Pseudo-Functors, Principal Bundles, and Torsors
Octoberfest 2017

Michael Lambert

Dalhousie University

28 October 2017
Outline

Introduction: Principal Bundles and Geometric Morphisms

Extending a Pseudo-Functor along the Yoneda Embedding

Properties of Main Construction

Generalizing Principal Bundles

Summary and Conclusion
References

M.E. Descotte, E. J. Dubuc, and M. Szyld.
On the notion of flat 2-functors.

S. Mac Lane and I. Moerdijk.
Sheaves in Geometry and Logic.

I. Moerdijk.
Classifying Spaces and Classifying Topoi.
Moerdijk’s Definition

Let $\mathsf{Sh}(X)$ denote the category of sheaves on a topological space X.

Definition

A \mathcal{C}-principal bundle is a functor $Q: \mathcal{C} \to \mathsf{Sh}(X)$ such that for each point $x \in X$

1. there is a $C \in \mathcal{C}_0$ for which the stalk $Q(C)_x \neq \emptyset$;
2. for any $q \in Q(C)_x$ and $r \in Q(D)_x$ there is a $D \in \mathcal{C}_0$, a span $C \xleftarrow{f} B \xrightarrow{g} D$ in \mathcal{C} and a $z \in Q(B)_x$ such that $Q(f)(z) = q$ and $Q(g)(z) = r$; and
3. for parallel arrows $f, g: C \Rightarrow D$ and $q \in Q(C)_x$ for which $Q(f)(q) = Q(g)(q)$, there is an arrow $e: B \to C$ with $fe = ge$ and a $z \in Q(B)_x$ such that $Q(e)(z) = q$.

Condition 2. is transitivity and 3. is freeness.
Moerdijk’s Definition

Let $\mathcal{Sh}(X)$ denote the category of sheaves on a topological space X.

Definition

A \mathcal{C}-principal bundle is a functor $Q: \mathcal{C} \to \mathcal{Sh}(X)$ such that for each point $x \in X$

1. there is a $C \in \mathcal{C}_0$ for which the stalk $Q(C)_x \neq \emptyset$;
2. for any $q \in Q(C)_x$ and $r \in Q(D)_x$ there is a $D \in \mathcal{C}_0$, a span $C \xleftarrow{f} B \xrightarrow{g} D$ in \mathcal{C} and a $z \in Q(B)_x$ such that $Q(f)(z) = q$ and $Q(g)(z) = r$; and
3. for parallel arrows $f, g: C \Rightarrow D$ and $q \in Q(C)_x$ for which $Q(f)(q) = Q(g)(q)$, there is an arrow $e: B \to C$ with $fe = ge$ and a $z \in Q(B)_x$ such that $Q(e)(z) = q$.

Condition 2. is transitivity and 3. is freeness.
Moerdijk’s Definition

Let $\mathcal{Sh}(X)$ denote the category of sheaves on a topological space X.

Definition

A \mathcal{C}-principal bundle is a functor $Q: \mathcal{C} \to \mathcal{Sh}(X)$ such that for each point $x \in X$

1. there is a $C \in \mathcal{C}_0$ for which the stalk $Q(C)_x \neq \emptyset$;

2. for any $q \in Q(C)_x$ and $r \in Q(D)_x$ there is a $D \in \mathcal{C}_0$, a span $C \xleftarrow{f} B \xrightarrow{g} D$ in \mathcal{C} and a $z \in Q(B)_x$ such that $Q(f)(z) = q$ and $Q(g)(z) = r$; and

3. for parallel arrows $f, g: C \Rightarrow D$ and $q \in Q(C)_x$ for which $Q(f)(q) = Q(g)(q)$, there is an arrow $e: B \to C$ with $fe = ge$ and a $z \in Q(B)_x$ such that $Q(e)(z) = q$.

Condition 2. is transitivity and 3. is freeness.
Moerdijk’s Definition

Let $\mathcal{S}h(X)$ denote the category of sheaves on a topological space X.

Definition

A \mathcal{C}-principal bundle is a functor $Q: \mathcal{C} \to \mathcal{S}h(X)$ such that for each point $x \in X$

1. there is a $C \in \mathcal{C}_0$ for which the stalk $Q(C)_x \neq \emptyset$;
2. for any $q \in Q(C)_x$ and $r \in Q(D)_x$ there is a $D \in \mathcal{C}_0$, a span $C \xleftarrow{f} B \xrightarrow{g} D$ in \mathcal{C} and a $z \in Q(B)_x$ such that $Q(f)(z) = q$ and $Q(g)(z) = r$; and
3. for parallel arrows $f, g: C \rightarrowtail D$ and $q \in Q(C)_x$ for which $Q(f)(q) = Q(g)(q)$, there is an arrow $e: B \rightarrow C$ with $fe = ge$ and a $z \in Q(B)_x$ such that $Q(e)(z) = q$.

Condition 2. is transitivity and 3. is freeness.
Moerdijk’s Definition

Let $\text{Sh}(X)$ denote the category of sheaves on a topological space X.

Definition

A \mathcal{C}-principal bundle is a functor $Q : \mathcal{C} \to \text{Sh}(X)$ such that for each point $x \in X$

1. there is a $C \in \mathcal{C}_0$ for which the stalk $Q(C)_x \neq \emptyset$;

2. for any $q \in Q(C)_x$ and $r \in Q(D)_x$ there is a $D \in \mathcal{C}_0$, a span $C \xleftarrow{f} B \xrightarrow{g} D$ in \mathcal{C} and a $z \in Q(B)_x$ such that $Q(f)(z) = q$ and $Q(g)(z) = r$; and

3. for parallel arrows $f, g : C \xrightarrow{} D$ and $q \in Q(C)_x$ for which $Q(f)(q) = Q(g)(q)$, there is an arrow $e : B \to C$ with $fe = ge$ and a $z \in Q(B)_x$ such that $Q(e)(z) = q$.

Condition 2. is transitivity and 3. is freeness.
Moerdijk’s Definition

Let $\mathcal{S}h(X)$ denote the category of sheaves on a topological space X.

Definition

A \mathcal{C}-principal bundle is a functor $Q : \mathcal{C} \to \mathcal{S}h(X)$ such that for each point $x \in X$

1. there is a $C \in \mathcal{C}_0$ for which the stalk $Q(C)_x \neq \emptyset$;
2. for any $q \in Q(C)_x$ and $r \in Q(D)_x$ there is a $D \in \mathcal{C}_0$, a span $C \xleftarrow{f} B \xrightarrow{g} D$ in \mathcal{C} and a $z \in Q(B)_x$ such that $Q(f)(z) = q$ and $Q(g)(z) = r$; and
3. for parallel arrows $f, g : C \rightarrowtail D$ and $q \in Q(C)_x$ for which $Q(f)(q) = Q(g)(q)$, there is an arrow $e : B \rightarrow C$ with $fe = ge$ and a $z \in Q(B)_x$ such that $Q(e)(z) = q$.

Condition 2. is transitivity and 3. is freeness.
Moerdijk’s Definition

Let $\mathcal{Sh}(X)$ denote the category of sheaves on a topological space X.

Definition

A \mathcal{C}-principal bundle is a functor $Q: \mathcal{C} \to \mathcal{Sh}(X)$ such that for each point $x \in X$

1. there is a $C \in \mathcal{C}_0$ for which the stalk $Q(C)_x \neq \emptyset$;
2. for any $q \in Q(C)_x$ and $r \in Q(D)_x$ there is a $D \in \mathcal{C}_0$, a span $C \xleftarrow{f} B \xrightarrow{g} D$ in \mathcal{C} and a $z \in Q(B)_x$ such that $Q(f)(z) = q$ and $Q(g)(z) = r$; and
3. for parallel arrows $f, g: C \Rightarrow D$ and $q \in Q(C)_x$ for which $Q(f)(q) = Q(g)(q)$, there is an arrow $e: B \to C$ with $fe = ge$ and a $z \in Q(B)_x$ such that $Q(e)(z) = q$.

Condition 2. is transitivity and 3. is freeness.
Guiding Question

If Q is instead a pseudo-functor valued in a 2-category, what is a principal bundle?

Case of interest: pseudo-functors $[X^{\text{op}}, \text{Cat}]$ on a small category X.
Guiding Question

If Q is instead a pseudo-functor valued in a 2-category, what is a principal bundle?

Case of interest: pseudo-functors $[\mathcal{X}^{\text{op}}, \text{Cat}]$ on a small category \mathcal{X}.
Guiding Question

If Q is instead a pseudo-functor valued in a 2-category, what is a principal bundle?

Case of interest: pseudo-functors $[\mathcal{X}^{\text{op}}, \text{Cat}]$ on a small category \mathcal{X}.
Theorem

There is an isomorphism

\[\text{Prin}(\mathcal{C}) \cong \text{Geom}(\text{Sh}(X), [\mathcal{C}^{\text{op}}, \text{Set}]). \]

Any functor \(Q : \mathcal{C} \to \text{Sh}(X) \) admits a tensor product \(- \otimes_{\mathcal{C}} Q\) extension, which preserves finite limits if, and only if, \(Q \) is a principal bundle.

