
Generating Mathematical
Structure Hierarchies using
Coq-ELPI

Cyril Cohen (Inria), Kazuhiko Sakaguchi, Enrico Tassi

FoMM, Pittsburgh, USA
January 6th, 2020

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 1



Structures in Mathematics
• A carrier in Set / Type,
• A set of constants in the carrier, and operations,
• Proofs of the axioms of the structure

Record is_ring A := mk_ring {
zero : A; add : A -> A -> A; opp : A -> A;
one : A; mul : A -> A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
addNr : left_inverse zero opp add;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;

}.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 2



Structures in Mathematics
• A carrier in Set / Type,
• A set of constants in the carrier, and operations,
• Proofs of the axioms of the structure

Record is_ring A := mk_ring {
zero : A; add : A -> A -> A; opp : A -> A;
one : A; mul : A -> A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
addNr : left_inverse zero opp add;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;

}.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 2



Structures in formalization

Purpose:
• factor theorems across instances, using the theory of each
structure,

• automatically find which structures hold on which types.

Requirements:
• declare a new instance,
• declare a new structure

- above, below or in the middle
- handle diamonds (e.g. monoid, group, commutative or not),
- by amending existing code, or not,

• predictability of inferred instance,
• robustness of user code with regard to new declarations.x

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 3



Structures in formalization

Purpose:
• factor theorems across instances, using the theory of each
structure,

• automatically find which structures hold on which types.

Requirements:
• declare a new instance,

• declare a new structure
- above, below or in the middle
- handle diamonds (e.g. monoid, group, commutative or not),
- by amending existing code, or not,

• predictability of inferred instance,
• robustness of user code with regard to new declarations.x

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 3



Structures in formalization

Purpose:
• factor theorems across instances, using the theory of each
structure,

• automatically find which structures hold on which types.

Requirements:
• declare a new instance,
• declare a new structure

- above, below or in the middle
- handle diamonds (e.g. monoid, group, commutative or not),
- by amending existing code, or not,

• predictability of inferred instance,
• robustness of user code with regard to new declarations.x

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 3



Structures in formalization

Purpose:
• factor theorems across instances, using the theory of each
structure,

• automatically find which structures hold on which types.

Requirements:
• declare a new instance,
• declare a new structure

- above, below or in the middle
- handle diamonds (e.g. monoid, group, commutative or not),
- by amending existing code, or not,

• predictability of inferred instance,

• robustness of user code with regard to new declarations.x

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 3



Structures in formalization

Purpose:
• factor theorems across instances, using the theory of each
structure,

• automatically find which structures hold on which types.

Requirements:
• declare a new instance,
• declare a new structure

- above, below or in the middle
- handle diamonds (e.g. monoid, group, commutative or not),
- by amending existing code, or not,

• predictability of inferred instance,
• robustness of user code with regard to new declarations.x

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 3



Structures relating to each other

Examples:
• Monoid ← Group ← Ring ← Field ← ...
• Euclidean Spaces → Normed Spaces → Complete Space →
Metric Spaces → Topological Spaces → ...

Going through arrows must be automated.

Two kinds arrows:
• Extensions: add operations, axioms or combine structures
• Entailment/Induction/Deduction/Generalization.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 4



Structures relating to each other

Examples:
• Monoid ← Group ← Ring ← Field ← ...
• Euclidean Spaces → Normed Spaces → Complete Space →
Metric Spaces → Topological Spaces → ...

Going through arrows must be automated.

Two kinds arrows:
• Extensions: add operations, axioms or combine structures
• Entailment/Induction/Deduction/Generalization.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 4



Structures relating to each other

Examples:
• Monoid ← Group ← Ring ← Field ← ...
• Euclidean Spaces → Normed Spaces → Complete Space →
Metric Spaces → Topological Spaces → ...

Going through arrows must be automated.

Two kinds arrows:
• Extensions: add operations, axioms or combine structures
• Entailment/Induction/Deduction/Generalization.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 4



More examples

”Calculus”
structures

”Algebraic”
structures

PartialOrder

Lattice

TotalOrder

AddGroup

Lmodule

(Com)(Unit)Ring

IntegralDomain

Field OrderedDomain

OrderedField

RealClosedField ArchimedeanField

TopologicalSpace

UniformSpace

Complete

NormedAddGroup

NormedModule

CompleteNormedModule

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 5



Structure extension

• Compositional: no need to start from scratch every time. (E.g.
the product of two groups is a group, the product of two rings is
a ring),

• Noisy: changes the internal definition of a structure. (E.g.
Defining an commutative monoid from a monoid, we get
already get one unnecessary axiom),

• Non-robust: possible breakage of user code when new
intermediate structures are added,

• Not all arrows! Really?

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 6



Structure extension

• Compositional: no need to start from scratch every time. (E.g.
the product of two groups is a group, the product of two rings is
a ring),

• Noisy: changes the internal definition of a structure. (E.g.
Defining an commutative monoid from a monoid, we get
already get one unnecessary axiom),

• Non-robust: possible breakage of user code when new
intermediate structures are added,

• Not all arrows! Really?

