Reasoning with Nonlinear Formulas in Isabelle/HOL

Wenda Li
University of Cambridge
wl302@cam.ac.uk
January 7, 2020

Joint work with Grant Passmore and Larry Paulson

Alfred Tarski (1930s): the first-order theory of real closed fields is complete and decidable.

That is, we have a decision procedure for closed sentences like the following:

$$
\exists x \in \mathbb{R} . \forall y \in \mathbb{R} . \exists z \in \mathbb{R} . x z-y^{2}<0 \wedge x>0
$$

The Sturm-Tarski theorem (also known as Tarski's theorem)

Given $P, Q \in \mathbb{R}[X], P \neq 0, a, b \in \overline{\mathbb{R}}, a<b$ and are not roots of P,

$$
\operatorname{TaQ}(Q, P, a, b)=\operatorname{Var}\left(\operatorname{SRemS}\left(P, P^{\prime} Q\right) ; a, b\right),
$$

where

$$
\operatorname{TaQ}(Q, P, a, b)=\sum_{x \in(a, b), P(x)=0} \operatorname{sgn}(Q(x))
$$

- P^{\prime} is the first derivative of P,
- Var computes the sign variations,
- SRemS computes the signed remainder sequence.

Also, TaQ $(1, P, a, b)$ computes the number of real roots of P within the interval (a, b) (i.e., Sturm's theorem).

To decide $\exists x \in \mathbb{R} . P(x)=0 \wedge Q_{1}(x)>0$

Let

$$
\begin{aligned}
& c\left(Q_{1} \bowtie_{1} 0, \cdots, Q_{n} \bowtie_{n} 0\right) \\
& \quad=\operatorname{card}\left(\left\{x \mid P(x)=0 \wedge Q_{1}(x) \bowtie_{1} 0 \wedge \cdots \wedge Q_{n}(x) \bowtie_{n} 0\right\}\right)
\end{aligned}
$$

, where $\bowtie_{i} \in\{<,>,=\}$, and $\operatorname{TaQ}_{P}\left(Q_{i}\right)=\operatorname{TaQ}\left(Q_{i}, P,-\infty,+\infty\right)$.
We have

$$
\exists x \in \mathbb{R} \cdot P(x)=0 \wedge Q_{1}(x)>0 \Longleftrightarrow c\left(Q_{1}>0\right)>0
$$

while $c\left(Q_{1}>0\right)$ can be found by solving the following linear equation:

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
c\left(Q_{1}=0\right) \\
c\left(Q_{1}>0\right) \\
c\left(Q_{1}<0\right)
\end{array}\right]=\left[\begin{array}{c}
\operatorname{TaQ}_{P}(1) \\
\operatorname{TaQ}_{P}\left(Q_{1}\right) \\
\operatorname{TaQ}_{P}\left(Q_{1}^{2}\right)
\end{array}\right]
$$

The number of linear equations grows very quickly.

$\exists x \in \mathbb{R} . P(x)=0 \wedge Q_{1}(x)>0 \wedge Q_{2}(x)<0 \Longleftrightarrow c\left(Q_{1}>0, Q_{2}<0\right)>0$, requires us to solve a system with 9 equations:
$\left(\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1\end{array}\right] \otimes\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1\end{array}\right]\right)\left[\begin{array}{c}c\left(Q_{1}=0, Q_{2}=0\right) \\ c\left(Q_{1}=0, Q_{2}>0\right) \\ c\left(Q_{1}>0, Q_{2}<0\right) \\ \cdots\left(Q_{1}<0, Q_{2}<0\right)\end{array}\right]=\left[\begin{array}{c}\operatorname{TaQ}_{P}(1) \\ \operatorname{TaQ_{P}(Q_{2})} \\ \ldots \\ \operatorname{TaQ}_{P}\left(Q_{1} Q_{2}^{2}\right) \\ \cdots \\ \operatorname{TaQ} Q_{P}\left(Q_{1}^{2} Q_{2}^{2}\right)\end{array}\right]$
where \otimes is tensor product.

