ODEs and the Poincaré-Bendixson Theorem in Isabelle/HOL

Fabian Immler and Yong Kiam Tan

Carnegie Mellon University
Formal Methods in Mathematics 2020

Recap: Ordinary Differential Equations (ODEs)

Ordinary differential equations (ODEs) provide mathematical models of real world phenomena.

ODE model:

$$
\dot{x}=v, \dot{v}=-g
$$

Recap: Ordinary Differential Equations (ODEs)

Ordinary differential equations (ODEs) provide mathematical models of real world phenomena.

ODE model:

$\dot{x}=v, \dot{v}=-g$

ODE solution:

$$
\begin{aligned}
& x(t)=x_{0}+v_{0} t-\frac{g}{2} t^{2} \\
& v(t)=v_{0}-g t
\end{aligned}
$$

Properties of the ball's falling motion can be deduced from these solutions.

Recap: Ordinary Differential Equations (ODEs)

Ordinary differential equations (ODEs) provide mathematical models of real world phenomena.

ODE model:

$$
\dot{x}=v, \dot{v}=-g
$$

A model of glycolysis:

$$
\begin{aligned}
& \dot{x}=-x+a y+x^{2} y \\
& \dot{y}=b-a y-x^{2} y
\end{aligned}
$$

ODE solution:

$$
\begin{aligned}
& x(t)=x_{0}+v_{0} t-\frac{g}{2} t^{2} \\
& v(t)=v_{0}-g t
\end{aligned}
$$

Properties of the ball's falling motion can be deduced from these solutions.

ODE solution: ???

How can we deduce properties without knowing the solution?

ODEs and Dynamical Systems

A model of glycolysis:
Approaches:

$$
\begin{aligned}
& \dot{x}=-x+a y+x^{2} y \\
& \dot{y}=b-a y-x^{2} y
\end{aligned}
$$

ODEs and Dynamical Systems

A model of glycolysis:
Approaches:

$$
\begin{aligned}
& \dot{x}=-x+a y+x^{2} y \\
& \dot{y}=b-a y-x^{2} y
\end{aligned}
$$

- simulation - approximate

ODEs and Dynamical Systems

A model of glycolysis:

$$
\begin{aligned}
& \dot{x}=-x+a y+x^{2} y \\
& \dot{y}=b-a y-x^{2} y
\end{aligned}
$$

Approaches:

- simulation - approximate
- rigorous numerics - finite time

ODEs and Dynamical Systems

A model of glycolysis:

$$
\begin{aligned}
& \dot{x}=-x+a y+x^{2} y \\
& \dot{y}=b-a y-x^{2} y
\end{aligned}
$$

Approaches:

- simulation - approximate
- rigorous numerics - finite time

ODEs and Dynamical Systems

> Glycolysis model exhibits limiting periodic behavior!

A model of glycolysis:

$$
\begin{aligned}
& \dot{x}=-x+a y+x^{2} y \\
& \dot{y}=b-a y-x^{2} y
\end{aligned}
$$

- simulation - approximate
- rigorous numerics - finite time

ODEs and Dynamical Systems

A model of glycolysis:

$$
\begin{aligned}
& \dot{x}=-x+a y+x^{2} y \\
& \dot{y}=b-a y-x^{2} y
\end{aligned}
$$

Approaches:

- simulation - approximate
- rigorous numerics - finite time

ODEs and Dynamical Systems

A model of glycolysis:

$$
\begin{aligned}
& \dot{x}=-x+a y+x^{2} y \\
& \dot{y}=b-a y-x^{2} y
\end{aligned}
$$

Deduce qualitative properties directly from the equations

Approaches:

- simulation - approximate
- rigorous numerics - finite time
- deduction directly from equations

Formalization in Isabelle/HOL

Theorem (Rigorous Numerics)
Solution from initial value is contained in enclosure for time [$0, t_{\text {end }}$]

Theorem (Poincaré-Bendixson) (Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.

Formalizatin Teschl

Formalization in Isabelle/HOL

Figure 5.

systems are either periodic or tend towards a periodic trajectory.

Formalization in Isabelle/HOL

Formalization in Isabelle/HOL

Formalization in Isabelle/HOL

Formalization ir Dumortier...

Fig. 1.14. Definition of Jordan's curve

Fig. 1.15. Impossible configurations

Fig. 1.16. Possible configuration

Formalization in Isabelle/HOL

Outline

ODEs in Isabelle/HOL

The Poincaré-Bendixson Theorem
Formalization Challenges
The Monotonicity Lemma
Example

Conclusion

Outline

ODEs in Isabelle/HOL

The Poincaré-Bendixson Theorem
 Formalization Challenges
 The Monotonicity Lemma Example

Conclusion

ODEs in Isabelle/HOL

Definition
ODE $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\dot{x}=f(x)
$$

for f locally Lipschitz, autonomous/non-autonomous, C^{1}
Results

ODEs in Isabelle/HOL

Definition
ODE $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\dot{x}=f(x)
$$

for f locally Lipschitz, autonomous/non-autonomous, C^{1}
Results
existence of solution $\phi\left(x_{0}, t\right)$

- $\phi\left(x_{0}, 0\right)=x_{0}$
- $\frac{\partial}{\partial t} \phi\left(x_{0}, t\right)=f\left(\phi\left(x_{0}, t\right)\right)$

ODEs in Isabelle/HOL

Definition
ODE $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\dot{x}=f(x)
$$

for f locally Lipschitz, autonomous/non-autonomous, C^{1}
Results
existence of solution $\phi\left(x_{0}, t\right)$