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 6



Structure extension

• Compositional: no need to start from scratch every time. (E.g.
the product of two groups is a group, the product of two rings is
a ring),

• Noisy: changes the internal definition of a structure. (E.g.
Defining an commutative monoid from a monoid, we get
already get one unnecessary axiom),

• Non-robust: possible breakage of user code when new
intermediate structures are added,

• Not all arrows! Really?

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 6



Structure extension

• Compositional: no need to start from scratch every time. (E.g.
the product of two groups is a group, the product of two rings is
a ring),

• Noisy: changes the internal definition of a structure. (E.g.
Defining an commutative monoid from a monoid, we get
already get one unnecessary axiom),

• Non-robust: possible breakage of user code when new
intermediate structures are added,

• Not all arrows!

Really?

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 6



Structure extension

• Compositional: no need to start from scratch every time. (E.g.
the product of two groups is a group, the product of two rings is
a ring),

• Noisy: changes the internal definition of a structure. (E.g.
Defining an commutative monoid from a monoid, we get
already get one unnecessary axiom),

• Non-robust: possible breakage of user code when new
intermediate structures are added,

• Not all arrows! Really?

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 6



Structure entailment

• More flexible: no need to cut structures into smaller bits.
• Cover the case of all arrows, including extensions.

• Major breakage when arbitrary entailment is automatic;
e.g. given two normed spaces, and making their Cartesian
product, in order to obtain the resulting topology, one can
either:

- first consider the normed space product, then derive the
corresponding topological space, or

- first derive the topological spaces and then consider the
topological space product.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 7



Structure entailment

• More flexible: no need to cut structures into smaller bits.
• Cover the case of all arrows, including extensions.

• Major breakage when arbitrary entailment is automatic;
e.g. given two normed spaces, and making their Cartesian
product, in order to obtain the resulting topology, one can
either:

- first consider the normed space product, then derive the
corresponding topological space, or

- first derive the topological spaces and then consider the
topological space product.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 7



Our Design

The best of two the worlds:
• Extension, through mixins for internal declaration and
automatic inference

• Entailment, through factory for any other use.
Factories require mixins and can produces others. (e.g. a full
axiomatic can provide all the pieces)

We generate and generalize the design from Packaging
Mathematical Structures (Garillot et al.) and Canonical Structures
for the working Coq user (Mahboubi and Tassi).

We follow a fully bundled approach, where carriers are packaged
together with their axiomatic.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 8



Our Design

The best of two the worlds:
• Extension, through mixins for internal declaration and
automatic inference

• Entailment, through factory for any other use.
Factories require mixins and can produces others. (e.g. a full
axiomatic can provide all the pieces)

We generate and generalize the design from Packaging
Mathematical Structures (Garillot et al.) and Canonical Structures
for the working Coq user (Mahboubi and Tassi).

We follow a fully bundled approach, where carriers are packaged
together with their axiomatic.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 8



Our Design

The best of two the worlds:
• Extension, through mixins for internal declaration and
automatic inference

• Entailment, through factory for any other use.
Factories require mixins and can produces others. (e.g. a full
axiomatic can provide all the pieces)

We generate and generalize the design from Packaging
Mathematical Structures (Garillot et al.) and Canonical Structures
for the working Coq user (Mahboubi and Tassi).

We follow a fully bundled approach, where carriers are packaged
together with their axiomatic.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 8



Hiearchy builder at work

Five commands:
• declare_mixin FactoryModuleName TypeName Factories.

• declare_factory FactoryModuleName TypeName Factories.

• end Functions.

• structure ModuleName Factories.

• instance Carrier Factories.

Demo
https://github.com/math-comp/hierarchy-builder

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 9

https://github.com/math-comp/hierarchy-builder


Conclusion

• High-level commands to declare structures and instances,
easy to use.

• Predictable outcome of inference,
• Takes into account the evolution of knowledge

- which is formalized, and
- which the user has.

The two knowledge do not need to be correlated.

• Robustness with regard to new declaration and even changes of
internal implementation.

Also, Coq-ELPI turned out to be a very comfortable
meta-programming language for this.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 10



Conclusion

• High-level commands to declare structures and instances,
easy to use.

• Predictable outcome of inference,
• Takes into account the evolution of knowledge

- which is formalized, and
- which the user has.

The two knowledge do not need to be correlated.

• Robustness with regard to new declaration and even changes of
internal implementation.

Also, Coq-ELPI turned out to be a very comfortable
meta-programming language for this.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 10



Future work on Hierarchy Builder

• Adding support for parameters.

• Generating hierarchies of morphisms from structures.

• Generating hierarchies of subobjects from structures.

• Supporting multiple instances on the same carrier.

• Replacing all uses in math-comp and extensions.

• Get better error messages.

Cohen, Sakaguchi, Tassi – Structure Hierarchies in Coq-ELPI – January 6th, 2020 11