Tarski's elimination procedure is mostly of theoretical interest

Univariate case: exponential in the number of polynomials

General case: non-elementary in the number of variables

Due to its elegance, Tarski's elimination procedure has been implemented in Coq^{1}, HOL Light ${ }^{2}$ and PVS^{3}.
> ${ }^{1}$ Mahboubi and Cohen, "Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination".
> ${ }^{2}$ Nieuwenhuis, CADE-20: 20th International Conference on Automated Deduction, proceedings.
> ${ }^{3}$ Narkawicz, Muñoz, and Dutle, "Formally-Verified Decision Procedures for Univariate Polynomial Computation Based on Sturm's and Tarski's Theorems."

Can we have a more practical procedure?

George E. Collins (1976): Yes, here is cylindrical algebraic decomposition (CAD).

What is cylindrical algebraic decomposition (CAD)

$$
\begin{aligned}
D_{1,1} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-\sqrt{3} \wedge x_{2}<x_{1}^{2} / 2\right\} \\
D_{1,2} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-\sqrt{3} \wedge x_{2}=x_{1}^{2} / 2\right\} \\
D_{1,3} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-\sqrt{3} \wedge x_{2}>x_{1}^{2} / 2\right\} \\
D_{2,1} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-\sqrt{3} \wedge x_{2}<0\right\} \\
D_{2,2} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-\sqrt{3} \wedge x_{2}=0\right\} \\
& \vdots \\
D_{9,2} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>\sqrt{3} \wedge x_{2}=x_{1}^{2} / 2\right\} \\
D_{9,3} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>\sqrt{3} \wedge x_{2}>x_{1}^{2} / 2\right\}
\end{aligned}
$$

Here, $P_{1}\left(x_{1}, x_{2}\right)=x_{2}^{2}+x_{1}^{2}-3$ and $P_{2}\left(x_{1}, x_{2}\right)=x_{2}-x_{1}^{2} / 2$.

What is cylindrical algebraic decomposition (CAD)

$$
\begin{aligned}
D_{1,1} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-\sqrt{3} \wedge x_{2}<x_{1}^{2} / 2\right\} \\
D_{1,2} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-\sqrt{3} \wedge x_{2}=x_{1}^{2} / 2\right\} \\
D_{1,3} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-\sqrt{3} \wedge x_{2}>x_{1}^{2} / 2\right\} \\
D_{2,1} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-\sqrt{3} \wedge x_{2}<0\right\} \\
D_{2,2} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-\sqrt{3} \wedge x_{2}=0\right\} \\
& \vdots \\
D_{9,2} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>\sqrt{3} \wedge x_{2}=x_{1}^{2} / 2\right\} \\
D_{9,3} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>\sqrt{3} \wedge x_{2}>x_{1}^{2} / 2\right\}
\end{aligned}
$$

Here, $P_{1}\left(x_{1}, x_{2}\right)=x_{2}^{2}+x_{1}^{2}-3$ and $P_{2}\left(x_{1}, x_{2}\right)=x_{2}-x_{1}^{2} / 2$.

What is cylindrical algebraic decomposition (CAD)

$$
\begin{aligned}
D_{1,1} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-\sqrt{3} \wedge x_{2}<x_{1}^{2} / 2\right\} \\
D_{1,2} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-\sqrt{3} \wedge x_{2}=x_{1}^{2} / 2\right\} \\
D_{1,3} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-\sqrt{3} \wedge x_{2}>x_{1}^{2} / 2\right\} \\
D_{2,1} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-\sqrt{3} \wedge x_{2}<0\right\} \\
D_{2,2} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-\sqrt{3} \wedge x_{2}=0\right\} \\
& \vdots \\
D_{9,2} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>\sqrt{3} \wedge x_{2}=x_{1}^{2} / 2\right\} \\
D_{9,3} & =\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>\sqrt{3} \wedge x_{2}>x_{1}^{2} / 2\right\}
\end{aligned}
$$

Here, $P_{1}\left(x_{1}, x_{2}\right)=x_{2}^{2}+x_{1}^{2}-3$ and $P_{2}\left(x_{1}, x_{2}\right)=x_{2}-x_{1}^{2} / 2$.

