
A Formal Proof of PAC Learnability for

Decision Stumps

Joseph Tassarotti

Boston College

Jean-Baptiste Tristan

Oracle Labs

Koundinya Vajjha

University of Pittsburgh



Rigour in Machine Learning

John had proved on paper that an ML algorithm they had developed

at Oracle was fair/non-discriminatory. Given the importance and

subtlety of this code, he wanted to have a machine checked proof,

and started to wonder what that would take.

We are starting to see machine learning systems that (on paper) are

proven to provide certain guarantees, about things like privacy,

fairness, or robustness. Given the importance of these properties, we

should strive to give machine-checked proofs that they hold.

1



Rigour in Machine Learning

John had proved on paper that an ML algorithm they had developed

at Oracle was fair/non-discriminatory. Given the importance and

subtlety of this code, he wanted to have a machine checked proof,

and started to wonder what that would take.

We are starting to see machine learning systems that (on paper) are

proven to provide certain guarantees, about things like privacy,

fairness, or robustness. Given the importance of these properties, we

should strive to give machine-checked proofs that they hold.

1



Motivation: ML systems with provable guarantees

2



Challenges:

• Unlike many classic verification problems, these proofs require

quite a bit of mathematical prerequisites.

• Claims are usually about the probabilistic behavior of an

algorithm.

• Unlike cryptographic algorithms or randomized algorithms like

quicksort, we need to support probability with continuous

numbers and distributions.

Literature is not always as rigorous/detailed as we’d like. Technical

conditions on lemmas are omitted, and serious details are skipped.

3



Challenges:

• Unlike many classic verification problems, these proofs require

quite a bit of mathematical prerequisites.

• Claims are usually about the probabilistic behavior of an

algorithm.

• Unlike cryptographic algorithms or randomized algorithms like

quicksort, we need to support probability with continuous

numbers and distributions.

Literature is not always as rigorous/detailed as we’d like. Technical

conditions on lemmas are omitted, and serious details are skipped.

3



Challenges:

• Unlike many classic verification problems, these proofs require

quite a bit of mathematical prerequisites.

• Claims are usually about the probabilistic behavior of an

algorithm.

• Unlike cryptographic algorithms or randomized algorithms like

quicksort, we need to support probability with continuous

numbers and distributions.

Literature is not always as rigorous/detailed as we’d like. Technical

conditions on lemmas are omitted, and serious details are skipped.

3



Challenges:

• Unlike many classic verification problems, these proofs require

quite a bit of mathematical prerequisites.

• Claims are usually about the probabilistic behavior of an

algorithm.

• Unlike cryptographic algorithms or randomized algorithms like

quicksort, we need to support probability with continuous

numbers and distributions.

Literature is not always as rigorous/detailed as we’d like. Technical

conditions on lemmas are omitted, and serious details are skipped.

3



Case-study: generalization bound for stumps

What we did:

• Took the simplest possible example we could think of, called the

decision stump learning problem.

• Proved a generalization bound about it in Lean

This theorem is often the “motivating example” used in textbooks on

computational learning theory.

Goals:

• Exercise libraries, see what else is needed

• Warm-up for more advanced results.

4



Case-study: generalization bound for stumps

What we did:

• Took the simplest possible example we could think of, called the

decision stump learning problem.

• Proved a generalization bound about it in Lean

This theorem is often the “motivating example” used in textbooks on

computational learning theory.

Goals:

• Exercise libraries, see what else is needed

• Warm-up for more advanced results.

4



Stump Learning

Goal is to learn to distinguish two classes of items. Blue o’s and red

x’s.

An unknown boundary value, represented by the dashed line,

separates the classes.

5



Stump Learning

Goal is to learn to distinguish two classes of items. Blue o’s and red

x’s.

An unknown boundary value, represented by the dashed line,

separates the classes.

5



Stump Learning

Goal is to learn to distinguish two classes of items. Blue o’s and red

x’s.