- $\phi\left(x_{0}, 0\right)=x_{0}$
- $\frac{\partial}{\partial t} \phi\left(x_{0}, t\right)=f\left(\phi\left(x_{0}, t\right)\right)$
challenge: functional analysis:
$\phi=$ fixed point of Picard-iteration
$P: \mathcal{C}^{\left[\left[t_{0} ; t_{1}\right], \mathbb{R}^{n}\right]} \rightarrow \mathcal{C}^{\left[\left[t_{0} ; t_{1}\right], \mathbb{R}^{n}\right]}$

$P(\psi)=\left(t \mapsto x_{0}+\int_{t_{0}}^{t} f(\psi(\tau)) \mathrm{d} \tau\right)$

ODEs in Isabelle/HOL

Definition
ODE $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\dot{x}=f(x)
$$

for f locally Lipschitz, autonomous/non-autonomous, C^{1}
Results
flow: group action

- $\phi\left(x_{0}, 0\right)=x_{0}$
- $\phi\left(\phi\left(x_{0}, s\right), t\right)=\phi\left(x_{0}, s+t\right)$

ODEs in Isabelle/HOL

Definition
ODE $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\dot{x}=f(x)
$$

for f locally Lipschitz, autonomous/non-autonomous, C^{1}
Results
flow: group action

- $\phi\left(x_{0}, 0\right)=x_{0}$
- $\phi\left(\phi\left(x_{0}, s\right), t\right)=\phi\left(x_{0}, s+t\right)$

nice:

algebraic reasoning tedious:

$t, s, t+s \in$ existence_ivl $\left(\mathrm{X}_{0}\right)$

ODEs in Isabelle/HOL

Definition
ODE $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\dot{x}=f(x)
$$

for f locally Lipschitz, autonomous/non-autonomous, C^{1}
Results
flow: differentiability
$-\frac{\partial}{\partial x_{0}} \phi\left(x_{0}, t\right)=A(t)$

- variational equation:

$$
\dot{A}=\left.\mathrm{D} f\right|_{\phi\left(x_{0}, t\right)} \cdot A, A: \mathbb{R}^{n \times n}
$$

ODEs in Isabelle/HOL

Definition
ODE $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
\dot{x}=f(x)
$$

for f locally Lipschitz, autonomous/non-autonomous, C^{1}

Results
flow: differentiability
$-\frac{\partial}{\partial x_{0}} \phi\left(x_{0}, t\right)=A(t)$

- variational equation:
$\dot{A}=\left.\mathrm{D} f\right|_{\phi\left(x_{0}, t\right)} \cdot A, A: \mathbb{R}^{n \times n}$
challenge: module system

$$
\begin{aligned}
& \text { ODE } f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& \phi: \mathbb{R} \rightarrow \mathbb{R}^{n} \\
& \text { Var.ODE }\left(\lambda A .\left.\operatorname{Df}\right|_{\phi\left(x_{0}, t\right)} \cdot A\right): \\
& \quad \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n} \\
& \text { Var. } \phi: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}
\end{aligned}, \begin{aligned}
& \text { Lemma }\left.\mathrm{D} \phi_{t}\right|_{x_{0}}=\operatorname{Var} . \phi(t) \\
& \hline
\end{aligned}
$$

Hybrid Systems in Isabelle/HOL

hybrid $=$ continuous + discrete
ODE model:
$\dot{x}=v, \dot{v}=-g$

Hybrid Systems in Isabelle/HOL

hybrid $=$ continuous + discrete
ODE model:
$\dot{x}=v, \dot{v}=-g$
domain: $x>=0$

Hybrid Systems in Isabelle/HOL

hybrid $=$ continuous + discrete

ODE model:

$\dot{x}=v, \dot{v}=-g$
domain: $x>=0$

discrete control:
$v \leftarrow-v$ when $x=0$

Poincaré map

The main mathematical tool to talk about discrete switches at a Poincaré section (smooth surface)

Usual Definition
at periodic orbit

- return time of periodic point $=$ period

Poincaré map

The main mathematical tool to talk about discrete switches at a Poincaré section (smooth surface)

Usual Definition
at periodic orbit

- return time of periodic point $=$ period
- solve return time in neighborhood with implicit function theorem

Poincaré map

The main mathematical tool to talk about discrete switches at a Poincaré section (smooth surface)

Usual Definition

at periodic orbit

- return time of periodic point $=$ period
- solve return time in neighborhood with implicit function theorem

Formalized Definition

- first return time τ

$$
\phi\left(\mathrm{x}_{0}, \tau\left(\mathrm{x}_{0}\right)\right) \in \mathrm{S}
$$

$$
\forall t<\tau\left(\mathrm{x}_{0}\right) \cdot \phi\left(\mathrm{x}_{0}, t\right) \notin \mathbf{S}
$$

Poincaré map

The main mathematical tool to talk about discrete switches at a Poincaré section (smooth surface)

Usual Definition

at periodic orbit

- return time of periodic point $=$ period
- solve return time in neighborhood with implicit function theorem

Formalized Definition

- first return time τ $\phi\left(\mathrm{x}_{0}, \tau\left(\mathrm{x}_{0}\right)\right) \in \mathbf{S}$ $\forall t<\tau\left(\mathrm{x}_{0}\right) . \phi\left(\mathrm{x}_{0}, t\right) \notin \mathbf{S}$
- \mathcal{C}^{1} on and outside of S (continuous above/at)

Poincaré map

The main mathematical tool to talk about discrete switches at a Poincaré section (smooth surface)

Usual Definition

at periodic orbit

- return time of periodic point $=$ period
- solve return time in neighborhood with implicit function theorem

Formalized Definition

- first return time τ $\phi\left(\mathrm{x}_{0}, \tau\left(\mathrm{x}_{0}\right)\right) \in \mathbf{S}$ $\forall t<\tau\left(\mathrm{x}_{0}\right) . \phi\left(\mathrm{x}_{0}, t\right) \notin \mathbf{S}$
- \mathcal{C}^{1} on and outside of S (continuous above/at)

