Formalizing a sophisticated definition

PATRICK MASSOT (Orsay)

joint work with

KEVIN BUZZARD (IC London) and JOHAN COMMELIN (Freiburg)

Formal Methods in Mathematics – Lean Together January 7th 2020

Extending functions

Theorem Let $A \subset \mathbb{R}^p$ be a dense subset. Every uniformly continuous function $f: A \to \mathbb{R}^q$ extends to a (uniformly) continuous function $\overline{f}: \mathbb{R}^p \to \mathbb{R}^q$.

Extending functions

Theorem Let $A \subset \mathbb{R}^p$ be a dense subset. Every uniformly continuous function $f: A \to \mathbb{R}^q$ extends to a (uniformly) continuous function $\overline{f}: \mathbb{R}^p \to \mathbb{R}^q$.

For every $x \in \mathbb{R}^p$, choose a sequence $a : \mathbb{N} \to A$ converging to x. Uniform continuity of f ensures $f \circ a$ is Cauchy, completeness of \mathbb{R}^q gives a limit y. Set $\bar{f}(x) = y$. Then prove continuity of \bar{f} .

Example: $(+): \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \subset \mathbb{R}$ extends to $(+): \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

Extending functions

Theorem Let $A \subset \mathbb{R}^p$ be a dense subset. Every uniformly continuous function $f: A \to \mathbb{R}^q$ extends to a (uniformly) continuous function $\overline{f}: \mathbb{R}^p \to \mathbb{R}^q$.

For every $x \in \mathbb{R}^p$, choose a sequence $a : \mathbb{N} \to A$ converging to x. Uniform continuity of f ensures $f \circ a$ is Cauchy, completeness of \mathbb{R}^q gives a limit y. Set $\bar{f}(x) = y$. Then prove continuity of \bar{f} .

Example: $(+): \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \subset \mathbb{R}$ extends to $(+): \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

But multiplication or inversion are *not* uniformly continuous.

Theorem $A \subset \mathbb{R}^p$ dense subset. If $f : A \to \mathbb{R}^q$ is continuous and $\forall x \in \mathbb{R}^p, \exists y \in \mathbb{R}^q, \forall u : \mathbb{N} \to A, u_n \longrightarrow x \Rightarrow f(u_n) \longrightarrow y$ then f extends to a continuous function $\overline{f} : \mathbb{R}^p \to \mathbb{R}^q$.

This applies to multiplication $\mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$.

A better framework?

In order to handle inversion $\mathbb{Q}^* \to \mathbb{R}^*$ and more general spaces, we want a version where \mathbb{R}^p and \mathbb{R}^q are replaced by general topological spaces X and Y.

A better framework?

In order to handle inversion $\mathbb{Q}^* \to \mathbb{R}^*$ and more general spaces, we want a version where \mathbb{R}^p and \mathbb{R}^q are replaced by general topological spaces X and Y.

We can still say that f(x) converges to y when x tends to x_0 while remaining in A:

$$\forall W \in \mathcal{N}_y, \exists V \in \mathcal{N}_x, \forall a \in A \cap V, f(a) \in W.$$

A better framework?

In order to handle inversion $\mathbb{Q}^* \to \mathbb{R}^*$ and more general spaces, we want a version where \mathbb{R}^p and \mathbb{R}^q are replaced by general topological spaces X and Y.

We can still say that $f(\boldsymbol{x})$ converges to \boldsymbol{y} when \boldsymbol{x} tends to \boldsymbol{x}_0 while remaining in A:

$$\forall W \in \mathcal{N}_{y}, \exists V \in \mathcal{N}_{x}, \forall a \in A \cap V, f(a) \in W.$$

Theorem

Let X be a topological space, A a dense subset of X, and $f: A \to Y$ a continuous mapping of A into a regular space Y. If, for each $x_0 \in X$, f(x) tends to a limit in Y when x tends to x_0 while remaining in A then f extends to a continuous map $\bar{f}: X \to Y$

Does this theorem really applies to $\mathbb{Q} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$?

Does this theorem really applies to $\mathbb{Q} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$? Hint: $\mathbb{Q} \notin \mathbb{R}$.

Does this theorem really applies to $\mathbb{Q} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$? Hint: $\mathbb{Q} \notin \mathbb{R}$.

Better framework:

Does this theorem really applies to $\mathbb{Q} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$? Hint: $\mathbb{Q} \notin \mathbb{R}$.

Better framework:

Issue: will we need discussions of

Side issue: how to formally refer to \bar{f} ?

extend f i de h where de is a proof that i is a dense topological embedding, and h is a proof that f admits a limit...?