An unknown boundary value, represented by the dashed line,

separates the classes.
5



Stump Learning

A reasonable thing to do is to take the largest training example that’s

a circle, and use its value as the boundary.

6



Stump Learning

This turns out to work well: we can prove that given enough training

examples, the classifier we obtain this way can be made to have

arbitrarily small error, with high probability.

Formally,

• Let X be [0,∞).

• The concept class of decision stumps C is the subset of {0, 1}X
defined as {λx .1(x ≤ c) ∣ c ∈ X }. Each element in C is a

red-blue labelling as above.

7



Stump Learning

This turns out to work well: we can prove that given enough training

examples, the classifier we obtain this way can be made to have

arbitrarily small error, with high probability. Formally,

• Let X be [0,∞).

• The concept class of decision stumps C is the subset of {0, 1}X
defined as {λx .1(x ≤ c) ∣ c ∈ X }. Each element in C is a

red-blue labelling as above.

7



Stump Learning

Theorem (Informal)
There exists a learning function (algorithm) A and a sample

complexity function m such that for any distribution µ over X , c ∈ C,
ε ∈ (0, 1), and δ ∈ (0, 1), when running the learning function A on

n ≥ m(ε, δ) i.i.d. samples from µ labeled by c, A returns a

hypothesis h ∈ C such that, with probability at least 1 − δ,

µ({x ∈ X ∣ h(x) ≠ c(x)}) ≤ ε

8



Sketch of Proof

Because a decision stump is entirely determined by the boundary

value it uses for decisions, we will refer to a stump and its boundary

value interchangeably.

Note also that the error probability of a hypothesis is the measure of

the interval between it and the target.

µ{x ∶ h(x) ≠ c(x)} = µ(h, c]

9



Sketch of Proof

Because a decision stump is entirely determined by the boundary

value it uses for decisions, we will refer to a stump and its boundary

value interchangeably.

Note also that the error probability of a hypothesis is the measure of

the interval between it and the target.

µ{x ∶ h(x) ≠ c(x)} = µ(h, c]

9



Sketch of Proof

• Given µ and ε, consider (random i.i.d) labeled samples

(X1, l1), ..., (Xn, ln).

• The learning function A takes the above as input and returns

the hypothesis

h = λx .1(x ≤ max{Xi ∣ li = 1})

• If µ(0, c] < ε then the bound is trivial. (Since (h, c] ⊆ (0, c]).

So error is bounded with probability 1.

So assume µ(0, c] ≥ ε.

10



Sketch of Proof

• Find a θ such that µ[θ, c] = ε. Call I = [θ, c].

• If the boundary point h, selected by A, is in I = [θ, c] then we

have µ(h, c] ≤ µ[θ, c] = ε. So the error is bounded by epsilon.

• So for the error µ(h, c] ≥ ε, this means that θ lies inside (h, c].

• By the choice of h, it means that none of our samples Xi came

from I.

• The probability of a point Xi not belonging to I has probability

at most 1 − ε.

• Since samples are i.i.d, the probability is atmost (1 − ε)n.

Choose an appropriate m such that for n ≥ m we get the result.

11



Sketch of Proof

• Find a θ such that µ[θ, c] = ε. Call I = [θ, c].

• If the boundary point h, selected by A, is in I = [θ, c] then we

have µ(h, c] ≤ µ[θ, c] = ε. So the error is bounded by epsilon.

• So for the error µ(h, c] ≥ ε, this means that θ lies inside (h, c].

• By the choice of h, it means that none of our samples Xi came

from I.

• The probability of a point Xi not belonging to I has probability

at most 1 − ε.

• Since samples are i.i.d, the probability is atmost (1 − ε)n.

Choose an appropriate m such that for n ≥ m we get the result.

11



Sketch of Proof

• Find a θ such that µ[θ, c] = ε. Call I = [θ, c].

