A Coq Formalization of Lebesgue Integration of Nonnegative Functions

Sylvie Boldo
Inria, Université Paris-Saclay
January 7th, 2020

Disclaimers

Disclaimer 1: this is joint work with

- François Clément,
- Florian Faissole,
- Vincent Martin,
- Micaela Mayero.

Disclaimers

Disclaimer 1: this is joint work with

- François Clément,
- Florian Faissole,
- Vincent Martin,
- Micaela Mayero.

Disclaimer 2:
This formalization of mathematics is done in Coq.

Disclaimers

Disclaimer 1: this is joint work with

- François Clément,
- Florian Faissole,
- Vincent Martin,
- Micaela Mayero.

Disclaimer 2:
This formalization of mathematics is done in Coq.
Disclaimer 3:
There is (nearly) no computer arithmetic!

Outline

(1) Introduction

(2) Towards the Finite Element Method
(3) Lebesgue Integration

- Measurability
- Measure
- Simple Functions and their Integral
- Lebesgue Integral of Nonnegative Functions

4 Conclusion and Perspectives

Introduction

mathematics

Introduction

Mathematics
$\mathbb{R}, \int, \frac{\partial^{2} u}{\partial t^{2}}$
theorems
Applied Mathematics
numerical scheme, convergence algorithms + theorems

Introduction

mathematics

$\mathbb{R}, \int, \frac{\partial^{2} u}{\partial t^{2}}$
theorems

Applied Mathematics

Computer
numerical scheme, convergence algorithms + theorems
floating-point numbers, implementation programs + ?

Introduction

Motivations

PDE (Partial Differential Equation) \Rightarrow weather forecast
 \Rightarrow nuclear simulation
 \Rightarrow optimal control
 \Rightarrow...

Motivations

$$
\begin{aligned}
\text { PDE (Partial Differential Equation) } & \Rightarrow \text { weather forecast } \\
& \Rightarrow \text { nuclear simulation } \\
& \Rightarrow \text { optimal control } \\
& \Rightarrow \ldots
\end{aligned}
$$

Usually too complex to solve by an exact mathematical formula \Rightarrow approximated by numerical scheme over discrete grids/volumes
\Rightarrow mathematical proofs of the convergence of the numerical scheme (we compute something close to the PDE solution if the size decreases)

Motivations

$$
\begin{aligned}
\text { PDE (Partial Differential Equation) } & \Rightarrow \text { weather forecast } \\
& \Rightarrow \text { nuclear simulation } \\
& \Rightarrow \text { optimal control } \\
& \Rightarrow \ldots
\end{aligned}
$$

Usually too complex to solve by an exact mathematical formula \Rightarrow approximated by numerical scheme over discrete grids/volumes
\Rightarrow mathematical proofs of the convergence of the numerical scheme (we compute something close to the PDE solution if the size decreases)
\Rightarrow real program implementing the scheme/method

Motivations

$$
\begin{aligned}
\text { PDE (Partial Differential Equation) } & \Rightarrow \text { weather forecast } \\
& \Rightarrow \text { nuclear simulation } \\
& \Rightarrow \text { optimal control } \\
& \Rightarrow \ldots
\end{aligned}
$$

Usually too complex to solve by an exact mathematical formula \Rightarrow approximated by numerical scheme over discrete grids/volumes
\Rightarrow mathematical proofs of the convergence of the numerical scheme (we compute something close to the PDE solution if the size decreases)
\Rightarrow real program implementing the scheme/method
Let us machine-check this kind of programs!

Outline

(1) Introduction
(2) Towards the Finite Element Method
(3) Lebesgue Integration

- Measurability
- Measure
- Simple Functions and their Integral
- Lebesgue Integral of Nonnegative Functions

4 Conclusion and Perspectives

Motivations

http://www.ima.umn.edu/~arnold/disasters/sleipner.html

The sinking of the Sleipner A offshore platform

Excerpted from a report of SINTEF, Civil and Environmental Engineering:
The Sleipner A platform produces oil and gas in the North Sea and is supported on the seabed at a water depth of 82 m . It is a Condeep type platform with a concrete gravity base structure consisting of 24 cells and with a total base area of $16000 \mathrm{~m}^{2}$. Four cells are elongated to shafts supporting the platform deck. The first concrete base structure for Sleipner A sprang a leak and sank under a controlled ballasting operation during preparation for deck mating in Gandsfjorden outside Stavanger, Norway on 23 August 1991.

