Pseudo-Functors, Principal Bundles, and Torsors Octoberfest 2017

Michael Lambert

Dalhousie University

28 October 2017

Outline

Introduction: Principal Bundles and Geometric Morphisms

Extending a Pseudo-Functor along the Yoneda Embedding

Properties of Main Construction

Generalizing Principal Bundles

Summary and Conclusion

References

Preprint https://arxiv.org/abs/1610.09429.

Sheaves in Geometry and Logic.

Springer, Berlin, 1992.

Classifying Spaces and Classifying Topoi.

Springer Lecture Notes in Mathematics 1616, Berlin, 1995.

Let Sh(X) denote the category of sheaves on a topological space X.

Let Sh(X) denote the category of sheaves on a topological space X.

Definition

Let Sh(X) denote the category of sheaves on a topological space X.

Definition

- 1. there is a $C \in \mathcal{C}_0$ for which the stalk $Q(C)_x \neq \emptyset$;

Let Sh(X) denote the category of sheaves on a topological space X.

Definition

- 1. there is a $C \in \mathcal{C}_0$ for which the stalk $Q(C)_x \neq \emptyset$;
- 2. for any $q \in Q(C)_x$ and $r \in Q(D)_x$ there is a $D \in \mathscr{C}_0$, a span $C \stackrel{f}{\leftarrow} B \stackrel{g}{\rightarrow} D$ in \mathscr{C} and a $z \in Q(B)_x$ such that Q(f)(z) = q and Q(g)(z) = r; and

Let Sh(X) denote the category of sheaves on a topological space X.

Definition

- 1. there is a $C \in \mathcal{C}_0$ for which the stalk $Q(C)_x \neq \emptyset$;
- 2. for any $q \in Q(C)_x$ and $r \in Q(D)_x$ there is a $D \in \mathscr{C}_0$, a span $C \stackrel{f}{\leftarrow} B \stackrel{g}{\rightarrow} D$ in \mathscr{C} and a $z \in Q(B)_x$ such that Q(f)(z) = q and Q(g)(z) = r; and
- 3. for parallel arrows $f, g: C \Rightarrow D$ and $g \in Q(C)_x$ for which Q(f)(q) = Q(g)(q), there is an arrow $e: B \to C$ with fe = ge and a $z \in Q(B)_x$ such that Q(e)(z) = q.

Let Sh(X) denote the category of sheaves on a topological space X.

Definition

A \mathscr{C} -principal bundle is a functor $Q \colon \mathscr{C} \to \operatorname{Sh}(X)$ such that for each point $x \in X$

- 1. there is a $C \in \mathcal{C}_0$ for which the stalk $Q(C)_x \neq \emptyset$;
- 2. for any $q \in Q(C)_x$ and $r \in Q(D)_x$ there is a $D \in \mathscr{C}_0$, a span $C \stackrel{f}{\leftarrow} B \stackrel{g}{\rightarrow} D$ in \mathscr{C} and a $z \in Q(B)_x$ such that Q(f)(z) = q and Q(g)(z) = r; and
- 3. for parallel arrows $f, g: C \Rightarrow D$ and $g \in Q(C)_x$ for which Q(f)(q) = Q(g)(q), there is an arrow $e: B \to C$ with fe = ge and a $z \in Q(B)_x$ such that Q(e)(z) = q.

Condition 2. is transitivity and 3. is freeness.

Guiding Question

Guiding Question

If Q is instead a pseudo-functor valued in a 2-category, what is a principal bundle?

5 / 23

Guiding Question

If Q is instead a pseudo-functor valued in a 2-category, what is a principal bundle?

Case of interest: pseudo-functors $[\mathscr{X}^{op},\mathfrak{Cat}]$ on a small category \mathscr{X} .

There is an isomorphism

$$\mathsf{Prin}(\mathscr{C}) \cong \mathsf{Geom}(\mathrm{Sh}(X), [\mathscr{C}^{op}, \mathsf{Set}]).$$

There is an isomorphism

$$\mathsf{Prin}(\mathscr{C}) \cong \mathsf{Geom}(\mathrm{Sh}(X), [\mathscr{C}^{op}, \mathsf{Set}]).$$

Any functor $Q: \mathscr{C} \to \operatorname{Sh}(X)$ admits a tensor product $- \otimes_{\mathscr{C}} Q$ extension, which preserves finite limits if, and only if, Q is a principal bundle.

There is an isomorphism

$$\mathsf{Prin}(\mathscr{C}) \cong \mathsf{Geom}(\mathrm{Sh}(X), [\mathscr{C}^{op}, \mathsf{Set}]).$$

Any functor $Q: \mathscr{C} \to \operatorname{Sh}(X)$ admits a tensor product $- \otimes_{\mathscr{C}} Q$ extension, which preserves finite limits if, and only if, Q is a principal bundle.

This is proved in [Moe95].

There is an isomorphism

$$\mathsf{Prin}(\mathscr{C}) \cong \mathsf{Geom}(\mathrm{Sh}(X), [\mathscr{C}^{op}, \mathsf{Set}]).$$

Any functor $Q: \mathscr{C} \to \operatorname{Sh}(X)$ admits a tensor product $-\otimes_{\mathscr{C}} Q$ extension, which preserves finite limits if, and only if, Q is a principal bundle.

This is proved in [Moe95].

In this sense, the presheaf topos $[\mathscr{C}^{op}, \mathbf{Set}]$ classifies \mathscr{C} -principal bundles.

Tensor Product of Presheaves

Tensor Product of Presheaves

Any functor $Q: \mathscr{C} \to \mathscr{E}$ on small \mathscr{C} to a cocomplete topos \mathscr{E} admits a tensor product extension along the Yoneda embedding

Tensor Product of Presheaves

Any functor $Q: \mathscr{C} \to \mathscr{E}$ on small \mathscr{C} to a cocomplete topos \mathscr{E} admits a tensor product extension along the Yoneda embedding

The image $P \otimes_{\mathscr{C}} Q$ is defined as a colimit.