What is cylindrical algebraic decomposition (CAD)

$$
\begin{aligned}
& D_{1,1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-\sqrt{3} \wedge x_{2}<x_{1}^{2} / 2\right\} \\
& D_{1,2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-\sqrt{3} \wedge x_{2}=x_{1}^{2} / 2\right\} \\
& D_{1,3}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<-\sqrt{3} \wedge x_{2}>x_{1}^{2} / 2\right\} \\
& D_{2,1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-\sqrt{3} \wedge x_{2}<0\right\} \\
& D_{2,2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-\sqrt{3} \wedge x_{2}=0\right\} \\
& \vdots \\
& \\
& D_{9,2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>\sqrt{3} \wedge x_{2}=x_{1}^{2} / 2\right\} \\
& D_{9,3}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}>\sqrt{3} \wedge x_{2}>x_{1}^{2} / 2\right\}
\end{aligned}
$$

such that

$$
\bigcup \mathfrak{D}=\mathbb{R}^{2}
$$

$$
\forall X \in \mathfrak{D} \cdot \forall Y \in \mathfrak{D} \cdot X \neq Y \rightarrow X \cap Y=\emptyset
$$

and both $P_{1}\left(x_{1}, x_{2}\right)=x_{2}^{2}+x_{1}^{2}-3$ and $P_{2}\left(x_{1}, x_{2}\right)=x_{2}-x_{1}^{2} / 2$ have constant sign over every $X \in \mathfrak{D}$ (or $\left\{P_{1}, P_{2}\right\}$ is adapted to \mathfrak{D})

$$
\begin{aligned}
& (-2,0) \in D_{1,1} \\
& (-2,2) \in D_{1,2} \\
& (-2,2.5) \in D_{1,3} \\
& (-\sqrt{3},-1) \in D_{2,1} \\
& (-\sqrt{3}, 0) \in D_{2,2}
\end{aligned}
$$

$$
(2,2) \in D_{9,2}
$$

$$
(2,2.5) \in D_{9,3}
$$

$$
\mathcal{S}=\{(-2,0),(-2,2),(-2,2.5), \cdots,(2,2),(2,2.5)\}
$$

Sentences like the following can be decided:

$$
\begin{aligned}
\forall x_{1} x_{2} \cdot P_{1}\left(x_{1}, x_{2}\right) & =0 \wedge P_{2}\left(x_{1}, x_{2}\right)>0 \\
& \Longleftrightarrow \forall\left(x_{1}, x_{2}\right) \in \mathcal{S} \cdot P_{1}\left(x_{1}, x_{2}\right)=0 \wedge P_{2}\left(x_{1}, x_{2}\right)>0
\end{aligned}
$$

Definition (Stack)

A stack $\mathfrak{D}=\left\{D_{1}, D_{2}, \ldots, D_{2 k+1}\right\}$ over a connected $S \subseteq \mathbb{R}^{n}$ is a decomposition of the cylinder $S \times \mathbb{R}$ such that

- there is a sequence of continuous functions $f_{0}, f_{1}, \ldots, f_{k+1}: S \longrightarrow \mathbb{R}$, such that $f_{0}(x)<f_{1}(x)<\cdots<f_{k+1}(x)$ for all $x \in S, f_{0}(x)=-\infty$, $f_{k+1}(x)=+\infty$,
- $D_{2 i+1}=\left\{\left(x, x^{\prime}\right) \in S \times \mathbb{R} \mid f_{i}(x)<x^{\prime}<f_{i+1}(x)\right\}$, for $i=0,1, \ldots, k$,
- $D_{2 i}=\left\{\left(x, x^{\prime}\right) \in S \times \mathbb{R} \mid x^{\prime}=f_{i}(x)\right\}$, for $i=1,2, \ldots, k$.

