Formalizing a sophisticated definition

Patrick Massot (Orsay)

joint work with

Kevin Buzzard (IC London) and Johan Commelin (Freiburg)

Formal Methods in Mathematics – Lean Together
January 7th 2020
Theorem

Let $A \subset \mathbb{R}^p$ be a dense subset. Every uniformly continuous function $f : A \to \mathbb{R}^q$ extends to a (uniformly) continuous function $\tilde{f} : \mathbb{R}^p \to \mathbb{R}^q$.

Example:

$(+) : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \subset \mathbb{R}$ extends to $(+) : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

But multiplication or inversion are not uniformly continuous.
Extending functions

Theorem

Let $A \subset \mathbb{R}^p$ be a dense subset. Every uniformly continuous function $f : A \to \mathbb{R}^q$ extends to a (uniformly) continuous function $\bar{f} : \mathbb{R}^p \to \mathbb{R}^q$.

For every $x \in \mathbb{R}^p$, choose a sequence $a : \mathbb{N} \to A$ converging to x. Uniform continuity of f ensures $f \circ a$ is Cauchy, completeness of \mathbb{R}^q gives a limit y. Set $\bar{f}(x) = y$. Then prove continuity of \bar{f}.

Example: $(+)$: $\mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \subset \mathbb{R}$ extends to $(+)$: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$. But multiplication or inversion are not uniformly continuous.
Theorem

Let $A \subset \mathbb{R}^p$ be a dense subset. Every uniformly continuous function $f : A \rightarrow \mathbb{R}^q$ extends to a (uniformly) continuous function $\bar{f} : \mathbb{R}^p \rightarrow \mathbb{R}^q$.

For every $x \in \mathbb{R}^p$, choose a sequence $a : \mathbb{N} \rightarrow A$ converging to x. Uniform continuity of f ensures $f \circ a$ is Cauchy, completeness of \mathbb{R}^q gives a limit y. Set $\bar{f}(x) = y$. Then prove continuity of \bar{f}.

Example: $(+) : \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q} \subset \mathbb{R}$ extends to $(+) : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$.

But multiplication or inversion are not uniformly continuous.
Theorem

$A \subset \mathbb{R}^p$ dense subset. If $f : A \to \mathbb{R}^q$ is continuous and

$$\forall x \in \mathbb{R}^p, \exists y \in \mathbb{R}^q, \forall u : \mathbb{N} \to A, u_n \to x \Rightarrow f(u_n) \to y$$

then f extends to a continuous function $\tilde{f} : \mathbb{R}^p \to \mathbb{R}^q$.

This applies to multiplication $\mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$.

A better framework?

In order to handle inversion $\mathbb{Q}^* \rightarrow \mathbb{R}^*$ and more general spaces, we want a version where \mathbb{R}^p and \mathbb{R}^q are replaced by general topological spaces X and Y.
A better framework?

In order to handle inversion $\mathbb{Q}^* \to \mathbb{R}^*$ and more general spaces, we want a version where \mathbb{R}^p and \mathbb{R}^q are replaced by general topological spaces X and Y.

We can still say that $f(x)$ converges to y when x tends to x_0 while remaining in A:

$$\forall W \in \mathcal{N}_y, \exists V \in \mathcal{N}_x, \forall a \in A \cap V, f(a) \in W.$$
A better framework?

In order to handle inversion $\mathbb{Q}^* \rightarrow \mathbb{R}^*$ and more general spaces, we want a version where \mathbb{R}^p and \mathbb{R}^q are replaced by general topological spaces X and Y.

We can still say that $f(x)$ converges to y when x tends to x_0 while remaining in A:

$$\forall W \in \mathcal{N}_y, \exists V \in \mathcal{N}_x, \forall a \in A \cap V, f(a) \in W.$$

Theorem

Let X be a topological space, A a dense subset of X, and $f : A \rightarrow Y$ a continuous mapping of A into a regular space Y. If, for each $x_0 \in X$, $f(x)$ tends to a limit in Y when x tends to x_0 while remaining in A then f extends to a continuous map $\overline{f} : X \rightarrow Y$.
Does this theorem really applies to $\mathbb{Q} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$?
Does this theorem really applies to $\mathbb{Q} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$?

Hint: $\mathbb{Q} \not\subseteq \mathbb{R}$.
Does this theorem really applies to \(\mathbb{Q} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R} \)?

Hint: \(\mathbb{Q} \not\subset \mathbb{R} \).

Better framework:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & Y \\
\downarrow i & & \downarrow \exists? \tilde{f} \\
X & & \\
\end{array}
\]
Does this theorem really applies to $\mathbb{Q} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$?

Hint: $\mathbb{Q} \not\subset \mathbb{R}$.

Better framework:

$$
\begin{array}{c}
A \\ i \\ X
\end{array} \xrightarrow{f} \begin{array}{c}
Y \\ \exists \bar{f}
\end{array}
$$

Issue: will we need discussions of

$$
\begin{array}{c}
\mathbb{Q} \\ \downarrow \\ \mathbb{R}
\end{array} \xrightarrow{inv} \begin{array}{c}
\mathbb{Q}^* \\ \downarrow \\ \mathbb{R}^*
\end{array} \xrightarrow{inv} \begin{array}{c}
\mathbb{Q} \\ \downarrow \\ \mathbb{R}
\end{array}
$$
Side issue: how to formally refer to \(\tilde{f} \)?

\[\text{extend } f i \text{ de } h \text{ where } \text{de} \text{ is a proof that } i \text{ is a dense topological embedding, and } h \text{ is a proof that } f \text{ admits a limit...?} \]
Side issue: how to formally refer to \bar{f}?