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

$$\mathsf{Flat}(\mathscr{C},\mathscr{E}) \simeq \mathsf{Geom}(\mathscr{E}, [\mathscr{C}^{op}, \mathsf{Set}])$$

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

Such a functor Q is "flat." In the case that $\mathscr E$ is **Set** the functor Q is flat

$$\mathsf{Flat}(\mathscr{C},\mathscr{E}) \simeq \mathsf{Geom}(\mathscr{E}, [\mathscr{C}^{op}, \mathsf{Set}])$$

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

Theorem

The tensor-functor $-\otimes_{\mathscr{C}} Q$ arising from $Q:\mathscr{C}\to\mathscr{E}$ preserves finite limits if, and only if, Q is filtering.

$$\mathsf{Flat}(\mathscr{C},\mathscr{E}) \simeq \mathsf{Geom}(\mathscr{E}, [\mathscr{C}^{op}, \mathsf{Set}]).$$

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

Theorem

The tensor-functor $-\otimes_{\mathscr{C}} Q$ arising from $Q:\mathscr{C}\to\mathscr{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is "flat." In the case that \mathcal{E} is **Set** the functor Q is flat

$$\mathsf{Flat}(\mathscr{C},\mathscr{E}) \simeq \mathsf{Geom}(\mathscr{E}, [\mathscr{C}^{op}, \mathsf{Set}]).$$

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

Theorem

The tensor-functor $-\otimes_{\mathscr{C}} Q$ arising from $Q:\mathscr{C}\to\mathscr{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is "flat." In the case that \mathscr{E} is **Set** the functor Q is flat if and only if its category of elements $\int_{\mathscr{L}} Q$ is filtered.

$$\mathsf{Flat}(\mathscr{C},\mathscr{E}) \simeq \mathsf{Geom}(\mathscr{E}, [\mathscr{C}^{op}, \mathsf{Set}])$$

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

Theorem

The tensor-functor $- \otimes_{\mathscr{C}} Q$ arising from $Q \colon \mathscr{C} \to \mathscr{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is "flat." In the case that \mathscr{E} is **Set** the functor Q is flat if and only if its category of elements $\int_{\mathscr{L}} Q$ is filtered.

Theorem

There is an equivalence

$$\mathsf{Flat}(\mathscr{C},\mathscr{E}) \simeq \mathsf{Geom}(\mathscr{E}, [\mathscr{C}^{op}, \mathsf{Set}]).$$

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

Theorem

The tensor-functor $- \otimes_{\mathscr{C}} Q$ arising from $Q \colon \mathscr{C} \to \mathscr{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is "flat." In the case that \mathscr{E} is **Set** the functor Q is flat if and only if its category of elements $\int_{\mathscr{L}} Q$ is filtered.

Theorem

There is an equivalence

$$\mathsf{Flat}(\mathscr{C},\mathscr{E}) \simeq \mathsf{Geom}(\mathscr{E}, [\mathscr{C}^{op}, \mathsf{Set}]).$$

This is Theorem VII.5.2 of [MLM92].

- Start with a pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}].$
- Construct an extension

- Investigate the way in which a tensor-hom adjunction, a
- The recent paper [DDS] discusses a general theory of flat 2-functors.

- Start with a pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$.
- Construct an extension

- Investigate the way in which a tensor-hom adjunction, a
- The recent paper [DDS] discusses a general theory of flat 2-functors.

- Start with a pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$.
- Abstract conditions 2. and 3. of Moerdijk's definition to the case of Q by weakening the equalities to isomorphisms.
- Construct an extension

- Investigate the way in which a tensor-hom adjunction, a
- The recent paper [DDS] discusses a general theory of flat 2-functors.

- Start with a pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$.
- Abstract conditions 2. and 3. of Moerdijk's definition to the case of Q by weakening the equalities to isomorphisms.
- Construct an extension

- Investigate the way in which a tensor-hom adjunction, a
- The recent paper [DDS] discusses a general theory of flat 2-functors.

- Start with a pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$.
- Abstract conditions 2. and 3. of Moerdijk's definition to the case of Q by weakening the equalities to isomorphisms.
- Construct an extension

- Investigate the way in which a tensor-hom adjunction, a
- The recent paper [DDS] discusses a general theory of flat 2-functors.

- Start with a pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$.
- Abstract conditions 2. and 3. of Moerdijk's definition to the case of Q by weakening the equalities to isomorphisms.
- Construct an extension

- Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.
- The recent paper [DDS] discusses a general theory of flat 2-functors.

- Start with a pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$.
- Abstract conditions 2. and 3. of Moerdijk's definition to the case of Q by weakening the equalities to isomorphisms.
- Construct an extension

- Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.
- The recent paper [DDS] discusses a general theory of flat 2-functors.

Main Construction

- Start with pseudo-functors $Q: \mathscr{C} \to \mathfrak{Cat}$ and $P: \mathscr{C}^{op} \to \mathfrak{Cat}$.
- Set $\Delta(P,Q)$ to be the category with objects triples

$$(C, p, q)$$
 $p \in P(C)_0, q \in Q(C)_0$

$$f: C \to D$$
 $u: p \to f^*(r)$ $v: f_!(q) \to s$.