Side issue: how to formally refer to f?

extend f i de h where de is a proof that i is a dense topological embedding, and h is a proof that f admits a limit...?

This looks clunky. Note that i and f can be inferred from the types of de and h. Should we use extend de h?

Side issue: how to formally refer to f?

extend f i de h where de is a proof that i is a dense topological embedding, and h is a proof that f admits a limit...?

This looks clunky. Note that i and f can be inferred from the types of de and h. Should we use extend de h?

A better solution is to define an extension operator E_i by:

 $E_i(f)(x) = \begin{cases} \text{some } y \text{ such that } f(a) \text{ tends to } y \text{ when } a \text{ tends to } x \\ \text{some junk value if no such } y \text{ exists} \end{cases}$

Density of image of i is used only to ensure Y is non-empty! Then use de.extend f We want to generalize the story going from \mathbb{Q} to \mathbb{R} , starting with a general topological ring R (not necessarily metric, or even separated).

We want to generalize the story going from \mathbb{Q} to \mathbb{R} , starting with a general topological ring R (not necessarily metric, or even separated).

There is a notion of completeness of a topological ring. One can build some \widehat{R} which is a (minimal) complete separated space and a natural map $i: R \to \widehat{R}$. We want to extend addition and multiplication.

We want to generalize the story going from \mathbb{Q} to \mathbb{R} , starting with a general topological ring R (not necessarily metric, or even separated).

There is a notion of completeness of a topological ring. One can build some \widehat{R} which is a (minimal) complete separated space and a natural map $i: R \to \widehat{R}$. We want to extend addition and multiplication.

The *i* map is *not* injective if $\{0\}$ is not closed in *R*.

Then $i_{R'}: R' \to \widehat{R'}$ is injective and $\widehat{R'}$ is isomorphic to \hat{R} .

Then $i_{R'}: R' \to \widehat{R'}$ is injective and $\widehat{R'}$ is isomorphic to \widehat{R} . Then redefine $\widehat{R} = \widehat{R'}$.

Then $i_{R'}: R' \to \widehat{R'}$ is injective and $\widehat{R'}$ is isomorphic to \widehat{R} . Then redefine $\widehat{R} = \widehat{R'}$.

Note: Even in ZFC, if R is already separated, $R' \neq R$.

Final extension theorem

 E_i without any assumption on i.

Theorem

Fix $x_0 \in X$. If, for every x_1 in a neighborhood of x_0 , f(a) tends to a limit in Y when i(a) tends to x_1 then $E_i f$ is continuous at x_0 .

Final extension theorem

 E_i without any assumption on i.

Theorem

Fix $x_0 \in X$. If, for every x_1 in a neighborhood of x_0 , f(a) tends to a limit in Y when i(a) tends to x_1 then $E_i f$ is continuous at x_0 .

If in addition $x_0 = i(a)$, f is continuous at a and i pulls back the topology of X to the topology of A then $E_i(f)(i(a)) = f(a)$.

The assumption in the first part of the previous theorem can be written as

$$\begin{split} \exists U \in \mathcal{N}_{x_0}, \forall x \in U, \exists y \in Y, \forall W \in \mathcal{N}_y, \exists V \in \mathcal{N}_x, \\ \forall a \in A, i(a) \in V \Rightarrow f(a) \in W. \end{split}$$

The assumption in the first part of the previous theorem can be written as

$$\begin{split} \exists U \in \mathcal{N}_{x_0}, \forall x \in U, \exists y \in Y, \forall W \in \mathcal{N}_y, \exists V \in \mathcal{N}_x, \\ \forall a \in A, i(a) \in V \Rightarrow f(a) \in W. \end{split}$$

In mathlib, the assumption is written as

$$\{x\mid \exists y, f_*i^*\mathcal{N}_x\leq \mathcal{N}_y\}\in \mathcal{N}_{x_0}.$$

• We could do it without hiring a computer scientist

• We could do it without hiring a computer scientist

• Some mathematicians noticed.

- We could do it without hiring a computer scientist
- Some mathematicians noticed.
- CPP 2020 liked it.

- We could do it without hiring a computer scientist
- Some mathematicians noticed.
- CPP 2020 liked it.
- We did contribute to mathlib, but have a large merge backlog

- We could do it without hiring a computer scientist
- Some mathematicians noticed.
- CPP 2020 liked it.
- We did contribute to mathlib, but have a large merge backlog
- Big projects are good. Next one?