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Preamble: MIU system and MU puzzle
Reachability as deducibility
Part I: Verification via disprovng by countermodel finding

Cache Coherence Protocols
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Regular Tree Model Checking
Lossy Channel Systems
Safety for general TRS and Tree Automata Completion
Limitations and Challenges

Part II: Applications to Mathematics
Exploration of the Andrews-Curtis Conjecture via FO (dis)proving
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Preamble: MIU system and MU puzzle

MIU system

Alphabet: M, I and U
Axiom: MI
Derivation rules:

I. If xI is a theorem, so is xIU.
II. If Mx is theorem, so is Mxx .
III. In any theorem III can be replaced by U.
IV. UU can be dropped from any theorem.

MU puzzle

Is MU a theorem of MIU system?

Douglas Hofstadter, Goedel, Escher, Bach: An eternal Golden Braid, 1979
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MU puzzle

Answer: Negative, that is MU 6∈ LMIU

Condition, I (GEB,79): “the number of I symbols in any string in
LMIU cannot be multiple of three”
Condition, 2 (Swanson, McEliece, 1988): "any MIU theorem
should start with M followed by an arbitrary word in I ’s and U’s"
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MU puzzle (cont.)

Question: How to solve it automatically?

Answer: Let’s apply classical FO logic . . .
Fully automated solution of the puzzle
Puzzle is considered as infinite state safety verification problem
Generic Finite Countermodels Method (FCM) is used
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Back to MU puzzle: Logic encoding

FO theory MIU:
1 (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity of concatenation);
2 e ∗ x = x ;
3 x ∗ e = x ;
4 T (M ∗ I ) (MI is a theorem of MIU);
5 T (x ∗ I )→ T (x ∗ I ∗ U) (rule I of MIU);
6 T (M ∗ x)→ T (M ∗ x ∗ x) (rule II of MIU);
7 T (x ∗ I ∗ I ∗ I ∗ y)→ T (x ∗ U ∗ y) (rule III of MIU)
8 T (x ∗ U ∗ U ∗ y)→ T (x ∗ y) (rule IV of MIU)
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Back to MU puzzle: Logic encoding (cont.)

Proposition

If w ∈ LMIU then MIU ` T (tw )

Corollary

If T (tS) is not FO provable from TMIU , that is TMIU 6`FO T (tS) then
S 6∈ LMIU ;
For any non-ground term t(x̄) in vocabulary {∗,M, I ,U} over the set
of variables X , if TMIU 6`FO ∃x̄T (t(x̄)) then none of S such that tS is
a ground instance of t(x̄) belongs to LMIU .
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Finite countermodels

Now to show MIU 6` T (M ∗ U) we are looking for
Finite countermodels for MIU → T (M ∗ U), or equivalently, for
Finite models for MIU ∧ ¬T (M ∗ U)

To find a model we apply generic finite model finding procedure, e.g.
implemented in Mace4 finite model finder by W.McCune
(see demonstration)

A model of size 3 is found in less than 0.01s. The property is proven!
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CounterModel as Invariant

The domain D of the model is a three element set {0, 1, 2}. Interpretations
of constants: [I ] = [M] = 0, [U] = 1. Interpretation of the predicate T:
[T ] = {1, 2}.
The interpretation of the binary function ∗ is given by the following table

0 1 2
0 2 0 1
1 0 1 2
2 1 2 0

Invariant property which holds for any MIU theorem w :

[tw ] ∈ [T ] = {1, 2}

Notice that [tMU ] = 0 ∗ 1 = 0 6∈ [T ]
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CounterModel as Invariant (cont.)