Take P * Q to denote the category of fractions

$$P \star Q := \Delta(P, Q)[\Sigma^{-1}]$$

Main Construction

- Start with pseudo-functors $Q: \mathscr{C} \to \mathfrak{Cat}$ and $P: \mathscr{C}^{op} \to \mathfrak{Cat}$.
- Set $\Delta(P,Q)$ to be the category with objects triples

$$(C, p, q)$$
 $p \in P(C)_0, q \in Q(C)_0$

$$f: C o D$$
 $u: p o f^*(r)$ $v: f_!(q) o s.$

Take P * Q to denote the category of fractions

$$P \star Q := \Delta(P, Q)[\Sigma^{-1}]$$

Main Construction

- Start with pseudo-functors $Q: \mathscr{C} \to \mathfrak{Cat}$ and $P: \mathscr{C}^{op} \to \mathfrak{Cat}$.
- Set $\Delta(P,Q)$ to be the category with objects triples

$$(C, p, q)$$
 $p \in P(C)_0, q \in Q(C)_0$

$$f: C o D$$
 $u: p o f^*(r)$ $v: f_!(q) o s$

Take P * Q to denote the category of fractions

$$P \star Q := \Delta(P, Q)[\Sigma^{-1}]$$

Main Construction

- Start with pseudo-functors $Q: \mathscr{C} \to \mathfrak{Cat}$ and $P: \mathscr{C}^{op} \to \mathfrak{Cat}$.
- Set $\Delta(P,Q)$ to be the category with objects triples

$$(C, p, q)$$
 $p \in P(C)_0, q \in Q(C)_0$

and arrows $(C, p, q) \rightarrow (D, r, s)$ the triples (f, u, v) with

$$f: C \to D$$
 $u: p \to f^*(r)$ $v: f_!(q) \to s$.

Take P * Q to denote the category of fractions

$$P \star Q := \Delta(P, Q)[\Sigma^{-1}]$$

Main Construction

- Start with pseudo-functors $Q: \mathscr{C} \to \mathfrak{Cat}$ and $P: \mathscr{C}^{op} \to \mathfrak{Cat}$.
- Set $\Delta(P,Q)$ to be the category with objects triples

$$(C, p, q)$$
 $p \in P(C)_0, q \in Q(C)_0$

and arrows $(C, p, q) \rightarrow (D, r, s)$ the triples (f, u, v) with

$$f: C \to D$$
 $u: p \to f^*(r)$ $v: f_!(q) \to s$.

Take P ★ Q to denote the category of fractions

$$P \star Q := \Delta(P, Q)[\Sigma^{-1}]$$

where Σ is the set of cartesian morphisms.

- Now start with a pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$.
- For any pseudo-functor $P: \mathscr{C}^{op} \to \mathfrak{Cat}$, define another $\mathscr{X}^{op} \to \mathfrak{Cat}$ by

$$X \mapsto P \star Q(-)(X)$$

$$-\star Q: [\mathscr{C}^{op}, \mathfrak{Cat}] \longrightarrow [\mathscr{K}^{op}, \mathfrak{Cat}]$$

- Now start with a pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$.
- For any pseudo-functor $P \colon \mathscr{C}^{op} \to \mathfrak{Cat}$, define another $\mathscr{X}^{op} \to \mathfrak{Cat}$ by

$$X \mapsto P \star Q(-)(X)$$

$$-\star \mathsf{Q}\colon [\mathscr{C}^{\mathsf{op}},\mathfrak{Cat}] \longrightarrow [\mathscr{X}^{\mathsf{op}},\mathfrak{Cat}].$$

- Now start with a pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$.
- For any pseudo-functor $P \colon \mathscr{C}^{op} \to \mathfrak{Cat}$, define another $\mathscr{X}^{op} \to \mathfrak{Cat}$ by assigning

$$X \mapsto P \star Q(-)(X)$$

on objects with the induced assignments on arrows and identity cells.

$$-\star Q\colon [\mathscr{C}^{op},\mathfrak{Cat}]\longrightarrow [\mathscr{X}^{op},\mathfrak{Cat}].$$

- Now start with a pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$.
- For any pseudo-functor $P \colon \mathscr{C}^{op} \to \mathfrak{Cat}$, define another $\mathscr{X}^{op} \to \mathfrak{Cat}$ by assigning

$$X \mapsto P \star Q(-)(X)$$

on objects with the induced assignments on arrows and identity cells.

$$-\star Q: [\mathscr{C}^{op}, \mathfrak{Cat}] \longrightarrow [\mathscr{X}^{op}, \mathfrak{Cat}].$$

$$[\mathscr{X}^{op},\mathfrak{Cat}](Q,-)\colon [\mathscr{X}^{op},\mathfrak{Cat}] \longrightarrow [\mathscr{C}^{op},\mathfrak{Cat}].$$

$$[\mathscr{X}^{op},\mathfrak{Cat}](P\star Q,F)\cong [\mathscr{C}^{op},\mathfrak{Cat}](P,[\mathscr{X}^{op},\mathfrak{Cat}](Q,F)).$$

In general, $-\star Q$ is a left 2-adjoint. The right adjoint is

$$[\mathscr{X}^{op},\mathfrak{Cat}](Q,-)\colon [\mathscr{X}^{op},\mathfrak{Cat}] \longrightarrow [\mathscr{C}^{op},\mathfrak{Cat}].$$

$$[\mathscr{X}^{op},\mathfrak{Cat}](P\star Q,F)\cong [\mathscr{C}^{op},\mathfrak{Cat}](P,[\mathscr{X}^{op},\mathfrak{Cat}](Q,F)).$$

In general, $-\star Q$ is a left 2-adjoint. The right adjoint is

$$[\mathscr{X}^{op},\mathfrak{Cat}](Q,-)\colon [\mathscr{X}^{op},\mathfrak{Cat}] \longrightarrow [\mathscr{C}^{op},\mathfrak{Cat}].$$

$$[\mathscr{X}^{op},\mathfrak{Cat}](P\star Q,F)\cong [\mathscr{C}^{op},\mathfrak{Cat}](P,[\mathscr{X}^{op},\mathfrak{Cat}](Q,F)).$$

In general, $-\star Q$ is a left 2-adjoint. The right adjoint is

$$[\mathscr{X}^{op},\mathfrak{Cat}](Q,-)\colon [\mathscr{X}^{op},\mathfrak{Cat}] \longrightarrow [\mathscr{C}^{op},\mathfrak{Cat}].$$

Theorem

For any pseudo-functor Q there is an isomorphism of categories

$$[\mathscr{X}^{op},\mathfrak{Cat}](P\star Q,F)\cong [\mathscr{C}^{op},\mathfrak{Cat}](P,[\mathscr{X}^{op},\mathfrak{Cat}](Q,F)).$$

natural in P and F.

