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Introduction: Principal Bundles and Geometric Morphisms

Moerdijk’s Definition

Let Sh(X ) denote the category of sheaves on a topological space X .

Definition
A C -principal bundle is a functor Q : C → Sh(X ) such that for each point
x ∈ X

1. there is a C ∈ C0 for which the stalk Q(C )x 6= ∅;
2. for any q ∈ Q(C )x and r ∈ Q(D)x there is a D ∈ C0, a span

C
f←− B

g−→ D in C and a z ∈ Q(B)x such that Q(f )(z) = q and
Q(g)(z) = r ; and

3. for parallel arrows f , g : C ⇒ D and q ∈ Q(C )x for which
Q(f )(q) = Q(g)(q), there is an arrow e : B → C with fe = ge and a
z ∈ Q(B)x such that Q(e)(z) = q.

Condition 2. is transitivity and 3. is freeness.
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Introduction: Principal Bundles and Geometric Morphisms

Guiding Question

If Q is instead a pseudo-functor valued in a 2-category, what is a principal
bundle?

Case of interest: pseudo-functors [X op,Cat] on a small category X .
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Introduction: Principal Bundles and Geometric Morphisms

Theorem
There is an isomorphism

Prin(C ) ∼= Geom(Sh(X ), [C op,Set]).

Any functor Q : C → Sh(X ) admits a tensor product −⊗C Q extension,
which preserves finite limits if, and only if, Q is a principal bundle.

This is proved in [Moe95].

In this sense, the presheaf topos [C op,Set] classifies C -principal bundles.
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Introduction: Principal Bundles and Geometric Morphisms

Tensor Product of Presheaves

Any functor Q : C → E on small C to a cocomplete topos E admits a
tensor product extension along the Yoneda embedding

C

[C op,Set]

E .
Q

y
−⊗C Q

The image P ⊗C Q is defined as a colimit.
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Introduction: Principal Bundles and Geometric Morphisms

The functor −⊗C Q is one half of a tensor-hom adjunction

E (P ⊗C Q,X ) ∼= [C op,Set](P,E (Q,X )).

Theorem
The tensor-functor −⊗C Q arising from Q : C → E preserves finite limits
if, and only if, Q is filtering.

Such a functor Q is “flat.” In the case that E is Set the functor Q is flat
if and only if its category of elements

∫
C Q is filtered.

Theorem
There is an equivalence

Flat(C ,E ) ' Geom(E , [C op,Set]).

This is Theorem VII.5.2 of [MLM92].
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Introduction: Principal Bundles and Geometric Morphisms

Outline of Our Approach

• Start with a pseudo-functor Q : C → [X op,Cat].

• Abstract conditions 2. and 3. of Moerdijk’s definition to the case of
Q by weakening the equalities to isomorphisms.

• Construct an extension

C

[C op,Cat]

[X op,Cat].
Q

y

• Investigate the way in which a tensor-hom adjunction, a
limit-preserving extension along the Yoneda, and a classifying
category are recovered.

• The recent paper [DDS] discusses a general theory of flat 2-functors.
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Extending a Pseudo-Functor along the Yoneda Embedding

Main Construction

• Start with pseudo-functors Q : C → Cat and P : C op → Cat.

• Set ∆(P,Q) to be the category with objects triples

(C , p, q) p ∈ P(C )0, q ∈ Q(C )0

and arrows (C , p, q)→ (D, r , s) the triples (f , u, v) with

f : C → D u : p → f ∗(r) v : f!(q)→ s.

• Take P ? Q to denote the category of fractions

P ? Q := ∆(P,Q)[Σ−1]

where Σ is the set of cartesian morphisms.
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Extending a Pseudo-Functor along the Yoneda Embedding

Main Construction Continued

• Now start with a pseudo-functor Q : C → [X op,Cat].

• For any pseudo-functor P : C op → Cat, define another X op → Cat by
assigning

X 7→ P ? Q(−)(X )

on objects with the induced assignments on arrows and identity cells.

• This yields a 2-functor

− ? Q : [C op,Cat] −→ [X op,Cat].
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Properties of Main Construction

Tensor-Hom Adjunction

In general, − ? Q is a left 2-adjoint. The right adjoint is

[X op,Cat](Q,−) : [X op,Cat] −→ [C op,Cat].