In summary
The interpretation [∗] above defines the set of strings
LM = {s | [ts ]M ∈ {1, 2}} for which

LMIU ⊆ LM
MU 6∈ LM

Thus, LM is an invariant separating the theorems of MIU system and
the string in question, MU

It is easy to see also that the invariant is a regular language
Interestingly, LM 6= LMIU as, for example, [M ∗M] = 2 ∈ [T ] hence
MM ∈ LM but MM 6∈ LMIU .
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MM 6∈ LMIU

Let us search for countermodels for MIU → T (M ∗M).
Mace4 finds a countermodelM′ of size 2, with the domain {0, 1}, the
interpretations of constants M, I and U as 1, 0 and 0, respectively; the
interpretation [T ] of T = {1}. the interpretation of * is given by the table

[*] 0 1
----

0 |0,1
1 |1,0

The corresponding invariant {s | [ts ]M′ = 1} captures the “oddness” of M
count in strings, which is sufficient to separate MM from LMIU .
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Subsets of configurations in FCM proofs
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Figure: Subsets of configurations in general position
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MU puzzle via formal verification

MU puzzle was considered as an example in
E. M. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouakine, Abtsraction
and Counterexample-Guided Refinement in Model Checking of Hybrid
System, 2002
It has been formally verified that MU is not a theorem of MIU, but the
proof was not fully automated and required “a good deal of insight’

Our FCM based verification was fully automated and did not require
any insight! Only natural formalization (encoding) in FO is required.
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What about MIU reachable words?

MIUI ∈ LMIU

Can we show this automatically?
Yes, we can, by the first-order proving. Let us see the demonstration.
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Reachability as deducibility

Many problems in verification can be naturally formulated in terms of
reachability within transition systems;
We propose to use deducibility (or derivability) in first-order predicate
logic to model reachability in transition systems of interest;
Then verification can be treated as theorem (dis)proving in classical
predicate logic;
Many automated tools (provers and model finders) are readily
available.
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Reachability as deducibility

Let S = 〈S ,→〉 be a transition system with the set of states S and
transition relation →
Let e : s 7→ ϕs be encoding of states of S by formulae of first-order
predicate logic, such that

the state s ′ is reachable from s, i.e. s →∗ s ′ if and only if ϕs′ is the
logical consequence of ϕs , that is ϕs |= ϕs′ and ϕs ` ϕs′ .

Under such assumptions:
Establishing reachability ≡ theorem proving
Establishing non-reachability ≡ theorem disproving
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Disproving: Verification of safety

Safety ≡ non-reachability of “bad” states
Verification of safety properties ≡ theorem disproving
To disprove ϕ |= ψ it is sufficient to a find a countermodel for ϕ→ ψ,
or which is the same a model for ϕ ∧ ¬ψ
In general, such a model can be inevitably infinite and the set of
satisfiable first-order formulae is not r.e.
One can not hope for full automation here
Our proposal: use automated finite model finders/builders
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Remarks

For the verification of safety the weaker assumption on the encoding is
sufficient:

s →∗ s ′ ⇒ ϕs ` ϕs′

For the verification of parameterized systems general idea of
reachability as deducibility should be suitably adjusted

depends on particular classes of systems
unary or binary predicates modeling reachabiity can be used
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Origins

The idea of using finite model finders for verification is not new
(thanks to anonymous referees of FMCAD 2010 conference!)
It was proposed and developed in the area of verification of security
protocols in the following papers (at least):

C. Weidenbach Towards an Automatic Analysis of Security Protocols in
First-Order Logic, in H. Ganzinger (Ed.): CADE-16, LNAI 1632, pp.
314–328, 1999.
Selinger, P.: Models for an adversary-centric protocol logic. Electr.
Notes Theor. Comput. Sci. 55(1) (2001);
Goubault-Larrecq, J.: Towards producing formally checkable security
proofs, automatically. In: Computer Security Foundations (CSF), pp.
224[U+FFFD]238 (2008)
Jan Jurjens and Tjark Weber, Finite Models in FOL-Based
Crypto-Protocol Verification. Foundations and Applications of Security
Analysis, LNCS 5511, 2009.
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Further developements

AL (2009-. . .)
Countermodel finding based verification methods are practically
efficient for the verification of various classes of infinite state and
parameterized systems:

lossy channel systems
cache coherence protocols
parameterized linear arrays of finite state automata
general term rewriting systems
etc.