• If the boundary point h, selected by A, is in I = [θ, c] then we

have µ(h, c] ≤ µ[θ, c] = ε. So the error is bounded by epsilon.

• So for the error µ(h, c] ≥ ε, this means that θ lies inside (h, c].

• By the choice of h, it means that none of our samples Xi came

from I.

• The probability of a point Xi not belonging to I has probability

at most 1 − ε.

• Since samples are i.i.d, the probability is atmost (1 − ε)n.

Choose an appropriate m such that for n ≥ m we get the result.

11



Sketch of Proof

• Find a θ such that µ[θ, c] = ε. Call I = [θ, c].

• If the boundary point h, selected by A, is in I = [θ, c] then we

have µ(h, c] ≤ µ[θ, c] = ε. So the error is bounded by epsilon.

• So for the error µ(h, c] ≥ ε, this means that θ lies inside (h, c].

• By the choice of h, it means that none of our samples Xi came

from I.

• The probability of a point Xi not belonging to I has probability

at most 1 − ε.

• Since samples are i.i.d, the probability is atmost (1 − ε)n.

Choose an appropriate m such that for n ≥ m we get the result.

11



Sketch of Proof

• Find a θ such that µ[θ, c] = ε. Call I = [θ, c].

• If the boundary point h, selected by A, is in I = [θ, c] then we

have µ(h, c] ≤ µ[θ, c] = ε. So the error is bounded by epsilon.

• So for the error µ(h, c] ≥ ε, this means that θ lies inside (h, c].

• By the choice of h, it means that none of our samples Xi came

from I.

• The probability of a point Xi not belonging to I has probability

at most 1 − ε.

• Since samples are i.i.d, the probability is atmost (1 − ε)n.

Choose an appropriate m such that for n ≥ m we get the result.

11



Problem!

Such a θ may not exist!

Indeed, take µ to be the Bernoulli distribution with p = .5, c = .5,

and ε = .25. Then the desired θ does not exist.

Since PAC learning is distribution free, we need to account for all

distributions µ, including those with a discrete component.

12



Problem!

Such a θ may not exist!

Indeed, take µ to be the Bernoulli distribution with p = .5, c = .5,

and ε = .25. Then the desired θ does not exist.

Since PAC learning is distribution free, we need to account for all

distributions µ, including those with a discrete component.

12



Problem!

Such a θ may not exist!

Indeed, take µ to be the Bernoulli distribution with p = .5, c = .5,

and ε = .25. Then the desired θ does not exist.

Since PAC learning is distribution free, we need to account for all

distributions µ, including those with a discrete component.

12



Problem!

Such a θ may not exist!

Indeed, take µ to be the Bernoulli distribution with p = .5, c = .5,

and ε = .25. Then the desired θ does not exist.

Since PAC learning is distribution free, we need to account for all

distributions µ, including those with a discrete component.

12



Fixing the proof

The point θ we are looking for should be defined as

θ = sup{x ∈ X ∣ µ[x , c] ≥ ε}

and we not only need to prove that θ satisfies µ[θ, c] ≥ ε but also

that µ(θ, c] ≤ ε.

Using this we fix the proof. And this proof has now been formalized.

13



Fixing the proof

The point θ we are looking for should be defined as

θ = sup{x ∈ X ∣ µ[x , c] ≥ ε}

and we not only need to prove that θ satisfies µ[θ, c] ≥ ε but also

that µ(θ, c] ≤ ε.
Using this we fix the proof. And this proof has now been formalized.

13



Proofs in Textbooks?

7 7 3

The one correct proof still omits the hardest part! (“Not hard to

see...”)

14



Proofs in Textbooks?

7 7 3

The one correct proof still omits the hardest part! (“Not hard to

see...”)

14



It Gets Worse

For stumps, the theorem is true even if many proofs are wrong.

Many other results in these books are wrong as stated.

Problem: they omit “technical” conditions about measurability.

Challenge: can formalization automate these tedious details? Or

provide a more “intuitive” interface that is checked?

