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What is an interactive theorem prover?

I Interactive: You and the computer “collaborate” to
produce a proof

I Theorem prover: The result is a mathematical proof
I How do we relate things that happen in a computer to

mathematical truths?
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Synthesis and verification

I Theorem provers have two distinct functions:
synthesis and verification

I Synthesis: creating a proof object
I tactics
I type checking
I user interaction
I elaboration

I Verification: conferring certainty of the result
I “trusted kernel”
I soundness of the logic
I reliability of the software

I We don’t directly interact with the verification side, but it
relieves the synthesis side of pressure to be sound
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An adversarial model of proof input

I Ex: You are running a proof competition with a reward,
and want to allow arbitrarily complex proofs written by
unknown actors or exploitative machine learning systems

I Need a way to specify a target statement, against which
proofs can be checked, and which “can’t be fooled”

I Can we prove that the verifier is correct in implementation?

I Coq, Lean, Isabelle, HOL4, etc. are all too complex to
verify in a reasonable time-frame

I Even if these systems have a “small trusted kernel”, this
notion is not formalizable in practice because of the
complexities of the implementation language
I CakeML is working on this(?)
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The metamathematics of theorem provers

I LetM ⊆ {0, 1}∗ × {0, 1}∗ be a machine semantics, where
M(P, x) means that program P on input x terminates and
indicates success.
I For example,M(P, x) if P encodes a Turing machine that

when run on input x stops in finitely many steps with a 1
on the tape

I Let L ⊆ {0, 1}∗ be a language of assertions
I For example, ϕ ∈ L if ϕ encodes a statement in FOL
I We generally want ϕ ∈ L to be decidable

I Let S ⊆ L be the true, resp. provable assertions
I For example, ϕ ∈ S if ZFC ` ϕ

Functional correctness for a theorem prover

Program P is a theorem prover (for S inM and L) if for all
ϕ ∈ L, if there exists p such thatM(P, (ϕ, p)), then ϕ ∈ S.
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machine that when run on input x can possibly reach a
halting state with a 1 on the tape
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Bootstrapping a theorem prover

Functional correctness for a theorem prover

Program P is a theorem prover (for S inM and L) if for all
ϕ ∈ L, ifM(P, ϕ), then ϕ ∈ S.

I This statement is itself a logical formula in FOL, so perhaps
we can prove it

I Fix L = LPA and S = Th(N), and let V be a theorem prover
for S (i.e. V is arithmetically sound)

I ThenM(V, ϕ) implies ϕ is true
I So:

M(V, p∀ϕ ∈ L′ (M′(P, ϕ)→ ϕ ∈ S′)q)

=⇒ P is a theorem prover for S′

I Finally, let L = L′,M =M′, S = S′, V = P to prove V is a
theorem prover



Bootstrapping a theorem prover

A proof of V’s correctness inside V

1. Suppose V is a theorem prover for S ⊆ Th(N).
2. We can prove ∀ϕ ∈ L (M(V, ϕ)→ ϕ ∈ S) using V, that is,
M(V, p∀ϕ ∈ L (M(V, ϕ)→ ϕ ∈ S)q).

3. Therefore ∀ϕ ∈ L (M(V, ϕ)→ ϕ ∈ S), i.e. V is a theorem
prover for S.

I This is a circular proof!

I This is inevitable: we need some root of trust, else
everything that runs on the computer is suspect

I It is still an improvement over the unverified case where
(1) is taken on faith
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Bootstrapping a theorem prover

Ways to bolster the argument:
I If there are n verifiers V1, . . . ,Vn such that Vi proves the

correctness of Vj for all i, j ≤ n, then the correctness of any
of them implies the correctness of all
I This is robust for different logics, implementation

languages, etc, so you can pick your favorite logic/language
to believe

I Proof porting can reduce the O(n2) proofs to O(n) work
(more on this later)

I We can prove V correct directly “by inspection”:
I Read V (the verifier source code) and convince oneself that

it acts like a verifier (size of V matters!)
I Use the formal proof to guide this reading (size of the proof

matters!)
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Prove an existing language correct?

Here are some examples of things that were not designed to be
formalized:

I C
I C++

I Java
I Scala
I Haskell
I ML
I OCaml
I Lisp

I Lean
I Coq
I Isabelle
I Agda
I HOL Light
I HOL4
I ACL2
I Metamath

Many of these languages present formally defined interfaces to
users, but the implementation, the compiler or theorem prover
itself, was not originally intended for formalization.
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Metamath Zero1

I Designed from the ground up as an efficient backend
theorem prover
I Assembly language for proofs

I Crazy fast (∼300MB/s)
I Can verify entire Metamath library of ∼30000 proofs in 200

ms
I The library of supporting material from PA for this project

checks in 2 ms

I 730 lines of C / 1500 lines assembly (gcc)
I Additional verifiers and tooling written in Haskell + Rust
I Translations to/from other languages

I MM→MM0
I MM0→ “HOL′′
I MM0→ OpenTheory
I MM0→ Lean

1https://github.com/digama0/mm0

https://github.com/digama0/mm0


Why Metamath?