Completeness (for lossy channel systems verification)
Relative completeness wrt to regular model checking (RMC); regular
tree model checking (RTMC); tree automata completion techniques
Generic MACE4 finite model finder by W.McCune has been
successfully used to verify above systems
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Case Study I: Parameterized mutual exclusion protocol

Taken from the paper Parosh Aziz Abdulla, Giorgio Delzanno,
Noomene Ben Henda, Ahmed Rezine. Monotonic Abstraction: on
Efficient Verification of Parameterized Systems. Int. J. Found.
Comput. Sci. 20(5): 779-801 (2009)
Operates on the parameterized linear array of finite state automata
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Protocol specification

The protocol is specified as a parameterized systemME = (Q,T ), where
Q = {green, black, blue, red} is the set of local states of finite automata,
and T consists of the following transitions:
∀LR{green, black} : green→ black

black → blue

∃L{black , blue, red} : blue → blue

∀L{green} : blue → red

red → black

black → green

The correctness condition: if the protocol starts with all states being green
it will never get to a state where there are two or more automata in the red
state
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Translation to the first-order logic,I

(x ∗ y) ∗ z = x ∗ (y ∗ z)

e ∗ x = x ∗ e = x

(∗ is a monoid operation and e is a unit of a monoid)

G (e)

G (x)→ G (x ∗ green)

(specification of configurations with all green states)

GB(e)

GB(x)→ GB(x ∗ green)

GB(x)→ GB(x ∗ black)

(specification of configurations with all states being green or black)
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Translation to the first-order logic,II

G (x)→ R(x)

(initial states assumption: “allgreen” configurations are reachable)

(R((x ∗ green) ∗ y) & GB(x) & GB(y))→ R((x ∗ black) ∗ y)

R((x ∗ black) ∗ y)→ R((x ∗ blue) ∗ y)

R((x ∗ blue) ∗ y) & (x = (z ∗ black) ∗ w)→ R((x ∗ blue) ∗ y)

R((x ∗ blue) ∗ y) & (x = (z ∗ blue) ∗ w)→ R((x ∗ blue) ∗ y)

R((x ∗ blue) ∗ y) & (x = (z ∗ red) ∗ w)→ R((x ∗ blue) ∗ y)

R((x ∗ blue) ∗ y) & G (x)→ R((x ∗ red) ∗ y)

R((x ∗ red) ∗ y)→ R((x ∗ black) ∗ y)

R((x ∗ black) ∗ y)→ R((x ∗ green) ∗ y)

(specification of reachability by one step transitions from T ; one formula
per transition, except the case with existential condition, where three
formulae are used)
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Adequacy of encoding and Verification

If a configuration c̄ is reachable inME then ΦP ` R(tc̄)

To establish safety property of the protocol (mutual exclusion) it does
suffice to show that ΦP 6` ∃x∃y∃zR((((x ∗ red) ∗ y) ∗ red) ∗ z).
Delegate the latter task to the finite model finder MACE4 (see
demonstration)
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Countermodel as Invariant

Take a configuration c̄ of the protocol, consider its term
representation tc̄

The following property is an invariant of the system:
[tc̄ ] ∈ [R]

Here [. . .] denote the interpretation in the (counter)model.
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Model and Invariant

The domain D of the model is a four element set {0, 1, 2, 3}.
Interpretations of constants: [black] = [blue] = 0, [e] = [green] = 1, [red ]
= 2. Interpretations of unary predicates: [G ] = {1}; [GB] = {0, 1}; [R] =
{0, 1, 2}.
The interpretation of the binary function ∗ is given by the following table

0 1 2 3
0 0 0 2 3
1 0 1 2 3
2 2 2 3 3
3 3 3 3 3

Invariant property which holds for any reachable configuration c̄ :

[tc̄ ] ∈ [R] = {0, 1, 2}
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Relative completeness

Theorem (2010)

If the safety of parameterized linear system of automata can be
demonstrated by monotonic abstraction method then it can be
demonstrated by FCM too.
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FCM is stronger than monotonic abstraction

The parameterized system (Q,T ) where Q = {q0, q1, q2, q3, q4} and where
T includes the following transition rules

1 ∀LR{q0, q1, q4} : q0 → q1

2 q1 → q2

3 ∀L{q0} : q2 → q3

4 q3 → q0

5 ∃LR{q2} : q3 → q4

6 q4 → q0

satisfies mutual exclusion for state q4, but this fact can not be established
by the monotonic abstraction method.
Using FCM we have verified mutual exclusion for this system,
demonstrating that FCM method is stronger than monotone abstraction.
Mace4 has found a finite countermodel of the size 6 in 341s.
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Further relative completeness results

Theorem (2010)

If the safety of a linear parameterized system can be demonstrated by
regular model checking method then it can be demonstrated by FCM too.