Summary of Abstract Results

- unique solution, flow ϕ, Poincaré map

Summary of Abstract Results

- unique solution, flow ϕ, Poincaré map

- applications:
- Formally Verified Differential Dynamic Logic [Bohrer et. al.]
- Verifying Hybrid Systems with Modal Kleene Algebra [Munive, Struth]
- Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL [Foster, Woodcock]

Summary of Abstract Results

- unique solution, flow ϕ, Poincaré map

- applications:
- Formally Verified Differential Dynamic Logic [Bohrer et. al.]
- Verifying Hybrid Systems with Modal Kleene Algebra [Munive, Struth]
- Towards Verification of Cyber-Physical Systems with UTP and Isabelle/HOL [Foster, Woodcock]

Problem

- simulation provides important insights
- not (directly) amenable to formalization

Rigorous Numerical Methods

formalize simulations?

- in principle, could verify $\left\|\operatorname{simulation}\left(x_{0}, t\right)-\phi\left(x_{0}, t\right)\right\| \leq \mathcal{O}\left(e^{t}\right)$

Rigorous Numerical Methods

formalize simulations?

- in principle, could verify $\left\|\operatorname{simulation}\left(x_{0}, t\right)-\phi\left(x_{0}, t\right)\right\| \leq \mathcal{O}\left(e^{t}\right)$
- overly pessimistic!

Rigorous Numerical Methods

formalize simulations?

- in principle, could verify $\left\|\operatorname{simulation}\left(x_{0}, t\right)-\phi\left(x_{0}, t\right)\right\| \leq \mathcal{O}\left(e^{t}\right)$
- overly pessimistic!
propagate error bounds on the fly

Rigorous Numerical Methods

formalize simulations?

- in principle, could verify $\left\|\operatorname{simulation}\left(x_{0}, t\right)-\phi\left(x_{0}, t\right)\right\| \leq \mathcal{O}\left(e^{t}\right)$
- overly pessimistic!
propagate error bounds on the fly
- stable systems damp errors

Rigorous Numerical Methods

formalize simulations?

- in principle, could verify $\left\|\operatorname{simulation}\left(x_{0}, t\right)-\phi\left(x_{0}, t\right)\right\| \leq \mathcal{O}\left(e^{t}\right)$
- overly pessimistic!
propagate error bounds on the fly
- stable systems damp errors
- like simulation, but rigorous

Rigorous Numerical Methods

formalize simulations?

- in principle, could verify $\left\|\operatorname{simulation}\left(x_{0}, t\right)-\phi\left(x_{0}, t\right)\right\| \leq \mathcal{O}\left(e^{t}\right)$
- overly pessimistic!
propagate error bounds on the fly
- stable systems damp errors
- like simulation, but rigorous

Rigor A Rigorous (and Verified) Simulation

A Rigorous (and Verified) Simulation


```
schematic_goal g_fas:
"[(- (X!0) + 8/100* (X!1) + (X!0)^2* (X!1)),(6/10-8/100* (X!1)-(X!0)^2 * (X!1))]=
    interpret_floatariths ?fas X"
    by (reify_floatariths)
concrete_definition g_fas uses g_fas
interpretation g_ode: ode_interpretation true_form UNIV g_fas
    "(\lambda(x, y). (gx x y, gy x y)::real*real)"
    "d::2" for d
    by unfold_locales (auto simp: g_fas_def less_Suc_eq_0_disj nth_Basis_list_prod Basis_list_real_def 
        gx_def gy_def eval_nat_numeral
        mk_ode_ops_def eucl__of_list_prod power2_eq_square intro!: isFDERIV_I)
lemma ptout: "t }\in{13\ldots13}\longrightarrow(x,y)\in{(0.18,2.51) .. (0.18, 2.51)} \longrightarrow
    t G g.existence_ivl0 (x, y) ^ g.flow0 (x, y) t \in {(1.51, 0.51) .. (1.57, 0.58)}"
    by (tactic code_bnds_tac @{thms g_fas_def} 30 40 20 12 [(0, 1, "0x000000")] "-" @{context} 1>)
```

$1.5223875 .40937 \mathrm{e}-10 \times 000000$
$1.5232535 .395244 \mathrm{e} 10 \times 0000000$
$15252315.367902 \mathrm{e}-10 \times 000000$
$1.527595 .3399422-10 \times 000000$
$1.53295 .288828 \mathrm{e}-10 \times 000000$
$1.5369895 .260615 \mathrm{e}-10 \times 000000$
$1.5452015 .219829 \mathrm{e}-10 \times 000000$
$1.5494375 .205454 \mathrm{e}-10 \times 0000000$
$1.5524985 .198054 \mathrm{e}-10 \times 000000$
$1.5568585 .198054 \mathrm{e}-10 \times 000000$
$1.5607035 .21248 \mathrm{e}-10 \times 0000000$
$1.5610175 .214269 e-10 \times 000000$
1.5622235.22797e-1 0x000000
$1.5636085 .253099 e-10 \times 000000$
$1.5654015 .294668 \mathrm{e}-10 \times 0000$
$1.5659835 .313015 \mathrm{e}-10 \times 0000000$
$1 \begin{aligned} & 1.565983 \\ & 1.566295 \\ & 5.32134315 \mathrm{e}-10 \times 0 \times 000000\end{aligned}$
$1.566575 .334455 \mathrm{e}-10 \times 0000000$
1.5668565 5.346362e-1 0×0000000
$1.5672385 .367166 \mathrm{e}-10 \times 000000$
$1.5672385 .367166 e-10 \times 000000$
1.5675475 .426622 e1 0×0000000
\# (1.51947 5.198049e-1) .. (1.5675475.746059e-1); devs: 26; tdev: (2.40384e-2 2.740012e-2)
$1.5699995 .799999 \mathrm{e}-10 \times 000000$
$1.515 .799999 \mathrm{e}-10 \times 000000$
$1.515 .1 \mathrm{e}-10 \times 000000$
1.569999 5. 1e-1 0x000000
$1.5699995 .799999 \mathrm{e}-10 \times 000000$
\# (1.509999 5.099997e-1) (.. (1.57 5.800004e-1); devs: 2; tdev: (3e-2 3.500002e-2)