Example of a stack

Let

$$
\begin{array}{r}
S=]-\sqrt{2}, \sqrt{2}[\\
f_{1}(x)=-\sqrt{3-x^{2}}, \\
f_{2}(x)=x^{2} / 2, \\
f_{3}(x)=\sqrt{3-x^{2}} .
\end{array}
$$

A stack decomposes $S \times \mathbb{R}$:

$$
\begin{gathered}
D_{1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in S \wedge x_{2}<f_{1}\left(x_{1}\right)\right\} \\
D_{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in S \wedge x_{2}=f_{1}\left(x_{1}\right)\right\} \\
D_{3}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in S\right. \\
\left.\wedge f_{1}\left(x_{1}\right)<x_{2}<f_{2}\left(x_{2}\right)\right\} \\
\vdots \\
D_{7}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in S \wedge x_{2}>f_{3}(x)\right\}
\end{gathered}
$$

Definition (Cylindrical)

A decomposition \mathfrak{D} of \mathbb{R}^{n} is cylindrical if

- $n=1, \mathfrak{D}$ decomposes \mathbb{R} : there exist a finite number of points $a_{i} \in \mathbb{R}$ for $1 \leq i \leq k$, such that $a_{i}<a_{i+1}(1 \leq i \leq k-1)$ and $\mathfrak{D}=\left\{\left(-\infty, a_{1}\right),\left\{a_{1}\right\},\left(a_{1}, a_{2}\right),\left\{a_{2}\right\}, \ldots,\left(a_{k-1}, a_{k}\right),\left\{a_{k}\right\},\left(a_{k}, \infty\right)\right\}$.
- $n>1$, there exists a cylindrical decomposition \mathfrak{D}^{\prime} of \mathbb{R}^{n-1} such that over each $X \in \mathfrak{D}^{\prime}$ there is a stack $t(X)$ and

$$
\mathfrak{D}=\bigcup_{X \in \mathfrak{D}^{\prime}} t(X)
$$

Theorem (Delineability)

Let $\mathcal{P} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$ be a set of polynomials and C be a connected subset of \mathbb{R}^{n-1}. If

1. for every $P \in \mathcal{P}$, the total number of complex roots (counting multiplicities) of $P(\beta, x)$ is constant as β varies over C, where $P(\beta, x)$ is a univariate polynomial in which the variables x_{1}, \ldots, x_{n-1} are instantiated by $\beta \in \mathbb{R}^{n-1}$,
2. for every $P \in \mathcal{P}$, the number of distinct complex roots of $P(\beta, x)$ is constant as β varies over C,
3. for every $P, Q \in \mathcal{P}$, the total number of common complex roots (counting multiplicities) of $P(\beta, x)$ and $Q(\beta, x)$ is constant as β varies over C,
then the total number of distinct real roots of $\left(\prod \mathcal{P}\right)(\beta, x)$ is constant as β varies over C.

Require: a finite set of polynomials $\mathcal{P} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
Ensure: Return a set of sample points $\mathcal{S}_{n} \subseteq \mathbb{R}^{n}$ from a CAD that is adapted to \mathcal{P}
1: procedure $\operatorname{CAD}(\mathcal{P})$
2: $\quad \mathcal{P}_{n} \leftarrow \mathcal{P}$
3: \quad for $i=n$ to 2 do
\triangleright Projection phase, where $\mathcal{P}_{i} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{i}\right]$
4: $\quad \mathcal{P}_{i-1} \leftarrow \operatorname{proj}\left(\mathcal{P}_{i}\right)$
5: end for
6: $\quad \mathcal{S}_{1} \leftarrow \operatorname{base}\left(\mathcal{P}_{1}\right) \quad \triangleright$ Base case, where base (\mathcal{Q}) returns a set of sample points adapted to $\mathcal{Q} \subseteq \mathbb{R}[x]$
7: \quad for $i=1$ to $n-1$ do $\quad \triangleright$ Lifting phase, where $\mathcal{S}_{i} \subseteq \mathbb{R}^{i}$ $\mathcal{S}_{i+1} \leftarrow \bigcup_{\beta \in \mathcal{S}_{i}}\left(\{\beta\} \times \operatorname{base}\left(\mathcal{P}_{i+1}(\beta, x)\right)\right)$
end for
10: return \mathcal{S}_{n}
11: end procedure