15



It Gets Worse

For stumps, the theorem is true even if many proofs are wrong.

Many other results in these books are wrong as stated.

Problem: they omit “technical” conditions about measurability.

Challenge: can formalization automate these tedious details? Or

provide a more “intuitive” interface that is checked?

15



Expressing the algorithm

A major challenge is formally describing the learning algorithm.

Three “stages”:

1. Draw a random sample of labeled training examples

2. Run the learning algorithm

3. Consider behavior of returned classifier on test examples

16



Enter Giry Monad

• The Giry monad lets us rigorously formalize certain common

informal arguments in probability theory.

• Provides a natural denotational semantics for (a subset of)

probabilistic programming languages.

• Allows us to perform ad hoc notation overloading.

• Simplifies certain constructions.

17



Enter Giry Monad

• The Giry monad lets us rigorously formalize certain common

informal arguments in probability theory.

• Provides a natural denotational semantics for (a subset of)

probabilistic programming languages.

• Allows us to perform ad hoc notation overloading.

• Simplifies certain constructions.

17



Enter Giry Monad

• The Giry monad lets us rigorously formalize certain common

informal arguments in probability theory.

• Provides a natural denotational semantics for (a subset of)

probabilistic programming languages.

• Allows us to perform ad hoc notation overloading.

• Simplifies certain constructions.

17



Enter Giry Monad

• The Giry monad lets us rigorously formalize certain common

informal arguments in probability theory.

• Provides a natural denotational semantics for (a subset of)

probabilistic programming languages.

• Allows us to perform ad hoc notation overloading.

• Simplifies certain constructions.

17



Enter Giry Monad

• The Giry monad lets us rigorously formalize certain common

informal arguments in probability theory.

• Provides a natural denotational semantics for (a subset of)

probabilistic programming languages.

• Allows us to perform ad hoc notation overloading.

• Simplifies certain constructions.

17



What is it?

• Let Meas be the category of all measurable spaces together with

measurable maps.

• If M ∈Meas, then let P(M) stand for all of the (probability)

measures on M .

• For measurable functions f ∶ M → R, this space comes naturally

equipped with the maps τf ∶ P(M)→ R which are given by

τf (ν) = ∫
M

fdν

• Note that if f = χA, the indicator function of a measurable set

A, then τA(ν) = ν(A).

18



What is it?

• P(M) can be equipped with a topology the weak* topology

which is the smallest topology on P(M) which makes the maps

{τf ∶ P(M)→ R} (for measurable f ), continuous.

• Now that we have a topology on P(M), we can talk about the

Borel σ-algebra of P(M) as the smallest σ-algebra generated by

the functions {τf }. So we get that P(M) ∈Meas.

• Given a measurable function f ∶ M → M , we have the

pushforward map P(f ) ∶ P(M)→ P(M) given by

P(f )ν = ν ◦ f −1.

• The above three points now show that P ∈ E(Meas), the

category endofunctors of Meas.

19



Bind and Return

Fix an arbitrary M ∈Meas.

Let us now define the natural transformation η ∶ 1→ P in

componentwise as

ηM ∶ M = 1M ⟶ P(M)

x ↦
⎛
⎜
⎝
A↦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 x ∈ A

0 x /∈ A

⎞
⎟
⎠

That is, ηM(x) is the dirac measure at x .

20



Bind and Return

We also find the following definition for the bind operator.

≫=∶ P(M)→ (M → P(N))→ P(N)

(ρ≫= g)(f ) = ∫
M

{λm.∫
N

fdg(m)} dρ.

• (µ≫= f ) is “simply computing the distribution that results from

applying f while marginalizing over ρ”.

• Monad laws hold subject to measurability conditions. (Which

is why we can’t make it part of the monad typeclass in Lean)

21



Bind and Return

We also find the following definition for the bind operator.