In general, $-\star Q$ is a left 2-adjoint. The right adjoint is

$$[\mathscr{X}^{op},\mathfrak{Cat}](Q,-)\colon [\mathscr{X}^{op},\mathfrak{Cat}] \longrightarrow [\mathscr{C}^{op},\mathfrak{Cat}].$$

Theorem

For any pseudo-functor Q there is an isomorphism of categories

$$[\mathscr{X}^{op},\mathfrak{Cat}](P\star Q,F)\cong [\mathscr{C}^{op},\mathfrak{Cat}](P,[\mathscr{X}^{op},\mathfrak{Cat}](Q,F)).$$

natural in P and F.

Corollary

The pseudo-functor $P \star Q$ gives a computation of the P-weighted pseudo-colimit of Q.

• For any $C \in \mathcal{C}_0$, there is a pseudo-natural equivalence

$$QC \simeq yC \star Q$$

So, there is a cell

$$\begin{array}{c|c} \mathscr{C} & \stackrel{Q}{\longrightarrow} [\mathscr{X}^{op}, \mathfrak{Cat}] \\ \mathbf{y} & \stackrel{\simeq}{\longrightarrow} - \star Q \\ \mathscr{C}^{op}, \mathfrak{Cat}] \end{array}$$

• For any $C \in \mathcal{C}_0$, there is a pseudo-natural equivalence

$$QC \simeq \mathbf{y}C \star Q$$

So, there is a cell

$$\mathscr{C} \xrightarrow{Q} [\mathscr{X}^{op}, \mathfrak{Cat}]$$
 $\mathbf{y} \downarrow \overset{\simeq}{\longrightarrow} - \star Q$
 $\mathscr{C}^{op}, \mathfrak{Cat}]$

• For any $C \in \mathcal{C}_0$, there is a pseudo-natural equivalence

$$QC \simeq \mathbf{y}C \star Q$$

pseudo-natural in C.

So, there is a cell

$$\mathscr{C} \xrightarrow{Q} [\mathscr{X}^{op}, \mathfrak{Cat}]$$
 $\mathbf{y} \downarrow \overset{\simeq}{\longrightarrow} - \star Q$
 $\mathscr{C}^{op}, \mathfrak{Cat}]$

• For any $C \in \mathcal{C}_0$, there is a pseudo-natural equivalence

$$QC \simeq \mathbf{y}C \star Q$$

pseudo-natural in C.

So, there is a cell

$$\mathscr{C} \xrightarrow{Q} [\mathscr{X}^{op}, \mathfrak{Cat}]$$
 $\mathbf{y} \mid \overset{\simeq}{\longrightarrow} - \star Q$
 $\mathscr{C}^{op}, \mathfrak{Cat}]$

making $- \star Q$ an extension of Q.

28 October 2017

• For any $C \in \mathcal{C}_0$, there is a pseudo-natural equivalence

$$QC \simeq \mathbf{y}C \star Q$$

pseudo-natural in C.

So, there is a cell

$$\begin{array}{c|c} \mathscr{C} & \xrightarrow{Q} [\mathscr{X}^{op}, \mathfrak{Cat}] \\ \mathbf{y} & \simeq \\ & - \star Q \\ \mathscr{C}^{op}, \mathfrak{Cat}] \end{array}$$

making $- \star Q$ an extension of Q.

Corollary

Any pseudo-functor $P: \mathscr{C}^{op} \to \mathfrak{Cat}$ is a pseudo-colimit of representable functors.

Pseudo-Coequalizers

$$P \times_{\mathscr{C}_0} \mathscr{C}_1 \times_{\mathscr{C}_0} Q \xrightarrow{1 \times \alpha} P \times_{\mathscr{C}_0} Q \xrightarrow{---} P \otimes_{\mathscr{C}} Q$$

$$\mathscr{P} \times_{\mathscr{C}} \mathscr{C}^2 \times_{\mathscr{C}} \mathscr{Q} \xrightarrow{\underset{1 \times \nu}{\longrightarrow}} \mathscr{P} \times_{\mathscr{C}} \mathscr{Q} \xrightarrow{---} P \star Q.$$

Pseudo-Coequalizers

The tensor product $P \otimes_{\mathscr{C}} Q$ of ordinary presheaves fits into a coequalizer diagram of the form

$$P \times_{\mathscr{C}_0} \mathscr{C}_1 \times_{\mathscr{C}_0} Q \xrightarrow{1 \times \alpha} P \times_{\mathscr{C}_0} Q \xrightarrow{---} P \otimes_{\mathscr{C}} Q.$$

$$\mathscr{P} \times_{\mathscr{C}} \mathscr{C}^2 \times_{\mathscr{C}} \mathscr{Q} \xrightarrow{\underset{1 \times \nu}{\longrightarrow}} \mathscr{P} \times_{\mathscr{C}} \mathscr{Q} \xrightarrow{---} P \star Q.$$

Pseudo-Coequalizers

The tensor product $P \otimes_{\mathscr{C}} Q$ of ordinary presheaves fits into a coequalizer diagram of the form

$$P\times_{\mathscr{C}_0}\mathscr{C}_1\times_{\mathscr{C}_0}Q\xrightarrow{1\times\alpha}P\times_{\mathscr{C}_0}Q\dashrightarrow P\otimes_{\mathscr{C}}Q.$$