This is proved in [Moe95].

In this sense, the presheaf topos \([\mathcal{C}^{\text{op}}, \text{Set}]\) classifies \(\mathcal{C}\)-principal bundles.
Theorem

There is an isomorphism

\[\text{Prin}(\mathcal{C}) \cong \text{Geom}(\text{Sh}(X), [\mathcal{C}^{\text{op}}, \text{Set}]). \]

Any functor \(Q : \mathcal{C} \to \text{Sh}(X) \) admits a tensor product \(- \otimes_{\mathcal{C}} Q \) extension, which preserves finite limits if, and only if, \(Q \) is a principal bundle.

This is proved in [Moe95].

In this sense, the presheaf topos \([\mathcal{C}^{\text{op}}, \text{Set}]\) classifies \(\mathcal{C} \)-principal bundles.
Theorem

There is an isomorphism

\[\text{Prin}(\mathcal{C}) \cong \text{Geom}(\text{Sh}(X), [\mathcal{C}^{\text{op}}, \text{Set}]). \]

Any functor \(Q : \mathcal{C} \rightarrow \text{Sh}(X) \) admits a tensor product \(- \otimes_{\mathcal{C}} Q \) extension, which preserves finite limits if, and only if, \(Q \) is a principal bundle.

This is proved in [Moe95].

In this sense, the presheaf topos \([\mathcal{C}^{\text{op}}, \text{Set}]\) classifies \(\mathcal{C} \)-principal bundles.
Theorem

There is an isomorphism

\[
\text{Prin}(\mathcal{C}) \cong \text{Geom}(\text{Sh}(X), [\mathcal{C}^{\text{op}}, \text{Set}]).
\]

Any functor \(Q : \mathcal{C} \to \text{Sh}(X) \) admits a tensor product \(- \otimes_{\mathcal{C}} Q\) extension, which preserves finite limits if, and only if, \(Q \) is a principal bundle.

This is proved in [Moe95].

In this sense, the presheaf topos \([\mathcal{C}^{\text{op}}, \text{Set}]\) classifies \(\mathcal{C}\)-principal bundles.
Tensor Product of Presheaves

Any functor $Q : \mathcal{C} \rightarrow \mathcal{E}$ on small \mathcal{C} to a cocomplete topos \mathcal{E} admits a tensor product extension along the Yoneda embedding.

$$\mathcal{C} \xrightarrow{Q} \mathcal{E}.\]

$$y \downarrow \quad \mathcal{C}^{op} \times \mathcal{E} \quad Q$$

$$\mathcal{C}^{op}, Set$$

The image $P \otimes Q$ is defined as a colimit.
Tensor Product of Presheaves

Any functor $Q : \mathcal{C} \to \mathcal{E}$ on small \mathcal{C} to a cocomplete topos \mathcal{E} admits a tensor product extension along the Yoneda embedding

$$\mathcal{C} \xrightarrow{Q} \mathcal{E}.$$

\mathcal{E}

$\mathcal{C}^{\text{op}} \times \mathcal{E}$

\mathcal{C}

Set

$\mathcal{C}^{\text{op}}, \text{Set}$

The image $P \otimes_{\mathcal{E}} Q$ is defined as a colimit.
Introduction: Principal Bundles and Geometric Morphisms

Tensor Product of Presheaves

Any functor $Q: \mathcal{C} \to \mathcal{E}$ on small \mathcal{C} to a cocomplete topos \mathcal{E} admits a tensor product extension along the Yoneda embedding

$$\mathcal{C} \xrightarrow{Q} \mathcal{E}.$$

The image $P \otimes_{\mathcal{C}} Q$ is defined as a colimit.
The functor $- \otimes_C Q$ is one half of a tensor-hom adjunction

\[\mathcal{E}(P \otimes_C Q, X) \cong [\mathcal{C}^{\text{op}}, \text{Set}](P, \mathcal{E}(Q, X)) \].

Theorem

The tensor-functor $- \otimes_C Q$ arising from $Q: \mathcal{C} \to \mathcal{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is “flat.” In the case that \mathcal{E} is Set the functor Q is flat if and only if its category of elements $\int_C Q$ is filtered.

Theorem

There is an equivalence

\[\text{Flat}(\mathcal{C}, \mathcal{E}) \cong \text{Geom}(\mathcal{E}, [\mathcal{C}^{\text{op}}, \text{Set}]). \]

This is Theorem VII.5.2 of [MLM92].
The functor $- \otimes_Q$ is one half of a tensor-hom adjunction

$$\mathcal{E}(P \otimes_Q X) \cong [\mathcal{C}^{\text{op}}, \text{Set}](P, \mathcal{E}(Q, X)).$$

Theorem

The tensor-functor $- \otimes_Q$ arising from $Q: \mathcal{C} \to \mathcal{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is “flat.” In the case that \mathcal{E} is Set the functor Q is flat if and only if its category of elements \int_Q is filtered.

Theorem

There is an equivalence

$$\text{Flat}(\mathcal{C}, \mathcal{E}) \simeq \text{Geom}(\mathcal{E}, [\mathcal{C}^{\text{op}}, \text{Set}]).$$

This is Theorem VII.5.2 of [MLM92].
The functor $- \otimes_{\mathcal{C}} Q$ is one half of a tensor-hom adjunction

$$\mathcal{E}(P \otimes_{\mathcal{C}} Q, X) \cong [\mathcal{C}^{op}, \text{Set}](P, \mathcal{E}(Q, X)).$$

Theorem

The tensor-functor $- \otimes_{\mathcal{C}} Q$ *arising from* $Q: \mathcal{C} \to \mathcal{E}$ *preserves finite limits if, and only if,* Q *is filtering.*

Such a functor Q is “flat.” In the case that \mathcal{E} is Set the functor Q is flat if and only if its category of elements $\int_{\mathcal{C}} Q$ is filtered.

Theorem

There is an equivalence

$$\text{Flat}(\mathcal{C}, \mathcal{E}) \simeq \text{Geom}(\mathcal{E}, [\mathcal{C}^{op}, \text{Set}]).$$

This is Theorem VII.5.2 of [MLM92].
The functor $- \otimes Q$ is one half of a tensor-hom adjunction

$$\mathcal{E}(P \otimes Q, X) \cong [\mathcal{C}^{\text{op}}, \text{Set}](P, \mathcal{E}(Q, X)).$$

Theorem

The tensor-functor $- \otimes Q$ arising from $Q : \mathcal{C} \to \mathcal{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is “flat.” In the case that \mathcal{E} is Set the functor Q is flat if and only if its category of elements $\int \mathcal{C} Q$ is filtered.

Theorem

There is an equivalence

$$\text{Flat}(\mathcal{C}, \mathcal{E}) \simeq \text{Geom}(\mathcal{E}, [\mathcal{C}^{\text{op}}, \text{Set}]).$$

This is Theorem VII.5.2 of [MLM92].
The functor $- \otimes_{\mathcal{C}} Q$ is one half of a tensor-hom adjunction

$$\mathcal{E}(P \otimes_{\mathcal{C}} Q, X) \cong [\mathcal{C}^{\text{op}}, \text{Set}](P, \mathcal{E}(Q, X)).$$

Theorem

The tensor-functor $- \otimes_{\mathcal{C}} Q$ arising from $Q: \mathcal{C} \to \mathcal{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is “flat.” In the case that \mathcal{E} is Set the functor Q is flat if and only if its category of elements $\int_{\mathcal{C}} Q$ is filtered.

Theorem

There is an equivalence

$$\text{Flat}(\mathcal{C}, \mathcal{E}) \simeq \text{Geom}(\mathcal{E}, [\mathcal{C}^{\text{op}}, \text{Set}]).$$

This is Theorem VII.5.2 of [MLM92].
The functor \(- \otimes \mathcal{C} \mathcal{Q}\) is one half of a tensor-hom adjunction

\[
\mathcal{E}(P \otimes \mathcal{C} \mathcal{Q}, X) \cong [\mathcal{C}^{\text{op}}, \text{Set}](P, \mathcal{E}(Q, X)).
\]

Theorem

The tensor-functor \(- \otimes \mathcal{C} \mathcal{Q}\) arising from \(Q: \mathcal{C} \rightarrow \mathcal{E}\) preserves finite limits if, and only if, \(Q\) is filtering.

Such a functor \(Q\) is “flat.” In the case that \(\mathcal{E}\) is \(\text{Set}\) the functor \(Q\) is flat if and only if its category of elements \(\int \mathcal{C} Q\) is filtered.

Theorem

There is an equivalence

\[
\text{Flat}(\mathcal{C}, \mathcal{E}) \simeq \text{Geom}(\mathcal{E}, [\mathcal{C}^{\text{op}}, \text{Set}]).
\]

This is Theorem VII.5.2 of [MLM92].
The functor \(- \otimes C Q\) is one half of a tensor-hom adjunction

\[
\mathcal{E}(P \otimes C Q, X) \cong \mathcal{C}^{\text{op}} \otimes \text{Set}(P, \mathcal{E}(Q, X)).
\]

Theorem

The tensor-functor \(- \otimes C Q\) arising from \(Q : \mathcal{C} \to \mathcal{E}\) preserves finite limits if, and only if, \(Q\) is filtering.