Theorem (2011)

If the safety of a tree-shape parameterized system can be demonstrated by
regular tree model checking method then it can be demonstrated by FCM
too.

Theorem (2011, RTA 2012)

If the safety of a term rewriting system can be demonstrated by tree
automata completion technique then it can be demonstrated by FCM too.
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Why does it work?

In all cases the proofs of relative completeness results rely upon existence
of regular invariants, that is regular sets (of words or trees) subsuming all
reachable states and disjoint with all unsafe states.
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Beyond FCM: limitations of the method

Can we always apply FCM to establish safety?

No. Here is an example: consider TRS (term rewriting system):
f (x , y)↔ f (g(x), g(y))
f (a, g(x))→ a
f (g(x), a)→ a

Is it true that f (a, a) 6→∗ a? Yes! But this can not be established by
FCM, for there is no a regular invariant here separating reachable
terms and a!
Challenge: Extend the method to infinite countermodels! FCM →
ICM
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Observations on FCM

We presented FCM method for safety verification of infinite state and
parameterized systems

FCM is simple
FCM is at least as powerful as methods based on monotonic
abstraction, RMC, RTMC, tree automata completion techniques in
establishing safety
FCM is efficient in practice (in many cases)
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Part 2: Applications to Mathematics
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Groups and their presentations

Groups are algebraic structures which satisfy the following axioms
(x · y) · z = x · (y · z)
x · e = x
e · x = x
x · x ′ = e

Groups can be defined in different ways, including by presentations
〈x1, . . . , xn; r1, . . . , rm〉, where x1, . . . , xn are generators and r1, . . . rm
are relators
Intuitively, the presentation above defines a group the elements of
which are words in the alphabet x1, . . . , xn, x

′
1, . . . , x

′
n taken up to the

equivalence defined by r1 = e, . . . , rm = e
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Trivial group presentations

〈a, b | ab, b〉 (trivial example of the trivial group presentation)

〈a, b | abab′a′b′, aaab′b′b′b′ (not so trivial example of the trivial
groups presentation)
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Andrews-Curtis Conjecture. Preliminaries

For a group presentation 〈x1, . . . , xn; r1, . . . rm〉 with generators xi , and
relators rj , consider the following transformations.

AC1 Replace some ri by r−1
i .

AC2 Replace some ri by ri · rj , j 6= i .
AC3 Replace some ri by w · ri · w−1 where w is any word in the

generators.
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Andrews-Curtis Conjecture

Two presentations g and g ′ are called Andrews-Curtis equivalent
(AC-equivalent) if one of them can be obtained from the other by
applying a finite sequence of transformations of the types (AC1) -
(AC3).
A group presentation g = 〈x1, . . . , xn; r1, . . . rm〉 is called balanced if
n = m, that is a number of generators is the same as a number of
relators. Such n we call a dimension of g and denote by Dim(g).

Conjecture (1965)

if 〈x1, . . . , xn; r1, . . . rn〉 is a balanced presentation of the trivial group it is
AC-equivalent to the trivial presentation 〈x1, . . . , xn; x1, . . . xn〉.
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Trivial Example

〈a, b | ab, b〉 → 〈a, b | ab, b−1〉 → 〈a, b | a, b−1〉 → 〈a, b | a, b〉
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AC-conjecture: short profile

AC-conjecture is open

AC-conjecture may well be false (prevalent opinion of experts?)
Series of potential counterexamples; smallest for which simplification
is unknown is AK-3: 〈x , y |xyxy−1x−1y−1, x3y−4〉
How to find simplifications, algorithmically?
If a simplification exists, it could be found by the exhaustive
search/total enumeration (iterative deepening)
The issue: simplifications could be very long (Bridson 2015; Lishak
2015)
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Search of trivializations and elimination of counterexamples

Genetic search algorithms (Miasnikov 1999; Swan et al. 2012)
Breadth-First search (Havas-Ramsay, 2003; McCaul-Bowman, 2006)
Todd-Coxeter coset enumeration algorithm (Havas-Ramsay,2001)
Generalized moves and strong equivalence relations
(Panteleev-Ushakov, 2016)
. . .