Immediately after the accident, the owner of the platform, Statoil, a Norwegian oil company appointed an investigation group, and SINTEF was contracted to be the technical advisor for this group.

The investigation into the accident is described in 16 reports...
The conclusion of the investigation was that the loss was caused by a failure in a cell wall, resulting in a serious crack and a leakage that the pumps were not able to cope with. The wall failed as a result of a combination of a serious error in the finite element analysis and insufficient anchorage of the reinforcement in a critical zone.

A better idea of what was involved can be obtained from this photo and sketch of the platform. The top deck weighs 57,000 tons, and provides
accommodation for about 200 people and support for drilling equipment weighing about 40,000 tons. When the first model sank in

Motivations

Real life applications need solving PDE (Partial Differential Equation) on complex 3D geometries.

Motivations

Real life applications need solving PDE (Partial Differential Equation) on complex 3D geometries.

© V. Martin

Motivations

Real life applications need solving PDE (Partial Differential Equation) on complex 3D geometries.

© V. Martin
Instead of regular 2D/3D grids, we consider meshes made of triangles/tetrahedra.

Motivations

The Finite Element Method (FEM) is the most used method to solve PDEs over meshes.

FEM encompasses methods for connecting many simple element equations over many small subdomains, named finite elements, to approximate a more complex equation over a larger domain.
(https://en.wikipedia.org/wiki/Finite_element_method)

Motivations

The Finite Element Method (FEM) is the most used method to solve PDEs over meshes.

FEM encompasses methods for connecting many simple element equations over many small subdomains, named finite elements, to approximate a more complex equation over a larger domain.
(https://en.wikipedia.org/wiki/Finite_element_method)
\Rightarrow mathematical proofs of the FEM
$\Rightarrow C++$ library (Felisce) implementing the FEM

Motivations

The Finite Element Method (FEM) is the most used method to solve PDEs over meshes.

FEM encompasses methods for connecting many simple element equations over many small subdomains, named finite elements, to approximate a more complex equation over a larger domain.
(https://en.wikipedia.org/wiki/Finite_element_method)
\Rightarrow mathematical proofs of the FEM
$\Rightarrow C++$ library (Felisce) implementing the FEM
Let us machine-check this program!

Motivations

The Finite Element Method (FEM) is the most used method to solve PDEs over meshes.

FEM encompasses methods for connecting many simple element equations over many small subdomains, named finite elements, to approximate a more complex equation over a larger domain.
(https://en.wikipedia.org/wiki/Finite_element_method)
\Rightarrow mathematical proofs of the FEM
$\Rightarrow C++$ library (Felisce) implementing the FEM
Let us machine-check this program!
First, let us understand/formally prove the mathematics.

Mathematicians at work for Lax-Milgram theorem

- more 50 pages of mathematical proofs

Mathematicians at work for Lax-Milgram theorem

- more 50 pages of mathematical proofs
- very detailed!

Mathematicians at work for Lax-Milgram theorem

- more 50 pages of mathematical proofs
- very detailed!
- more than 7,000 lines and 220,000 characters

Mathematicians at work for Lax-Milgram theorem

- more 50 pages of mathematical proofs
- very detailed!
- more than 7,000 lines and 220,000 characters
- with dependencies!

Mathematicians at work for Lax-Milgram theorem

- more 50 pages of mathematical proofs
- very detailed!
- more than 7,000 lines and 220,000 characters
- with dependencies!

Mathematicians at work for Lax-Milgram theorem

- more 50 pages of mathematical proofs
- very detailed!
- more than 7,000 lines and 220,000 characters
- with dependencies!

Proof engineering

Let us build upon the Coquelicot library (Boldo, Lelay, Melquiond)

+ general spaces

Proof engineering

Let us build upon the Coquelicot library (Boldo, Lelay, Melquiond)

+ general spaces
+ many existing theorems

Proof engineering

Let us build upon the Coquelicot library (Boldo, Lelay, Melquiond)

+ general spaces
+ many existing theorems
- not always the space we need

Enriched Hierarchy

Summary of the work done

- results about functional spaces, linear and bilinear mappings

Summary of the work done

- results about functional spaces, linear and bilinear mappings
- fixed-point theorem in a sub-complete normed module

Summary of the work done

- results about functional spaces, linear and bilinear mappings
- fixed-point theorem in a sub-complete normed module
- decide if a space (\geq NormedModule) is only zero