Such a functor \(Q\) is “flat.” In the case that \(\mathcal{E}\) is \(\text{Set}\) the functor \(Q\) is flat if and only if its category of elements \(\int_{\mathcal{C}} Q\) is filtered.

Theorem

There is an equivalence

\[
\text{Flat}(\mathcal{C}, \mathcal{E}) \simeq \text{Geom}(\mathcal{E}, [\mathcal{C}^{\text{op}}, \text{Set}]).
\]

This is Theorem VII.5.2 of [MLM92].
Outline of Our Approach

- Start with a pseudo-functor $Q : \mathcal{C} \to [\mathcal{X}^{op}, \mathcal{Cat}]$.
- Abstract conditions 2. and 3. of Moerdijk’s definition to the case of Q by weakening the equalities to isomorphisms.
- Construct an extension

$$
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{Q} & [\mathcal{X}^{op}, \mathcal{Cat}] \\
\downarrow{y} & & \\
[\mathcal{C}^{op}, \mathcal{Cat}] & \xrightarrow{\cdot} & [\mathcal{X}^{op}, \mathcal{Cat}]
\end{array}
$$

- Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.
- The recent paper [DDS] discusses a general theory of flat 2-functors.
Outline of Our Approach

- Start with a pseudo-functor $Q : C \to [X^{op}, \text{Cat}]$.
- Abstract conditions 2. and 3. of Moerdijk’s definition to the case of Q by weakening the equalities to isomorphisms.
- Construct an extension

$$
\begin{array}{ccc}
C & \xrightarrow{Q} & [X^{op}, \text{Cat}] \\
\downarrow^{y} & & \\
[C^{op}, \text{Cat}] & \xrightarrow{\text{ }} & \\
\end{array}
$$

- Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.
- The recent paper [DDS] discusses a general theory of flat 2-functors.
Outline of Our Approach

- Start with a pseudo-functor $Q : \mathcal{C} \to [\mathcal{X}^{\text{op}}, \mathsf{Cat}]$.
- Abstract conditions 2. and 3. of Moerdijk’s definition to the case of Q by weakening the equalities to isomorphisms.
- Construct an extension $\mathcal{C}^{\text{op}} \to [\mathcal{X}^{\text{op}}, \mathsf{Cat}]$.
- Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.
- The recent paper [DDS] discusses a general theory of flat 2-functors.
Outline of Our Approach

• Start with a pseudo-functor $Q : \mathcal{C} \rightarrow [\mathcal{X}^{op}, \mathcal{Cat}]$.

• Abstract conditions 2. and 3. of Moerdijk’s definition to the case of Q by weakening the equalities to isomorphisms.

• Construct an extension

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{Q} & [\mathcal{X}^{op}, \mathcal{Cat}] \\
y & \downarrow & \\
[\mathcal{C}^{op}, \mathcal{Cat}] & & \\
\end{array}
\]

• Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.

• The recent paper [DDS] discusses a general theory of flat 2-functors.
Outline of Our Approach

- Start with a pseudo-functor $Q : \mathcal{C} \to [\mathcal{X}^{\text{op}}, \mathsf{Cat}]$.
- Abstract conditions 2. and 3. of Moerdijk’s definition to the case of Q by weakening the equalities to isomorphisms.
- Construct an extension

$$
\mathcal{C} \xrightarrow{Q} [\mathcal{X}^{\text{op}}, \mathsf{Cat}].
$$

- Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.
- The recent paper [DDS] discusses a general theory of flat 2-functors.
Outline of Our Approach

- Start with a pseudo-functor $Q: \mathcal{C} \to \mathcal{X}^{\text{op}}, \text{Cat}$.
- Abstract conditions 2. and 3. of Moerdijk’s definition to the case of Q by weakening the equalities to isomorphisms.
- Construct an extension

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{Q} & [\mathcal{X}^{\text{op}}, \text{Cat}] \\
\cong & \downarrow & \\
[\mathcal{C}^{\text{op}}, \text{Cat}] & \xrightarrow{y} & \\
\end{array}
\]

- Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.
- The recent paper [DDS] discusses a general theory of flat 2-functors.
Outline of Our Approach

- Start with a pseudo-functor $Q : \mathcal{C} \to [\mathcal{X}^{\text{op}}, \mathbf{Cat}]$.
- Abstract conditions 2. and 3. of Moerdijk’s definition to the case of Q by weakening the equalities to isomorphisms.
- Construct an extension

$$\xymatrix{ \mathcal{C} \ar[r]^-{Q} \ar[d]_-{y} & [\mathcal{X}^{\text{op}}, \mathbf{Cat}] \ar[dl] \cr [\mathcal{C}^{\text{op}}, \mathbf{Cat}] }$$

- Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.
- The recent paper [DDS] discusses a general theory of flat 2-functors.
Main Construction

• Start with pseudo-functors \(Q : \mathcal{C} \to \mathcal{Cat} \) and \(P : \mathcal{C}^{op} \to \mathcal{Cat} \).
• Set \(\Delta(P, Q) \) to be the category with objects triples
 \[(C, p, q) \quad p \in P(C)_0, \quad q \in Q(C)_0\]
 and arrows \((C, p, q) \to (D, r, s)\) the triples \((f, u, v)\) with
 \[f : C \to D \quad u : p \to f^*(r) \quad v : f_!(q) \to s.\]

• Take \(P \star Q \) to denote the category of fractions
 \[P \star Q := \Delta(P, Q)[\Sigma^{-1}]\]
 where \(\Sigma \) is the set of cartesian morphisms.
Main Construction

- **Start with pseudo-functors** $Q : \mathcal{C} \to \mathbf{Cat}$ and $P : \mathcal{C}^{op} \to \mathbf{Cat}$.
- Set $\Delta(P, Q)$ to be the category with objects triples
 \[(C, p, q) \quad p \in P(C)_0, \; q \in Q(C)_0\]
 and arrows $(C, p, q) \to (D, r, s)$ the triples (f, u, v) with
 \[f : C \to D \quad u : p \to f^*(r) \quad v : f_!(q) \to s.\]
- Take $P \star Q$ to denote the category of fractions
 \[P \star Q := \Delta(P, Q)[\Sigma^{-1}]\]
 where Σ is the set of cartesian morphisms.
Main Construction

• Start with pseudo-functors \(Q : \mathcal{C} \to \mathbf{Cat} \) and \(P : \mathcal{C}^{op} \to \mathbf{Cat} \).

• Set \(\Delta(P, Q) \) to be the category with objects triples

\[(C, p, q) \quad p \in P(C)_0, \; q \in Q(C)_0\]

and arrows \((C, p, q) \to (D, r, s)\) the triples \((f, u, v)\) with

\[f : C \to D \quad u : p \to f^*(r) \quad v : f_!(q) \to s.\]

• Take \(P \star Q \) to denote the category of fractions

\[P \star Q := \Delta(P, Q)[\Sigma^{-1}]\]

where \(\Sigma \) is the set of cartesian morphisms.
Main Construction

- Start with pseudo-functors $Q: \mathcal{C} \to \mathbf{Cat}$ and $P: \mathcal{C}^{op} \to \mathbf{Cat}$.
- Set $\Delta(P, Q)$ to be the category with objects triples

 $$(C, p, q) \quad p \in P(C)_0, \; q \in Q(C)_0$$

 and arrows $(C, p, q) \to (D, r, s)$ the triples (f, u, v) with

 $$f: C \to D \quad u: p \to f^*(r) \quad v: f_!(q) \to s.$$

- Take $P \star Q$ to denote the category of fractions

 $$P \star Q := \Delta(P, Q)[\Sigma^{-1}]$$

 where Σ is the set of cartesian morphisms.
Main Construction

- Start with pseudo-functors $Q : \mathcal{C} \to \mathbf{Cat}$ and $P : \mathcal{C}^{op} \to \mathbf{Cat}$.
- Set $\Delta(P, Q)$ to be the category with objects triples (C, p, q), $p \in P(C)_0$, $q \in Q(C)_0$.
- Arrows $(C, p, q) \to (D, r, s)$ are the triples (f, u, v) with

 $f : C \to D \quad u : p \to f^*(r) \quad v : f_!(q) \to s$.

- Take $P \star Q$ to denote the category of fractions

 $P \star Q := \Delta(P, Q)[\Sigma^{-1}]$

 where Σ is the set of cartesian morphisms.
Main Construction Continued

• Now start with a pseudo-functor \(Q : \mathcal{C} \to [\mathcal{X}^{\text{op}}, \text{Cat}] \).
• For any pseudo-functor \(P : \mathcal{C}^{\text{op}} \to \text{Cat} \), define another \(\mathcal{X}^{\text{op}} \to \text{Cat} \) by assigning
 \[
 X \mapsto P \star Q(-)(X)
 \]
on objects with the induced assignments on arrows and identity cells.
• This yields a 2-functor
 \[
 - \star Q : [\mathcal{C}^{\text{op}}, \text{Cat}] \longrightarrow [\mathcal{X}^{\text{op}}, \text{Cat}].
 \]
Main Construction Continued

• Now start with a pseudo-functor $Q : \mathcal{C} \to [\mathcal{X}^{\text{op}}, \text{Cat}]$.