Given $\mathcal{P}=\left\{x_{2}^{2}+x_{1}^{2}-3, x_{2}-x_{1}^{2} / 2\right\}$,

$$
\begin{gathered}
\operatorname{proj}(\mathcal{P})=\left\{x_{1}^{4} / 4+x_{1}^{2}-3,4 x_{1}^{2}-12,2,1\right\} \\
\mathcal{S}_{1}=\operatorname{base}(\operatorname{proj}(\mathcal{P}))=\left\{-2,-\sqrt{3},-\frac{3}{2},-\sqrt{2}, 0, \sqrt{2}, \frac{3}{2}, \sqrt{3}, 2\right\}
\end{gathered}
$$

We start to lift:

$$
\begin{array}{ll}
\mathcal{P}\left(-2, x_{2}\right) & =\left\{x_{2}^{2}+1, x_{2}-2\right\} \\
\operatorname{base}\left(\mathcal{P}\left(-2, x_{2}\right)\right) & =\{0,2,2.5\} \\
\{-2\} \times \operatorname{base}\left(\mathcal{P}\left(-2, x_{2}\right)\right) & =\{(-2,0),(-2,2),(-2,2.5)\} \\
& \vdots \\
2 \times \operatorname{base}\left(\mathcal{P}\left(2, x_{2}\right)\right) & =\{(2,0),(2,2),(2,2.5)\}
\end{array}
$$

combining which yields

$$
\begin{aligned}
\mathcal{S}_{2} & =\bigcup_{\beta \in \mathcal{S}_{1}}(\{\beta\} \times \operatorname{base}(\mathcal{P}(\beta, x))) \\
& =\{(-2,0),(-2,2),(-2,2.5),(-\sqrt{3},-1), \cdots,(2,2.5)\}
\end{aligned}
$$

Real algebraic numbers

To encode an real algebraic number α, we can use a polynomial $P \in \mathbb{Q}[x]$ and two rational numbers $a, b \in \mathbb{Q}$:

$$
\alpha=(P, a, b)
$$

so that α is the only root of P within the interval (a, b). For example, $\sqrt{2}=\left(x^{2}-2,0,2\right)$.

They are closed under normal arithmetic:

$$
\begin{aligned}
& \left(x^{2}-2,0,2\right)+\left(x^{2}-3,0,2\right)=\left(x^{4}-10 x^{2}+1,1,4\right) \\
& \left(x^{2}-2,0,2\right) \times\left(x^{2}-3,0,2\right)=\left(x^{2}-6,1,4\right)
\end{aligned}
$$

Exact algebraic arithmetic is too slow

Exact algebraic arithmetic has been implemented in Isabelle/ HOL^{45} and Coq ${ }^{6}$.

The implementation by Joosten, Thiemann and Yamada is arguably the most efficient one (with 70K LOC in Isabelle/HOL), and it takes 20 s to compute $\sum_{i=1}^{6} \sqrt[3]{i}$.

Even Mathematica ${ }^{7}$ fails to give an awnser to $\sum_{i=1}^{7} \sqrt[3]{i}$ within 30 m .

[^0]
Sign determination using only rational arithmetic

The Sturm-Tarski theorem provides a way to effectively compute the sign of a univariate polynomial at a real algebraic point:

$$
\begin{aligned}
\operatorname{sgn}(Q(\alpha))=\sum_{x \in(a, b), P(x)=0} & \operatorname{sgn}(Q(x)) \\
=\operatorname{TaQ}(Q, & P, a, b) \\
& =\operatorname{Var}\left(\operatorname{SRemS}\left(P, P^{\prime} Q\right) ; a, b\right) .
\end{aligned}
$$

where $P, Q \in \mathbb{Q}[x]$ and $\alpha=(P, a, b)$. For example,
value "sgn_at [:-1,1:] (Alg [:-2,0,1:] 1 2)"
which stands for the sign of $(x-1)[x \rightarrow \sqrt{2}]$ and returns 1 .