Our approach: apply generic automated FO reasoning instead of
specialized algorithms
Our Claim: generic automated reasoning is (very) competitive
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ACT rewriting system, dim =2

Equational theory of groups TG :
(x · y) · z = x · (y · z)

x · e = x

e · x = x

x · r(x) = e

For each n ≥ 2 we formulate a term rewriting system modulo TG , which
captures AC-transformations of presentations of dimension n.
For an alphabet A = {a1, a2} a term rewriting system ACT2 consists the
following rules:

R1L f (x , y)→ f (r(x), y))

R1R f (x , y)→ f (x , r(y))

R2L f (x , y)→ f (x · y , y)

R2R f (x , y)→ f (x , y · x)

R3Li f (x , y)→ f ((ai · x) · r(ai ), y) for ai ∈ A, i = 1, 2
R3Ri f (x , y)→ f (x , (ai · y) · r(ai )) for ai ∈ A, i = 1, 2
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AC-transformations as rewriting modulo group theory

The rewrite relation →ACT/G for ACT modulo theory TG :
t →ACT/G s iff there exist t ′ ∈ [t]G and s ′ ∈ [s]G such that t ′ →ACT s ′.
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Reduced ACT2

Reduced term rewriting system rACT2 consists of the following rules:
R1L f (x , y)→ f (r(x), y))

R2L f (x , y)→ f (x · y , y)

R2R f (x , y)→ f (x , y · x)

R3Li f (x , y)→ f ((ai · x) · r(ai ), y) for ai ∈ A, i = 1, 2

Proposition
Term rewriting systems ACT2 and rACT2 considered modulo TG are
equivalent, that is →∗ACT2/G

and →∗rACT2/G
coincide.

Proposition
For ground t1 and t2 we have t1 →∗ACT2/G

t2 ⇔ t2 →∗ACT2/G
t1, that is

→∗ACT2/G
is symmetric.
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Equational Translation

Denote by EACT2 an equational theory TG ∪ rACT= where rACT= includes
the following axioms (equality variants of the above rewriting rules):

E-R1L f (x , y) = f (r(x), y))

E-R2L f (x , y) = f (x · y , y)

E-R2R f (x , y) = f (x , y · x)

E-R3Li f (x , y) = f ((ai · x) · r(ai ), y) for ai ∈ A, i = 1, 2

Proposition
For ground terms t1 and t2 t1 →∗ACT2/G

t2 iff EACT2 ` t1 = t2

A variant of the equational translation: replace the axioms E− R3Li by
“non-ground" axiom E− RLZ : f (x , y) = f ((z · x) · r(z), y)
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Implicational Translation

Denote by IACT2 the first-order theory TG ∪ rACT→2 where rACT→2
includes the following axioms:

I-R1L R(f (x , y))→ R(f (r(x), y)))

I-R2L R(f (x , y))→ R(f (x · y , y))

I-R2R R(f (x , y))→ R(f (x , y · x))

I-R3Li R(f (x , y))→ R(f ((ai · x) · r(ai ), y)) for ai ∈ A, i = 1, 2

Proposition

For ground terms t1 and t2 t1 →∗ACT2/G
t2 iff IACT2 ` R(t1)→ R(t2)
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Higher Dimensions

An equational translation for n = 3 (“non-ground” variant):
f (x , y , z) = f (r(x), y , z) f (x , y , z) = f (x , r(y), z)
f (x , y , z) = f (x , y , r(z)) f (x , y , z) = f (x · y , y , z)
f (x , y , z) = f (x · z , y , z) f (x , y , z) = f (x , y · x , z)
f (x , y , z) = f (x , y · z , z) f (x , y , z) = f (x , y , z · x)
f (x , y , z) = f (x , y , z · y) f (x , y , z) = f ((v · x) · r(v), y , z)
f (x , y , z) = f (x , (v · y) · r(v), z) f (x , y , z) = f (x , y , (v · z) · r(v)).
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Automated Reasoning for AC conjecture exploration