Theorem

For pseudo-functors P and Q, the category of fractions $P \star Q$ fits into a pseudo-coequalizer diagram

$$\mathscr{P} \times_{\mathscr{C}} \mathscr{C}^{2} \times_{\mathscr{C}} \mathscr{Q} \xrightarrow{\prod_{1 \times \nu}} \mathscr{P} \times_{\mathscr{C}} \mathscr{Q} \xrightarrow{---} P \star Q.$$

$$u: f_! q \cong r$$
 $v: g_! q \cong r$

$$(fh)_! y \xrightarrow{\cong} f_! h_!(y) \xrightarrow{f_! w} f_! q \xrightarrow{\underline{u}} r \qquad (gh)_! y \xrightarrow{\cong} g_! h_!(y) \xrightarrow{\underline{g}_! w} g_! q \xrightarrow{\underline{v}} r$$

$$u: f_! q \cong r \qquad v: g_! q \cong r$$

$$(fh)_! y \xrightarrow{\cong} f_! h_!(y) \xrightarrow{f_! w} f_! q \xrightarrow{\underline{u}} r \qquad (gh)_! y \xrightarrow{\cong} g_! h_!(y) \xrightarrow{\underline{g}_! w} g_! q \xrightarrow{\underline{v}} r$$

A pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$ is a \mathscr{C} -principal bundle over \mathscr{X} provided that for each $X \in \mathcal{X}_0$, each Q(C)(X) is in \mathfrak{Grpd} and

$$u: f_! q \cong r$$
 $v: g_! q \cong r$

$$(fh)_! y \xrightarrow{\cong} f_! h_! (y) \xrightarrow{f_! w} f_! q \xrightarrow{\cong} r \qquad (gh)_! y \xrightarrow{\cong} g_! h_! (y) \xrightarrow{g_! w} g_! q \xrightarrow{v} r$$

A pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$ is a \mathscr{C} -principal bundle over \mathscr{X} provided that for each $X \in \mathcal{X}_0$, each Q(C)(X) is in \mathfrak{Grpd} and

- 1. there is $C \in \mathcal{C}_0$ such that Q(C)(X) is nonempty;

$$u: f_! q \cong r$$
 $v: g_! q \cong r$

$$(fh)_! y \xrightarrow{\cong} f_! h_! (y) \xrightarrow{f_! w} f_! q \xrightarrow{\cong} r \qquad (gh)_! y \xrightarrow{\cong} g_! h_! (y) \xrightarrow{g_! w} g_! q \xrightarrow{v} r$$

A pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$ is a \mathscr{C} -principal bundle over \mathscr{X} provided that for each $X \in \mathcal{X}_0$, each Q(C)(X) is in \mathfrak{Grpd} and

- 1. there is $C \in \mathcal{C}_0$ such that Q(C)(X) is nonempty;
- 2. for $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$, there is a span $C \stackrel{t}{\leftarrow} E \stackrel{g}{\rightarrow} D$ in \mathscr{C} and $y \in Q(E)(X)_0$ such that $f_1 y \cong q$ and $g_1 y \cong r$;

$$u: f_! q \cong r$$
 $v: g_! q \cong r$

$$(fh)_! y \xrightarrow{\cong} f_! h_! (y) \xrightarrow{f_! w} f_! q \xrightarrow{\cong} r \qquad (gh)_! y \xrightarrow{\cong} g_! h_! (y) \xrightarrow{g_! w} g_! q \xrightarrow{\cong} r$$

A pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$ is a \mathscr{C} -principal bundle over \mathscr{X} provided that for each $X \in \mathscr{X}_0$, each Q(C)(X) is in \mathfrak{Gpd} and

- 1. there is $C \in \mathcal{C}_0$ such that Q(C)(X) is nonempty;
- 2. for $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$, there is a span $C \xleftarrow{f} E \xrightarrow{g} D$ in $\mathscr C$ and $y \in Q(E)(X)_0$ such that $f_! y \cong q$ and $g_! y \cong r$;
- 3. and given two arrows $f,g:C \Rightarrow D$ of $\mathscr C$ and objects $q\in Q(C)(X)_0$ and $r\in Q(D)(X)_0$ with isomorphisms

$$u: f_! q \cong r$$
 $v: g_! q \cong r$

of Q(D)(X), there is an arrow $h: E \to C$ equalizing f and g with an object $y \in Q(E)(X)$ and isomorphism $w: h_! y \cong q$ making the arrows

$$(fh)_! y \xrightarrow{\cong} f_! h_! (y) \xrightarrow{f_! w} f_! q \xrightarrow{\cong} r \qquad (gh)_! y \xrightarrow{\cong} g_! h_! (y) \xrightarrow{g_! w} g_! q \xrightarrow{v} r$$

equal in Q(D)(X).

A pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$ is a \mathscr{C} -principal bundle over \mathscr{X} provided that for each $X \in \mathcal{X}_0$, each Q(C)(X) is in \mathfrak{Grpd} and

- 1. there is $C \in \mathcal{C}_0$ such that Q(C)(X) is nonempty;
- 2. for $q \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$, there is a span $C \stackrel{t}{\leftarrow} E \stackrel{g}{\rightarrow} D$ in \mathscr{C} and $y \in Q(E)(X)_0$ such that $f_1 y \cong q$ and $g_1 y \cong r$;
- 3. and given two arrows $f, g: C \Rightarrow D$ of \mathscr{C} and objects $g \in Q(C)(X)_0$ and $r \in Q(D)(X)_0$ with isomorphisms

$$u: f_! q \cong r$$
 $v: g_! q \cong r$

of Q(D)(X), there is an arrow h: $E \to C$ equalizing f and g with an object $y \in Q(E)(X)$ and isomorphism $w: h_1y \cong q$ making the arrows

$$(fh)_! y \xrightarrow{\cong} f_! h_!(y) \xrightarrow{f_! w} f_! q \xrightarrow{u} r \qquad (gh)_! y \xrightarrow{\cong} g_! h_!(y) \xrightarrow{g_! w} g_! q \xrightarrow{v} r$$

equal in Q(D)(X).

