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•Safety
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Cyber-Physical Systems
Formal Verification is a Necessity

• System failures are very expensive
• Automakers recalled a record of 51.2 million vehicles over 868 separate recalls in 

2015 for safety defects (USA TODAY January 21, 2016)

• Study in University of Michigan shows self deriving cars has five times bigger 
accident rate (USA TODAY October 31, 2015)

• Tesla and Uber had fatalities (2016 and 2018 - https://en.wikipedia.org/wiki/List_of_autonomous_car_fatalities)
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Cyber-Physical Systems
Formal Verification is a Necessity

• System failures are very expensive
• Automakers recalled a record of 51.2 million vehicles over 868 separate recalls in 

2015 for safety defects (USA TODAY January 21, 2016)

• Study in University of Michigan shows self deriving cars has five times bigger 
accident rate (USA TODAY October 31, 2015)

• Tesla and Uber had fatalities (2016 and 2018 - https://en.wikipedia.org/wiki/List_of_autonomous_car_fatalities)

• Testing is Not Enough
• It is required, good, but not enough!

•We need proof of correctness
• Cyber-Physical Systems do not compute an answer
• They are assumed to run infinitely long

• Executing all possible paths is not even possible in theory

•Hybrid automata are used to model a cyber-physical system
• Mathematical Model 
• Mathematical Proof
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Robust Model Checking of
Timed Automata
HSCC 2017
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• Trajectory: an infinite sequence of 
continuous and discrete transition
• Execution: a trajectory that starts 

from the initial state
• The set of executions *
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Types of Perturbation

•Only guards are perturbed by !
• "#

•Only clocks are drifted by $
• "%

•Guards are perturbed by !
Clocks are perturbed by $
• "#%

•Only positive guards are perturbed by !
• "&#
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!-Regular Properties

•We only consider Repeated Reachability ☐◇"
• Only to simplify presentation

• Proofs directly apply to Büchi Condition

∃$ :ℝ' • ∀*: +, • * ⊨ ☐◇"
∃. :ℝ' • ∀*: +/ • * ⊨ ☐◇"
∃$, . : ℝ' • ∀*: +/, • * ⊨ ☐◇"
∃. :ℝ' • ∀*: +'/ • * ⊨ ☐◇"
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!-Regular Model Checking Results

• "# ≔ %
& 5 ( + 1 + , 2 . + ! 4 1 + 4 & 2%

• Only Exponentially Small
• Adding one location makes "# at most 12 times smaller
• Independent of Number of Edges

• M is the maximum constant in 3
• "% ≔ 45

&6
• 7% ≔ 48

&9

3:48 ⊨ ☐◇<

∃":ℝ: • 3:4 ⊨ ☐◇<

3A8 ⊨ ☐◇<

∃7: ℝ: • 3A ⊨ ☐◇< ∃7, ": ℝ: • 34A ⊨ ☐◇<

3C5
A5 ⊨ ☐◇<

2D7# + E# < "#
345 ⊨ ☐◇<

∃":ℝ: • 34 ⊨ ☐◇<

Bouyer et. al. 2011

10



!-Regular Model Checking Results

• "# ≔ %
& 5 ( + 1 + , 2 . + ! 4 1 + 4 & 2%

• Only Exponentially Small
• Adding one location makes "# at most 12 times smaller
• Independent of Number of Edges

• M is the maximum constant in 3
• "% ≔ 45

&6
• 7% ≔ 48

&9

3:48 ⊨ ☐◇<

∃":ℝ: • 3:4 ⊨ ☐◇<

3A8 ⊨ ☐◇<

∃7: ℝ: • 3A ⊨ ☐◇< ∃7, ": ℝ: • 34A ⊨ ☐◇<

3C5
A5 ⊨ ☐◇<

2D7# + E# < "#
345 ⊨ ☐◇<

∃":ℝ: • 34 ⊨ ☐◇<

Bouyer et. al. 2011

◦ All Problems are PSPACE-complete
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Experimental Results

• Fischer Mutual Exclusion Protocol
• No two processes go to CS at the same time
• No deadlock
• Every request will eventually be answered
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Experimental Results

• Fischer Mutual Exclusion Protocol
• No two processes go to CS at the same time
• No deadlock
• Every request will eventually be answered

•We tested it for 6 processes
• 4096 Locations

• 4032 Backward Reachable
• 30336 Edges

•!"."$ satisfies all these properties
• Less than 2 seconds

•We conclude !%& does the same
• For ' ≔ "."$

$) and * ≔ "."$
)
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What Next?