Theorem
For any pseudo-functor Q there is an isomorphism of categories

[X op,Cat](P ? Q,F ) ∼= [C op,Cat](P, [X op,Cat](Q,F )).

natural in P and F .

Corollary

The pseudo-functor P ? Q gives a computation of the P-weighted
pseudo-colimit of Q.
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Properties of Main Construction

Further Properties

• For any C ∈ C0, there is a pseudo-natural equivalence

QC ' yC ? Q

pseudo-natural in C .

• So, there is a cell

C

[C op,Cat]

[X op,Cat]

'

Q

y
− ? Q

making − ? Q an extension of Q.

Corollary

Any pseudo-functor P : C op → Cat is a pseudo-colimit of representable
functors.
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Properties of Main Construction

Pseudo-Coequalizers

The tensor product P ⊗C Q of ordinary presheaves fits into a coequalizer
diagram of the form

P ⊗C Q.P ×C0 QP ×C0 C1 ×C0 Q
1× α

α′ × 1

Theorem
For pseudo-functors P and Q, the category of fractions P ? Q fits into a
pseudo-coequalizer diagram

P ? Q.P ×C QP ×C C 2 ×C Q
µ× 1

1× ν
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Generalizing Principal Bundles

Definition
A pseudo-functor Q : C → [X op,Cat] is a C -principal bundle over X
provided that for each X ∈X0, each Q(C )(X ) is in Grpd and

1. there is C ∈ C0 such that Q(C )(X ) is nonempty;

2. for q ∈ Q(C )(X )0 and r ∈ Q(D)(X )0, there is a span C
f←− E

g−→ D
in C and y ∈ Q(E )(X )0 such that f!y ∼= q and g!y ∼= r ;

3. and given two arrows f , g : C ⇒ D of C and objects q ∈ Q(C )(X )0
and r ∈ Q(D)(X )0 with isomorphisms

u : f!q ∼= r v : g!q ∼= r

of Q(D)(X ), there is an arrow h : E → C equalizing f and g with an
object y ∈ Q(E )(X ) and isomorphism w : h!y ∼= q making the arrows

(fh)!y −→∼= f!h!(y)
f!w−−→∼= f!q

u−→∼= r (gh)!y −→∼= g!h!(y)
g!w−−→∼= g!q

v−→∼= r

equal in Q(D)(X ).
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Generalizing Principal Bundles

Remarks

• The definition is essentially that each Q(C )(X ) is a groupoid and for
each X ∈X0, the Grothendieck completion∫

C
Q(−)(X )

is filtered.

• In the case X = 1, the construction P ? Q admits a right calculus of
fractions if

∫
C Q is filtered.

• The fibers of Q are preordered. So, a principal bundle is basically a
system of discrete opfibrations each of which is a cofiltered colimit.

• When a C -principal bundle Q : C → Cat takes sets as values, it is
essentially just a flat Set-valued functor.
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Generalizing Principal Bundles

Set-Up for Statement of Main Result
• Weighted pseudo-limits can be constructed from finite products,

pseudo-equalizers, and cotensors with 2.
• For F valued in [X op,Cat], there is an induced canonical functor

from the image of a limit to the limit of the images. For example,
binary products

FC FC × FD FD

F (C × D)

FπC FπD

πFC πFD

Θ

• Say that a pseudo-functor (valued in [X op,Cat]) preserves a type of
finite pseudo-limit if (the components of) the corresponding canonical
functors are weak equivalences.

Michael Lambert (Dalhousie University) Pseudo-Functors, Principal Bundles, and Torsors 28 October 2017 17 / 23



Generalizing Principal Bundles

Set-Up for Statement of Main Result
• Weighted pseudo-limits can be constructed from finite products,

pseudo-equalizers, and cotensors with 2.
• For F valued in [X op,Cat], there is an induced canonical functor

from the image of a limit to the limit of the images. For example,
binary products

FC FC × FD FD

F (C × D)

FπC FπD

πFC πFD

Θ

• Say that a pseudo-functor (valued in [X op,Cat]) preserves a type of
finite pseudo-limit if (the components of) the corresponding canonical
functors are weak equivalences.