A Verified ODE Solver

A Verified ODE Solver

Guaranteed Runge-Kutta methods [Bouissou et. al.]:

A Verified ODE Solver

Guaranteed Runge-Kutta methods [Bouissou et. al.]:

A Verified ODE Solver

Guaranteed Runge-Kutta methods [Bouissou et. al.]:

A Verified ODE Solver

Guaranteed Runge-Kutta methods [Bouissou et. al.]:

Theorem (Rigorous Euler method)

$$
\forall x_{0} \in X_{0} \cdot \phi\left(x_{0}, h\right) \in X_{0}+h \cdot f\left(X_{0}, h\right)+h^{2} \cdot R\left(X_{0}, h\right)
$$

A Verified ODE Solver

Guaranteed Runge-Kutta methods [Bouissou et. al.]:

Theorem (Rigorous Euler method)

$$
\forall x_{0} \in X_{0} \cdot \phi\left(x_{0}, h\right) \in X_{0}+h \cdot f\left(X_{0}, h\right)+h^{2} \cdot R\left(X_{0}, h\right)
$$

Algorithm
Evaluate in interval/affine arithmetic

Affine Arithmetic

- wrapping effect of intervals:

Affine Arithmetic

- wrapping effect of intervals:

- therefore zonotopes: $\left\{\ell_{0}+\sum_{i} \varepsilon_{i} \cdot \ell_{i} \mid \varepsilon_{i} \in[-1 ; 1]\right\}$

Verification

Techniques

- Refinement

Verification

Techniques

- Refinement
- Refinement

Verification

Techniques

- Refinement
- Refinement
- Refinement

Verification

Techniques

- Refinement
- Refinement
- Refinement

Example

Verification

Techniques

- Refinement
- Refinement
- Refinement

Example

- $\phi\left(X_{0}, h\right) \subseteq R$

Verification

Techniques

- Refinement
- Refinement
- Refinement

Example

- $\phi\left(X_{0}, h\right) \subseteq R$
- R defined as Runge-Kutta remainder

Verification

Techniques

- Refinement
- Refinement
- Refinement

Example

- $\phi\left(X_{0}, h\right) \subseteq R$
- R defined as Runge-Kutta remainder
- Runge-Kutta implemented in affine arithmetic (on real numbers)

Verification

Techniques

- Refinement
- Refinement
- Refinement

Example

- $\phi\left(X_{0}, h\right) \subseteq R$
- R defined as Runge-Kutta remainder
- Runge-Kutta implemented in affine arithmetic (on real numbers)
- Runge-Kutta implemented in affine arithmetic (on floating point numbers)

Smale's 14th Problem

Lorenz (1963): is this chaos?

Smale's 14th Problem

Lorenz (1963): is this chaos?

Tucker (2002): Yes:

Smale's 14th Problem

Lorenz (1963): is this chaos?

Tucker (2002): Yes:

- 1 paragraph combining standard results

Smale's 14th Problem

Lorenz (1963): is this chaos?

Tucker (2002): Yes:

- 1 paragraph combining standard
 results
- normal form theory (25 pages)

Smale's 14th Problem

Lorenz (1963): is this chaos?

Tucker (2002): Yes:

- 1 paragraph combining standard
 results
- normal form theory (25 pages)
- C++ Program (24 pages, $3800+8800$ lines of numerical code)

Smale's 14th Problem

Smale's 14th Problem

The global properties we will prove are the following:

- The return map R exists, and it is well defined in the sense of the geometric model.
- There exists a compact subset of the return plane, $N \subset \Sigma$, such that $N \backslash \Gamma$ is forward invariant under R, i.e., $R(N \backslash \Gamma) \subset N$. This ensures that the flow has an attracting set \mathcal{A} with a large basin of attraction. We can then form a cross-section of the attracting set: $\mathcal{A} \cap \Sigma=\bigcap_{n=0}^{\infty} R^{n}(N)=\Lambda$. In particular, Λ is an attracting set for R.
- On N, there exists a cone field \mathfrak{C} which is mapped strictly into itself by $D R$, i.e., for all $x \in N, D R(x) \cdot \mathfrak{C}(x) \subset \mathfrak{C}(R(x))$. The cones of \mathfrak{C} are centered along an approximation of Λ, and each cone has an opening of at least 5°.
- The tangent vectors in \mathfrak{C} are eventually expanded under the action of $D R$:
 there exists $C>0$ and $\lambda>1$ such that for all $v \in \mathfrak{C}(x), x \in N$, we have $\left|D R^{n}(x) v\right| \geq C \lambda^{n}|v|, n \geq 0$. In fact, the expansion is strong enough to ensure that R is topologically transitive on Λ. This is equivalent to having a dense orbit, and therefore proves that Λ is an attractor.
code)

Smale's 14th Problem

Last modified: Tue Mar 16 20:57:01 EST 1999
[http://www2.math.uu.se/~warwick/main/pre_thesis.html]
normal rorm uneory (z5 pages)

- C++ Program (24 pages, $3800+8800$ lines of numerical
code)

Smale's 14th Problem

Lorenz (1963): is this chaos?

Tucker (2002): Yes:

- 1 paragraph combining standard
 results
- normal form theory (25 pages)
- C++ Program (24 pages, $3800+8800$ lines of numerical code)

Smale's 14th Problem

Lorenz (1963): is this chaos?