• The definition is essentially that each Q(C)(X) is a groupoid and for

$$\int_{\mathscr{C}} Q(-)(X)$$

- In the case $\mathcal{X} = \mathbf{1}$, the construction $P \star Q$ admits a right calculus of
- The fibers of Q are preordered. So, a principal bundle is basically a
- When a \mathscr{C} -principal bundle $Q:\mathscr{C}\to\mathfrak{Cat}$ takes sets as values, it is

• The definition is essentially that each Q(C)(X) is a groupoid and for each $X \in \mathcal{X}_0$, the Grothendieck completion

$$\int_{\mathscr{C}} Q(-)(X)$$

- In the case $\mathcal{X} = \mathbf{1}$, the construction $P \star Q$ admits a right calculus of
- The fibers of Q are preordered. So, a principal bundle is basically a
- When a \mathscr{C} -principal bundle $Q:\mathscr{C}\to\mathfrak{Cat}$ takes sets as values, it is

• The definition is essentially that each Q(C)(X) is a groupoid and for each $X \in \mathcal{X}_0$, the Grothendieck completion

$$\int_{\mathscr{C}} Q(-)(X)$$

- In the case $\mathcal{X} = \mathbf{1}$, the construction $P \star Q$ admits a right calculus of fractions if $\int_{\mathscr{C}} Q$ is filtered.
- The fibers of Q are preordered. So, a principal bundle is basically a
- When a \mathscr{C} -principal bundle $Q:\mathscr{C}\to\mathfrak{Cat}$ takes sets as values, it is

• The definition is essentially that each Q(C)(X) is a groupoid and for each $X \in \mathcal{X}_0$, the Grothendieck completion

$$\int_{\mathscr{C}} Q(-)(X)$$

- In the case $\mathscr{X} = \mathbf{1}$, the construction $P \star Q$ admits a right calculus of fractions if $\int_{\mathscr{C}} Q$ is filtered.
- The fibers of Q are preordered. So, a principal bundle is basically a
- When a \mathscr{C} -principal bundle $Q:\mathscr{C}\to\mathfrak{Cat}$ takes sets as values, it is

• The definition is essentially that each Q(C)(X) is a groupoid and for each $X \in \mathcal{X}_0$, the Grothendieck completion

$$\int_{\mathscr{C}} Q(-)(X)$$

- In the case $\mathscr{X} = \mathbf{1}$, the construction $P \star Q$ admits a right calculus of fractions if $\int_{\mathscr{C}} Q$ is filtered.
- The fibers of Q are preordered. So, a principal bundle is basically a system of discrete opfibrations each of which is a cofiltered colimit.
- When a \mathscr{C} -principal bundle $Q:\mathscr{C}\to\mathfrak{Cat}$ takes sets as values, it is

• The definition is essentially that each Q(C)(X) is a groupoid and for each $X \in \mathcal{X}_0$, the Grothendieck completion

$$\int_{\mathscr{C}} Q(-)(X)$$

- In the case $\mathscr{X} = \mathbf{1}$, the construction $P \star Q$ admits a right calculus of fractions if $\int_{\mathscr{C}} Q$ is filtered.
- The fibers of Q are preordered. So, a principal bundle is basically a system of discrete opfibrations each of which is a cofiltered colimit.
- When a \mathscr{C} -principal bundle $Q:\mathscr{C}\to\mathfrak{Cat}$ takes sets as values, it is essentially just a flat **Set**-valued functor.

Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products,
- For F valued in $[\mathcal{X}^{op}, \mathfrak{Cat}]$, there is an induced canonical functor

• Say that a pseudo-functor (valued in $[\mathscr{X}^{op},\mathfrak{Cat}]$) preserves a type of

Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with 2.
- For F valued in $[\mathcal{X}^{op}, \mathfrak{Cat}]$, there is an induced canonical functor

• Say that a pseudo-functor (valued in $[\mathcal{X}^{op}, \mathfrak{Cat}]$) preserves a type of

Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with 2.
- For F valued in $[\mathscr{X}^{op},\mathfrak{Cat}]$, there is an induced canonical functor from the image of a limit to the limit of the images. For example,

• Say that a pseudo-functor (valued in $[\mathcal{X}^{op}, \mathfrak{Cat}]$) preserves a type of

Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with 2.
- For F valued in $[\mathscr{X}^{op},\mathfrak{Cat}]$, there is an induced canonical functor from the image of a limit to the limit of the images. For example, binary products

• Say that a pseudo-functor (valued in $[\mathcal{X}^{op}, \mathfrak{Cat}]$) preserves a type of

Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with 2.
- For F valued in $[\mathscr{X}^{op},\mathfrak{Cat}]$, there is an induced canonical functor from the image of a limit to the limit of the images. For example, binary products

• Say that a pseudo-functor (valued in $[\mathscr{X}^{op},\mathfrak{Cat}]$) preserves a type of finite pseudo-limit if (the components of) the corresponding canonical functors are weak equivalences.

Main Result

Main Result

Theorem

A pseudo-functor $Q: \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}]$ is a \mathscr{C} -principal bundle over \mathscr{X} if, and only if, the extension $-\star Q$ preserves all finite weighted pseudo-limits.