I The goal is to be able to support a proof of correctness of a
nontrivial application (the verifier)

I Every feature costs 10×more when you are formally
proving it
I ⇒ no frills
I Must be efficient enough to handle large proofs

I No other theorem prover I know has this combination of
properties:
I Really simple
I Really fast
I General purpose (capable of supporting any axiom system)



Why not Metamath?

I Syntax is really simple and general, but semantics are
correspondingly complex

I First order logic is a recognizable subsystem of Metamath,
but the axioms must be carefully curated

I Axioms are not O(1)!
I Definitions are axioms
I Definition conservativity is not checked by the verifier

I Expressions are strings, not trees
I Grammar rules become soundness critical
I Performance penalty for large expressions because of

duplication
I not clear if this is a positive or negative

I “No tactics? How can you even live in those conditions?”
I This is a fallacy. We’re talking about verification not

synthesis



Metamath Zero = Metamath with a semantics

I FOL with schematic metavariables
I This is not a theorem of FOL:

1. ax1: ` ϕ→ ϕ→ ϕ
2. ax1: ` ϕ→ (ϕ→ ϕ)→ ϕ
3. ax2: ` (ϕ→ (ϕ→ ϕ)→ ϕ)→ (ϕ→ ϕ→ ϕ)→ (ϕ→ ϕ)
4. MP 2,3: ` (ϕ→ ϕ→ ϕ)→ (ϕ→ ϕ)
5. MP 1,4: ` ϕ→ ϕ

I A calculus of open terms
I x : var, ϕ : wff x; ϕ ` ∀x ϕ has

y = x ` ∀y y = x as a substitution instance (in context
x, y : var)

I Direct (admissible) substitution
I A substitution is admissible if whenever ϕ does not depend

on x, if x 7→ y and ϕ 7→ t then y < Vars(t)
I Retains the fast checking loop of Metamath while

disallowing the semantic oddities
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Expressivity

I The most important property of a foundational system is
expressivity: the ability to express any mathematical
argument or computation with moderate overhead

I Foundations are characterized by what they forbid
I Pruning the search space
I Preventing “junk theorems”
I Preventing certain kinds of mathematical construction

I It is easy to add restrictions on a permissive foundation,
but it is not easy to circumvent restrictions in a restrictive
foundation

I Type systems and type inference are part of synthesis
I MM0 has an extremely basic type system (multi-sorted

FOL), but you can compile any foundational system to it
(PA, ZFC, HOL, MLTT, CIC, HoTT, etc.)



The two parts of verification
I If I want to demonstrate theorem T using V, I have two

tasks:
1. Show thatM(V, pTq) (i.e. exhibit a proof of pTq that V will

accept)
2. Validate that pTq is an encoding of T

I (1) is pure computation, while (2) requires human
intervention because T is in the mind of the human
I For example, T is the Kepler conjecture and pTq is
(!V. packing V ==>

(?c. !r. &1 <= r ==>

&(CARD(V INTER ball(vec 0,r))) <=

pi * r pow 3 / sqrt(&18) + c * r pow 2))

I MM0 uses separate files for these two tasks
1. flyspeck.mmb is a binary file that contains all the proofs

and is designed for fast verification
2. flyspeck.mm0 contains a human readable statement of the

Kepler conjecture such as the above 2

2flyspeck has not (yet) been translated to MM0



Binary verification

I Proof data is stored as a
bytecode stream that
drives a stack machine

I Terms are deduplicated,
so equality testing is
always O(1)

I Overall check time is
O(mn) where m is the
max theorem size

I Trivially parallelizable
because the verifier has
almost no state

σ ::= e | ` A | e ≡ e′ | e
?
≡ e′ stack element

H,S ::= σ heap, stack

Save: H; S, σ ↪→ H, σ; S, σ

Term t: S, e ↪→ S, e′
(
t : Γ′ ⇒ s x, Γ ` e :: Γ′

e′ := alloc(t e)

)
Ref i: H; S ↪→ H; S,Hi

Dummy s: H; S ↪→ H, e; S, e (e := alloc(x : s), x fresh)
Thm T: S, ē∗,A ↪→ S′, ` A (Unify(T): S; e; A ↪→u S′)
Hyp: ∆; H; S,A ↪→ ∆,A; H, ` A; S
Conv: S,A, ` B ↪→ S, ` A,A