To prove $\forall x . x^{2}-2>0 \vee x<2$,

Let $\mathcal{Q}=\left\{x^{2}-2, x-2\right\}$, with a root isolation procedure we can find all real roots of $\mathcal{Q}:\{-\sqrt{2}, \sqrt{2}, 2\}$, and construct sample points:

$$
\left\{-2,-\sqrt{2}, 0, \sqrt{2}, \frac{3}{2}, 2,3\right\}
$$

Do we want to isolate (find) roots within Isabelle?

Nah, it is easier to check a root than finding it.

To prove $\forall x . x^{2}-2>0 \vee x<2$,

$\forall x . Q_{1}(x)>0 \vee Q_{2}(x)<0$
$\Longleftarrow\{$ Pick $\{-\sqrt{2}, \sqrt{2}, 2\}$ from an unstructed computer algebra system $\}$ $\{-\sqrt{2}, \sqrt{2}, 2\}$ are all the roots of Q_{1} and Q_{2}
$\wedge \forall x \in\left\{-2,-\sqrt{2}, 0, \sqrt{2}, \frac{3}{2}, 2,3\right\} . Q_{1}(x)>0 \vee Q_{2}(x)<0$
$\Longleftrightarrow \sum_{\alpha \in\{-\sqrt{2}, \sqrt{2}, 2\}} \sum_{Q \in\left\{Q_{1}, Q_{2}\right\}} \operatorname{sgn}(Q(\alpha))=\operatorname{TaQ}\left(1, Q_{1},-\infty, \infty\right)$

$$
+\operatorname{TaQ}\left(1, Q_{2},-\infty, \infty\right)
$$

$\wedge \forall x \in\left\{-2,-\sqrt{2}, 0, \sqrt{2}, \frac{3}{2}, 2,3\right\} . Q_{1}(x)>0 \vee Q_{2}(x)<0$

To prove $\forall x . x^{2}-2>0 \vee x<2$,

lemma "($\forall \mathrm{x}:$:real. $\mathrm{x} * \mathrm{x}-2>0 \vee \mathrm{x}<2)$ "

by (all_tac "[Arep [:-2,0,1:] -2 0, Arep [:-2,0,1:] 1 1.5,Rat 2]")

Here, $[-\sqrt{2}, \sqrt{2}, 2]$ (encoded as [Arep $[:-2,0,1:]-20$, Arep [:-2,0,1:] 1 1.5, Rat 2]) has been found automatically by external solvers.

To prove $\exists x . x^{2}=2 \wedge x^{3}>2.5$

Proving the existential case is even easier as we only need one witness:
lemma " $\exists \mathrm{x}:$:real. $\mathrm{x}^{*} \mathrm{x}=2 \wedge \mathrm{x}^{*} \mathrm{x}^{*} \mathrm{x}>2.5^{\prime \prime}$

by (ex_tac "[Arep [:-2,0,1:] 1 2]")

Promising results ${ }^{8}$ compared to Tarski's elimination procedure

Time (s)

Formula	univ_rcf (Isabelle)	univ_rcf_cert (Isabelle)	tarski (PVS)
$\mathrm{ex1}$	0.9	0.3	2.0
ex 2	1.4	0.6	6.8
ex 3	1.6	0.7	13.0
ex 4	1.3	0.5	20.1
$\mathrm{ex5}$	1.6	0.6	315.7
$\mathrm{ex6}$	5.6	3.9	timeout
ex 7	38.4	34.9	timeout

Note: timeout indicates failure to terminate within 24 hours

[^1]
Towards multivariate CAD: multivariate sign determination

Previous univariate sign determination procedure require arithmetic in $\mathbb{Q}(\alpha)($ e.g. $\alpha=\sqrt{2})$.

We convert arithmetic in $\mathbb{Q}(\alpha)$ to polynomial arithmetic in $\mathbb{Q}[\alpha]$ where α is a symbolic indeterminate with some constraint (e.g. $\alpha^{2}=2$).