- Can reduce to the case where $\mathscr X$ is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that
- The proof of essential surjectivity a pattern: fibred in Gtpd corresponds to cotensors with 2; nontriviality corresponds to 1;
- Proof of sufficiency uses only representables, more-or-less replicating

- Can reduce to the case where X is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that
- The proof of essential surjectivity a pattern: fibred in Gtpd corresponds to cotensors with 2; nontriviality corresponds to 1;
- Proof of sufficiency uses only representables, more-or-less replicating

- Can reduce to the case where \mathscr{X} is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that
- The proof of essential surjectivity a pattern: fibred in Gtpd corresponds to cotensors with 2; nontriviality corresponds to 1;
- Proof of sufficiency uses only representables, more-or-less replicating

- Can reduce to the case where \mathscr{X} is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that all the canonical maps are fully faithful.
- The proof of essential surjectivity a pattern: fibred in Gtpd corresponds to cotensors with 2; nontriviality corresponds to 1;
- Proof of sufficiency uses only representables, more-or-less replicating

- Can reduce to the case where \mathscr{X} is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that all the canonical maps are fully faithful.
- The proof of essential surjectivity a pattern: fibred in Gtp0 corresponds to cotensors with 2; nontriviality corresponds to 1;
- Proof of sufficiency uses only representables, more-or-less replicating

- Can reduce to the case where \mathscr{X} is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that all the canonical maps are fully faithful.
- The proof of essential surjectivity a pattern: fibred in Gtp0 corresponds to cotensors with 2; nontriviality corresponds to 1;
- Proof of sufficiency uses only representables, more-or-less replicating

- Can reduce to the case where \mathscr{X} is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that all the canonical maps are fully faithful.
- The proof of essential surjectivity a pattern: fibred in Gtp0 corresponds to cotensors with 2: nontriviality corresponds to 1: transitivity to binary products; and freeness to equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating

- Can reduce to the case where \mathscr{X} is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that all the canonical maps are fully faithful.
- The proof of essential surjectivity a pattern: fibred in Gtp0 corresponds to cotensors with 2: nontriviality corresponds to 1: transitivity to binary products; and freeness to equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating

- Can reduce to the case where \mathscr{X} is 1.
- The definition implies that $1 \star Q \simeq 1$. From this it can be seen that all the canonical maps are fully faithful.
- The proof of essential surjectivity a pattern: fibred in Gtp0 corresponds to cotensors with 2: nontriviality corresponds to 1: transitivity to binary products; and freeness to equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].

- Let \(\mathfrak{\Pi}\) in (\(\mathfrak{C} \)) denote the 2-category of \(\mathfrak{C}\)-principal bundles.
- Let $\mathfrak{Hom}(\mathfrak{Cat}, [\mathscr{C}^{op}, \mathfrak{Cat}])$ denote the 2-category of 2-adjunctions

$$[\mathscr{C}^{op},\mathfrak{Cat}] \rightleftarrows \mathfrak{Cat}$$

$$\mathfrak{Prin}(\mathscr{C}) \simeq \mathfrak{Hom}(\mathfrak{Cat}, [\mathscr{C}^{op}, \mathfrak{Cat}])$$

- Let \(\mathfrak{Prin}(\mathcal{C})\) denote the 2-category of \(\mathcal{C}\)-principal bundles.
- Let $\mathfrak{Hom}(\mathfrak{Cat}, [\mathscr{C}^{op}, \mathfrak{Cat}])$ denote the 2-category of 2-adjunctions

$$[\mathscr{C}^{op},\mathfrak{Cat}] \rightleftarrows \mathfrak{Cat}$$

$$\mathfrak{Prin}(\mathscr{C})\simeq\mathfrak{Hom}(\mathfrak{Cat},[\mathscr{C}^{op},\mathfrak{Cat}])$$

- Let \(\mathfrak{Prin}(\mathcal{C})\) denote the 2-category of \(\mathcal{C}\)-principal bundles.
- Let $\mathfrak{Hom}(\mathfrak{Cat}, [\mathscr{C}^{op}, \mathfrak{Cat}])$ denote the 2-category of 2-adjunctions

$$[\mathscr{C}^{op},\mathfrak{Cat}]\rightleftarrows\mathfrak{Cat}$$

whose left adjoints preserve finite limits.

$$\mathfrak{Prin}(\mathscr{C})\simeq\mathfrak{Hom}(\mathfrak{Cat},[\mathscr{C}^{op},\mathfrak{Cat}])$$

- Let \(\mathfrak{Prin}(\mathcal{C})\) denote the 2-category of \(\mathcal{C}\)-principal bundles.
- Let $\mathfrak{Hom}(\mathfrak{Cat}, [\mathscr{C}^{op}, \mathfrak{Cat}])$ denote the 2-category of 2-adjunctions

$$[\mathscr{C}^{op},\mathfrak{Cat}]\rightleftarrows\mathfrak{Cat}$$

whose left adjoints preserve finite limits.

Theorem

There is a 2-categorical equivalence

$$\mathfrak{Prin}(\mathscr{C})\simeq\mathfrak{Hom}(\mathfrak{Cat},[\mathscr{C}^{op},\mathfrak{Cat}]).$$

For Cat-valued pseudo-functors P and Q as above define

$$P \otimes_{\mathscr{C}} Q := \mathscr{C}^{op}(-,-) \star P \times Q.$$

- So, $P \otimes_{\mathscr{C}} Q$ has as objects triples (f, p, q) for $f: C \to D$ with $p \in PD$
- There is an equivalence of categories

$$\operatorname{\mathfrak{C}at}(P\otimes_{\operatorname{\mathscr{C}}} Q, \operatorname{\mathscr{A}})\simeq [\operatorname{\mathscr{C}^{op}},\operatorname{\mathfrak{C}at}](P,\operatorname{\mathfrak{C}at}(Q,\operatorname{\mathscr{A}}))$$

For Cat-valued pseudo-functors P and Q as above define

$$P \otimes_{\mathscr{C}} Q := \mathscr{C}^{op}(-,-) \star P \times Q.$$

- So, $P \otimes_{\mathscr{C}} Q$ has as objects triples (f, p, q) for $f: C \to D$ with $p \in PD$
- There is an equivalence of categories

$$\operatorname{\mathfrak{C}at}(P\otimes_{\operatorname{\mathscr{C}}}Q,\operatorname{\mathscr{A}})\simeq [\operatorname{\mathscr{C}}^{\operatorname{op}},\operatorname{\mathfrak{C}at}](P,\operatorname{\mathfrak{C}at}(Q,\operatorname{\mathscr{A}}))$$