Summary of the work done

- results about functional spaces, linear and bilinear mappings
- fixed-point theorem in a sub-complete normed module
- decide if a space (\geq NormedModule) is only zero
- norm on functions (operator_norm) on $\mathbb{R} \cup\{+\infty\}$

Summary of the work done

- results about functional spaces, linear and bilinear mappings
- fixed-point theorem in a sub-complete normed module
- decide if a space (\geq NormedModule) is only zero
- norm on functions (operator_norm) on $\mathbb{R} \cup\{+\infty\}$
- 8 equivalences of continuity of linear mappings

Summary of the work done

- results about functional spaces, linear and bilinear mappings
- fixed-point theorem in a sub-complete normed module
- decide if a space (\geq NormedModule) is only zero
- norm on functions (operator_norm) on $\mathbb{R} \cup\{+\infty\}$
- 8 equivalences of continuity of linear mappings
- definitions of pre-Hilbert and Hilbert spaces in Coquelicot hierarchy

Summary of the work done

- results about functional spaces, linear and bilinear mappings
- fixed-point theorem in a sub-complete normed module
- decide if a space (\geq NormedModule) is only zero
- norm on functions (operator_norm) on $\mathbb{R} \cup\{+\infty\}$
- 8 equivalences of continuity of linear mappings
- definitions of pre-Hilbert and Hilbert spaces in Coquelicot hierarchy
- define clm: the set of the continuous linear mappings

Summary of the work done

- results about functional spaces, linear and bilinear mappings
- fixed-point theorem in a sub-complete normed module
- decide if a space (\geq NormedModule) is only zero
- norm on functions (operator_norm) on $\mathbb{R} \cup\{+\infty\}$
- 8 equivalences of continuity of linear mappings
- definitions of pre-Hilbert and Hilbert spaces in Coquelicot hierarchy
- define clm: the set of the continuous linear mappings
- prove it is a NormedModule, to consider clm $E(\operatorname{clm} E \mathbb{R})$

Summary of the work done

- results about functional spaces, linear and bilinear mappings
- fixed-point theorem in a sub-complete normed module
- decide if a space (\geq NormedModule) is only zero
- norm on functions (operator_norm) on $\mathbb{R} \cup\{+\infty\}$
- 8 equivalences of continuity of linear mappings
- definitions of pre-Hilbert and Hilbert spaces in Coquelicot hierarchy
- define clm: the set of the continuous linear mappings
- prove it is a NormedModule, to consider clm $E(\operatorname{clm} E \mathbb{R})$
- prove Lax-Milgram theorem and Céa's lemma

Summary of the work done

- results about functional spaces, linear and bilinear mappings
- fixed-point theorem in a sub-complete normed module
- decide if a space (\geq NormedModule) is only zero
- norm on functions (operator_norm) on $\mathbb{R} \cup\{+\infty\}$
- 8 equivalences of continuity of linear mappings
- definitions of pre-Hilbert and Hilbert spaces in Coquelicot hierarchy
- define clm: the set of the continuous linear mappings
- prove it is a NormedModule, to consider clm $E(\operatorname{clm} E \mathbb{R})$
- prove Lax-Milgram theorem and Céa's lemma
- for a total of about 10 k lines of Coq and 430 lemmas/definitions

Lax-Milgram Theorem and Céa's Lemma

Theorem (Lax-Milgram)

Let $E:$ Hilbert, $f \in E^{\prime}, C, \alpha \in \mathbb{R}_{+}^{*}$. Let $\varphi: E \rightarrow$ Prop, φ ModuleSpace-compatible and complete. Let a be a bilinear form of E bounded by C and α-coercive. Then:

$$
\exists!u \in E, \varphi(u) \wedge \forall v \in E, \varphi(v) \Longrightarrow f(v)=a(u, v) \wedge\|u\|_{E} \leq \frac{1}{\alpha}\|f\|_{\varphi}
$$

Lemma (Céa)

Let $E:$ Hilbert, $f \in E^{\prime}, 0<\alpha$. Let $\varphi: E \rightarrow$ Prop, φ
ModuleSpace-compatible and complete. Let a be a bilinear form of E, bounded by $C>0$ and α-coercive. Let u and u_{φ} be the solutions given by Lax-Milgram Theorem respectively on E and on the subspace φ. Then:

$$
\forall v_{\varphi} \in E, \varphi\left(v_{\varphi}\right) \Longrightarrow\left\|u-u_{\varphi}\right\|_{E} \leq \frac{C}{\alpha}\left\|u-v_{\varphi}\right\|_{E}
$$

Where are we?

