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S. Gouézel and A. Karlsson, Subadditive and multiplicative ergodic
theorems, Journal of the European Mathematical Society, to
appear.

Theorem 1.1. Let a(n,w) be an integrable and subadditive cocycle relative to the ergodic
system (Q, u, T) as above, with finite asymptotic average A. Then for almost every w there
are integers n; = n;(w) — 0o and positive real numbers d; = dg(w) — 0 such that for every i
and every { < n;,

(1.1) — 06p(w) < a(ni,w) — a(n; — £, T'w) — Al < £6,(w).

Remark 1.3. As a test case for the usability of proof assistants for current mathematical
research, Theorem 1.1 and its proof given below have been completely formalized and
checked in the proof assistant Isabelle/HOL, see the file Gouezel_Karlsson.thy in [Gol5].
In particular, the correctness of this theorem is certified.



S. Gouézel, Growth of normalizing sequences in limit theorems for
conservative maps, Electron. Commun. Probab. 23 (2018), no.
99, 1-11.

locale conservative limit =
conservative M + PS: prob_space P + PZ: real distribution Z
for M::"'a measure" and P::"'a measure" and Z::"real measure" +

fixes f g::"'a = real" and B::"nat = real"

assumes PabsM: "absolutely_continuous M P"
and Bpos: "An. B n > 0"
and M [measurable]: "f € borel_measurable M" "g € borel_measurable M" "sets P = sets M"
and non_trivial: "PZ.prob {6} < 1"
and conv: "weak_conv_m (An. distr P borel (Ax. (g x + birkhoff_sum f n x) / B n)) Z"

theorem subexponential growth:
"{(An. max @ (ln (B n) /n)) —— 0"
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Theorem (SG, 20207)

In a Gromov-hyperbolic group, excursions of length n of a random
walk converge in distribution, as metric spaces, towards the
continuous random tree.

The statement involves probability, analysis, algebra, geometry.
Additionally, the proof involves complex analysis in Banach spaces,
spectral theory of operators, graph theory, potential theory,
dynamical systems...

No hope to formalize the proof in a proof assistant. What about
the statement? Still very far.



Definition
A metric space is Gromov-hyperbolic if there exists 6 > 0 such
that, for all x,y,z, w,

d(x,y)+d(z,w) < max(d(x,z) +d(y,w),d(x,w)+d(y,z))+ 0.

Captures the notion of negative curvature on large scale.



Definition
A metric space is Gromov-hyperbolic if there exists 6 > 0 such
that, for all x,y,z, w,

d(x,y) +d(z,w) < max(d(x,z) + d(y,w),d(x,w)+d(y, z)) + 0.

Captures the notion of negative curvature on large scale.

Geometric intuition when the space is geodesic (i.e., any two
points can be joined by a geodesic): triangles are thin.

Wikimedia Commons
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Theorem (Bonk-Schramm, 2000)

Any d-hyperbolic metric space embeds isometrically in a
0-hyperbolic geodesic metric space.

Lemma

Assume that X is 0-hyperbolic. Let x,y € X. If there is no
midpoint between x and y, one can add one while retaining
d-hyperbolicity.

Proof.
Set d(m,z) = d(x,y)/2+ sup,,(d(z, w) — max(d(a, w), d(b, w))).
It works. O

Proof of Bonk-Schramm Theorem.

Enumerate all pairs of points. Add middles, then complete, and do
it all over again until it stops by transfinite induction. O



instantiation Bonk_Schramm_extension :: (Gromov_hyperbolic_space) Gromov_hyperbolic_space_geodesic
begin
definition deltaG_Bonk_Schramm_extension::"('a Bonk_Schramm_extension) itself = real" where

"deltaG_Bonk_Schramm_extension _ = deltaG(TYPE('a))"

instance apply standard
unfolding deltaG_Bonk_Schramm extension_def using Bonk_Schramm_extension_hyperbolic by auto
end (* of instantiation proof *)



instantiation Bonk_Schramm_extension :: (Gromov_hyperbolic_space) Gromov_hyperbolic_space_geodesic

begin
definition deltaG_Bonk_Schramm_extension::"('a Bonk_Schramm_extension) itself = real" where
"deltaG_Bonk_Schramm_extension _ = deltaG(TYPE('a))"

instance apply standard
unfolding deltaG_Bonk_Schramm_extension_def using Bonk_Schramm_extension_hyperbolic by auto
end (* of instantiation proof *)

Key point: use an inductive type to model both the middle
construction and the completion:

datatype 'a Bonk_Schramm_extension_unfolded =
basepoint 'a
| middle "'a Bonk_Schramm_extension unfolded" a Bonk_Schramm_extension unfolded"”
| would_be_ Cauchy "nat = 'a Bonk_Schramm_extension_unfolded"



instantiation Bonk_Schramm_extension :: (Gromov_hyperbolic_space) Gromov_hyperbolic_space_geodesic

begin

definition deltaG_Bonk_Schramm_extension::"('a Bonk_Schramm_extension) itself = real" where
"deltaG_Bonk_Schramm_extension _ = deltaG(TYPE('a))"

instance apply standard

unfolding deltaG_Bonk_Schramm_extension_def using Bonk_Schramm_extension_hyperbolic by auto
end (* of instantiation proof *)