For any pair of presentations p1 and p2,
to establish whether they are AC-equivalent one can formulate and try to
solve first-order theorem proving problems

EACTn ` tp1 = tp2 , or
IACTn ` R(tp1)→ R(tp2)

OR, theorem disproving problems
EACTn 6` tp1 = tp2 , or
IACTn 6` R(tp1)→ R(tp2)

Our proposal: apply automated reasoning: ATP and finite model building.
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Theorem Proving for AC-Simplifications

Elimination of potential counterexamples
Known cases: We have applied automated theorem proving using
Prover9 prover to confirm that all cases eliminated as potential
counterexamples in all known literature can be eliminated by our
method too.
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Theorem Proving for AC-Simplifications (cont.)

New cases (from Edjvet-Swan, 2005-2010):

T14 〈a, b | ababABB, babaBAA〉
T28 〈a, b | aabbbbABBBB, bbaaaaBAAAA〉
T36 〈a, b | aababAABB, bbabaBBAA〉
T62 〈a, b | aaabbAbABBB, bbbaaBaBAAA〉
T74 〈a, b | aabaabAAABB, bbabbaBBBAA〉

T16 〈a, b, c | ABCacbb,BCAbacc ,CABcbaa〉
T21 〈a, b, c | ABCabac,BCAbcba,CABcacb〉
T48 〈a, b, c | aacbcABCC , bbacaBCAA, ccbabCABB〉
T88 〈a, b, c | aacbAbCAB, bbacBcABC , ccbaCaBCA〉
T89 〈a, b, c | aacbcACAB, bbacBABC , ccbaCBCA〉

T96 〈a, b, c , d | adCADbc, baDBAcd , cbACBda, dcBDCab〉
T97 〈a, b, c , d | adCAbDc, baDBcAd , cbACdBa, dcBDaCb〉 [ICMS 2018]
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AC-trivialization for T16

〈ABCacbb,BCAbacc ,CABcbaa〉
x ,y ,z→x ,y ,azA−−−−−−−−−→ 〈ABCacbb,BCAbacc, aCABcba〉
x ,y ,z→x ,y ,zx−−−−−−−−→ 〈ABCacbb,BCAbacc, aCABacbb〉
x ,y ,z→x ,y ,bzB−−−−−−−−−→ 〈ABCacbb,BCAbacc , baCABacb〉
x ,y ,z→x ,y ,zy−−−−−−−−→ 〈ABCacbb,BCAbacc, bac〉
x ,y ,z→x ,y ,czC−−−−−−−−−→ 〈ABCacbb,BCAbacc , cba〉
x ,y ,z→x ′,y ,z−−−−−−−−→ 〈BBCAcba,BCAbacc , cba〉
x ,y ,z→x ,y ,z ′−−−−−−−−→ 〈BBCAcba,BCAbacc ,ABC 〉
x ,y ,z→xz,y ,z−−−−−−−−→ 〈BBCA,BCAbacc,ABC 〉
x ,y ,z→x ′,y ,z−−−−−−−−→ 〈acbb,BCAbacc,ABC 〉 x ,y ,z→x ,y ,z ′−−−−−−−−→ 〈acbb,BCAbacc, cba〉
x ,y ,z→x ,y ,azA−−−−−−−−−→ 〈acbb,BCAbacc, acb〉 x ,y ,z→x ,y ,z ′−−−−−−−−→ 〈acbb,BCAbacc,BCA〉
x ,y ,z→x ,y ,zx−−−−−−−−→ 〈acbb,BCAbacc , b〉 x ,y ,z→x ,y ,z ′−−−−−−−−→ 〈acbb,BCAbacc,B〉
x ,y ,z→xz,y ,z−−−−−−−−→ 〈acb,BCAbacc,B〉 x ,y ,z→xz,y ,z−−−−−−−−→ 〈ac ,BCAbacc,B〉
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AC-trivialization for T16 (cont.)

