian restriction category X
consists of an object A and a map • : A×A→ A. (That’s it!)

We say a map f : A→ A of X is A-computable in case there is a
total map h : 1→ A such that

A×A • // A

A× 1 ' A

1×h

OO

f

99

A partial applicative system is combinatory complete in case the
A-computable maps form a cartesian restriction category.

Such a partial applicative system is called a partial combinatory
algebra (PCA).

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Turing Categories

A Turing category is a cartesian restriction category with a
Turing structure. That is, a universal object A and a partial
applicative system • : A×A→ A such that every map
f : X → Y is A-computable modulo sections and retractions:

A×A • // A
r // Y

A× 1 ' A
rfs

99

1×h

OO

X

s

OO f

<<

Think of a Turing category as a notion of computation. We
have a sort of “Gödel numbering” where the universal object
plays the role of N, and a version of the parameter theorem and
the recursion theorem holds in every Turing category.

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Turing Categories

For example, the partial recursive functions give a Turing
category that embeds into sets and partial functions.

The Turing structure consists of the object N, and the partial
applicative structure • : N× N→ N defined by
•(m,n) = φn(m). Then, if f is the nth partial recursive
function, defining h := {∗ 7→ n} gives

N× N • // N

N× 1 ' N

1×h

OO

f

::

as required.

This example is caled Kleene’s first model of computation.

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Assemblies and Realizability

Let A = (A, •) be a PCA in the category of sets and partial
functions (ptl).

An A-assembly (X,ϕ) is a set X together with a function
ϕ : X → P (A)∗.

A morphism of A-assemblies (Xϕ)→ (Y, ψ) is a total function
f : X → Y for which there exists a tracking element a ∈ A such
that ∀x ∈ X.∀i ∈ ϕ(x).a • i ↓ ∧ a • i ∈ ψ(f(x)).

Assemblies and their morphisms form a category. Think of an
assembly (X,ϕ) as a “computer representation” of X. For a
morphism f : (X,ϕ)→ (Y, ψ), think of each tracking element
for f as giving a “computer implementation” of f for the
representations.

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Assemblies and Realizability

These categories of assemblies are finitely complete, cartesian
closed, and regular.

The forgetful functor that maps each assembly to its underlying
set (and simply forgets about tracking elements) is a fibration.
In fact, it is a tripos.

Every tripos defines a topos. The topos associated with a
category of assemblies is called a realizability topos.

A realizability topos is something like a foundation for
“A-computable mathematics”, where A = (A, •) is the PCA we
started with.

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

More General Assemblies

Let A be a restriction category, X be a cartesian restriction
category, and F : A→ X be a restriction functor.

An assembly is a restriction idempotent ϕ : O(F (A)×X) in X
where A is an object of A, and X is an object of X.

A morphism of assemblies f : ϕ→ ψ for ϕ : O(F (A)×X),
ψ : O(F (B)× Y) is a map f : X → Y of X which is tracked by
some map γ : A→ B of A. That is

ϕ(F (γ)× f) = ϕ(F (γ)× f)ψ

ϕ(1× f) = ϕ(F (γ)× f)

Assemblies and their morphisms form a restriction category,
denoted asm(F).

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

More General Assemblies

If A is the category of A-computable maps for a PCA (A, •) in
ptl and we take F : A→ ptl to be the inclusion functor, then
total(asm(F)) is the classical category of assemblies.

There is a forgetful restriction functor ∂ : asm(F)→ X which
maps (X,ϕ) to X and maps f : (X,ϕ)→ (Y, ψ) to f : X → Y .

Recall that in the classical case, this functor is the realizability
tripos. While we don’t expect ∂ to be a tripos for any A,X, and
F : A→ X, we would at least like ∂ to be a fibration. . .

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Latent Fibrations

. . . but it isn’t!

The problem is that in a fibration asm(F)→ X, we ask that the
prone maps f produce unique liftings of maps:

in asm(F): (Z, χ)
g

$$
∃!
∼
h
��

(X,ϕ)
f
// (Y, ψ)

in X: Z
g

h
��
X

f
// Y

With the forgetful functor total(asm(F))→ total(X) this works
out, but when partial maps are involved there may be many

liftings that are not equal. (If gh = g and
∼
h is a potential

lifting, so is g
∼
h, for example)

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Latent Fibrations

Let p : E→ B be a restriction functor, and say that a map f of
E is prone in p in case whenever we have hp(f) ≥ p(g)

in E: Z
g

∼
h
��
X
≥

f
// Y

in B: pZ
p(g)

!!
h
��

pX
p(f)

//
≥

pY

there is a minimal lifting
∼
h: Z → X such that

∼
h is a candidate lifting:

∼
h f ≥ g and p(

∼
h) ≤ h.

If k is a candidate lifting,
∼
h≤ k.

Now, say that p : E→ B is a latent fibration in case there is a
prone map above every map f : A→ p(Y)

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Latent Fibrations

Define the fibre over and object B of B to be the category
whose objects are the objects X of E with pX = B, and whose
maps are the maps f of E with p(f) ≤ 1B.

Then, instead of reindexing functors between the fibres, a
cloven latent fibration defines a reindexing restriction
semifunctor f∗ : EB → EA for each f : A→ B in the base. (A
restriction semifunctor preserves composition and restriction,
but need not preserve identities).

