Generating Mathematical Structure Hierarchies using Coq-ELPI

Cyril Cohen (Inria), Kazuhiko Sakaguchi, Enrico Tassi

FoMM, Pittsburgh, USA
January 6th, 2020
Structures in Mathematics

- A **carrier** in Set / Type,
- A set of **constants** in the carrier, and **operations**,
- Proofs of the **axioms** of the structure
Structures in Mathematics

- A **carrier** in Set / Type,
- A set of **constants** in the carrier, and **operations**,
- Proofs of the **axioms** of the structure

```coq
Record is_ring A := mk_ring { 
  zero : A;  add : A -> A -> A;  opp : A -> A; 
  one : A;  mul : A -> A -> A; 
  addrA : associative add; 
  addrC : commutative add; 
  add0r : left_id zero add; 
  addNr : left_inverse zero opp add; 
  mulrA : associative mul; 
  mul1r : left_id one mul; 
  mulr1 : right_id one mul; 
  mulrDl : left_distributive mul add; 
  mulrDr : right_distributive mul add; 
}. 
```
Structures in formalization

Purpose:

• factor theorems across instances, using the theory of each structure,

• automatically find which structures hold on which types.
Structures in formalization

Purpose:

• factor theorems across instances, using the theory of each structure,

• automatically find which structures hold on which types.

Requirements:

• declare a new instance,
Structures in formalization

Purpose:

• factor theorems across instances, using the theory of each structure,

• automatically find which structures hold on which types.

Requirements:

• declare a new instance,

• declare a new structure
 - above, below or in the middle
 - handle diamonds (e.g. monoid, group, commutative or not),
 - by amending existing code, or not,
Structures in formalization

Purpose:
• factor theorems across instances, using the theory of each structure,
• automatically find which structures hold on which types.

Requirements:
• declare a new instance,
• declare a new structure
 - above, below or in the middle
 - handle diamonds (e.g. monoid, group, commutative or not),
 - by amending existing code, or not,
• predictability of inferred instance,
Structures in formalization

Purpose:

• factor theorems across instances, using the theory of each structure,
• automatically find which structures hold on which types.

Requirements:

• declare a new instance,
• declare a new structure
 - above, below or in the middle
 - handle diamonds (e.g. monoid, group, commutative or not),
 - by amending existing code, or not,
• predictability of inferred instance,
• robustness of user code with regard to new declarations.
Structures relating to each other

Examples:

- Monoid ← Group ← Ring ← Field ← ...
- Euclidean Spaces → Normed Spaces → Complete Space → Metric Spaces → Topological Spaces → ...

Going through arrows must be automated.

Two kinds arrows:
- Extensions: add operations, axioms or combine structures
- Entailment/Induction/Deduction/Generalization.
Structures relating to each other

Examples:

- Monoid ← Group ← Ring ← Field ← ...
- Euclidean Spaces → Normed Spaces → Complete Space → Metric Spaces → Topological Spaces → ...

Going through arrows must be automated.
Structures relating to each other

Examples:
- Monoid ← Group ← Ring ← Field ← ...
- Euclidean Spaces → Normed Spaces → Complete Space → Metric Spaces → Topological Spaces → ...

Going through arrows must be automated.

Two kinds arrows:
- Extensions: add operations, axioms or combine structures
- Entailment/Induction/Deduction/Generalization.
More examples

"Calculus" structures

"Algebraic" structures

- TopologicalSpace
- UniformSpace
- NormedAddGroup
- Complete
- NormedModule
- CompleteNormedModule
- AddGroup
- Lmodule
- IntegralDomain
- Field
- OrderedDomain
- OrderedField
- RealClosedField
- ArchimedeanField
- PartialOrder
- Lattice
- TotalOrder
Structure extension

- **Compositional**: no need to start from scratch every time. (E.g. the product of two groups is a group, the product of two rings is a ring),
Structure extension

- **Compositional**: no need to start from scratch every time. (E.g. the product of two groups is a group, the product of two rings is a ring),

- **Noisy**: changes the internal definition of a structure. (E.g. Defining a commutative monoid from a monoid, we get already get one unnecessary axiom),
Structure extension