Towards the Coq formalization of the finite element method:

- Lax-Milgram theorem (\checkmark)

Where are we?

Towards the Coq formalization of the finite element method:

- Lax-Milgram theorem (\checkmark)
- requires the subspace to be complete
(\checkmark for finite-dimensional subspaces)

Where are we?

Towards the Coq formalization of the finite element method:

- Lax-Milgram theorem (\checkmark)
- requires the subspace to be complete
(\checkmark for finite-dimensional subspaces)
- requires E to be a Hilbert space

Where are we?

Towards the Coq formalization of the finite element method:

- Lax-Milgram theorem (\checkmark)
- requires the subspace to be complete
(\checkmark for finite-dimensional subspaces)
- requires E to be a Hilbert space
- E will be instantiated as the Sobolev space L_{2}

Where are we?

Towards the Coq formalization of the finite element method:

- Lax-Milgram theorem (\checkmark)
- requires the subspace to be complete
(\checkmark for finite-dimensional subspaces)
- requires E to be a Hilbert space
- E will be instantiated as the Sobolev space L_{2}
\Rightarrow prove that L_{2} is an Hilbert space

Where are we?

Towards the Coq formalization of the finite element method:

- Lax-Milgram theorem (\checkmark)
- requires the subspace to be complete
(\checkmark for finite-dimensional subspaces)
- requires E to be a Hilbert space
- E will be instantiated as the Sobolev space L_{2}
\Rightarrow prove that L_{2} is an Hilbert space
\Rightarrow Lebesgue integration!

Where are we?

Towards the Coq formalization of the finite element method:

- Lax-Milgram theorem (\checkmark)
- requires the subspace to be complete
(\checkmark for finite-dimensional subspaces)
- requires E to be a Hilbert space
- E will be instantiated as the Sobolev space L_{2}
\Rightarrow prove that L_{2} is an Hilbert space
\Rightarrow Lebesgue integration!

Outline

(1) Introduction
(2) Towards the Finite Element Method
(3) Lebesgue Integration

- Measurability
- Measure
- Simple Functions and their Integral
- Lebesgue Integral of Nonnegative Functions

4 Conclusion and Perspectives

Outline

(1) Introduction
(2) Towards the Finite Element Method
(3) Lebesgue Integration

- Measurability
- Measure
- Simple Functions and their Integral
- Lebesgue Integral of Nonnegative Functions
(4) Conclusion and Perspectives

Measurability

Given a set $\mathrm{E} \rightarrow$ Prop, is it measurable?

Measurability

Given a set $\mathrm{E} \rightarrow$ Prop, is it measurable?
We chose the definition from the generator sets:
Context $\{\mathrm{E}:$ Type $\}$.
(* initialization sets *)
Variable gen : (E \rightarrow Prop) \rightarrow Prop.

Inductive measurable : $(\mathrm{E} \rightarrow$ Prop) \rightarrow Prop $:=$
\mid measurable_gen : forall omega, gen omega \rightarrow measurable omega measurable_empty : measurable (fun _ \Rightarrow False)
measurable_compl : forall omega,
measurable (fun $x \Rightarrow$ not (omega x)) \rightarrow measurable omega
| measurable_union_countable:
forall omega:nat \rightarrow ($\mathrm{E} \rightarrow$ Prop),
$($ forall n, measurable (omega n)) \rightarrow measurable (fun $x \Rightarrow$ exists n, omega $n x$).

The measurable sets are aka σ-algebras.

Measurability

Advantages of Inductive:
\Rightarrow induction is possible
\Rightarrow easy theorems

Measurability

Advantages of Inductive:
\Rightarrow induction is possible
\Rightarrow easy theorems
We defined generators on \mathbb{R} and $\overline{\mathbb{R}}$:
Definition gen_R_cc := (fun om \Rightarrow exists ab, (forall x, om $x \leftrightarrow a<=x<=b$). .
Definition gen_Rbar_mc $:=\left(\right.$ fun om \Rightarrow exists a, (forall x, om $\left.x \leftrightarrow R b a r _l e a x\right)$).