• For any pseudo-functor $P : \mathcal{C}^{\text{op}} \to \text{Cat}$, define another $\mathcal{X}^{\text{op}} \to \text{Cat}$ by assigning

$$X \mapsto P \ast Q(-)(X)$$

on objects with the induced assignments on arrows and identity cells.

• This yields a 2-functor

$$- \ast Q : [\mathcal{C}^{\text{op}}, \text{Cat}] \longrightarrow [\mathcal{X}^{\text{op}}, \text{Cat}].$$
Main Construction Continued

- Now start with a pseudo-functor $Q: \mathcal{C} \to [\mathcal{X}^{\text{op}}, \mathbf{Cat}]$.
- For any pseudo-functor $P: \mathcal{C}^{\text{op}} \to \mathbf{Cat}$, define another $\mathcal{X}^{\text{op}} \to \mathbf{Cat}$ by assigning
 $$X \mapsto P \star Q(-)(X)$$
on objects with the induced assignments on arrows and identity cells.
- This yields a 2-functor
 $$- \star Q: [\mathcal{C}^{\text{op}}, \mathbf{Cat}] \longrightarrow [\mathcal{X}^{\text{op}}, \mathbf{Cat}].$$
Main Construction Continued

• Now start with a pseudo-functor $Q : \mathcal{C} \to [\mathcal{X}^{\text{op}}, \mathcal{Cat}]$.
• For any pseudo-functor $P : \mathcal{C}^{\text{op}} \to \mathcal{Cat}$, define another $\mathcal{X}^{\text{op}} \to \mathcal{Cat}$ by assigning

$$X \mapsto P \ast Q(-)(X)$$

on objects with the induced assignments on arrows and identity cells.
• This yields a 2-functor

$$- \ast Q : [\mathcal{C}^{\text{op}}, \mathcal{Cat}] \longrightarrow [\mathcal{X}^{\text{op}}, \mathcal{Cat}]$$.
Tensor-Hom Adjunction

In general, $- \star Q$ is a left 2-adjoint. The right adjoint is

$$[\mathcal{X}^{\text{op}}, \text{Cat}](Q, -) : [\mathcal{X}^{\text{op}}, \text{Cat}] \to [\mathcal{C}^{\text{op}}, \text{Cat}].$$

Theorem

For any pseudo-functor Q there is an isomorphism of categories

$$[\mathcal{X}^{\text{op}}, \text{Cat}](P \star Q, F) \cong [\mathcal{C}^{\text{op}}, \text{Cat}](P, [\mathcal{X}^{\text{op}}, \text{Cat}](Q, F)).$$

natural in P and F.

Corollary

The pseudo-functor $P \star Q$ gives a computation of the P-weighted pseudo-colimit of Q.
Tensor-Hom Adjunction

In general, \(- \star Q \) is a left 2-adjoint. The right adjoint is

\[
[X^{\text{op}}, \text{Cat}](Q, -) : [X^{\text{op}}, \text{Cat}] \to [C^{\text{op}}, \text{Cat}].
\]

Theorem

For any pseudo-functor \(Q \) there is an isomorphism of categories

\[
[X^{\text{op}}, \text{Cat}](P \star Q, F) \cong [C^{\text{op}}, \text{Cat}](P, [X^{\text{op}}, \text{Cat}](Q, F)).
\]

natural in \(P \) and \(F \).

Corollary

The pseudo-functor \(P \star Q \) gives a computation of the \(P \)-weighted pseudo-colimit of \(Q \).
Tensor-Hom Adjunction

In general, \(- \cdot \star Q\) is a left 2-adjoint. The right adjoint is

\[
[\mathcal{X}^{\text{op}}, \text{Cat}](Q, -): [\mathcal{X}^{\text{op}}, \text{Cat}] \longrightarrow [\mathcal{C}^{\text{op}}, \text{Cat}].
\]

Theorem

For any pseudo-functor \(Q\) there is an isomorphism of categories

\[
[\mathcal{X}^{\text{op}}, \text{Cat}](P \star Q, F) \cong [\mathcal{C}^{\text{op}}, \text{Cat}](P, [\mathcal{X}^{\text{op}}, \text{Cat}](Q, F)).
\]

natural in \(P\) and \(F\).

Corollary

The pseudo-functor \(P \star Q\) gives a computation of the \(P\)-weighted pseudo-colimit of \(Q\).
Tensor-Hom Adjunction

In general, $- \star Q$ is a left 2-adjoint. The right adjoint is

$$\left[X^{\text{op}}, \text{Cat} \right](Q, -): \left[X^{\text{op}}, \text{Cat} \right] \to \left[C^{\text{op}}, \text{Cat} \right].$$

Theorem

For any pseudo-functor Q there is an isomorphism of categories

$$\left[X^{\text{op}}, \text{Cat} \right](P \star Q, F) \cong \left[C^{\text{op}}, \text{Cat} \right](P, \left[X^{\text{op}}, \text{Cat} \right](Q, F)).$$

natural in P and F.

Corollary

*The pseudo-functor $P \star Q$ gives a computation of the P-weighted pseudo-colimit of Q.***
Tensor-Hom Adjunction

In general, $- \star Q$ is a left 2-adjoint. The right adjoint is

$$[\mathcal{X}^{\text{op}}, \text{Cat}](Q, -) : [\mathcal{X}^{\text{op}}, \text{Cat}] \longrightarrow [\mathcal{C}^{\text{op}}, \text{Cat}].$$

Theorem

For any pseudo-functor Q there is an isomorphism of categories

$$[\mathcal{X}^{\text{op}}, \text{Cat}](P \star Q, F) \cong [\mathcal{C}^{\text{op}}, \text{Cat}](P, [\mathcal{X}^{\text{op}}, \text{Cat}](Q, F)).$$

natural in P and F.

Corollary

The pseudo-functor $P \star Q$ gives a computation of the P-weighted pseudo-colimit of Q.
Further Properties

- For any $C \in C_0$, there is a pseudo-natural equivalence
 \[QC \simeq yC \star Q \]
 pseudo-natural in C.
- So, there is a cell
 \[[C^{\text{op}}, \text{Cat}] \xrightarrow{\sim} \mathcal{X}^{\text{op}} \xrightarrow{Q} [C^{\text{op}}, \text{Cat}] \]
 making $- \star Q$ an extension of Q.

Corollary

Any pseudo-functor $P : C^{\text{op}} \to \text{Cat}$ is a pseudo-colimit of representable functors.
Further Properties

• For any $C \in \mathcal{C}_0$, there is a pseudo-natural equivalence

$$QC \simeq yC \star Q$$

pseudo-natural in \mathcal{C}.

• So, there is a cell

$$\begin{array}{ccc}
\mathcal{C} & \xrightarrow{Q} & [\mathcal{X}^{\text{op}}, \mathcal{Cat}] \\
y & \searrow & \simeq \\
\downarrow & & \downarrow \\
[\mathcal{C}^{\text{op}}, \mathcal{Cat}] & \xrightarrow{\star} & [\mathcal{X}^{\text{op}}, \mathcal{Cat}] \\
\end{array}$$

making $\star Q$ an extension of Q.

Corollary

Any pseudo-functor $P : \mathcal{C}^{\text{op}} \to \mathcal{Cat}$ is a pseudo-colimit of representable functors.
Further Properties

• For any \(C \in C_0 \), there is a pseudo-natural equivalence

\[
QC \simeq yC \star Q
\]

pseudo-natural in \(C \).

• So, there is a cell

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{Q} & [\mathcal{K}^{\text{op}}, \mathcal{C}at] \\
\downarrow y & \simeq & \downarrow - \star Q \\
[C^{\text{op}}, \mathcal{C}at] & & \\
\end{array}
\]

making \(- \star Q \) an extension of \(Q \).

Corollary

Any pseudo-functor \(P : \mathcal{C}^{\text{op}} \to \mathcal{C}at \) is a pseudo-colimit of representable functors.
Further Properties

- For any $C \in \mathcal{C}_0$, there is a pseudo-natural equivalence
 \[QC \simeq yC \star Q \]
 pseudo-natural in C.
- So, there is a cell

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{Q} & [\mathcal{X}^{\text{op}}, \mathcal{C}\text{at}] \\
\downarrow{y} & \simeq & \downarrow{\star Q} \\
[C^{\text{op}}, \mathcal{C}\text{at}] & \leftrightarrow & [-, \mathcal{C}\text{at}]
\end{array}
\]

making $- \star Q$ an extension of Q.

Corollary

Any pseudo-functor $P : C^{\text{op}} \to \mathcal{C}\text{at}$ is a pseudo-colimit of representable functors.
Further Properties

- For any $C \in \mathcal{C}_0$, there is a pseudo-natural equivalence

 $$QC \simeq yC \star Q$$

 pseudo-natural in C.
- So, there is a cell

 $\mathcal{C} \xrightarrow{Q} [\mathcal{X}^{\text{op}}, \mathcal{C}at]$

 $y \downarrow \simeq \nearrow$

 $[\mathcal{C}^{\text{op}}, \mathcal{C}at]$

 making $- \star Q$ an extension of Q.

