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Alfred Tarski (1930s): the first-order theory of real closed fields is
complete and decidable.

That is, we have a decision procedure for closed sentences like the
following:

∃x ∈ R. ∀y ∈ R.∃z ∈ R. xz − y2 < 0 ∧ x > 0.
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The Sturm-Tarski theorem (also known as Tarski’s
theorem)

Given P,Q ∈ R[X ],P 6= 0, a, b ∈ R, a < b and are not roots of P,

TaQ(Q,P, a, b) = Var(SRemS(P,P ′Q); a, b),

where

I

TaQ(Q,P, a, b) =
∑

x∈(a,b),P(x)=0

sgn(Q(x)),

I P ′ is the first derivative of P,

I Var computes the sign variations,

I SRemS computes the signed remainder sequence.

Also, TaQ(1,P, a, b) computes the number of real roots of P
within the interval (a, b) (i.e., Sturm’s theorem).
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To decide ∃x ∈ R.P(x) = 0 ∧ Q1(x) > 0

Let

c(Q1 ./1 0, · · · ,Qn ./n 0)

= card({x | P(x) = 0 ∧ Q1(x) ./1 0 ∧ · · · ∧ Qn(x) ./n 0})

, where ./i∈ {<,>,=}, and TaQP(Qi ) = TaQ(Qi ,P,−∞,+∞).
We have

∃x ∈ R.P(x) = 0 ∧ Q1(x) > 0⇐⇒ c(Q1 > 0) > 0,

while c(Q1 > 0) can be found by solving the following linear
equation: 1 1 1

0 1 −1
0 1 1

c(Q1 = 0)
c(Q1 > 0)
c(Q1 < 0)

 =

 TaQP(1)
TaQP(Q1)
TaQP(Q2

1 )

 .
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The number of linear equations grows very quickly.

∃x ∈ R.P(x) = 0∧Q1(x) > 0∧Q2(x) < 0⇐⇒ c(Q1 > 0,Q2 < 0) > 0,

requires us to solve a system with 9 equations:

1 1 1
0 1 −1
0 1 1

⊗
1 1 1

0 1 −1
0 1 1



c(Q1 = 0,Q2 = 0)
c(Q1 = 0,Q2 > 0)

· · ·
c(Q1 > 0,Q2 < 0)

· · ·
c(Q1 < 0,Q2 < 0)

 =


TaQP(1)
TaQP(Q2)
· · ·

TaQP(Q1Q
2
2 )

· · ·
TaQP(Q2

1Q
2
2 )


where ⊗ is tensor product.
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Tarski’s elimination procedure is mostly of theoretical
interest

Univariate case: exponential in the number of polynomials

General case: non-elementary in the number of variables

Due to its elegance, Tarski’s elimination procedure has been
implemented in Coq1, HOL Light2 and PVS3.

1Mahboubi and Cohen, “Formal proofs in real algebraic geometry: from
ordered fields to quantifier elimination”.

2Nieuwenhuis, CADE-20: 20th International Conference on Automated
Deduction, proceedings.

3Narkawicz, Muñoz, and Dutle, “Formally-Verified Decision Procedures for
Univariate Polynomial Computation Based on Sturm’s and Tarski’s Theorems.”
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Can we have a more practical procedure?

George E. Collins (1976): Yes, here is cylindrical algebraic
decomposition (CAD).
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What is cylindrical algebraic decomposition (CAD)

x1

x2

(
√

2, 1)(−
√

2, 1)

√
3−

√
3

(−
√

3, 3
2
)

P1 P2

D1,1 = {(x1, x2) | x1 < −
√

3 ∧ x2 < x2
1/2}

D1,2 = {(x1, x2) | x1 < −
√

3 ∧ x2 = x2
1/2}

D1,3 = {(x1, x2) | x1 < −
√

3 ∧ x2 > x2
1/2}

D2,1 = {(x1, x2) | x1 = −
√

3 ∧ x2 < 0}

D2,2 = {(x1, x2) | x1 = −
√

3 ∧ x2 = 0}
...