Measurability

Advantages of Inductive:
\Rightarrow induction is possible
\Rightarrow easy theorems
We defined generators on \mathbb{R} and $\overline{\mathbb{R}}$:
Definition gen_R_cc := (fun om \Rightarrow exists ab, (forall x, om $x \leftrightarrow a<=x<=b)$).
Definition gen_Rbar_mc := (fun om \Rightarrow exists a, (forall x, om $x \leftrightarrow$ Rbar_le a x)).

But we may use other generators and prove the measurable sets are the same. For instance $\mathrm{a}<\mathrm{x}<\mathrm{b}$ or with a and b in \mathbb{Q}.

Measurability

Advantages of Inductive:
\Rightarrow induction is possible
\Rightarrow easy theorems
We defined generators on \mathbb{R} and $\overline{\mathbb{R}}$:
Definition gen_R_cc $:=($ fun om \Rightarrow exists a b, (forall x , om $\mathrm{x} \leftrightarrow \mathrm{a}<=\mathrm{x}<=\mathrm{b}$)).
Definition gen_Rbar_mc $:=\left(\right.$ fun om \Rightarrow exists a, (forall x, om $\left.x \leftrightarrow R b a r _l e a x\right)$).

But we may use other generators and prove the measurable sets are the same. For instance $\mathrm{a}<\mathrm{x}<\mathrm{b}$ or with a and b in \mathbb{Q}.

And we proved that it is equivalent to the usual Borel σ-algebras:
Lemma measurable_R_open : forall om, measurable gen_R_cc om \leftrightarrow measurable open om.

Measurable functions

A function $f: E \rightarrow F$ is measurable if the set $A(f(x))$ is measurable in F for all measurable sets A in E :

```
Definition measurable_fun : (E }->\textrm{F})->\mathrm{ Prop :=
    fun f = (forall (A: F }->\mathrm{ Prop), measurable genF A }
    measurable genE (fun x }=>A(fx))\mathrm{ ).
```


Measurable functions

A function $f: E \rightarrow F$ is measurable if the set $A(f(x))$ is measurable in F for all measurable sets A in E :

```
Definition measurable_fun : (E }->\mathrm{ F) }->\mathrm{ Prop :=
    fun f (forall (A: F }->\mathrm{ Prop), measurable genF A }
    measurable genE (fun x }=>\mathrm{ A (f x))).
```

The sum and multiplication by a scalar of measurable functions on \mathbb{R} and $\overline{\mathbb{R}}$ are measurable functions.

Measurable functions

A function $f: E \rightarrow F$ is measurable if the set $A(f(x))$ is measurable in F for all measurable sets A in E :

Definition measurable_fun : $(\mathrm{E} \rightarrow \mathrm{F}) \rightarrow$ Prop $:=$ fun $f \Rightarrow$ (forall (A: F \rightarrow Prop), measurable genF A \rightarrow
measurable genE (fun $x \Rightarrow A(f x))$).

The sum and multiplication by a scalar of measurable functions on \mathbb{R} and $\overline{\mathbb{R}}$ are measurable functions.

When considering the restriction of f on the subset A.
Lemma measurable_fun_when_charac:

```
forall ( \(\mathrm{f} \mathrm{f}^{\prime}: \mathrm{E} \rightarrow\) Rbar) (A : E \(\rightarrow\) Prop),
    measurable gen \(A \rightarrow\)
    (forall \(x, A x \rightarrow f x=f^{\prime} x\) ) \(\rightarrow\)
    measurable_fun_Rbar f' \(\rightarrow\)
    measurable_fun_Rbar (fun \(x \Rightarrow\) Rbar_mult (f x) (charac A \(x\) ). .
```

with charac A the characteristic function $\mathbb{1}_{A}$.

Outline

(1) Introduction
(2) Towards the Finite Element Method
(3) Lebesgue Integration

- Measurability
- Measure
- Simple Functions and their Integral
- Lebesgue Integral of Nonnegative Functions
(4) Conclusion and Perspectives

Measure definition

We choose to not (yet) define the Lebesgue measure, but define what a measure is supposed to satisfy:

```
Context {E: Type}.
Variable gen : (E }->\mathrm{ Prop) }->\mathrm{ Prop.
Record measure := mk_measure {
    meas :> (E->Prop) }->\mathrm{ Rbar ;
    meas_False : meas (fun__ False)=0;
    meas_ge_0: forall om, Rbar_le 0 (meas om) ;
    meas_sigma_additivity : forall omega :nat }->\mathrm{ ( }\textrm{E}->\mathrm{ Prop),
        (forall n, measurable gen (omega n)) }
        (forall nmx, omega n x omega m x }->\textrm{n}=\textrm{m}\mathrm{ )
        meas (fun x m exists n, omega n x)
            = Sup_seq (fun n }=>\mathrm{ sum_Rbar n (fun m meas (omega m))
}.
```

Note that we have at least a measure: the Dirac measure.