Corollary

Any pseudo-functor $P: \mathcal{C}^{\text{op}} \to \mathcal{C}at$ is a pseudo-colimit of representable functors.
Pseudo-Coequalizers

The tensor product $P \otimes_{\mathcal{C}} Q$ of ordinary presheaves fits into a coequalizer diagram of the form

$$
\begin{array}{ccc}
P \times_{\mathcal{C}_0} \mathcal{C}_1 \times_{\mathcal{C}_0} Q & \xrightarrow{1 \times \alpha} & P \times_{\mathcal{C}_0} Q \\
& \alpha' \times 1 & \end{array}
\longrightarrow
\begin{array}{c}
P \times_{\mathcal{C}} Q
\end{array}
.$$

Theorem

For pseudo-functors P and Q, the category of fractions $P \star Q$ fits into a pseudo-coequalizer diagram

$$
\begin{array}{ccc}
P \times_{\mathcal{C}} \mathcal{C}^2 \times_{\mathcal{C}} \mathcal{D} & \xrightarrow{\mu \times 1} & P \times_{\mathcal{C}} \mathcal{D} \\
& 1 \times \nu & \end{array}
\longrightarrow
\begin{array}{c}
P \star Q
\end{array}
.$$
Pseudo-Coequalizers

The tensor product $P \otimes \mathcal{C} Q$ of ordinary presheaves fits into a coequalizer diagram of the form

$$
P \times \mathcal{C} \mathcal{C}_1 \times \mathcal{C}_0 Q \xrightarrow{1 \times \alpha} P \times \mathcal{C}_0 Q \xrightarrow{\alpha' \times 1} P \otimes \mathcal{C} Q.
$$

Theorem
For pseudo-functors P and Q, the category of fractions $P \star \mathcal{C} Q$ fits into a pseudo-coequalizer diagram

$$
\mathcal{P} \times \mathcal{C} \mathcal{C}^2 \times \mathcal{C} \mathcal{D} \xrightarrow{\mu \times 1} \mathcal{P} \times \mathcal{C} \mathcal{D} \xrightarrow{1 \times \nu} \mathcal{P} \times \mathcal{C} \mathcal{D} \longrightarrow P \star \mathcal{C} Q.
$$
Pseudo-Coequalizers

The tensor product $P \otimes \mathcal{C} Q$ of ordinary presheaves fits into a coequalizer diagram of the form

$$
P \times \mathcal{C}_0 \mathcal{C}_1 \times \mathcal{C}_0 Q \xrightarrow{1 \times \alpha} P \times \mathcal{C}_0 Q \xrightarrow{\alpha' \times 1} P \otimes \mathcal{C} Q.
$$

Theorem

For pseudo-functors P and Q, the category of fractions $P \star Q$ fits into a pseudo-coequalizer diagram

$$
P \otimes \mathcal{C} \mathcal{C}^2 \times \mathcal{C} \mathcal{D} \xrightarrow{\mu \times 1} P \otimes \mathcal{C} \mathcal{D} \xrightarrow{1 \times \nu} P \star Q.
$$
Definition

A pseudo-functor $Q : \mathcal{C} \to [\mathcal{X}^{\text{op}}, \text{Cat}]$ is a \mathcal{C}-principal bundle over \mathcal{X} provided that for each $X \in \mathcal{X}_0$, each $Q(C)(X)$ is in Grpd and

1. there is $C \in \mathcal{C}_0$ such that $Q(C)(X)$ is nonempty;

2. for $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$, there is a span $C \xleftarrow{f} E \xrightarrow{g} D$ in \mathcal{C} and $y \in Q(E)(X)_0$ such that $f!y \simeq q$ and $g!y \simeq r$;

3. and given two arrows $f, g : C \Rightarrow D$ of \mathcal{C} and objects $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$ with isomorphisms

$$u : f!q \simeq r \quad v : g!q \simeq r$$

of $Q(D)(X)$, there is an arrow $h : E \to C$ equalizing f and g with an object $y \in Q(E)(X)$ and isomorphism $w : h!y \simeq q$ making the arrows

$$(fh)!y \xrightarrow{\sim} f!h!(y) \xrightarrow{f!w} f!q \xrightarrow{u} r \quad (gh)!y \xrightarrow{\sim} g!h!(y) \xrightarrow{g!w} g!q \xrightarrow{v} r$$

equal in $Q(D)(X)$.
Definition

A pseudo-functor $Q : \mathcal{C} \to [\mathcal{X}^{op}, \mathbf{Cat}]$ is a \mathcal{C}-principal bundle over \mathcal{X} provided that for each $X \in \mathcal{X}_0$, each $Q(C)(X)$ is in \mathbf{Grpd} and

1. there is $C \in \mathcal{C}_0$ such that $Q(C)(X)$ is nonempty;

2. for $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$, there is a span $C \xleftarrow{f} E \xrightarrow{g} D$ in \mathcal{C} and $y \in Q(E)(X)_0$ such that $f ! y \cong q$ and $g ! y \cong r$;

3. and given two arrows $f, g : C \to D$ of \mathcal{C} and objects $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$ with isomorphisms

$$u : f ! q \cong r \quad \text{and} \quad v : g ! q \cong r$$

of $Q(D)(X)$, there is an arrow $h : E \to C$ equalizing f and g with an object $y \in Q(E)(X)$ and isomorphism $w : h ! y \cong q$ making the arrows

$$(f h)! y \xrightarrow{f ! w} f ! q \xrightarrow{u} r \quad \text{and} \quad (g h)! y \xrightarrow{g ! w} g ! q \xrightarrow{v} r$$

equal in $Q(D)(X)$.
Definition
A pseudo-functor $Q : C \to \mathcal{X}^{op}, \mathsf{Cat}$ is a C-principal bundle over \mathcal{X} provided that for each $X \in \mathcal{X}_0$, each $Q(C)(X)$ is in Grpd and

1. there is $C \in C_0$ such that $Q(C)(X)$ is nonempty;

2. for $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$, there is a span $C \leftarrow E \rightarrow D$ in C and $y \in Q(E)(X)_0$ such that $f ! y \simeq q$ and $g ! y \simeq r$;

3. and given two arrows $f, g : C \Rightarrow D$ of C and objects $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$ with isomorphisms

$$u : f ! q \simeq r \quad v : g ! q \simeq r$$

of $Q(D)(X)$, there is an arrow $h : E \to C$ equalizing f and g with an object $y \in Q(E)(X)$ and isomorphism $w : h ! y \simeq q$ making the arrows

$$(f h) ! y \xrightarrow{u} f ! h ! (y) \xrightarrow{f ! w} f ! q \xrightarrow{u} r \quad (g h) ! y \xrightarrow{v} g ! h ! (y) \xrightarrow{g ! w} g ! q \xrightarrow{v} r$$

equal in $Q(D)(X)$.
Definition

A pseudo-functor $Q : C \to [\mathcal{X}^{op}, \text{Cat}]$ is a C-principal bundle over \mathcal{X} provided that for each $X \in \mathcal{X}_0$, each $Q(C)(X)$ is in Grpd and

1. there is $C \in C_0$ such that $Q(C)(X)$ is nonempty;
2. for $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$, there is a span $C \xleftarrow{f} E \xrightarrow{g} D$ in \mathcal{C} and $y \in Q(E)(X)_0$ such that $f!y \simeq q$ and $g!y \simeq r$;
3. and given two arrows $f, g : C \Rightarrow D$ of \mathcal{C} and objects $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$ with isomorphisms
 $$u : f!q \simeq r \quad v : g!q \simeq r$$
 of $Q(D)(X)$, there is an arrow $h : E \to C$ equalizing f and g with an object $y \in Q(E)(X)$ and isomorphism $w : h!y \simeq q$ making the arrows
 $$\begin{align*}
 (fh)!y &\xrightarrow{\simeq} f!h!(y) \xrightarrow{f!w} f!q \xrightarrow{u} r \\
 (gh)!y &\xrightarrow{\simeq} g!h!(y) \xrightarrow{g!w} g!q \xrightarrow{v} r
 \end{align*}$$
equal in $Q(D)(X)$.
Definition

A pseudo-functor $Q: \mathcal{C} \to [\mathcal{X}^{\text{op}}, \text{Cat}]$ is a \mathcal{C}-principal bundle over \mathcal{X} provided that for each $X \in \mathcal{X}_0$, each $Q(C)(X)$ is in Grpd and