Michael Lambert (Dalhousie University) Pseudo-Functors, Principal Bundles, and Torsors 28 October 2017 17 / 23



Generalizing Principal Bundles

Set-Up for Statement of Main Result
• Weighted pseudo-limits can be constructed from finite products,

pseudo-equalizers, and cotensors with 2.
• For F valued in [X op,Cat], there is an induced canonical functor

from the image of a limit to the limit of the images. For example,
binary products

FC FC × FD FD

F (C × D)

FπC FπD

πFC πFD

Θ

• Say that a pseudo-functor (valued in [X op,Cat]) preserves a type of
finite pseudo-limit if (the components of) the corresponding canonical
functors are weak equivalences.

Michael Lambert (Dalhousie University) Pseudo-Functors, Principal Bundles, and Torsors 28 October 2017 17 / 23



Generalizing Principal Bundles

Set-Up for Statement of Main Result
• Weighted pseudo-limits can be constructed from finite products,

pseudo-equalizers, and cotensors with 2.
• For F valued in [X op,Cat], there is an induced canonical functor

from the image of a limit to the limit of the images. For example,
binary products

FC FC × FD FD

F (C × D)

FπC FπD

πFC πFD

Θ

• Say that a pseudo-functor (valued in [X op,Cat]) preserves a type of
finite pseudo-limit if (the components of) the corresponding canonical
functors are weak equivalences.

Michael Lambert (Dalhousie University) Pseudo-Functors, Principal Bundles, and Torsors 28 October 2017 17 / 23



Generalizing Principal Bundles

Set-Up for Statement of Main Result
• Weighted pseudo-limits can be constructed from finite products,

pseudo-equalizers, and cotensors with 2.
• For F valued in [X op,Cat], there is an induced canonical functor

from the image of a limit to the limit of the images. For example,
binary products

FC FC × FD FD

F (C × D)

FπC FπD

πFC πFD

Θ

• Say that a pseudo-functor (valued in [X op,Cat]) preserves a type of
finite pseudo-limit if (the components of) the corresponding canonical
functors are weak equivalences.

Michael Lambert (Dalhousie University) Pseudo-Functors, Principal Bundles, and Torsors 28 October 2017 17 / 23



Generalizing Principal Bundles

Main Result

Theorem
A pseudo-functor Q : C → [X op,Cat] is a C -principal bundle over X if,
and only if, the extension − ?Q preserves all finite weighted pseudo-limits.
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Generalizing Principal Bundles

Remarks on the Proof

• Can reduce to the case where X is 1.

• The definition implies that 1 ? Q ' 1. From this it can be seen that
all the canonical maps are fully faithful.

• The proof of essential surjectivity a pattern: fibred in Grpd
corresponds to cotensors with 2; nontriviality corresponds to 1;
transitivity to binary products; and freeness to equalizers.

• Proof of sufficiency uses only representables, more-or-less replicating
the proof that flat implies filtered in VII.6.3 of [MLM92].
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Generalizing Principal Bundles

Pseudo-Functors Classify Generalized Principal Bundles

• Let Prin(C ) denote the 2-category of C -principal bundles.

• Let Hom(Cat, [C op,Cat]) denote the 2-category of 2-adjunctions

[C op,Cat] � Cat

whose left adjoints preserve finite limits.

Theorem
There is a 2-categorical equivalence

Prin(C ) ' Hom(Cat, [C op,Cat]).
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Generalizing Principal Bundles

What is the tensor product, then?

• For Cat-valued pseudo-functors P and Q as above define

P ⊗C Q := C op(−,−) ? P × Q.

• So, P ⊗C Q has as objects triples (f , p, q) for f : C → D with p ∈ PD
and q ∈ QC and as arrows those (h, k, u, v) : (f , p, q)→ (g , r , s) with
f = kgh and u : k∗p → r and v : h!q → s.

• There is an equivalence of categories

Cat(P ⊗C Q,A ) ' [C op,Cat](P,Cat(Q,A ))

exhibiting P ⊗C Q as the bicolimit of Q weighted by P.

• But in addition −⊗C Q is functorial and gives a computation of the
left biadjoint of Cat(Q,−).
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Summary and Conclusion

A Brief Recap

• A definition of a principal bundle for an indexed category-valued
pseudo-functor on a 1-category modeled on Moerdijk’s definition can
be made.

• A tensor-hom adjunction can be recovered.

• A bimodule is a principal bundle if, and only if, its corresponding
extension along the Yoneda embedding preserves finite weighted
pseudo-limits.

• Pseudo-functors “classify” principal bundles.

• Thank you for your attention!
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