•Robust Satisfiability/Model Checking of Metric Temporal Logic (MTL)
• Or its subclasses

•Robust Monitoring of Signal Temporal Logic
• The current robust semantics might fail even for valid formulas!
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What Next?

•Robust Satisfiability/Model Checking of Metric Temporal Logic (MTL)
• Or its subclasses

•Robust Monitoring of Signal Temporal Logic
• The current robust semantics might fail even for valid formulas!

12

!-perturbation in every " units of time? 
!-perturbation in every 0,∞ ?

¨&' ( → à '*+,,-+ .
Similar to what 
we have done

Similar to early 
robustness def.

Helps robust 
MC of STL



Statistical Verification of
Hybrid Automata
HSCC 2015, 2017
ADHS 2015, 2018
CDC 2016
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Temporal Properties about CTMC

•System is expressed using a Continuous Time Markov Chains
• Rate matrix ! is given
• Initial probability distribution "# is also given

• Probability distribution at time $ is given by %&'"#
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Temporal Properties about CTMC

•System is expressed using a Continuous Time Markov Chains
• Rate matrix ! is given
• Initial probability distribution "# is also given

• Probability distribution at time $ is given by %&'"#
•Properties are expressed using Signal Temporal Logic (STL)
• Atomic propositions are in the form of ( ⋅ %&'"# ≥ +

•Deterministic behavior
• Non-probabilistic
• Unique signal
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Temporal Properties about CTMC

•Very similar problem has been solved algebraically in 2001
• Model Checking Continuous Time Markov Chains by Adnan Aziz et. al.
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Temporal Properties about CTMC

•Very similar problem has been solved algebraically in 2001
• Model Checking Continuous Time Markov Chains by Adnan Aziz et. al.

•So problem is decidable
• They use algebraic numbers
• What is complexity of checking ln #$ ≥ & when ', ), &: ℕ,?

•To improve performance, we wanted to use statistical techniques
• Simulate the system enough number of times
• Provide some error guarantee
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What can be guaranteed?

•Probability of returning wrong YES/NO is bounded

•Probability of returning UNKNOWN is also bounded

16



What is Next?

•When and how we can do this?
• Verify deterministic (non-probabilistic) system using statistical techniques?
• Much better performance

•What kind of robustness we need?

17



Reachability in 
Hybrid Automata
TACAS 2016-2017
CONCUR 2018
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CEGAR Loop Edmund Clarke, 2000

• Simpler Differential Inclusions
• Abstraction
• Finite vs. Infinite
• Merging Locations Location
• Removing Variables
• Must over-approximate
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CEGAR Loop Edmund Clarke, 2000

• Simpler Differential Inclusions
• Abstraction
• Finite vs. Infinite
• Merging Locations Location
• Removing Variables
• Must over-approximate

•What should be refined? 
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Experimental Results (affine dynamics)

•Constraints and continuous dynamics are specified using polyhedra
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Experimental Results (non-linear dynamics)

•Constraints are specified using polyhedra
•Continuous dynamics are specified using (non-linear) ODEs
• Whatever can be supported by dReach
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• System is robustly safe
• Reachable and unsafe regions are robustly separated
• Definition based on semantics of the system

• Prove: every spurious counter-example will be eventually 
eliminated

•We use dReach
• dReach uses dReal
• dReal perturbs syntax of formulas

• UNSAT: the system is safe (spurious counter-example)
• !-SAT: the perturbed system is unsafe

22
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What can be guaranteed?

•What is the relation between syntactic and semantic 
perturbations/robustness?
• Can they become arbitrary close?
• Syntactic perturbation is used to deal with computational complexity
• Sematic perturbation is used to represent robustness
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What can be guaranteed?

•What is the relation between syntactic and semantic 
perturbations/robustness?
• Can they become arbitrary close?
• Syntactic perturbation is used to deal with computational complexity
• Sematic perturbation is used to represent robustness
• In general NO

• Unbounded number of transitions
• Strict inequalities

•We proved bounded !-Simulation is possible

•Bisimulation is impossible
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What is Next?

•We proved bounded !-Simulation is possible

•Find " for the given !
• Anything more expressive than Timed Automata
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Thank You
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