- **Compositional**: no need to start from scratch every time. (E.g. the product of two groups is a group, the product of two rings is a ring),

- **Noisy**: changes the internal definition of a structure. (E.g. Defining an commutative monoid from a monoid, we get already get one unnecessary axiom),

- **Non-robust**: possible breakage of user code when new intermediate structures are added,
Structure extension

- **Compositional**: no need to start from scratch every time. (E.g. the product of two groups is a group, the product of two rings is a ring),

- **Noisy**: changes the internal definition of a structure. (E.g. Defining an commutative monoid from a monoid, we get already get one unnecessary axiom),

- **Non-robust**: possible breakage of user code when new intermediate structures are added,

- **Not all arrows!**
Structure extension

- **Compositional**: no need to start from scratch every time. (E.g. the product of two groups is a group, the product of two rings is a ring),

- **Noisy**: changes the internal definition of a structure. (E.g. Defining an commutative monoid from a monoid, we get already get one unnecessary axiom),

- **Non-robust**: possible breakage of user code when new intermediate structures are added,

- **Not all arrows! Really?**
Structure entailment

- **More flexible**: no need to cut structures into smaller bits.
- Cover the case of **all arrows**, including extensions.
Structure entailment

- **More flexible**: no need to cut structures into smaller bits.
- Cover the case of **all arrows**, including extensions.

- Major breakage when arbitrary entailment is automatic; e.g. given two normed spaces, and making their Cartesian product, in order to obtain the resulting topology, one can either:
 - first consider the normed space product, then derive the corresponding topological space, or
 - first derive the topological spaces and then consider the topological space product.
Our Design

The best of two the worlds:

- **Extension**, through *mixins* for **internal declaration** and **automatic inference**
- **Entailment**, through *factory* for any other use. Factories require mixins and can produce others. (e.g. a full axiomatic can provide all the pieces)
Our Design

The best of two the worlds:

- **Extension**, through *mixins* for **internal declaration** and **automatic inference**
- **Entailment**, through *factory* for any other use. Factories require mixins and can produces others. (e.g. a full axiomatic can provide all the pieces)

We generate and generalize the design from *Packaging Mathematical Structures* (Garillot et al.) and *Canonical Structures for the working Coq user* (Mahboubi and Tassi).
Our Design

The best of two the worlds:

- **Extension**, through *mixins* for *internal declaration* and *automatic inference*
- **Entailment**, through *factory* for any other use. Factories require mixins and can produces others. (e.g. a full axiomatic can provide all the pieces)

We generate and generalize the design from *Packaging Mathematical Structures* (Garillot et al.) and *Canonical Structures for the working Coq user* (Mahboubi and Tassi).

We follow a fully bundled approach, where carriers are packaged together with their axiomatic.
Hierarchy builder at work

Five commands:

- `declare_mixin FactoryModuleName TypeName Factories`.
- `declare_factory FactoryModuleName TypeName Factories`.
- `end Functions`.
- `structure ModuleName Factories`.
- `instance Carrier Factories`.

Demo

https://github.com/math-comp/hierarchy-builder
Conclusion

- High-level commands to declare structures and instances, easy to use.
- Predictable outcome of inference,
- Takes into account the evolution of knowledge
 - which is formalized, and
 - which the user has.
 The two knowledge do not need to be correlated.
- Robustness with regard to new declaration and even changes of internal implementation.
Conclusion

• High-level commands to declare structures and instances, easy to use.

• Predictable outcome of inference,

• Takes into account the evolution of knowledge
 - which is formalized, and
 - which the user has.
 The two knowledge do not need to be correlated.

• Robustness with regard to new declaration and even changes of internal implementation.

Also, Coq-ELPI turned out to be a very comfortable meta-programming language for this.
Future work on Hierarchy Builder

• Adding support for parameters.

• Generating hierarchies of morphisms from structures.

• Generating hierarchies of subobjects from structures.

• Supporting multiple instances on the same carrier.

• Replacing all uses in math-comp and extensions.

• Get better error messages.