D9,2 = {(x1, x2) | x1 >
√

3 ∧ x2 = x2
1/2}

D9,3 = {(x1, x2) | x1 >
√

3 ∧ x2 > x2
1/2}

Here, P1(x1, x2) = x22 + x21 − 3 and P2(x1, x2) = x2 − x21/2.
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such that ⋃
D = R2

∀X ∈ D.∀Y ∈ D.X 6= Y → X ∩ Y = ∅
and both P1(x1, x2) = x22 + x21 − 3 and P2(x1, x2) = x2− x21/2 have
constant sign over every X ∈ D (or {P1,P2} is adapted to D)
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x1

x2
(−2, 0) ∈ D1,1

(−2, 2) ∈ D1,2

(−2, 2.5) ∈ D1,3

(−
√

3,−1) ∈ D2,1

(−
√

3, 0) ∈ D2,2

...

(2, 2) ∈ D9,2

(2, 2.5) ∈ D9,3

Let

S = {(−2, 0), (−2, 2), (−2, 2.5), · · · , (2, 2), (2, 2.5)}.

Sentences like the following can be decided:

∀x1x2.P1(x1, x2) = 0 ∧ P2(x1, x2) > 0

⇐⇒ ∀(x1, x2) ∈ S.P1(x1, x2) = 0 ∧ P2(x1, x2) > 0
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Definition (Stack)

A stack D = {D1,D2, . . . ,D2k+1} over a connected S ⊆ Rn is a
decomposition of the cylinder S × R such that

I there is a sequence of continuous functions
f0, f1, . . . , fk+1 : S −→ R, such that
f0(x) < f1(x) < · · · < fk+1(x) for all x ∈ S , f0(x) = −∞,
fk+1(x) = +∞,

I D2i+1 = {(x , x ′) ∈ S × R | fi (x) < x ′ < fi+1(x)}, for
i = 0, 1, . . . , k ,

I D2i = {(x , x ′) ∈ S × R | x ′ = fi (x)}, for i = 1, 2, . . . , k .
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Example of a stack

x1

x2

(−
√

2, 1)

(
√

2,−1)

Let

S =]−
√

2,
√

2[,

f1(x) = −
√

3− x2,

f2(x) = x2/2,

f3(x) =
√

3− x2.

A stack decomposes S × R:

D1 = {(x1, x2) | x1 ∈ S ∧ x2 < f1(x1)}
D2 = {(x1, x2) | x1 ∈ S ∧ x2 = f1(x1)}
D3 = {(x1, x2) | x1 ∈ S

∧ f1(x1) < x2 < f2(x2)}
...

D7 = {(x1, x2) | x1 ∈ S ∧ x2 > f3(x)}
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Definition (Cylindrical)

A decomposition D of Rn is cylindrical if

I n = 1, D decomposes R: there exist a finite number of points
ai ∈ R for 1 ≤ i ≤ k , such that ai < ai+1 (1 ≤ i ≤ k − 1) and

D = {(−∞, a1), {a1}, (a1, a2), {a2}, . . . , (ak−1, ak), {ak}, (ak ,∞)}.

I n > 1, there exists a cylindrical decomposition D′ of Rn−1

such that over each X ∈ D′ there is a stack t(X ) and

D =
⋃

X∈D′

t(X ).
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Theorem (Delineability)

Let P ⊆ R[x1, . . . , xn−1][xn] be a set of polynomials and C be a
connected subset of Rn−1. If

1. for every P ∈ P, the total number of complex roots (counting
multiplicities) of P(β, x) is constant as β varies over C , where
P(β, x) is a univariate polynomial in which the variables
x1, . . . , xn−1 are instantiated by β ∈ Rn−1,

2. for every P ∈ P, the number of distinct complex roots of
P(β, x) is constant as β varies over C ,

3. for every P,Q ∈ P, the total number of common complex
roots (counting multiplicities) of P(β, x) and Q(β, x) is
constant as β varies over C ,

then the total number of distinct real roots of (
∏
P)(β, x) is

constant as β varies over C .
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Require: a finite set of polynomials P ⊆ R[x1, . . . , xn]
Ensure: Return a set of sample points Sn ⊆ Rn from a CAD that

is adapted to P
1: procedure CAD(P)
2: Pn ← P
3: for i = n to 2 do . Projection phase, where
Pi ⊆ R[x1, . . . , xi ]

4: Pi−1 ← proj(Pi )
5: end for
6: S1 ← base(P1) . Base case, where base(Q) returns a set

of sample points adapted to Q ⊆ R[x ]
7: for i = 1 to n − 1 do . Lifting phase, where Si ⊆ Ri

8: Si+1 ←
⋃
β∈Si ({β} × base(Pi+1(β, x)))

9: end for
10: return Sn
11: end procedure
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Given P = {x22 + x21 − 3, x2 − x21/2},

proj(P) = {x41/4 + x21 − 3, 4x21 − 12, 2, 1}

S1 = base(proj(P)) = {−2,−
√

3,−3

2
,−
√

2, 0,
√

2,
3

2
,
√

3, 2}.