To eliminate arithmetic in $\mathbb{Q}(\alpha)$ when calculating TaQ:

where pmod is pseudo-division of polynomials.

Bivariate sign determination procedure using only rational arithmetic

We finish the bivariate sign determination procedure:
$\begin{aligned} & \text { value "bsgn_at [:[:0,-1:],[:1:]:] }(\text { Alg }[:-2,0,1:] 12) \\ &(A l g[:-3,0,1:] \\ &12) "\end{aligned}$
which stands for the sign of $(x-y)[x \rightarrow \sqrt{2}, y \rightarrow \sqrt{3}]$ and returns -1 .

Root isolation with real algebraic coefficient?

$$
\begin{array}{r}
\mathcal{P} \subseteq \mathbb{Q}\left[x_{1}, \cdots, x_{n}\right] \\
\left\lvert\, \begin{array}{l}
\text { Projection }
\end{array}\right.
\end{array}
$$

$\mathcal{P}_{1}, \cdots, \mathcal{P}_{n}$ such that $\mathcal{P}_{k} \subseteq \mathbb{Q}\left[x_{1}, \cdots, x_{k}\right]$

> Base \& Lifting
$\mathcal{S}_{1}, \cdots, \mathcal{S}_{n}$ such that $\mathcal{S}_{k} \subseteq \tilde{\mathbb{Q}}^{k}$
Here, $\widetilde{\mathbb{Q}}$ is the real closure of \mathbb{Q}.
In the base and lifting phase, we may need to root-isolate polynomials like $\sqrt{2} x^{2}-3 x+1$.

Again, we want to use certificates

There are efficient algorithms to isolate roots with algebraic coefficients ${ }^{91011}$, but none of them is easy to implement (and certify) in a proof assistant.

With a multivariate sign determination procedure, we can efficiently check that $\mathcal{S}_{1}, \cdots, \mathcal{S}_{n}$ are indeed sample points drawn from cells described by $\mathcal{P}_{1}, \cdots, \mathcal{P}_{n}$.

[^2]
Towards certifying the projection

```
theorem bivariate_CAD_delineability:
    fixes p q :: "real bpoly" and S::"real set"
    defines "pC\equiv\lambday. map_poly complex_of_real (poly_y p y)"
    defines "qc\equiv\lambday. map_poly complex_of_real (poly_y q y)"
    assumes
        "connected S" and
        deg_p_inv:"(\lambday. degree (poly_y p y)) constant_on S" and
        pzero_inv:"(\lambday. poly_y p y = 0) constant_on S" and
        distinct_p_inv:
            "(\lambday. (card (proots (pc y)))) constant_on S" and
        deg_q_inv:"(\lambday. degree (poly_y q y)) constant_on S" and
        qzero_inv:"(\lambday. poly_y q y = 0) constant_on S" and
        distinct_q_inv:
            "(\lambday. (card ( proots (qc y)))) constant_on S" and
        common_pq_inv:"(\lambday. degree (gcd (pc y) (qc y))) constant_on S"
    shows "(\lambday. card (proots (poly_y (p*q) y))) constant_on S"
```

The proof relies on that polynomial roots continuously depend on the coefficients, which was further derived by Rouché's theorem ${ }^{12}$.

[^3]
What's left for multivariate CAD

In general, we decided to fully certify the projection phase and deal with base \& lifting in a certificate-based way.

The undergoing formalisation efforts are:

- multivariate sign determination
- multivariate subresultants (univariate ones are already available ${ }^{13}$)
Still, costly algebraic arithmetic has been avoided!

[^4]
Remarks

Formalisation is time consuming - we may want to use certificates if possible.

Many objects and sub-procedures in computer algebra are already in the Archive of Formal Proofs:

- executable multivariate polynomials
- procedures to count real or complex roots of a polynomial
- subresultants
- polynomial factorisation
- Gröbner bases
- ODE
- ...

We can expect more verified computation in proof assistants.