For Cat-valued pseudo-functors P and Q as above define

$$P \otimes_{\mathscr{C}} Q := \mathscr{C}^{op}(-,-) \star P \times Q.$$

- So, $P \otimes_{\mathscr{C}} Q$ has as objects triples (f, p, q) for $f: C \to D$ with $p \in PD$ and $q \in QC$ and as arrows those $(h, k, u, v): (f, p, q) \rightarrow (g, r, s)$ with
- There is an equivalence of categories

$$\operatorname{\mathfrak{C}at}(P\otimes_{\operatorname{\mathscr{C}}}Q,\operatorname{\mathscr{A}})\simeq [\operatorname{\mathscr{C}}^{\operatorname{op}},\operatorname{\mathfrak{C}at}](P,\operatorname{\mathfrak{C}at}(Q,\operatorname{\mathscr{A}}))$$

For Cat-valued pseudo-functors P and Q as above define

$$P \otimes_{\mathscr{C}} Q := \mathscr{C}^{op}(-,-) \star P \times Q.$$

- So, $P \otimes_{\mathscr{C}} Q$ has as objects triples (f, p, q) for $f: C \to D$ with $p \in PD$ and $q \in QC$ and as arrows those (h, k, u, v): $(f, p, q) \rightarrow (g, r, s)$ with f = kgh and $u: k^*p \rightarrow r$ and $v: h_1q \rightarrow s$.
- There is an equivalence of categories

$$\operatorname{\mathfrak{C}at}(P\otimes_{\operatorname{\mathscr{C}}}Q,\operatorname{\mathscr{A}})\simeq [\operatorname{\mathscr{C}}^{\operatorname{op}},\operatorname{\mathfrak{C}at}](P,\operatorname{\mathfrak{C}at}(Q,\operatorname{\mathscr{A}}))$$

For Cat-valued pseudo-functors P and Q as above define

$$P \otimes_{\mathscr{C}} Q := \mathscr{C}^{op}(-,-) \star P \times Q.$$

- So, $P \otimes_{\mathscr{C}} Q$ has as objects triples (f, p, q) for $f: C \to D$ with $p \in PD$ and $q \in QC$ and as arrows those (h, k, u, v): $(f, p, q) \rightarrow (g, r, s)$ with f = kgh and $u: k^*p \rightarrow r$ and $v: h_1q \rightarrow s$.
- There is an equivalence of categories

$$\mathfrak{Cat}(P \otimes_{\mathscr{C}} Q, \mathscr{A}) \simeq [\mathscr{C}^{op}, \mathfrak{Cat}](P, \mathfrak{Cat}(Q, \mathscr{A}))$$

For Cat-valued pseudo-functors P and Q as above define

$$P \otimes_{\mathscr{C}} Q := \mathscr{C}^{op}(-,-) \star P \times Q.$$

- So, $P \otimes_{\mathscr{C}} Q$ has as objects triples (f, p, q) for $f: C \to D$ with $p \in PD$ and $q \in QC$ and as arrows those (h, k, u, v): $(f, p, q) \rightarrow (g, r, s)$ with f = kgh and $u: k^*p \rightarrow r$ and $v: h_1q \rightarrow s$.
- There is an equivalence of categories

$$\mathfrak{Cat}(P \otimes_{\mathscr{C}} Q, \mathscr{A}) \simeq [\mathscr{C}^{op}, \mathfrak{Cat}](P, \mathfrak{Cat}(Q, \mathscr{A}))$$

exhibiting $P \otimes_{\mathscr{C}} Q$ as the bicolimit of Q weighted by P.

For Cat-valued pseudo-functors P and Q as above define

$$P \otimes_{\mathscr{C}} Q := \mathscr{C}^{op}(-,-) \star P \times Q.$$

- So, $P \otimes_{\mathscr{C}} Q$ has as objects triples (f, p, q) for $f: C \to D$ with $p \in PD$ and $q \in QC$ and as arrows those (h, k, u, v): $(f, p, q) \rightarrow (g, r, s)$ with f = kgh and $u: k^*p \rightarrow r$ and $v: h_1q \rightarrow s$.
- There is an equivalence of categories

$$\mathfrak{Cat}(P \otimes_{\mathscr{C}} Q, \mathscr{A}) \simeq [\mathscr{C}^{op}, \mathfrak{Cat}](P, \mathfrak{Cat}(Q, \mathscr{A}))$$

exhibiting $P \otimes_{\mathscr{C}} Q$ as the bicolimit of Q weighted by P.

• But in addition $-\otimes_{\mathscr{C}} Q$ is functorial and gives a computation of the left biadjoint of $\mathfrak{Cat}(Q, -)$.

- A definition of a principal bundle for an indexed category-valued
- A tensor-hom adjunction can be recovered.
- Pseudo-functors "classify" principal bundles.
- Thank you for your attention!

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk's definition can be made.
- A tensor-hom adjunction can be recovered.
- Pseudo-functors "classify" principal bundles.
- Thank you for your attention!

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk's definition can be made.
- A tensor-hom adjunction can be recovered.
- Pseudo-functors "classify" principal bundles.
- Thank you for your attention!

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk's definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding preserves finite weighted pseudo-limits.
- Pseudo-functors "classify" principal bundles.
- Thank you for your attention!

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk's definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding preserves finite weighted pseudo-limits.
- Pseudo-functors "classify" principal bundles.
- Thank you for your attention!

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk's definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding preserves finite weighted pseudo-limits.
- Pseudo-functors "classify" principal bundles.
- Thank you for your attention!