1. there is $C \in \mathcal{C}_0$ such that $Q(C)(X)$ is nonempty;
2. for $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$, there is a span $C \xleftarrow{f} E \xrightarrow{g} D$ in \mathcal{C} and $y \in Q(E)(X)_0$ such that $f!y \cong q$ and $g!y \cong r$;
3. and given two arrows $f, g: C \Rightarrow D$ of \mathcal{C} and objects $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$ with isomorphisms

$$u: f!q \cong r \quad v: g!q \cong r$$

of $Q(D)(X)$, there is an arrow $h: E \to C$ equalizing f and g with an object $y \in Q(E)(X)$ and isomorphism $w: h!y \cong q$ making the arrows

$$(fh)!y \xrightarrow{\cong} f!h!(y) \xrightarrow{f!w} f!q \xrightarrow{u} r \quad (gh)!y \xrightarrow{\cong} g!h!(y) \xrightarrow{g!w} g!q \xrightarrow{v} r$$

equal in $Q(D)(X)$.
Definition

A pseudo-functor \(Q : \mathcal{C} \to [\mathcal{X}^{op}, \text{Cat}] \) is a \(\mathcal{C} \)-principal bundle over \(\mathcal{X} \) provided that for each \(X \in \mathcal{X}_0 \), each \(Q(C)(X) \) is in \(\text{Grpd} \) and

1. there is \(C \in \mathcal{C}_0 \) such that \(Q(C)(X) \) is nonempty;
2. for \(q \in Q(C)(X)_0 \) and \(r \in Q(D)(X)_0 \), there is a span \(C \xleftarrow{f} E \xrightarrow{g} D \) in \(\mathcal{C} \) and \(y \in Q(E)(X)_0 \) such that \(f \cdot y \cong q \) and \(g \cdot y \cong r \);
3. and given two arrows \(f, g : C \Rightarrow D \) of \(\mathcal{C} \) and objects \(q \in Q(C)(X)_0 \) and \(r \in Q(D)(X)_0 \) with isomorphisms

\[
 u : f \cdot q \cong r \quad \quad v : g \cdot q \cong r
\]

of \(Q(D)(X) \), there is an arrow \(h : E \to C \) equalizing \(f \) and \(g \) with an object \(y \in Q(E)(X) \) and isomorphism \(w : h \cdot y \cong q \) making the arrows

\[
 (fh) \cdot y \xrightarrow{\cong} f \cdot h \cdot (y) \xrightarrow{\cong} f \cdot q \xrightarrow{u} r \quad \quad (gh) \cdot y \xrightarrow{\cong} g \cdot h \cdot (y) \xrightarrow{\cong} g \cdot q \xrightarrow{v} r
\]

equal in \(Q(D)(X) \).
Definition

A pseudo-functor $Q : \mathcal{C} \to [\mathcal{X}^{op}, \text{Cat}]$ is a \mathcal{C}-principal bundle over \mathcal{X} provided that for each $X \in \mathcal{X}_0$, each $Q(C)(X)$ is in Grpd and

1. there is $C \in \mathcal{C}_0$ such that $Q(C)(X)$ is nonempty;

2. for $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$, there is a span $C \xleftarrow{\mathcal{F}} E \xrightarrow{\mathcal{G}} D$ in \mathcal{C} and $y \in Q(E)(X)_0$ such that $f \cdot y \simeq q$ and $g \cdot y \simeq r$;

3. and given two arrows $f, g : C \Rightarrow D$ of \mathcal{C} and objects $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$ with isomorphisms

$$u : f \cdot q \simeq r \quad v : g \cdot q \simeq r$$

of $Q(D)(X)$, there is an arrow $h : E \to C$ equalizing f and g with an object $y \in Q(E)(X)$ and isomorphism $w : h \cdot y \simeq q$ making the arrows

$$(fh) \cdot y \xrightarrow{\mathcal{IR}} f \cdot h \cdot y \xrightarrow{\mathcal{IR}} f \cdot q \xrightarrow{u} r \quad (gh) \cdot y \xrightarrow{\mathcal{IR}} g \cdot h \cdot y \xrightarrow{\mathcal{IR}} g \cdot q \xrightarrow{v} r$$

equal in $Q(D)(X)$.

Remarks

• The definition is essentially that each $Q(C)(X)$ is a groupoid and for each $X \in \mathcal{X}_0$, the Grothendieck completion

$$\int_{\mathcal{E}} Q(-)(X)$$

is filtered.

• In the case $\mathcal{X} = 1$, the construction $P * Q$ admits a right calculus of fractions if $\int_{\mathcal{E}} Q$ is filtered.

• The fibers of Q are preordered. So, a principal bundle is basically a system of discrete opfibrations each of which is a cofiltered colimit.

• When a \mathcal{C}-principal bundle $Q: \mathcal{C} \to \mathsf{Cat}$ takes sets as values, it is essentially just a flat Set-valued functor.
Remarks

• The definition is essentially that each $Q(C)(X)$ is a groupoid and for each $X \in \mathcal{X}_0$, the Grothendieck completion

$$\int_{\mathcal{C}} Q(\cdot)(X)$$

is filtered.

• In the case $\mathcal{X} = 1$, the construction $P \star Q$ admits a right calculus of fractions if $\int_{\mathcal{C}} Q$ is filtered.

• The fibers of Q are preordered. So, a principal bundle is basically a system of discrete opfibrations each of which is a cofiltered colimit.

• When a \mathcal{C}-principal bundle $Q: \mathcal{C} \to \mathcal{C}_{\text{at}}$ takes sets as values, it is essentially just a flat Set-valued functor.
Remarks

• The definition is essentially that each $Q(C)(X)$ is a groupoid and for each $X \in \mathcal{X}_0$, the Grothendieck completion

$$\int_C Q(-)(X)$$

is filtered.

• In the case $\mathcal{X} = 1$, the construction $P \star Q$ admits a right calculus of fractions if $\int_C Q$ is filtered.

• The fibers of Q are preordered. So, a principal bundle is basically a system of discrete opfibrations each of which is a cofiltered colimit.

• When a \mathcal{C}-principal bundle $Q : \mathcal{C} \to \mathcal{Cat}$ takes sets as values, it is essentially just a flat Set-valued functor.
Remarks

• The definition is essentially that each $Q(C)(X)$ is a groupoid and for each $X \in \mathcal{X}_0$, the Grothendieck completion

$$\int \mathcal{C} Q(-)(X)$$

is filtered.

• In the case $\mathcal{X} = 1$, the construction $P \star Q$ admits a right calculus of fractions if $\int \mathcal{C} Q$ is filtered.

• The fibers of Q are preordered. So, a principal bundle is basically a system of discrete opfibrations each of which is a cofiltered colimit.

• When a \mathcal{C}-principal bundle $Q: \mathcal{C} \to \mathcal{C}at$ takes sets as values, it is essentially just a flat \textbf{Set}-valued functor.
Remarks

• The definition is essentially that each $Q(C)(X)$ is a groupoid and for each $X \in \mathcal{X}_0$, the Grothendieck completion

$$\int \mathcal{C} Q(-)(X)$$

is filtered.

• In the case $\mathcal{X} = 1$, the construction $P \star Q$ admits a right calculus of fractions if $\int \mathcal{C} Q$ is filtered.

• The fibers of Q are preordered. So, a principal bundle is basically a system of discrete opfibrations each of which is a cofiltered colimit.

• When a \mathcal{C}-principal bundle $Q: \mathcal{C} \to \mathsf{Cat}$ takes sets as values, it is essentially just a flat Set-valued functor.
Remarks

• The definition is essentially that each $Q(C)(X)$ is a groupoid and for each $X \in \mathcal{X}_0$, the Grothendieck completion

$$\int_{\mathcal{C}} Q(-)(X)$$

is filtered.

• In the case $\mathcal{X} = 1$, the construction $P \star Q$ admits a right calculus of fractions if $\int_{\mathcal{C}} Q$ is filtered.

• The fibers of Q are preordered. So, a principal bundle is basically a system of discrete opfibrations each of which is a cofiltered colimit.

• When a \mathcal{C}-principal bundle $Q: \mathcal{C} \to \mathbf{Cat}$ takes sets as values, it is essentially just a flat \mathbf{Set}-valued functor.
Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with 2.
- For F valued in $[\mathcal{K}^{\text{op}}, \text{Cat}]$, there is an induced canonical functor from the image of a limit to the limit of the images. For example, binary products

\[
\begin{array}{ccc}
F(C \times D) & \xrightarrow{\pi_C} & \Theta & \xleftarrow{\pi_D} \\
\downarrow & & \downarrow & & \downarrow \\
FC & \xleftarrow{\pi_{FC}} & FC \times FD & \xrightarrow{\pi_{FD}} & FD
\end{array}
\]

- Say that a pseudo-functor (valued in $[\mathcal{K}^{\text{op}}, \text{Cat}]$) preserves a type of finite pseudo-limit if (the components of) the corresponding canonical functors are weak equivalences.
Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with 2.
- For F valued in $[\mathcal{X}^{\text{op}}, \text{Cat}]$, there is an induced canonical functor from the image of a limit to the limit of the images. For example, binary products

\[
\begin{array}{c}
\text{FC} \\ F_{\pi_{FC}}
\end{array}
\begin{array}{c}
\downarrow \\
\Theta
\end{array}
\begin{array}{c}
\text{FC} \times \text{FD} \\ F\pi_{FD}
\end{array}
\begin{array}{c}
\downarrow \\
\text{FD}
\end{array}
\begin{array}{c}
\text{FC} \times D \\ F(C \times D)
\end{array}
\begin{array}{c}
F\pi_C \\
\downarrow
\end{array}
\begin{array}{c}
\text{FC} \\ \pi_{FC}
\end{array}
\begin{array}{c}
\leftarrow
\end{array}
\begin{array}{c}
\text{FC} \times \text{FD} \\ \pi_{FD}
\end{array}
\begin{array}{c}
\rightarrow
\end{array}
\begin{array}{c}
\text{FD}
\end{array}
\]