We start to lift:

P(−2, x2) = {x22 + 1, x2 − 2}
base(P(−2, x2)) = {0, 2, 2.5}
{−2} × base(P(−2, x2)) = {(−2, 0), (−2, 2), (−2, 2.5)}

...
2× base(P(2, x2)) = {(2, 0), (2, 2), (2, 2.5)}

combining which yields

S2 =
⋃
β∈S1

({β} × base(P(β, x)))

= {(−2, 0), (−2, 2), (−2, 2.5), (−
√

3,−1), · · · , (2, 2.5)},
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Real algebraic numbers

To encode an real algebraic number α, we can use a polynomial
P ∈ Q[x ] and two rational numbers a, b ∈ Q:

α = (P, a, b),

so that α is the only root of P within the interval (a, b). For
example,

√
2 = (x2 − 2, 0, 2).

They are closed under normal arithmetic:
(x2 − 2, 0, 2) + (x2 − 3, 0, 2) = (x4 − 10x2 + 1, 1, 4)
(x2 − 2, 0, 2)× (x2 − 3, 0, 2) = (x2 − 6, 1, 4)
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Exact algebraic arithmetic is too slow

Exact algebraic arithmetic has been implemented in
Isabelle/HOL45 and Coq6.

The implementation by Joosten, Thiemann and Yamada is
arguably the most efficient one (with 70K LOC in Isabelle/HOL),
and it takes 20s to compute

∑6
i=1

3
√
i .

Even Mathematica7 fails to give an awnser to
∑7

i=1
3
√
i within 30m.

4Joosten, Thiemann, and Yamada, “A Verified Implementation of Algebraic
Numbers in Isabelle/HOL”.

5Li and Paulson, “A modular, efficient formalisation of real algebraic
numbers”.

6Cohen, “Construction of Real Algebraic Numbers in Coq.”
7RootReduce[Sum[Surd[i, 3], i, 1, 7]] on Mathematica 12
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Sign determination using only rational arithmetic

The Sturm-Tarski theorem provides a way to effectively compute
the sign of a univariate polynomial at a real algebraic point:

sgn(Q(α)) =
∑

x∈(a,b),P(x)=0

sgn(Q(x))

= TaQ(Q,P, a, b)

= Var(SRemS(P,P ′Q); a, b).

where P,Q ∈ Q[x ] and α = (P, a, b). For example,

value "sgn at [:-1,1:] (Alg [:-2,0,1:] 1 2)"

which stands for the sign of (x − 1)[x →
√

2] and returns 1.
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To prove ∀x . x2 − 2 > 0 ∨ x < 2,

Let Q = {x2 − 2, x − 2}, with a root isolation procedure we can
find all real roots of Q: {−

√
2,
√

2, 2}, and construct sample
points:

{−2,−
√

2, 0,
√

2,
3

2
, 2, 3}.

Do we want to isolate (find) roots within Isabelle?

Nah, it is easier to check a root than finding it.
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To prove ∀x . x2 − 2 > 0 ∨ x < 2,

∀x .Q1(x) > 0 ∨ Q2(x) < 0

⇐= {Pick {−
√

2,
√

2, 2} from an unstructed computer algebra system}
{−
√

2,
√

2, 2} are all the roots of Q1 and Q2

∧ ∀x ∈ {−2,−
√

2, 0,
√

2,
3

2
, 2, 3}.Q1(x) > 0 ∨ Q2(x) < 0

⇐⇒
∑

α∈{−
√
2,
√
2,2}

∑
Q∈{Q1,Q2}

sgn(Q(α)) = TaQ(1,Q1,−∞,∞)

+TaQ(1,Q2,−∞,∞)