Tucker (2002): Yes:

- 1 paragraph combining standard results
- normal form theory (25 pages)
- $\mathrm{C}++$ Program (24 pages,
 $3800+8800$ lines of numerical code)
- Immler (2018):
verified numerical computations

Smale's 14th Problem

theorem lorenz_bounds:
$" \forall x \in N-\Gamma$. x returns_to $\Sigma "$
$" \forall x \in N-\Gamma, R(x) \in N "$
$" \forall x \in N-\Gamma$. (R has_derivative $D R(x))$ (at x within $\left.\Sigma_{l_{e}}\right)$ "
$" \forall x \in N-\Gamma . \operatorname{DR}(x)^{`}(\mathfrak{C} x) \subseteq \mathfrak{C}(R(x)) "$
$" \forall x \in N-\Gamma, \forall c \in \mathbb{C}(x)$. norm $(\mathrm{DR}(\mathrm{x}) \mathrm{c}) \geq \mathcal{E} x \quad * \operatorname{norm}(\mathrm{c})$ "
$" \forall x \in N-\Gamma . \forall c \in \mathbb{C}(x)$. norm $(\operatorname{DR}(x) c) \geq \mathcal{E}_{\mathrm{p}}(R(x)) *$ norm(c)" if normal_form_correct
normal form theory (z5 pages)

- C++ Program (24 pages,

$3800+8800$ lines of numerical
code)
- Immler (2018):
verified numerical computations

Summary of Rigorous Numerical Results

- Theorem: computed enclosures contain solution

Summary of Rigorous Numerical Results

- Theorem: computed enclosures contain solution

- Applications:
- Smale's 14th problem
- (motion planning for autonomous vehicles)
- (ARCH-Software Competition)

Summary of Rigorous Numerical Results

- Theorem: computed enclosures contain solution

- Applications:
- Smale's 14th problem
- (motion planning for autonomous vehicles)
- (ARCH-Software Competition)

Problem

- concrete values, bounds, finite time

Outline

ODEs in Isabelle/HOL

The Poincaré-Bendixson Theorem
Formalization Challenges
The Monotonicity Lemma
Example

Conclusion

The Poincaré-Bendixson Theorem

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.

The Poincaré-Bendixson Theorem

In our paper/formalization:

```
theorem poincare_bendixson:
assumes xK: "compact K" "K \subseteqX" "X X X"
    "trapped_forward x K"
assumes "0& f ' ( }\omega\mathrm{ _limit_set x)"
obtains y where
    "periodic_orbit y"
    "flow0 y ' UNIV = \omega_limit_set x"
```

How do we know that the visualization is correct?

> The final theorem (some proof steps omitted) shows that a limit cycle exists within the trapping region gK , and thus that Sel'kov's model exhibits limiting periodic behavior:
theorem g_has_limit_cycle:
obtains y where
"g.limit_cycle y" "g.flow0 y • UNIV \subseteq gK"

Theorem (Poincaré-Bendixson)

(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.

Outline

ODEs in Isabelle/HOL

The Poincaré-Bendixson Theorem
Formalization Challenges
The Monotonicity Lemma
Example

Conclusion

Formalization Challenges (the "easy" ones)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.: the Jordan curve theorem, (real) analysis, ODEs.

Formalization Challenges (the "easy" ones)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.: the Jordan curve theorem, (real) analysis, ODEs.
\checkmark Isabelle/HOL and the Archive of Formal Proofs (AFP) meet these prerequisites.

Formalization Challenges (the "easy" ones)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.: the Jordan curve theorem, (real) analysis, ODEs.
\checkmark Isabelle/HOL and the Archive of Formal Proofs (AFP) meet these prerequisites.
2. Needs formalization of key dynamical systems concepts, e.g.: limit sets of trajectories, periodic orbits.

Formalization Challenges (the "easy" ones)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.: the Jordan curve theorem, (real) analysis, ODEs.
\checkmark Isabelle/HOL and the Archive of Formal Proofs (AFP) meet these prerequisites.
2. Needs formalization of key dynamical systems concepts, e.g.: limit sets of trajectories, periodic orbits.
\checkmark Mostly involves formalizing of (real) analysis-type arguments following standard presentations in textbooks.

Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key lemma that is fundamental to the plane.

Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key lemma that is fundamental to the plane.
Hartman:

Figure 5.

Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key lemma that is fundamental to the plane.
Palis \& de Melo:

Figure 10

Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key lemma that is fundamental to the plane.

Perko:

(a)

(b)

Figure 1. A Jordan curve defined by Γ and ℓ.

Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key lemma that is fundamental to the plane.

Wiggins:

FIGURE 9.0.1.

Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key lemma that is fundamental to the plane.
Chicone:

Proof. The proof is left as an exercise. Hint: Reduce to the case where t_{1}, t_{2}, and t_{3} correspond to consecutive crossing points. Then, consider the curve formed by the union of $\left\{\phi_{+}(p): t_{1} \leq t \leq t_{2}\right\}$ and the subset of Σ between $\phi_{t_{1}}(p)$ and $\phi_{t_{2}}(p)$. Draw a picture.

Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key lemma that is fundamental to the plane.
? How can we formalize these sketches in a proof assistant?

Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key lemma that is fundamental to the plane.
? How can we formalize these sketches in a proof assistant?
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.
? How can we effectively formalize these symmetries in order to minimize duplicated proof effort?

Outline

ODEs in Isabelle/HOL

The Poincaré-Bendixson Theorem
Formalization Challenges
The Monotonicity Lemma
Example

Conclusion

The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment, it does so monotonically in the order of the segment.

Definition (Transversal Segment)
A transversal segment is a (closed) 2D line segment where the RHS of the ODE is nowhere zero along the segment.