≫=∶ P(M)→ (M → P(N))→ P(N)

(ρ≫= g)(f ) = ∫
M

{λm.∫
N

fdg(m)} dρ.

• (µ≫= f ) is “simply computing the distribution that results from

applying f while marginalizing over ρ”.

• Monad laws hold subject to measurability conditions. (Which

is why we can’t make it part of the monad typeclass in Lean)

21



Giry Monad for Learning Algorithms

We express learning algorithms in Lean using Giry Monad:

(µ≫= λx .fx) ∶= x ← µ;

f (x)

“ Sample from µ as x , continue by f (x) ”

22



Giry Monad for Learning Algorithms

training← sample(n, µ);

c← learn(training);

test← sample(m, µ);

return score(c, test)

Can reason about separate stages to derive bound on overall.

23



Giry Monad for Probabilistic Constructions

• We can also describe many probabilistic problems using

probabilistic programs, e.g. draw a normal value ‘x‘, and

depending on it a normal value ‘y‘ with variance ‘x‘:

x← Normal(0, 1);

y← Normal(0, x);

return (x, y)

• Construction of the product measure.

24



Giry Monad for Probabilistic Constructions

• We can also describe many probabilistic problems using

probabilistic programs, e.g. draw a normal value ‘x‘, and

depending on it a normal value ‘y‘ with variance ‘x‘:

x← Normal(0, 1);

y← Normal(0, x);

return (x, y)

• Construction of the product measure.

24



Giry Monad for Stump Learning

Theorem
Let H = {λx .1(x ≤ c) ∣ c ∈ R+} be the class of decision stumps.

There exists a measurable function A ∶ Πn → (R+ × {0, 1})n → H,

called the learning function, and a sample complexity function

m ∶ (0, 1)2 → N such that for any probability measure µ on the

measurable space (R+,B(R+)), (ε, δ) ∈ (0, 1)2, and for any

n ≥ m(ε, δ)

A∗(c∗(µn)){h ∈ H ∣ µ{x ∈ R+ ∣ h(x) ≠ c(x)} ≥ ε} ≥ 1 − δ

25



Giry Monad for Stump Learning

Here, for µ a measure:

f∗(µ)(A) = µ(f −1(A))

and

µ1 = µ

µn = v ← µn−1 ; ω ← µ ; ret(ω, v)

is the n-fold product measure.

26



Giry Monad for Probabilistic Programs

• A probabilistic program is interpreted as a parameterized

probability distribution, i.e., a measurable arrow A→ PB .

(These are nothing but the Kleisli arrows of the Giry monad.)

• The Giry monad allows us to combine such probabilistic

programs.

27



Giry Monad for Probabilistic Programs

• A probabilistic program is interpreted as a parameterized

probability distribution, i.e., a measurable arrow A→ PB .

(These are nothing but the Kleisli arrows of the Giry monad.)

• The Giry monad allows us to combine such probabilistic

programs.

27



Giry Monad for Probabilistic Programs

However, not everything is so nice.

• By a classical result of Aumann, there is no generic measurable

space structure on the function space α → β which makes the

evaluation maps continuous. This means the Giry monad cannot

eat it!

• So we can’t pass around higher order functions in the monad.

28



Giry Monad for Probabilistic Programs

However, not everything is so nice.

• By a classical result of Aumann, there is no generic measurable

space structure on the function space α → β which makes the

evaluation maps continuous. This means the Giry monad cannot

eat it!

• So we can’t pass around higher order functions in the monad.

28



In Conclusion

1. Lot of work to be done still to formalize Learning theory.

2. Monadic abstractions can help conveniently structure formal

proofs.

3. Other monads?

29



In Conclusion

1. Lot of work to be done still to formalize Learning theory.

2. Monadic abstractions can help conveniently structure formal

proofs.

3. Other monads?

29



In Conclusion

1. Lot of work to be done still to formalize Learning theory.

2. Monadic abstractions can help conveniently structure formal

proofs.

3. Other monads?

29