- Say that a pseudo-functor (valued in $[\mathcal{X}^{\text{op}}, \text{Cat}]$) preserves a type of finite pseudo-limit if (the components of) the corresponding canonical functors are weak equivalences.
Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with 2.
- For F valued in $[\mathcal{X}^{op}, \mathcal{C}at]$, there is an induced canonical functor from the image of a limit to the limit of the images. For example, binary products

\[
\begin{array}{ccc}
F(C \times D) & \xrightarrow{\Theta} & F\pi_D \\
F\pi_C & \downarrow & \downarrow \\
FC & \xleftarrow{\pi_{FC}} & FC \times FD & \xrightarrow{\pi_{FD}} & FD
\end{array}
\]

- Say that a pseudo-functor (valued in $[\mathcal{X}^{op}, \mathcal{C}at]$) preserves a type of finite pseudo-limit if (the components of) the corresponding canonical functors are weak equivalences.
Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with $\mathbb{2}$.
- For F valued in $[\mathcal{K}^{\text{op}}, \mathcal{C}\text{at}]$, there is an induced canonical functor from the image of a limit to the limit of the images. For example, binary products

$$F(C \times D)$$

$$\downarrow$$

$$F\pi_C \quad \Theta \quad F\pi_D$$

$$\downarrow$$

$$FC \leftarrow \pi_{FC} \quad FC \times FD \quad \pi_{FD} \rightarrow FD$$

- Say that a pseudo-functor (valued in $[\mathcal{K}^{\text{op}}, \mathcal{C}\text{at}]$) preserves a type of finite pseudo-limit if (the components of) the corresponding canonical functors are weak equivalences.
Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with 2.
- For F valued in $[\mathcal{K}^{op}, \text{Cat}]$, there is an induced canonical functor from the image of a limit to the limit of the images. For example, binary products

$$
\begin{array}{ccc}
F(C \times D) & \xrightarrow{F(\pi_C)} & FC \\
\downarrow & & \downarrow \\
\pi_{FC} & & \pi_{FD}
\end{array}
$$

- Say that a pseudo-functor (valued in $[\mathcal{K}^{op}, \text{Cat}]$) preserves a type of finite pseudo-limit if (the components of) the corresponding canonical functors are weak equivalences.
Theorem

A pseudo-functor $Q : \mathcal{C} \to [\mathcal{X}^{\text{op}}, \text{Cat}]$ is a \mathcal{C}-principal bundle over \mathcal{X} if, and only if, the extension $- \star Q$ preserves all finite weighted pseudo-limits.
Main Result

Theorem

A pseudo-functor $Q: \mathcal{C} \rightarrow [\mathcal{X}^{\text{op}}, \text{Cat}]$ is a \mathcal{C}-principal bundle over \mathcal{X} if, and only if, the extension $- \ast Q$ preserves all finite weighted pseudo-limits.
Remarks on the Proof

- Can reduce to the case where \mathcal{X} is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that all the canonical maps are fully faithful.
- The proof of essential surjectivity a pattern: fibred in $\mathcal{G}rp$ corresponds to cotensors with 2; nontriviality corresponds to 1; transitivity to binary products; and freeness to equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
Remarks on the Proof

- Can reduce to the case where \mathcal{X} is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that all the canonical maps are fully faithful.
- The proof of essential surjectivity a pattern: fibred in $\mathcal{G}_{\mathcal{P}}$ corresponds to cotensors with 2; nontriviality corresponds to 1; transitivity to binary products; and freeness to equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
Remarks on the Proof

- Can reduce to the case where \mathcal{X} is 1.
- The definition implies that $1 \ast Q \simeq 1$. From this it can be seen that all the canonical maps are fully faithful.
- The proof of essential surjectivity a pattern: fibred in Grpd corresponds to cotensors with 2; nontriviality corresponds to 1; transitivity to binary products; and freeness to equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
Remarks on the Proof

- Can reduce to the case where \mathcal{X} is $\mathbf{1}$.
- The definition implies that $\mathbf{1} \star Q \simeq \mathbf{1}$. From this it can be seen that all the canonical maps are fully faithful.
- The proof of essential surjectivity a pattern: fibred in $\mathcal{G} \mathbf{tr} \mathcal{D}$ corresponds to cotensors with $\mathbf{2}$; nontriviality corresponds to $\mathbf{1}$; transitivity to binary products; and freeness to equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
Remarks on the Proof

• Can reduce to the case where \mathcal{X} is $\mathbf{1}$.

• The definition implies that $\mathbf{1} \star Q \simeq \mathbf{1}$. From this it can be seen that all the canonical maps are fully faithful.

• The proof of essential surjectivity a pattern: fibred in Grpd corresponds to cotensors with $\mathbf{2}$; nontriviality corresponds to $\mathbf{1}$; transitivity to binary products; and freeness to equalizers.

• Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
Remarks on the Proof

- Can reduce to the case where \mathcal{X} is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that all the canonical maps are fully faithful.
- The proof of essential surjectivity a pattern: fibred in \mathcal{Grpd} corresponds to cotensors with 2; nontriviality corresponds to 1; transitivity to binary products; and freeness to equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
• Can reduce to the case where \mathcal{X} is $\mathbf{1}$.
• The definition implies that $\mathbf{1} \star Q \simeq \mathbf{1}$. From this it can be seen that all the canonical maps are fully faithful.
• The proof of essential surjectivity a pattern: fibred in Grpd corresponds to cotensors with $\mathbf{2}$; nontriviality corresponds to $\mathbf{1}$; transitivity to binary products; and freeness to equalizers.
• Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
Remarks on the Proof

- Can reduce to the case where \mathcal{X} is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that all the canonical maps are fully faithful.
- The proof of essential surjectivity a pattern: fibred in \mathbf{Grpd} corresponds to cotensors with 2; nontriviality corresponds to 1; transitivity to binary products; and freeness to equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
Generalizing Principal Bundles

Remarks on the Proof

• Can reduce to the case where \mathcal{X} is $\mathbb{1}$.
• The definition implies that $\mathbb{1} \star Q \simeq \mathbb{1}$. From this it can be seen that all the canonical maps are fully faithful.
• The proof of essential surjectivity a pattern: fibred in $\mathcal{G}rpd$ corresponds to cotensors with $\mathbb{2}$; nontriviality corresponds to $\mathbb{1}$; transitivity to binary products; and freeness to equalizers.
• Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
Pseudo-Functors Classify Generalized Principal Bundles

- Let $\text{Prin}(\mathcal{C})$ denote the 2-category of \mathcal{C}-principal bundles.
- Let $\text{Hom}(\text{Cat}, [\mathcal{C}^{\text{op}}, \text{Cat}])$ denote the 2-category of 2-adjunctions
 \[[\mathcal{C}^{\text{op}}, \text{Cat}] \rightleftarrows \text{Cat} \]

 whose left adjoints preserve finite limits.

Theorem

There is a 2-categorical equivalence

\[\text{Prin}(\mathcal{C}) \simeq \text{Hom}(\text{Cat}, [\mathcal{C}^{\text{op}}, \text{Cat}]). \]
Pseudo-Functors Classify Generalized Principal Bundles

- Let $\text{Prin}(\mathcal{C})$ denote the 2-category of \mathcal{C}-principal bundles.
- Let $\text{Hom}(\text{Cat}, [\mathcal{C}^{\text{op}}, \text{Cat}])$ denote the 2-category of 2-adjunctions $[\mathcal{C}^{\text{op}}, \text{Cat}] \rightleftarrows \text{Cat}$ whose left adjoints preserve finite limits.

Theorem

There is a 2-categorical equivalence

$$\text{Prin}(\mathcal{C}) \simeq \text{Hom}(\text{Cat}, [\mathcal{C}^{\text{op}}, \text{Cat}]).$$
Pseudo-Functors Classify Generalized Principal Bundles

- Let $\text{Prin}(\mathcal{C})$ denote the 2-category of \mathcal{C}-principal bundles.
- Let $\text{Hom}(\text{Cat}, [\mathcal{C}^{\text{op}}, \text{Cat}])$ denote the 2-category of 2-adjunctions

\[[\mathcal{C}^{\text{op}}, \text{Cat}] \leftrightarrow \text{Cat} \]

whose left adjoints preserve finite limits.

Theorem

There is a 2-categorical equivalence

\[\text{Prin}(\mathcal{C}) \simeq \text{Hom}(\text{Cat}, [\mathcal{C}^{\text{op}}, \text{Cat}]). \]
Pseudo-Functors Classify Generalized Principal Bundles

- Let $\text{Prin}(\mathcal{C})$ denote the 2-category of \mathcal{C}-principal bundles.
- Let $\text{Hom}(\text{Cat}, [\mathcal{C}^{\text{op}}, \text{Cat}])$ denote the 2-category of 2-adjunctions $[\mathcal{C}^{\text{op}}, \text{Cat}] \rightleftarrows \text{Cat}$ whose left adjoints preserve finite limits.