Measure properties

Many properties hold for all measures such as:
Lemma measure_Boole_ineq : forall (mu:measure) (A:nat $\rightarrow \mathrm{E} \rightarrow$ Prop) (N : nat), (forall $\mathrm{n}, \mathrm{n}<=\mathrm{N} \rightarrow$ measurable gen (An)) \rightarrow Rbar_le (mu (fun $x \Rightarrow$ exists $n, n<=N \wedge A n x)$)
(sum_Rbar N (fun m \Rightarrow mu (A m)).

$$
\mu\left(\bigcup_{i \in[0 . . N]} A_{i}\right) \leq \sum_{i \in[0 . . N]} \mu\left(A_{i}\right)
$$

Outline

(1) Introduction
(2) Towards the Finite Element Method
(3) Lebesgue Integration

- Measurability
- Measure
- Simple Functions and their Integral
- Lebesgue Integral of Nonnegative Functions
(4) Conclusion and Perspectives

Simple functions?

Examples of simple functions @ mathonline

$$
f=\sum_{y \in f(E)} \mathbb{1}_{f-1}(\{y\})
$$

Simple functions?

Examples of simple functions @ mathonline

$$
f=\sum_{y \in f(E)} \mathbb{1}_{f-1}(\{y\})
$$

We have tried various definitions of simple functions, especially as we prefer to sum over a finite set of values.

Simple functions definition

```
Definition finite_vals : (E }->\textrm{R})->(\mathrm{ list R) }->\mathrm{ Prop :=
    fun fl l forall y, In (f y) l.
```

\Rightarrow OK, but not unique.

Simple functions definition

```
Definition finite_vals : (E }->\textrm{R})->(\mathrm{ list R) }->\mathrm{ Prop :=
    fun fl l forall y, In (f y) l.
```

$\Rightarrow \mathrm{OK}$, but not unique.

Definition finite_vals_canonic $:(E \rightarrow R) \rightarrow($ list $R) \rightarrow$ Prop $:=$ fun $\mathrm{fl} \Rightarrow($ LocallySorted Rlt l) \wedge
(forall x , $\operatorname{In} \mathrm{x} l \rightarrow$ exists $\mathrm{y}, \mathrm{f} \mathrm{y}=\mathrm{x}) \wedge$ (forall y, $\operatorname{In}(f y) l$).
\Rightarrow unique!
We were able to construct the second list from the first.

Simple functions integration

$$
\int f d \mu \stackrel{\text { def. }}{=} \sum_{a \in f(X)} a \mu\left(f^{-1}(a)\right) \in \overline{\mathbb{R}}
$$

Simple functions integration

$$
\int f d \mu \stackrel{\text { def. }}{=} \sum_{a \in f(X)} a \mu\left(f^{-1}(a)\right) \in \overline{\mathbb{R}}
$$

Definition SF_aux : $(\mathrm{E} \rightarrow \mathrm{R}) \rightarrow($ list R$) \rightarrow$ Prop $:=$ fun $f l \Rightarrow$ finite_vals_canonic fl \wedge
(forall a, measurable gen (fun $x \Rightarrow f x=a$).
Definition SF $:(E \rightarrow R) \rightarrow$ Set $:=$ fun $f \Rightarrow\left\{1 \mid S F _\right.$aux $\left.f l\right\}$.
Definition af1 ($\mathrm{f}: \mathrm{E} \rightarrow \mathrm{R}$) :=
(fun a: Rbar \Rightarrow Rbar_mult a (mu (fun $(x: E) \Rightarrow f x=a)$).
Definition LInt_simple_fun_p :=
fun $(f: E \rightarrow R)(H: S F$ gen $f) \Rightarrow$ let $1:=($ proj1_sig $H)$ in sum_Rbar_map l(af1f).

We proved the value does not depends on the proof H .