Use as Poincaré section!

The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment, it does so monotonically in the order of the segment.

Proof.

Suppose trajectory from x_{1} on the transversal touches the transversal again at x_{2} :

The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment, it does so monotonically in the order of the segment.

Proof.

Construct the Jordan curve J formed by the trajectory and the segment between x_{1}, x_{2} :

The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment, it does so monotonically in the order of the segment.

Proof.
By the Jordan curve theorem, J separates the plane into an inside I and outside O :

The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment, it does so monotonically in the order of the segment.

Proof.

Any further intersection at x_{3} must happen inside by construction, so the intersections are ordered $x_{1} \leq x_{2} \leq x_{3}$:

The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment, it does so monotonically in the order of the segment.

Proof.

Any further intersection at x_{3} must happen inside by construction, so the intersections are ordered $x_{1} \leq x_{2} \leq x_{3}$:

The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment, it does so monotonically in the order of the segment.

Proof.

Not quite done! There are several other cases, but the argument for them is symmetric:

(Left) Flow stays inside past x_{2}

(Right) Flow stays outside past x_{2}

The Monotonicity Lemma (Textbook Proof)

Lemma (Monotonicity)

If a trajectory (also called a flow) intersects a transversal segment, it does so monotonically in the order of the segment.

Proof.

Not quite done! There are several other cases, but the argument for them is symmetric:

(Right) Flow stays inside before X_{1}

The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:
3. Textbook proofs rely heavily on sketches, especially for a key lemma that is fundamental to the plane.

Subtle Claim: these are the only possibilities that can occur for J.

The Monotonicity Lemma (Formal Proof)

Three pieces of information are needed for the (Left) case:

1. Flow always crosses from outside to inside between x_{1} to x_{2}

Symmetrically for (Right) case, e.g., flow always crosses from inside to outside between x_{1} to x_{2}.

The Monotonicity Lemma (Formal Proof)

We use a "flow region" construction, (Left) case shown here:

Key Idea: Flow regions r_{1}, r_{2} must lie on opposite sides. This implies all three pieces of information (for each case, respectively).

The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.

The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.
To show:

Outside

(O)

(Right) Flow stays inside before X_{1}

The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.
For any flow, we know (from previous slides):

(Left) Flow stays inside past X_{2}

(Right) Flow stays outside past x_{2}

The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.
In particular, for the reversed flow:

The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.
Reversing a flow twice yields the flow itself:

The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry. Using (sub)locales
ODE $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
ϕ, Thm $P\left(\phi\left(x_{0}, t\right)\right)$

The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.
Using (sub)locales
ODE $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
ϕ, Thm $P\left(\phi\left(x_{0}, t\right)\right)$

```
rev.ODE \(-f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\)
```

$\phi_{-f}, \operatorname{Thm} P\left(\phi_{-f}\left(x_{0}, t\right)\right)$

The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.
Using (sub)locales
ODE $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
ϕ, Thm $P\left(\phi\left(x_{0}, t\right)\right)$

```
rev.ODE - f: 䇛践
```

ϕ_{-f}, Thm $P\left(\phi_{-f}\left(x_{0}, t\right)\right)$
\Downarrow
export and rewrite $\phi_{-f}\left(x_{0}, t\right)=\phi\left(x_{0},-t\right)$ \Downarrow

The Monotonicity Lemma (Formal Proof)

(Recall) Formalization Challenge:
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.

Key Idea: reverse flows to obtain other cases by symmetry.
Using (sub)locales
ODE $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
ϕ, Thm $P\left(\phi\left(x_{0}, t\right)\right)$

```
rev.ODE -f: 䇛践
```

ϕ_{-f}, Thm $P\left(\phi_{-f}\left(x_{0}, t\right)\right)$
\Downarrow
export and rewrite $\phi_{-f}\left(x_{0}, t\right)=\phi\left(x_{0},-t\right)$
\Downarrow
rev.Thm: $P\left(\phi\left(x_{0},-t\right)\right)$

Outline

ODEs in Isabelle/HOL

The Poincaré-Bendixson Theorem
Formalization Challenges
The Monotonicity Lemma

Example

Conclusion

Example Application

corollary poincare_bendixson_limit_cycle:
assumes "compact K" "K \subseteq X"
assumes " $x \in K$ " "positively_invariant K"
assumes " $0 \notin \mathrm{f}$ `K " assumes "flow0 x t \(\notin \mathrm{K}^{\prime}\) obtains \(y\) where "limit_cycle y" "flow0 y` UNIV \subseteq K"

comparison principle, barrier certificate

Example Application

corollary poincare_bendixson_limit_cycle:

```
        assumes "compact K" "K \subseteq X"
```

 assumes " \(x \in K\) " "positively_invariant K"
 assumes " \(0 \notin \mathrm{f}\) " K"
 assumes "flow0 x t \(\notin K "\)
 obtains \(y\) where "limit_cycle y" "flow0 y " UNIV \(\subseteq K\) "

Example Application

corollary poincare_bendixson_limit_cycle:
assumes "compact K" "K \subseteq X"
assumes " $\mathrm{X} \in \mathrm{K}$ " "positively_invariant K"
assumes " $0 \notin \mathrm{f}$ `K " assumes "flow0 x t \(\notin \mathrm{K}^{\prime}\) obtains \(y\) where "limit_cycle y" "flow0 y` UNIV $\subseteq K^{\prime}$

- comparison principle, barrier certificate
- SOS

Example Application

corollary poincare_bendixson_limit_cycle:

```
        assumes "compact K" "K \subseteq X"
```

 assumes " \(x \in K\) " "positively_invariant K"
 assumes " \(0 \notin \mathrm{f}\) ‘ K"
 assumes "flow0 x t \(\notin K "\)
 obtains \(y\) where "limit_cycle y" "flow0 y ` UNIV \(\subseteq K^{\prime}\)