∧ ∀x ∈ {−2,−
√

2, 0,
√

2,
3

2
, 2, 3}.Q1(x) > 0 ∨ Q2(x) < 0
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To prove ∀x . x2 − 2 > 0 ∨ x < 2,

Here, [−
√

2,
√

2, 2] ( encoded as [Arep [:-2,0,1:] -2 0, Arep

[:-2,0,1:] 1 1.5, Rat 2]) has been found automatically by
external solvers.
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To prove ∃x . x2 = 2 ∧ x3 > 2.5

Proving the existential case is even easier as we only need one
witness:
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Promising results8 compared to Tarski’s elimination
procedure

Time (s)

Formula univ rcf (Isabelle) univ rcf cert (Isabelle) tarski (PVS)

ex1 0.9 0.3 2.0
ex2 1.4 0.6 6.8
ex3 1.6 0.7 13.0
ex4 1.3 0.5 20.1
ex5 1.6 0.6 315.7
ex6 5.6 3.9 timeout
ex7 38.4 34.9 timeout

Note: timeout indicates failure to terminate within 24 hours

8Li, Passmore, and Paulson, “Deciding Univariate Polynomial Problems
Using Untrusted Certificates in Isabelle/HOL”.
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Towards multivariate CAD: multivariate sign determination

Previous univariate sign determination procedure require arithmetic
in Q(α) (e.g. α =

√
2).

We convert arithmetic in Q(α) to polynomial arithmetic in Q[α]
where α is a symbolic indeterminate with some constraint (e.g.
α2 = 2).

To eliminate arithmetic in Q(α) when calculating TaQ:

degx(Q) = deg(Q[y → α])

degx(P) = deg(P[y → α])

P[y → α] pmod︸ ︷︷ ︸
arithmetic in Q(α)

Q[y → α] = (P pmod︸ ︷︷ ︸
arithmetic in Q

Q)[y → α]

where pmod is pseudo-division of polynomials.
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Bivariate sign determination procedure using only rational
arithmetic

We finish the bivariate sign determination procedure:

value "bsgn at [:[:0,-1:],[:1:]:] (Alg [:-2,0,1:] 1 2)

(Alg [:-3,0,1:] 1 2)"

which stands for the sign of (x − y)[x →
√

2, y →
√

3] and returns
-1.
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Root isolation with real algebraic coefficient?

P ⊆ Q[x1, · · · , xn]

P1, · · · ,Pn such that Pk ⊆ Q[x1, · · · , xk ]

S1, · · · ,Sn such that Sk ⊆ Q̃k

Projection

Base & Lifting

Here, Q̃ is the real closure of Q.
In the base and lifting phase, we may need to root-isolate
polynomials like

√
2x2 − 3x + 1.
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Again, we want to use certificates

There are efficient algorithms to isolate roots with algebraic
coefficients91011, but none of them is easy to implement (and
certify) in a proof assistant.

With a multivariate sign determination procedure, we can
efficiently check that S1, · · · ,Sn are indeed sample points drawn
from cells described by P1, · · · ,Pn.

9Moura and Passmore, “Computation in Real Closed Infinitesimal and
Transcendental Extensions of the Rationals.”

10Strzeboński, “Cylindrical Algebraic Decomposition using validated
numerics”.

11Boulier et al., “Real root isolation of regular chains”.
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Towards certifying the projection

The proof relies on that polynomial roots continuously depend on
the coefficients, which was further derived by Rouché’s theorem12.

12Li and Paulson, “A formal proof of Cauchy’s residue theorem”.
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What’s left for multivariate CAD

In general, we decided to fully certify the projection phase and deal
with base & lifting in a certificate-based way.

The undergoing formalisation efforts are:

I multivariate sign determination

I multivariate subresultants (univariate ones are already
available13)

Still, costly algebraic arithmetic has been avoided!

13Joosten, Thiemann, and Yamada, “Subresultants”.
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Remarks

Formalisation is time consuming – we may want to use certificates
if possible.

Many objects and sub-procedures in computer algebra are already
in the Archive of Formal Proofs:

I executable multivariate polynomials

I procedures to count real or complex roots of a polynomial

I subresultants

I polynomial factorisation

I Gröbner bases

I ODE

I · · ·
We can expect more verified computation in proof assistants.
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