?
≡ B

Refl: S, e
?
≡ e ↪→ S

Symm: S, e
?
≡ e′ ↪→ S, e′

?
≡ e

Cong: S, t e
?
≡ t e′ ↪→ S, e

?
≡ e′

∗

Unfold: S, t e, e′ ↪→ S′, e′
?
≡ e′′ (Unify(t): S; e; e′

↪→u S′, t e
?
≡ e′′)

ConvCut: S, e, e′ ↪→ S, e ≡ e′, e
?
≡ e′

ConvRef i: S, e
?
≡ e′ ↪→ S (Hi = e ≡ e′)

ConvSave: H; S, e ≡ e′ ↪→ H, e ≡ e′; S

USave: U; K, σ ↪→u U, σ; K, σ
UTerm t: K, t e ↪→u K, e
URef i: U; K,Ui ↪→u U; K
UDummy s: U; K, x ↪→u U, x; K (x : s)
UHyp: S, ` A; K ↪→u S; K,A



The specification file

delimiter $ ( ) ∼ $;

strict provable sort wff;

term im (a b: wff): wff; infixr im: $->$ prec 25;

term not (a: wff): wff; prefix not: $∼$ prec 40;

-- The Lukasiewicz axioms for propositional logic

axiom ax_1 (a b: wff): $ a -> b -> a $;

axiom ax_2 (a b c: wff):

$ (a -> b -> c) -> (a -> b) -> a -> c $;

axiom ax_3 (a b: wff):

$ (∼a -> ∼b) -> b -> a $;

axiom ax_mp (a b: wff):

$ a -> b $ >

$ a $ >

$ b $;



The specification file

def iff (a b: wff): wff =

$ ∼((a -> b) -> ∼(b -> a)) $;

infixl iff: $<->$ prec 20;

or

def iff (a b: wff): wff;

infixl iff: $<->$ prec 20;

theorem iff1 (a b: wff):

$ (a <-> b) -> a -> b $;

theorem iff2 (a b: wff):

$ (a <-> b) -> b -> a $;

theorem iff3 (a b: wff):

$ (a -> b) -> (b -> a) -> (a <-> b) $;



Synthesis



Synthesis

The MM0 verifier has high standards for the quality of its
input. How can we generate such proofs?



Translation

I MM0 lies at the intersection of Metamath and second order
logic, and so it has easy translation paths to each

I Metamath has “unusual” databases like Hofstadter’s MIU
system, that use strings essentially, but all serious
formalization is done in databases in which the term
grammar is context-free and unambiguous, so token
strings and tree representations are isomorphic

I The MM→MM0 translator can be used to losslessly
translate the entire Metamath ZFC library into MM0
I set.mm (34 MB)→ set.mm0 (17 MB) + set.mmb (28.5 MB)
I It can be calibrated to target individual theorems,

producing a much smaller mm0 file
I pnt→ pnt.mm0 (107 KB) + pnt.mmb (4.5 MB)



Translation

I MM0’s logic is a subset of HOL (FOL with universally
quantified second order variables) and there is a translation
from MM0 to a HOL-like intermediate language

I This intermediate language also has its own verifier, which
can be used to validate the translation

I With minor syntactic transformations, this intermediate
language is re-targeted to OpenTheory and Lean
I Unfortunately the OpenTheory tool runs out of memory on
set.mm, but it has been validated on smaller targets,
perhaps a more efficient verifier can do better



Translation

I The Lean port of set.mm checks, and we can prove all the
translated MM axioms in lean, so set.mm is now proven
consistent relative to Lean

I After translation, we can align MM natural numbers to
Lean natural numbers, etc. to prove theorems such as:

theorem dirith’ {n : N} {a : Z} (n0 : n , 0)
(g1 : int.gcd a n = 1) :

¬ set.finite {x | nat.prime x ∧ ↑n | ↑x - a}

I More complex theorems like the prime number theorem
could be aligned but require more theorems in Lean to
establish the isomorphisms, e.g. proving uniqueness of the
real numbers, the definition of the logarithm, etc.



MM1: the MM0 proof assistant

I MM1 is an extension of MM0 with extra commands to
support a Turing-complete programming/tactic language
similar to Scheme

I There are two implementations of MM1, in Haskell
(mm0-hs) and in Rust (mm0-rs), as servers using the
language server protocol (LSP)

I Performs unification and definition unfolding
automatically, and generates mmb files if there are no errors

I Provides live error diagnostics, hovers, go-to-definition,
etc.