Boulier, François et al. "Real root isolation of regular chains". In: Computer Mathematics. Springer, 2014, pp. 33-48.
Cohen, Cyril. "Construction of Real Algebraic Numbers in Coq."
In: Proceedings of the 3rd International Conference on
Interactive Theorem Proving, ITP 2012. Ed. by Lennart Beringer and Amy Felty. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 67-82.
雷 Joosten, Sebastiaan, Ren Thiemann, and Akihisa Yamada.
"Subresultants". In: Archive of Formal Proofs (Apr. 2017).
http://isa-afp.org/entries/Subresultants.html,
Formal proof development. ISSN: 2150-914x.
嗇 Joosten, Sebastiaan JC, René Thiemann, and Akihisa Yamada. "A
Verified Implementation of Algebraic Numbers in Isabelle/HOL".
In: Journal of automated reasoning (2018), pp. 1-27.

Li, Wenda, Grant Olney Passmore, and Lawrence C Paulson. "Deciding Univariate Polynomial Problems Using Untrusted Certificates in Isabelle/HOL". In: Journal of Automated Reasoning 44.3 (Aug. 2017), pp. 175-23.
E Li, Wenda and Lawrence C Paulson. "A formal proof of Cauchy's residue theorem". In: Proceedings of the 4th International Conference on Interactive Theorem Proving, ITP 2013. Ed. by Jasmin Christian Blanchette and Stephan Merz. Nancy, France: Springer, Aug. 2016, pp. 235-251.

- . "A modular, efficient formalisation of real algebraic numbers".

In: Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2016. Ed. by Jeremy Avigad and Adam Chlipala. St. Petersburg, FL, USA: ACM, Jan. 2016, pp. 66-75.
(Mahboubi, Assia and Cyril Cohen. "Formal proofs in real algebraic geometry: from ordered fields to quantifier elimination". In: Logical Methods in Computer Science 8.1 (2012).

围 Moura, Leonardo de and Grant Olney Passmore. "Computation in Real Closed Infinitesimal and Transcendental Extensions of the Rationals." In: Proceedings of the 24th International Conference on Automated Deduction, CADE '13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 178-192.
(R) Narkawicz, Anthony, César A Muñoz, and Aaron Dutle. "Formally-Verified Decision Procedures for Univariate Polynomial Computation Based on Sturm's and Tarski's Theorems." In: Journal of Automated Reasoning 54.4 (2015), pp. 285-326.
(Nieuwenhuis, Robert, ed. CADE-20: 20th International Conference on Automated Deduction, proceedings. Tallinn, Estonia: Springer-Verlag, 2005.
圊 Strzeboński, Adam W. "Cylindrical Algebraic Decomposition using validated numerics". In: Journal of Symbolic Computation 41.9 (Sept. 2006), pp. 1021-1038.

[^0]: ${ }^{4}$ Joosten, Thiemann, and Yamada, "A Verified Implementation of Algebraic Numbers in Isabelle/HOL".
 ${ }^{5} \mathrm{Li}$ and Paulson, "A modular, efficient formalisation of real algebraic numbers".
 ${ }^{6}$ Cohen, "Construction of Real Algebraic Numbers in Coq."
 ${ }^{7}$ RootReduce[Sum[Surd[i, 3], i, 1, 7]] on Mathematica 12

[^1]: ${ }^{8}$ Li, Passmore, and Paulson, "Deciding Univariate Polynomial Problems Using Untrusted Certificates in Isabelle/HOL".

[^2]: ${ }^{9}$ Moura and Passmore, "Computation in Real Closed Infinitesimal and Transcendental Extensions of the Rationals."
 ${ }^{10}$ Strzeboński, "Cylindrical Algebraic Decomposition using validated numerics".
 ${ }^{11}$ Boulier et al., "Real root isolation of regular chains".

[^3]: ${ }^{12} \mathrm{Li}$ and Paulson, "A formal proof of Cauchy's residue theorem".

[^4]: ${ }^{13}$ Joosten, Thiemann, and Yamada, "Subresultants".