Example Application

corollary noincare hendivenn limit evcle.

```
lemma positively invariant trapG:
    shows "g.positively_invariant trapG"
    unfolding trapG_def
    apply (rule g.positively_invariant_le_domain[0F positively_invariant_trapGl _ pl_has_derivative,
        of "\lambdap. -1.08 - (fst p)^2 + \overline{2}* fst p * snd p"J)
    subgoal by (auto intro!: continuous_intros derivative_eq_intros simp add: pos_quad_def)
    apply (auto simp: pld_def gx_def gy_def trapG1_def pos_quad_def p1_def)
                            Auto ypdate Update Locate Search:
    proof (prove)
    goal (1 subgoal):
    1. 人a b. 0 \leqb }
        0}\leqa
        b * 100 \leq 751 \Longrightarrow
        a*25+b*25\leq203\Longrightarrow
        38*((2*b/25-a + a 2 * b)*a)/15-(138*b/25-69*a + 69*(a
        27*((2*b/25-a+ a * * b)* a
        24* ((2*b/25-a + a 2 * b)*a* 3)/43 +
        (42/5-28*b/25-14* (a2*b))/29 +
        (651* (a* (3/5-2 * b/25-a2*b)) + 651* ((2*b/25-a + a * * b) * b))/441 +
        (8554*(a2* (3/5-2*b/25- a * * b)) + 17108* ((2*b/25-a + a c * b b * (a* b))) / 2209 -
```



```
        6*((3/5-2*b/25-a2*b) * b)/17
        (36*(a* ((3/5-2 * b/25- a 2 * b)*b)) + 18* ((2*b/25-a + a * * b) * b
        (1240* (a2* ((3/5-2*b/25- a * * b)*b)) + 1240* ((2*b/25-a + a * * b)* (a* b
        (3/5-2*b/25- a2*b)* b
        (177*(a* *(3/5-2 * b/25-a
        \leq(- (27 / 25) - a}+\mp@subsup{2}{}{2}2*a**b)*
```



```
        35*a* 3*b/16.
        3* b
        2 * a * b
        31* a
        b ^ 3/102+
        a* b ^ 3 / 59)
```

 0
 1
 \(2 x\)
 3
 4

Example Application

corollary poincare_bendixson_limit_cycle:
assumes "compact K" "K \subseteq X"
assumes " $x \in K$ " "positively_invariant K"
assumes " $0 \notin \mathrm{f}$ `K" assumes "flow0 \(\times \mathrm{t} \notin \mathrm{K} "\) obtains \(y\) where "limit_cycle y" "flow0 y` UNIV \subseteq K"

- comparison principle, barrier certificate
- SOS
- branch-andbound affine arithmetic

Example Application

corollary poincare_bendixson_limit_cycle:
assumes "compact K" "K \subseteq X"
assumes " $x \in K$ " "positively_invariant K"
assumes " $0 \notin \mathrm{f}$ `K" assumes "flow \(0 \times \mathrm{t} \notin \mathrm{K} "\) obtains \(y\) where "limit_cycle y" "flow0 y` UNIV $\subseteq K^{\prime}$

- comparison principle, barrier certificate
- SOS
- branch-andbound affine arithmetic
- reachability analysis

Example Application

Outline

ODEs in Isabelle/HOL
 The Poincaré-Bendixson Theorem
 Formalization Challenges
 The Monotonicity Lemma Example

Conclusion

Summary: Poincaré-Bendixson

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.


```
theorem poincare_bendixson:
assumes xK: "compact K" "K\subseteqX" "X X X"
"trapped_forward x K"
assumes "0@ f ' (\omega_limit_set x)"
obtains y where
"periodic_orbit y"
"flow0 y ' UNIV = \omega_limit_set x"
```

The final theorem (some proof steps omitted) shows that
a limit cycle exists within the trapping region gK, and thus
that Sel'kov's model exhibits limiting periodic behavior:
theorem g_has_limit_cycle:
obtains y where
"g.limit_cycle y" "g.flow $y^{\text {y ' UNIV } \subseteq \text { gK" }}$

Formalization Challenges (the "easy" ones)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.: the Jordan curve theorem, (real) analysis, ODEs.
\checkmark Isabelle/HOL and the Archive of Formal Proofs (AFP) meet these prerequisites.
2. Needs formalization of key dynamical systems concepts, e.g.: limit sets of trajectories, periodic orbits.
\checkmark Mostly involves formalizing of (real) analysis-type arguments following standard presentations in textbooks.

Formalization Challenges (the "easy" ones)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.

1. Has substantial prerequisite formalized mathematics, e.g.: the Jordan curve theorem, (real) analysis, ODEs.
\checkmark For Yong Kiam (Isabelle/HOL beginner), Sledgehammer and search features were very useful for discovering existing lemmas.
2. Needs formalization of key dynamical systems concepts, e.g.: limit sets of trajectories, periodic orbits.
\checkmark Mostly involves formalizing of (real) analysis-type arguments following standard presentations in textbooks.

Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key lemma that is fundamental to the plane.
\checkmark We give the first (as far as we know*) fully rigorous argument for this step, that is amenable to formalization.
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.
\checkmark Use Isabelle/HOL's locale system to formally reverse flows.

[^0]
Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key lemma that is fundamental to the plane.
? But our proof is rather different from the textbook sketches. Is this unavoidable? Are there cleaner or more abstract proofs?
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.
\checkmark Use Isabelle/HOL's locale system to formally reverse flows.