Simple functions integration

$$
\int f d \mu \stackrel{\text { def. }}{=} \sum_{a \in f(X)} a \mu\left(f^{-1}(a)\right) \in \overline{\mathbb{R}}
$$

```
Definition SF_aux : (E->R) }->\mathrm{ (list R) }->\mathrm{ Prop :=
    funfl=>finite_vals_canonic f l ^
    (forall a, measurable gen (fun x f f x =a).
Definition SF :(E->R) }->\mathrm{ Set := fun f = { l| SF_aux fll.
Definition af1 (f:E->R) :=
    (fun a: Rbar # Rbar_mult a (mu (fun (x:E) # f x = a)).
Definition LInt_simple_fun_p :=
    fun (f:E->R) (H:SF gen f) = let l:= (proj1_sig H) in
        sum_Rbar_map l (af1 f).
```

We proved the value does not depends on the proof H .
\Rightarrow theorems about sum, multiplication by a scalar and change of variable

Outline

(1) Introduction
(2) Towards the Finite Element Method
(3) Lebesgue Integration

- Measurability
- Measure
- Simple Functions and their Integral
- Lebesgue Integral of Nonnegative Functions
(4) Conclusion and Perspectives

Lebesgue integral

$$
\int f d \mu \stackrel{\text { def. }}{=} \sup _{\varphi \in \mathcal{S} \mathcal{F}_{+}, \varphi \leq f} \int \varphi d \mu \quad \in \overline{\mathbb{R}}
$$

Lebesgue integral

$$
\int f d \mu \stackrel{\text { def. }}{=} \sup _{\varphi \in \mathcal{S} \mathcal{F}_{+}, \varphi \leq f} \int \varphi d \mu \quad \in \overline{\mathbb{R}}
$$

Lebesgue integral

$$
\int f d \mu \stackrel{\text { def. }}{=} \sup _{\varphi \in \mathcal{S} F_{+}, \varphi \leq f} \int \varphi d \mu \quad \in \overline{\mathbb{R}}
$$

Lebesgue integral definition

$$
\int f d \mu \stackrel{\text { def. }}{=} \sup _{\varphi \in \mathcal{S F}+, \varphi \leq f} \int \varphi d \mu \in \overline{\mathbb{R}}
$$

```
Definition LInt_p :(E }->\mathrm{ Rbar) }->\mathrm{ Rbar := fun f }
    Rbar_lub (fun x m exists (g:E->R), exists (Hg: SF gen g),
        non_neg g ^
        (forall (z:E), Rbar_le (g z) (f z)) ^
    LInt_simple_fun_p mu g Hg=x).
```


Theorems $(1 / 3)$

Theorem (Beppo Levi, monotone convergence)

Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of nonnegative measurable functions, that is pointwise nondecreasing. Then, the pointwise limit of $\left(f_{n}\right)_{n \in \mathbb{N}}$ is nonnegative and measurable, and we have in $\overline{\mathbb{R}}$

$$
\int \lim _{n \rightarrow \infty} f_{n} d \mu=\lim _{n \rightarrow \infty} \int f_{n} d \mu
$$

Theorems (2/3)

Theorem (Fatou-Lebesgue)

Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of nonnegative measurable functions. Then, we have in $\overline{\mathbb{R}}$

$$
\int \liminf _{n \rightarrow \infty} f_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu .
$$

Theorem Fatou_Lebesgue : forall $f:$ nat $\rightarrow E \rightarrow$ Rbar,
(forall n, non_neg (f n)) \rightarrow
(forall n, measurable_fun_Rbar gen (fn)) \rightarrow
Rbar_le (LInt_p mu (fun $x \Rightarrow$ LimInf_seq' (fun $n \Rightarrow f n x)$)
(LimInf_seq' $(f u n n \Rightarrow$ LInt_p mu (f n))).

Theorems (3/3): focus on a hard one

Theorems (3/3): focus on a hard one

$$
\int(f+g)=\int f+\int g
$$

Lemma LInt_p_plus : forall f g,
non_neg $f \rightarrow$ non_neg $g \rightarrow$
measurable_fun_Rbar gen $f \rightarrow$ measurable_fun_Rbar gen $g \rightarrow$
LInt_p mu (fun $x \Rightarrow$ Rbar_plus (f x) (g x))
$=$ Rbar_plus (LInt_p muf) (LInt_p mug).