I No big sidebar goal view like Lean/Coq yet, as it’s not in
LSP. Perhaps we should extend LSP to standardize this

I Demo
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The correctness proof

Functional correctness for a theorem prover

Program P is a theorem prover (for S inM and L) if for all
ϕ ∈ L, ifM(P, ϕ), then ϕ ∈ S.

We need to defineM, L, and S.

I We could takeM to be the semantics of a functional
programming language, but then we would still have to
trust the compiler, which will undoubtedly dwarf the size
of our verifier.

I We could verify the compiler separately, but this will make
the overall job much harder because the compiler doesn’t
know what it is compiling. A direct approach scales with
the task.



The correctness proof

Functional correctness for a theorem prover

Program P is a theorem prover (for S inM and L) if for all
ϕ ∈ L, ifM(P, ϕ), then ϕ ∈ S.

We need to defineM, L, and S.

I We could verify down to the hardware, but:
I Hardware is much less stable at the microarchitectural

level; there is a possibility that the hardware will outrun the
proof effort

I Hardware and firmware is usually not open source
I We can’t distribute hardware. MM0 is a github repo, not a

hardware manufacturer
I ⇒ Verify relative to the ISA

I The x86 architecture is pathologically backward compatible
I The ISA is well documented, if complex (but we only need

a small part of it)



The correctness proof

Functional correctness for a theorem prover

Program P is a theorem prover (for S inM and L) if for all
ϕ ∈ L, ifM(P, ϕ), then ϕ ∈ S.

We need to defineM, L, and S.

I LetM(P, x) if P is the contents of an ELF file, that when
loaded in Linux and executed on an x86-64 ISA, with x
provided on stdin, terminates after finitely many steps
with exit code 0.
I Some instructions are nondeterministic in the semantics,

and reading files other than stdin results in blobs of
nondeterministic data, so we load the proof file that way

I L is defined as the grammar of well formed MM0 files.
I x ∈ S if the defs in the file can be provided definitions such

that the theorems are provable from the axioms.
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Next steps



The compiler
I In order to produce proofs at the machine code level, we

have to string together theorems about assembly, register
allocation, and stack allocation with invariants in order to
refine high level correctness properties

I In MM0 computations are performed through the
application of carefully chosen sequences of theorems, but
since the prover has free choice at each stage it is most like
a nondeterministic Turing machine

I There is no innate advantage in this setting to proving a
program correct once and then executing it
deterministically (i.e. Coq-style) over composing
correctness theorems in a syntax directed way
I The nondeterministic choices correspond to efficient

unverified side calculations

I Lean has been useful to experiment with different program
verification frameworks (e.g. separation logic, matching
logic) while building the theory



Proof theory

I The correctness theorem proves that the MM0 verifier
checks things according to the MM0 spec, but now we
want to relate this to “traditional” proof theory, without
the restrictions that MM0 imposes for efficiency

I We will be well situated to reason about proof theory, since
we already have a deep embedding of formulas as
represented by MM0 inside the MM0 + PA logic
I For example, we would like to establish that if

MM0 ` peano.mm0 + theorem : T then PA ` T
I Gödel’s theorems should be an easy corollary of the work

done here



A verified reflective kernel

I Since MM0 has a definition of machine code evaluation, it
can reason about an extension of the kernel to include a
primitive of the form:
Given an x86 function P that is proven to be safe, execute
it and if it returns a value x, return a proof that the x86
semantics can eventually step to x.

and prove that this is also correct.
I This primitive would allow the construction of more high

level code extraction techniques to prove theorems that
would otherwise be too expensive to compute, without
giving up any of the strong correctness guarantees.



Conclusion

I MM0 is a principled attempt to address the problem of
bootstrapping trust in a theorem prover, while remaining
efficient even at relatively large scales.

I It is not a monolith, and I encourage both
reimplementations of MM0 and alternative bootstraps in
other logics that can help bolster the overall trust base.

I MM0 is not trying to be a replacement for Lean, Coq,
Isabelle etc. These are synthesis tools, and MM0 is not.

I While still rough on the edges, MM1 demonstrates that
there is no innate barrier to building an interactive theorem
prover over a Metamath-like soft typed foundation.



Conclusion

I MM0 is a work in progress, but many aspects are already
well developed, and you should try out the language if it
interests you.

I I hope that some day soon every major theorem prover
will either be verified or have a (practical!) extraction path
for their theorems to a verified theorem prover.

https://arxiv.org/abs/1910.10703

https://github.com/digama0/mm0

Thanks!

https://arxiv.org/abs/1910.10703
https://github.com/digama0/mm0
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