Formalization Challenges (this talk)

Theorem (Poincaré-Bendixson)
(Under mild assumptions) trajectories of planar dynamical systems are either periodic or tend towards a periodic trajectory.
3. Textbook proofs rely heavily on sketches, especially for a key lemma that is fundamental to the plane.
? But our proof is rather different from the textbook sketches. Is this unavoidable? Are there cleaner or more abstract proofs?
4. Textbook proofs argue by symmetry and present only one of the (several) cases required.
? How easily can this (entire) formalization be done in another proof assistant?

The Role of the Proof Assistant

- agnostic w.r.t. foundations

The Role of the Proof Assistant

- agnostic w.r.t. foundations
- no (deeply prover specific) formalization tricks

The Role of the Proof Assistant

- agnostic w.r.t. foundations
- no (deeply prover specific) formalization tricks
- expose ordering on line segments

The Role of the Proof Assistant

- agnostic w.r.t. foundations
- no (deeply prover specific) formalization tricks
- expose ordering on line segments
- time reversal (module system, locales!)

The Role of the Proof Assistant

- agnostic w.r.t. foundations
- no (deeply prover specific) formalization tricks
- expose ordering on line segments
- time reversal (module system, locales!)
- filters

The Role of the Proof Assistant

- agnostic w.r.t. foundations
- no (deeply prover specific) formalization tricks
- expose ordering on line segments
- time reversal (module system, locales!)
- filters
- generalizations

The Role of the Proof Assistant

- agnostic w.r.t. foundations
- no (deeply prover specific) formalization tricks
- expose ordering on line segments
- time reversal (module system, locales!)
- filters
- generalizations
- most important: libraries

The Role of the Proof Assistant

- agnostic w.r.t. foundations
- no (deeply prover specific) formalization tricks
- expose ordering on line segments
- time reversal (module system, locales!)
- filters
- generalizations
- most important: libraries
- also important: automation

The Role of the Proof Assistant

- agnostic w.r.t. foundations
- no (deeply prover specific) formalization tricks
- expose ordering on line segments
- time reversal (module system, locales!)
- filters
- generalizations
- most important: libraries
- also important: automation
- sledgehammer for library search

The Role of the Proof Assistant

- agnostic w.r.t. foundations
- no (deeply prover specific) formalization tricks
- expose ordering on line segments
- time reversal (module system, locales!)
- filters
- generalizations
- most important: libraries
- also important: automation
- sledgehammer for library search
- SOS

The Role of the Proof Assistant

- agnostic w.r.t. foundations
- no (deeply prover specific) formalization tricks
- expose ordering on line segments
- time reversal (module system, locales!)
- filters
- generalizations
- most important: libraries
- also important: automation
- sledgehammer for library search
- SOS
- reachability analysis for approx ODE

The Role of the Proof Assistant

- agnostic w.r.t. foundations
- no (deeply prover specific) formalization tricks
- expose ordering on line segments
- time reversal (module system, locales!)
- filters
- generalizations
- most important: libraries
- also important: automation
- sledgehammer for library search
- SOS
- reachability analysis for approx ODE
- would have been helpful: real arithmetic

Future Directions

Connection with Smooth Manifold Theory

Smooth Manifolds and Types to Sets for Linear Algebra in Isabelle/HOL	
abian Immer	Bohua Zhan
	State Key Laboratory of Computer S Institute of Software, Chinese Academy Beijing, China

Future Directions

Connection with Smooth Manifold Theory

Smooth Manifolds and Types to Sets for Linear

Algebra in Isabelle/HOL

Fabian Immler
Computer Science Department
Carnegie Mellon University Pittsburgh, PA, USA immler@cs.cmu.edu

Bohua Zhan
State Key Laboratory of Computer Science Institute of Software, Chinese Academy of Sciences

Beijing, China
bzhan@ios.ac.cn

1. ODEs, Poincaré-Bendixson on sphere or 2-manifold

Future Directions

Connection with Smooth Manifold Theory

Smooth Manifolds and Types to Sets for Linear
Algebra in Isabelle/HOL

Fabian Immler
Computer Science Department
Carnegie Mellon University Pittsburgh, PA, USA fimmler@cs.cmu.edu

Bohua Zhan
State Key Laboratory of Computer Science Institute of Software, Chinese Academy of Sciences

Beijing, China
bzhan@ios.ac.cn

1. ODEs, Poincaré-Bendixson on sphere or 2-manifold
2. Stable manifold theorem:
structure of the orbits approaching a hyperbolic fixed point

Future Directions

Connection with Smooth Manifold Theory

Smooth Manifolds and Types to Sets for Linear Algebra in Isabelle/HOL

Fabian Immler
Computer Science Department
Carnegie Mellon University Pittsburgh, PA, USA fimmler@cs.cmu.edu

Bohua Zhan
State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences
Beijing, China
bzhan@ios.ac.cn

1. ODEs, Poincaré-Bendixson on sphere or 2-manifold
2. Stable manifold theorem:
structure of the orbits approaching a hyperbolic fixed point
Dynamical Systems
3. Planar: Liénard's theorem, Dulac's criterion

Future Directions

Connection with Smooth Manifold Theory

Smooth Manifolds and Types to Sets for Linear Algebra in Isabelle/HOL

Fabian Immler
Computer Science Department
Carnegie Mellon University Pittsburgh, PA, USA fimmler@cs.cmu.edu

Bohua Zhan
State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences
Beijing, China
bzhan@ios.ac.cn

1. ODEs, Poincaré-Bendixson on sphere or 2-manifold
2. Stable manifold theorem: structure of the orbits approaching a hyperbolic fixed point

Dynamical Systems

1. Planar: Liénard's theorem, Dulac's criterion
2. Hartman-Grobman theorem: linearized system predicts qualitative behavior

Thank you. Questions?

[^0]: *While preparing these slides, we came across a proof in Cronin based on indexes but we have not attempted to formalize it.