If the latent fibration reflects total maps, then our reindexing
restriction semifunctors are in fact restriction functors.

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Latent Fibrations

The category of restriction categories and restriction functors
has pullbacks, and the pullback of a latent fibration along any
restriction functor is a latent fibration.

If p : E→ B is a latent fibration that reflects total maps, then
we obtain a fibration (in the usual sense), total(p) by pulling
back along the inclusion of total(B) into B:

total(E)

total(p)
��

// E

p

��
total(B) �

� // B

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Latent Fibrations

For example, every restriction category X defines a tripos as
follows:

Let R(X) be the category whose objects are restriction
idempotents e = e in X, and whose morphisms f : e→ e′ are
morphisms f of X with e ≤ fe′. Then the functor that maps
objects to their domain/codomain and morphisms to
themselves is a latent fibration.

The fibre over X is O(X), the preorder of all restriction
idempotents on X, and so we call this the domain latent
fibration.

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

DCCRCs and Triposes

A discrete cartesian closed restriction category (DCCRC) is a
cartesian closed restriction category in which the diagonal map
∆X : X → X ×X has a partial inverse for each X.

If X is a DCCRC, then the domain latent fibration R(X)→ X is
something along the lines of a “latent tripos”. Each fibre O(X)
is a Heyting algebra, it has universal and extistential
quantification, and has a generic predicate. Further,
total(O) : total(R(X))→ total(X) is a tripos in the usual sense.

The connection between categorical structure in X and
structure in the domain should be fairly deep. For example, we
know that the domain latent fibration has “existential
quantifiaction” if and only if the base is a range category. It
would be nice to know the whole story.

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

DCCRCs and Triposes

Every tripos defines a topos. The objects of the topos are
partial equivalence relations in the internal language of the
tripos, and the maps are relations that are:

Strict: ∀xy(f(x, y)⇒ x ∼ x ∧ y ∼ y)

Relational: ∀xx′yy′(f(x, y) ∧ x ∼ x′ ∧ y ∼ y′ ⇒ f(x′, y′)

Deterministic: ∀xyy′(f(x, y) ∧ f(x, y′)⇒ y ∼ y′)
Total: ∀x(x ∼ x⇒ ∃y(f(x, y)))

If we remove the requirement that maps are total we obtain a
partial topos instead, and its total map category is the usual
topos.

(A partial topos is a DCCRC in which certain “partial monic”
maps have partial inverses).

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

The Realizabililty Tripos

Our forgetful functor ∂ : asm(F)→ X is a latent fibration.

If A is a Turing category, X is a DCCRC, and F : A→ X
preserves finite restriction products, then
total(∂) : total(asm(F))→ total(X) is a tripos.

This captures both the classical realizability tripos, in which
F : A ↪→ ptl where A is the computable map category of some
PCA in ptl, and also later work by Birkedal, in which
F : A→ ptl where A is (more or less) a Turing category.

Let’s call ∂ : asm(F)→ X the realizability latent fibration.
While it’s not always a (latent) tripos, it’s present for every
category asm(F) of assemblies.

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Structure In Assemblies

For F : A→ X with X a cartesian restriction category . . .

If A is a cartesian restriction category, F preserves finite
restriction products, then asm(F) is a cartesian restriction
category. If in addition X is discrete, then so is asm(F).

If X is a range category then so is asm(F).

If A is a weakly cartesian closed restriction category, F
preserves finite restriction products, X is a DCCRC, then
asm(F) is a DCCRC.

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Structure In Assemblies

If X is a cartesian restriction category with finite joins, A is a
discrete cartesian restriction category with interleaving, and
F : A→ X is preserves finite products, then asm(F) has finite
joins. (meaning it has a zero maps and binary joins of
compatible parallal maps).

This is particularily interesting because this sort of finite join
doesn’t make sense in a category with only total maps.

(An interleaving of a pair of parallel maps f, g : A→ B is a map
h : A→ B with f ≤ h, g ≤ h, and h = (h ∩ f) ∨ (h ∩ g). This is
an abstract characterization of the interleaving of computable
functions from recursion theory, but it’s a bit hard to see why!)

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Future Work

There are many things to do. . .

We need to figure out exactly what latent fibrations are.
(Guess: something like restriction category indexed restriction
categories).

Work out “partial categorical logic” for latent fibrations
corresponding to (total) categorical logic for fibrations. Fully
work out the correspondence between structure in a restriction
category and structure in its domain latent fibration.

Characterize the logic of the realizability latent fibration in
terms of A,X, and F : A→ X. (Birkedal 2002)

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

Furture Work

Construct a bunch of exotic categories of assemblies,
particularly where X is not a DCCRC, and investigate
realizability for categories with less structure than a topos, or
with interesting Turing categories (see PTIME, Cockett,
Hofstra & Hrubes 2014).

Assemblies over a base (asm(F),asm(G) for F : A→ X,
G : B→ X) form a category. What does this category look like?
(Specifically, how exactly does the category of Turing categories
and simulations (Cockett & Hofstra 2010) relate to assemblies
over a base whose categories of realizers are Turing categories?)

Is the construction of asm(F) a monad somehow? If not, what
is it?

Chad Nester Joint work with Robin Cockett Turing Categories and Realizability