Proof of $\int(f+g)=\int f+\int g(1 / 2)$

It needs adapted sequences:
Definition is_adapted_seq ($f: \mathrm{E} \rightarrow \mathrm{Rbar}$) (phi:nat $\rightarrow \mathrm{E} \rightarrow \mathrm{R}$) := $($ forall n, non_neg $($ phi n $)) \wedge$
(forall (x:E) n, phinx $<=\operatorname{phi}(S n) x) \wedge$
(forall n, exists l, SF_aux gen (phin) l) \wedge
(forall ($x: E$), is_sup_seq (fun $n \Rightarrow$ phin x) (f $x)$).
as their limit gives the integral:
Lemma LInt_p_with_adapted_seq :
forall f phi, is_adapted_seq f phi \rightarrow is_sup_seq (fun $n \Rightarrow$ LInt_p mu (phin)) (LInt_p mu f).

Proof of $\int(f+g)=\int f+\int g(2 / 2)$

Adapted sequences may be defined like that:

$$
\forall x, \quad f_{n}(x) \stackrel{\text { def. }}{=} \begin{cases}\frac{\left\lfloor 2^{n} f(x)\right\rfloor}{2^{n}} & \text { when } f(x)<n \\ n & \text { otherwise } .\end{cases}
$$

Proof of $\int(f+g)=\int f+\int g(2 / 2)$

Adapted sequences may be defined like that:

$$
\forall x, \quad f_{n}(x) \stackrel{\text { def. }}{=} \begin{cases}\frac{\left\lfloor 2^{n} f(x)\right\rfloor}{2^{n}} & \text { when } f(x)<n \\ n & \text { otherwise } .\end{cases}
$$

that may be written in Coq as:

```
Definition mk_adapted_seq (n:nat) (x:E) :=
    match (Rbar_le_lt_dec (INR n) (f x)) with
            left _ # INR n
                        right _ = round radix2 (FIX_exp (-n)) Zfloor (f x)
```

 end.
 relying on fixed-point arithmetic defined by the Flocq library!!
And then:
Lemma mk_adapted_seq_is_adapted_seq :
is_adapted_seq f mk_adapted_seq.

Outline

(1) Introduction

(2) Towards the Finite Element Method
(3) Lebesgue Integration

- Measurability
- Measure
- Simple Functions and their Integral
- Lebesgue Integral of Nonnegative Functions

4 Conclusion and Perspectives

Conclusion

For the Lebesgue integration:

- mathematicians at work: 184 pages and 600 lemmas/definitions
- formal proofs at work: 11 k lines lines and 635 lemmas/definitions

Conclusion

For the Lebesgue integration:

- mathematicians at work: 184 pages and 600 lemmas/definitions
- formal proofs at work: 11 k lines lines and 635 lemmas/definitions

Difficult parts:

- handling subspaces (mainly with $\mathbb{1}$ here)
- having usable simple functions

Perspectives

- extend to functions of varying sign

$$
\int f=\int \max (0, f)-\int \max (0,-f)
$$

Perspectives

- extend to functions of varying sign

$$
\int f=\int \max (0, f)-\int \max (0,-f)
$$

- define the Lebesgue measure

Perspectives

- extend to functions of varying sign

$$
\int f=\int \max (0, f)-\int \max (0,-f)
$$

- define the Lebesgue measure
- merge/take advantage of mathcomp-analysis

Perspectives

- extend to functions of varying sign

$$
\int f=\int \max (0, f)-\int \max (0,-f)
$$

- define the Lebesgue measure
- merge/take advantage of mathcomp-analysis
- write the corresponding article

Perspectives

- extend to functions of varying sign

$$
\int f=\int \max (0, f)-\int \max (0,-f)
$$

- define the Lebesgue measure
- merge/take advantage of mathcomp-analysis
- write the corresponding article
- define L_{2} and prove it is a Hilbert

Perspectives

- extend to functions of varying sign

$$
\int f=\int \max (0, f)-\int \max (0,-f)
$$

- define the Lebesgue measure
- merge/take advantage of mathcomp-analysis
- write the corresponding article
- define L_{2} and prove it is a Hilbert
- define the FEM algorithm and prove it

Perspectives

- extend to functions of varying sign

$$
\int f=\int \max (0, f)-\int \max (0,-f)
$$

- define the Lebesgue measure
- merge/take advantage of mathcomp-analysis
- write the corresponding article
- define L_{2} and prove it is a Hilbert
- define the FEM algorithm and prove it
- prove a real implementation (in floating-point arithmetic)

Thank you for your attention