x ,y ,z→x ,y ′,z−−−−−−−−→ 〈ac ,CCABacb,B〉 x ,y ,z→x ,yz,z−−−−−−−−→ 〈ac,CCABac,B〉
x ,y ,z→x ,y ′,z−−−−−−−−→ 〈ac ,CAbacc ,B〉 x ,y ,z→x ,y ,z ′−−−−−−−−→ 〈ac,CAbacc , b〉
x ,y ,z→x ′,y ,z−−−−−−−−→ 〈CA,CAbacc , b〉
x ,y ,z→x ,yx ,z−−−−−−−−→ 〈CA,CAbacA, b〉 x ,y ,z→x ,y ′,z−−−−−−−−→ 〈CA, aCABac, b〉
x ,y ,z→x ,yx ,z−−−−−−−−→ 〈CA, aCAB, b〉 x ,y ,z→x ,yz,z−−−−−−−−→ 〈CA, aCA, b〉
x ,y ,z→x ′,y ,z−−−−−−−−→ 〈ac , aCA, b〉 x ,y ,z→x ,yx ,z−−−−−−−−→ 〈ac, a, b〉
x ,y ,z→x ,y ′,z−−−−−−−−→ 〈ac ,A, b〉 x ,y ,z→x ,yx ,z−−−−−−−−→ 〈ac, c , b〉
x ,y ,z→x ,y ′,z−−−−−−−−→ 〈ac ,C , b〉 x ,y ,z→xy ,y ,z−−−−−−−−→ 〈a,C , b〉
x ,y ,z→x ,yz,z−−−−−−−−→ 〈a,Cb, b〉 x ,y ,z→x ,y ′,z−−−−−−−−→ 〈a,Bc, b〉
x ,y ,z→x ,y ,zy−−−−−−−−→ 〈a,Bc, c〉 x ,y ,z→x ,y ,z ′−−−−−−−−→ 〈a,Bc ,C 〉
x ,y ,z→x ,yz,z−−−−−−−−→ 〈a,B,C 〉 x ,y ,z→x ,y ,z ′−−−−−−−−→ 〈a,B, c〉
x ,y ,z→x ,y ′,z−−−−−−−−→ 〈a, b, c〉
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What about automated disproving?

Proposition

To simplify AK-3 (if at all it is possible) one really needs conjugation with
both generators a and b.

Mace4 finite model builder finds countermodels of sizes 12 and 6 for the
cases where either of the conjugation rules is omitted.

Can we disprove AC-conjecture by building a finite countermodel witnessing
non-trivialization for one of the open cases (e.g. AK-3)?

No, unfortunately (Borovik et al, The Finitary Andrews-Curtis Conjecture,
2005)
We need to search for infinite countermodels to disprove AC-conjecture!
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Observations on ATP for AC-conjecture

Automated Proving and Disproving is an interesting and powerful
approach to AC-conjecture exploration;
AC-conjecture is a source of interesting challenging problems for
ATP/ATD;
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Time to prove simplifications

T14 T28 T36 T62 T74 T16 T21 T48 T88 T89 T96 97
Dim 2 2 2 2 2 3 3 3 3 3 4 4

Equational 6.02s 6.50s 7.18s 24.34s 57.17s 12.87s 11.98s 34.63s 57.69s 17.50s 114.05s 115.10s
Implicational 1.57s 2.46s 1.34s 22.50s 6.29s 1.61s 1.45s 2.17s 1.97s 2.14s 102.34s 89.65s

Implicational GC t/o t/o t/o t/o t/o 3.76s 1.61s t/o 0.86s 0.75s t/o t/o

“t/o” stands for timeout in 200s; “GC” means encoding with ground
conjugation rules; all other encodings are with non-ground conjugation
rules.
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Conclusions

Formalization of reachability using FO is simple and powerful method
FO disproving can used to establish safety (non-reachability) properties
FO proving can be used to search for paths in complex domains

Formalization in FO + Automated Reasoning can be competitive wrt
specialised algorithms

Thank you!
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