Theorem

There is a 2-categorical equivalence

$$\text{Prin}(\mathcal{C}) \simeq \text{Hom}(\text{Cat}, [\mathcal{C}^{\text{op}}, \text{Cat}]).$$
Generalizing Principal Bundles

What is the tensor product, then?

• For \(\text{Cat} \)-valued pseudo-functors \(P \) and \(Q \) as above define

\[
P \otimes_C Q := \mathcal{C}^{\text{op}}(-, -) \star P \times Q.
\]

• So, \(P \otimes_C Q \) has as objects triples \((f, p, q) \) for \(f : C \to D \) with \(p \in PD \) and \(q \in QC \) and as arrows those \((h, k, u, v) : (f, p, q) \to (g, r, s) \) with \(f = kgh \) and \(u : k^*p \to r \) and \(v : h^!q \to s \).

• There is an equivalence of categories

\[
\text{Cat}(P \otimes_C Q, \mathcal{A}) \simeq [\mathcal{C}^{\text{op}}, \text{Cat}](P, \text{Cat}(Q, \mathcal{A}))
\]

exhibiting \(P \otimes_C Q \) as the bicolimit of \(Q \) weighted by \(P \).

• But in addition \(- \otimes_C Q \) is functorial and gives a computation of the left biadjoint of \(\text{Cat}(Q, -) \).
What is the tensor product, then?

- For $\mathcal{C}at$-valued pseudo-functors P and Q as above define

$$P \otimes f Q := \mathcal{C}^{op}(-, -) \star P \times Q.$$

- So, $P \otimes f Q$ has as objects triples (f, p, q) for $f : C \to D$ with $p \in PD$ and $q \in QC$ and as arrows those $(h, k, u, v) : (f, p, q) \to (g, r, s)$ with $f = kgh$ and $u : k^*p \to r$ and $v : h^!q \to s$.

- There is an equivalence of categories

$$\mathcal{C}at(P \otimes f Q, A) \simeq [\mathcal{C}^{op}, \mathcal{C}at](P, \mathcal{C}at(Q, A))$$

exhibiting $P \otimes f Q$ as the bicolimit of Q weighted by P.

- But in addition $- \otimes f Q$ is functorial and gives a computation of the left biadjoint of $\mathcal{C}at(Q, -)$.
What is the tensor product, then?

- For $\mathcal{C}at$-valued pseudo-functors P and Q as above define
 \[
P \otimes_{\mathcal{C}} Q := \mathcal{C}^{\text{op}}(-, -) \star P \times Q.
 \]

- So, $P \otimes_{\mathcal{C}} Q$ has as objects triples (f, p, q) for $f : C \to D$ with $p \in PD$ and $q \in QC$ and as arrows those $(h, k, u, v) : (f, p, q) \to (g, r, s)$ with $f = kgh$ and $u : k^*p \to r$ and $v : h^!q \to s$.

- There is an equivalence of categories
 \[
 \mathcal{C}at(P \otimes_{\mathcal{C}} Q, \mathcal{A}) \simeq [\mathcal{C}^{\text{op}}, \mathcal{C}at](P, \mathcal{C}at(Q, \mathcal{A}))
 \]
 exhibiting $P \otimes_{\mathcal{C}} Q$ as the bicolimit of Q weighted by P.

- But in addition $- \otimes_{\mathcal{C}} Q$ is functorial and gives a computation of the left biadjoint of $\mathcal{C}at(Q, -)$.
What is the tensor product, then?

- For Cat-valued pseudo-functors P and Q as above define
 \[
P \otimes_{\mathsf{C}} Q := \mathsf{C}^{\text{op}}(-, -) \star P \times Q.
 \]

- So, $P \otimes_{\mathsf{C}} Q$ has as objects triples (f, p, q) for $f : C \to D$ with $p \in PD$ and $q \in QC$ and as arrows those $(h, k, u, v) : (f, p, q) \to (g, r, s)$ with $f = kgh$ and $u : k^*p \to r$ and $v : h^*q \to s$.

- There is an equivalence of categories
 \[
 \mathsf{Cat}(P \otimes_{\mathsf{C}} Q, \mathcal{A}) \simeq [\mathsf{C}^{\text{op}}, \mathsf{Cat}](P, \mathsf{Cat}(Q, \mathcal{A}))
 \]
 exhibiting $P \otimes_{\mathsf{C}} Q$ as the bicolimit of Q weighted by P.

- But in addition $- \otimes_{\mathsf{C}} Q$ is functorial and gives a computation of the left biadjoint of $\mathsf{Cat}(Q, -)$.

Michael Lambert (Dalhousie University) Pseudo-Functors, Principal Bundles, and Torsors 28 October 2017 21 / 23
What is the tensor product, then?

- For $\mathcal{C}at$-valued pseudo-functors P and Q as above define

$$P \otimes_{\mathcal{C}} Q := \mathcal{C}^{op}(-,-) \star P \times Q.$$

- So, $P \otimes_{\mathcal{C}} Q$ has as objects triples (f, p, q) for $f : C \to D$ with $p \in PD$ and $q \in QC$ and as arrows those $(h, k, u, v) : (f, p, q) \to (g, r, s)$ with $f = kgh$ and $u : k^*p \to r$ and $v : h^*q \to s$.

- There is an equivalence of categories

$$\mathcal{C}at(P \otimes_{\mathcal{C}} Q, \mathcal{A}) \simeq [\mathcal{C}^{op}, \mathcal{C}at](P, \mathcal{C}at(Q, \mathcal{A}))$$

exhibiting $P \otimes_{\mathcal{C}} Q$ as the bicolimit of Q weighted by P.

- But in addition $- \otimes_{\mathcal{C}} Q$ is functorial and gives a computation of the left biadjoint of $\mathcal{C}at(Q, -)$.
What is the tensor product, then?

• For \mathbf{Cat}-valued pseudo-functors P and Q as above define

$$P \otimes_{\mathbf{C}} Q := \mathbf{C}^{\text{op}}(-, -) \star P \times Q.$$

• So, $P \otimes_{\mathbf{C}} Q$ has as objects triples (f, p, q) for $f : C \to D$ with $p \in PD$ and $q \in QC$ and as arrows those $(h, k, u, v) : (f, p, q) \to (g, r, s)$ with $f = kgh$ and $u : k^*p \to r$ and $v : h!q \to s$.

• There is an equivalence of categories

$$\mathbf{Cat}(P \otimes_{\mathbf{C}} Q, A) \simeq [\mathbf{C}^{\text{op}}, \mathbf{Cat}](P, \mathbf{Cat}(Q, A))$$

exhibiting $P \otimes_{\mathbf{C}} Q$ as the bicolimit of Q weighted by P.

• But in addition $- \otimes_{\mathbf{C}} Q$ is functorial and gives a computation of the left biadjoint of $\mathbf{Cat}(Q, -)$.
What is the tensor product, then?

• For $\mathcal{C}at$-valued pseudo-functors P and Q as above define

$$P \otimes_C Q := \mathcal{C}^{op}(-,-) \star P \times Q.$$

• So, $P \otimes_C Q$ has as objects triples (f, p, q) for $f : C \to D$ with $p \in PD$ and $q \in QC$ and as arrows those $(h, k, u, v) : (f, p, q) \to (g, r, s)$ with $f = kgh$ and $u : k^*p \to r$ and $v : h^!q \to s$.

• There is an equivalence of categories

$$\mathcal{C}at(P \otimes_C Q, \mathcal{A}) \simeq [\mathcal{C}^{op}, \mathcal{C}at](P, \mathcal{C}at(Q, \mathcal{A}))$$

exhibiting $P \otimes_C Q$ as the bicolimit of Q weighted by P.

• But in addition $- \otimes_C Q$ is functorial and gives a computation of the left biadjoint of $\mathcal{C}at(Q, -)$.
A Brief Recap

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk’s definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding preserves finite weighted pseudo-limits.
- Pseudo-functors “classify” principal bundles.
- Thank you for your attention!
Summary and Conclusion

A Brief Recap

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk’s definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding preserves finite weighted pseudo-limits.
- Pseudo-functors “classify” principal bundles.
- Thank you for your attention!
A Brief Recap

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk’s definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding preserves finite weighted pseudo-limits.
- Pseudo-functors “classify” principal bundles.
- Thank you for your attention!
A Brief Recap

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk’s definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding preserves finite weighted pseudo-limits.
- Pseudo-functors “classify” principal bundles.
- Thank you for your attention!
Summary and Conclusion

A Brief Recap

• A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk’s definition can be made.

• A tensor-hom adjunction can be recovered.

• A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding preserves finite weighted pseudo-limits.

• Pseudo-functors “classify” principal bundles.

• Thank you for your attention!
A Brief Recap

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk’s definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding preserves finite weighted pseudo-limits.
- Pseudo-functors “classify” principal bundles.
- Thank you for your attention!