Key point: use an inductive type to model both the middle
construction and the completion:

datatype 'a Bonk_Schramm_extension_unfolded =

basepoint 'a
| middle "'a Bonk_Schramm_extension unfolded" "'a Bonk_Schramm_extension_unfolded"
| would_be_ Cauchy "nat = 'a Bonk_Schramm_extension_unfolded"

Lesson 1

Inductive types are useful (even for mathematicians)




instantiation Bonk_Schramm_extension :: (Gromov_hyperbolic_space) Gromov_hyperbolic_space_geodesic

begin
definition deltaG_Bonk_Schramm_extension::"('a Bonk_Schramm_extension) itself = real" where
"deltaG_Bonk_Schramm_extension _ = deltaG(TYPE('a))"

instance apply standard
unfolding deltaG_Bonk_Schramm_extension_def using Bonk_Schramm_extension_hyperbolic by auto
end (* of instantiation proof *)

Key point: use an inductive type to model both the middle
construction and the completion:

datatype 'a Bonk_Schramm_extension_unfolded =
basepoint 'a

| middle "'a Bonk_Schramm_extension unfolded" "'a Bonk_Schramm_extension_unfolded"
| would_be_ Cauchy "nat = 'a Bonk_Schramm_extension_unfolded"
Lesson 1

Inductive types are useful (even for mathematicians)

Lesson 1'
Computer scientists are useful (even for mathematicians)

(datatype package in Isabelle/HOL, by Blanchette and al.)



Definition
Let A >1and C > 0. A (A, C)-quasigeodesic is a map
f : [a, b] — X such that, for all s,t € [a, b],

ALt —s| — C < d(f(s), f(t)) < Mt —s| + C.

Theorem (Morse Lemma)

Let f : [a,b] — X be a (A, C)-quasigeodesic, where X is
d-hyperbolic. Then there exists A = A(\, C,0) such that f|a, b]
and a geodesic from f(a) to f(b) are at distance at most A.
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Let A >1and C > 0. A (A, C)-quasigeodesic is a map
f : [a, b] — X such that, for all s,t € [a, b],

ALt —s| — C < d(f(s), f(t)) < Mt —s| + C.

Theorem (Morse Lemma)

Let f : [a, b] — X be a (A, C)-quasigeodesic, where X is
d-hyperbolic. Then there exists A = A(\, C,0) such that f|a, b]
and a geodesic from f(a) to f(b) are at distance at most A.

Theorem (Shchur, 2013)
One can take A(\, C,8) = 37723)\%(C + 6).

Optimal, up to the constant 37723.
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Formalized in Isabelle/HOL.



and because the function e =X is decreasing for X > 0, we can use the estimate

n 00
et = fo< ffrax——ey -
i=1

0

Summarizing all the facts, returning to the initial notation, and recalling that K =1n2/19, we
finally obtain the claimed result

H =4A2(780 + (78 + :i;e157l“2/38)8>. ]
n

One can take A(), C,6) = 92)\2(C + 6).

Formalized in Isabelle/HOL.

Mathematicians (as a community) can be wrong, and proof
assistants can already help.
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Numerical constants are irrelevant in Gromov-hyperbolic geometry.
But still, 37723 in Shchur, 92 in Gouézel-Shchur!

Reason: in general, numerical constants are wrong, so no point in
optimizing. Except when using proof assistants.

In fact, our constant is 3200 % exp(—459/50 xIn2)/In2 + 84. Sage
says it's 91.959195220789730234910660935....
lemma ineq:

"(3200::real) * exp(-459/50*1ln 2)/1n 2 + 84 < 92"
by (approximation 13)

lemma ineq2:
"(3200::real) * exp(-459/50*1n 2)/1n 2 + 84 < 91.959195220789730234910660936"
by (approximation 98)

Lesson 2’

Computer scientists are useful

(approximation package in Isabelle/HOL, by Holzl, while an
undergrad)
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Definition
Hausdorff distance between A, B C X: smallest r such that A is
included in the r-neighborhood of B, and conversely.

Definition

Gromov-Hausdorff distance between two spaces X and Y: infimum
of dyausdorfe (X', Y') where X', Y are isometric copies of X and Y
in some space Z.

Definition
Gromov-Hausdorff space: space of all nonempty compact metric
spaces up to isometry, with the Gromov-Hausdorff distance.
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metric space (a.k.a. Polish space).

One can do probability theory on the Gromov-Hausdorff space.



Theorem

The Gromov-Hausdorff space is a complete second-countable
metric space (a.k.a. Polish space).

One can do probability theory on the Gromov-Hausdorff space.

| formalized the proof of this theorem, but not in Isabelle/HOL
because | can not make sense of the sentence “a sequence of
compact metric types converges to a compact metric type there”. |
formalized it in Lean 3.

/-- The Gromov-Hausdorff space is second countable. -/

instance second_countable : second_countable_topology GH_space :=

/-- The Gromov-Hausdorff space is complete. -/
instance : complete_space (GH_space :=
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Dependent types are useful (especially to mathematicians) I
Computer scientists are useful. I

(Lean 3, developed by de Moura et al.)