`extend f i de h` where `de` is a proof that i is a dense topological embedding, and `h` is a proof that f admits a limit...?

This looks clunky. Note that i and f can be inferred from the types of `de` and `h`. Should we use `extend de h`?
Side issue: how to formally refer to \bar{f}?

$\text{extend } f \ i \ de \ h$ where de is a proof that i is a dense topological embedding, and h is a proof that f admits a limit...?

This looks clunky. Note that i and f can be inferred from the types of de and h. Should we use $\text{extend } \text{de} \ h$?

A better solution is to define an extension operator E_i by:

$$E_i(f)(x) = \begin{cases}
\text{some } y \text{ such that } f(a) \text{ tends to } y \text{ when } a \text{ tends to } x \\
\text{some junk value if no such } y \text{ exists}
\end{cases}$$

Density of image of i is used only to ensure Y is non-empty!
Then use $\text{de} \ . \text{extend } f$
Separation issues

We want to generalize the story going from \(\mathbb{Q} \) to \(\mathbb{R} \), starting with a general topological ring \(R \) (not necessarily metric, or even separated).
Separation issues

We want to generalize the story going from \mathbb{Q} to \mathbb{R}, starting with a general topological ring R (not necessarily metric, or even separated).

There is a notion of completeness of a topological ring. One can build some \hat{R} which is a (minimal) complete separated space and a natural map $i : R \to \hat{R}$. We want to extend addition and multiplication.
Separation issues

We want to generalize the story going from \mathbb{Q} to \mathbb{R}, starting with a general topological ring R (not necessarily metric, or even separated).

There is a notion of completeness of a topological ring. One can build some \widehat{R} which is a (minimal) complete separated space and a natural map $i : R \to \widehat{R}$. We want to extend addition and multiplication.

The i map is not injective if $\{0\}$ is not closed in R.
Define $R' = R/\{0\}$ which is separated. Since $\{0\}$ is an ideal, R' inherits addition and multiplication. Continuity is slightly tricky, but ok.
Define $R' = R/\{0\}$ which is separated. Since $\{0\}$ is an ideal, R' inherits addition and multiplication. Continuity is slightly tricky, but ok.

Then $i_{R'} : R' \to \widehat{R'}$ is injective and $\widehat{R'}$ is isomorphic to \widehat{R}.
Define $R' = R/\{0\}$ which is separated. Since $\{0\}$ is an ideal, R' inherits addition and multiplication. Continuity is slightly tricky, but ok.

Then $i_{R'} : R' \rightarrow \hat{R}'$ is injective and \hat{R}' is isomorphic to \hat{R}.

Then redefine $\hat{R} = \hat{R}'$.
Define $R' = R / \{0\}$ which is separated. Since $\{0\}$ is an ideal, R' inherits addition and multiplication. Continuity is slightly tricky, but ok.

Then $i_{R'} : R' \to \widehat{R}'$ is injective and \widehat{R}' is isomorphic to \widehat{R}.

Then redefine $\widehat{R} = \widehat{R}'$.

Note: Even in ZFC, if R is already separated, $R' \neq R$.
Final extension theorem

Return to \[A \xrightarrow{f} Y \]
Assume \(Y \) is not empty so we can define \(E_i \) without any assumption on \(i \).

Theorem

Fix \(x_0 \in X \). If, for every \(x_1 \) in a neighborhood of \(x_0 \), \(f(a) \) tends to a limit in \(Y \) when \(i(a) \) tends to \(x_1 \) then \(E_i f \) is continuous at \(x_0 \).
Final extension theorem

Return to Assume Y is not empty so we can define E_i without any assumption on i.

Theorem

Fix $x_0 \in X$. If, for every x_1 in a neighborhood of x_0, $f(a)$ tends to a limit in Y when $i(a)$ tends to x_1 then $E_i f$ is continuous at x_0.

If in addition $x_0 = i(a)$, f is continuous at a and i pulls back the topology of X to the topology of A then $E_i[f](i(a)) = f(a)$.

The assumption in the first part of the previous theorem can be written as

$$\exists U \in \mathcal{N}_{x_0}, \ \forall x \in U, \ \exists y \in Y, \ \forall W \in \mathcal{N}_y, \ \exists V \in \mathcal{N}_x,$$

$$\forall a \in A, i(a) \in V \Rightarrow f(a) \in W.$$
The assumption in the first part of the previous theorem can be written as

\[\exists U \in \mathcal{N}_{x_0}, \forall x \in U, \exists y \in Y, \forall W \in \mathcal{N}_y, \exists V \in \mathcal{N}_x, \forall a \in A, i(a) \in V \Rightarrow f(a) \in W. \]

In mathlib, the assumption is written as

\[\{ x \mid \exists y, f_\ast i_\ast \mathcal{N}_x \leq \mathcal{N}_y \} \in \mathcal{N}_{x_0}. \]
Perfectoid project assessment

- We could do it without hiring a computer scientist
Perfectoid project assessment

- We could do it without hiring a computer scientist
- Some mathematicians noticed.
Perfectoid project assessment

- We could do it without hiring a computer scientist
- Some mathematicians noticed.
- CPP 2020 liked it.
Perfectoid project assessment

- We could do it without hiring a computer scientist
- Some mathematicians noticed.
- CPP 2020 liked it.
- We did contribute to mathlib, but have a large merge backlog
Perfectoid project assessment

- We could do it without hiring a computer scientist
- Some mathematicians noticed.
- CPP 2020 liked it.
- We did contribute to mathlib, but have a large merge backlog
- Big projects are good. Next one?