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Aeronautics

NASA Langley Research Center:

Approximately 1/3 Space

and 2/3 Aeronautics
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Safety

Safety Critical Avionics Systems Branch

We design high-integrity prototype software for research into
safety-critical aircraft systems

We don’t want incorrect algorithms in safety-critical aircraft systems
3



Theorem Proving at NASA

The formal methods group at NASA Langley has proved > 20K theorems
in PVS from a variety of areas of mathematics

NASA PVS Libraries: https://github.com/nasa/pvslib

in
ts

fin
ite
_s
et
s

str
uc
tu
re
s

re
al
s

or
de
rs

an
al
ys
is_
ax

tri
g

an
al
ys
is

se
ts_
au
x

nu
m
be
rs

ln
ex
p

ve
ct
or
s

se
rie
s

al
ge
br
a

ve
ct
_a
na
ly
sis

tri
g_
fn
d

ln
ex
p_
fn
d

sig
m
a_
se
t

po
w
er

in
te
rv
al
_a
rit
h

af
fin
e_
ar
ith

m
at
ric
es

Be
rn
ste
in

St
ur
m

Ta
rs
ki

M
et
iT
ar
sk
i

co
m
pl
ex

di
gr
ap
hs

flo
at

fa
ul
t_
to
le
ra
nc
e

gr
ap
hs

PV
Si
oC
he
ck
er

ex
am
pl
es

A
CC
oR
D

TC
A
SI
I

W
el
lC
le
ar

ki
ne
m
at
ic
s

D
A
ID
A
LU
S

TR
S

gr
ou
ps

CC
G

PV
S0

co
_s
tru
ct
ur
es

TU
_G
am
es

lin
ea
r_
al
ge
br
a

to
po
lo
gy

co
m
pl
ex
_a
lt

sc
ot
t

ex
ac
t_
re
al
_a
rit
h

w
hi
le

ex
te
nd
ed
_n
nr
ea
l

m
et
ric
_s
pa
ce

m
ea
su
re
_i
nt
eg
ra
tio
n

co
m
pl
ex
_i
nt
eg
ra
tio
n

le
be
sg
ue

pr
ob
ab
ili
ty

4
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The NASA PVS Libraries

PVS libraries in popular culture

https://shemesh.larc.nasa.gov/people/cam/TheMartian/
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Example: Daidalus

We have used PVS to verify many of the algorithms in

Detect and AvoID Alerting Logic for Unmanned Systems

DAIDALUS is the reference implemenation for detect and avoid for
unmanned aircraft systems in standards document RTCA DO-365 6



DAIDALUS

so , vo Horizontal component of ownship’s position and velocity
soz , voz Ownship’s altitude and vertical speed
si , vi Horizontal component of intruder’s position and velocity
siz , viz Intruder’s altitude and vertical speed
Let s = so − si and v = vo − vi ,

Aircraft have a violation of well-clear if they are inside the intersection of
horizontal and vertical volumes

WCV(s, sz , v, vz) ≡ Horizontal WCV(s, v) and Vertical WCV(sz , vz), (1)

Inside this volume the aircraft is not well clear.

Horizontal WCV(s, v) ≡ ‖s‖ ≤ DMOD or

(dcpa(s, v) ≤ DMOD and 0 ≤ τmod(s, v) ≤ TAUMOD),

Vertical WCV(sz , vz) ≡ |sz | ≤ ZTHR or 0 ≤ tcoa(sz , vz) ≤ TCOA.
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Daidalus v2.0

Our current project is Daidalus v2.0

RTCA standards organization requested that we incorporate sensor
uncertainty into DAIDALUS

GPS, Radar, and other sensors give information such as variances and
covariances for East/North/Up-Down components of positions and
velocities

We are trying several different approaches to this problem

8



Daidalus v2.0

Positions and velocities are random variables

Inputs s, v (reported relative position/velocity) and X,Y (Random
Variables)

Horizontal position is s +

(
X
Y

)
Horizontal velocity is v + M ·

(
X
Y

)
(M is a rotation matrix)

We compute random variables, variances, covariances, means, for
functions in the well-clear formula

[‖s‖ ≤ DMOD or (dcpa(s, v) ≤ DMOD and 0 ≤ τmod(s, v) ≤ TAUMOD)]

and [|sz | ≤ ZTHR or 0 ≤ tcoa(sz , vz) ≤ TCOA]
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Daidalus v2.0

The variance of the dcpa function at a future time t is

This is formally proved in PVS.

The proofs involve reasoning about large and complex expressions with
real numbers.
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Daidalus v2.0

In the verification, we have to prove

where

11



Daidalus v2.0

The proof in PVS reduces to this:

How do we prove this?

Through geometric reasoning
automatically

12



Daidalus v2.0
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Integration of MetiTarski into PVS

PVS

*pvs*

*tptp*

MetiTarski

Yes / Timeout?
(trust)

(skip)

(metit)

Yes

Timeout

QEPCAD

Mathematica

Z3

RCF/
DPs

This calls MetiTarski/Z3, which uses the algorithm from the book

Algorithms in Real Algebraic Geometry by Basu, Pollack, and Roy

In Z3: Dejan Jovanovic and Leonardo de Moura. Solving non-linear arithmetic.

In Automated Reasoning - 6th International Joint Conference, IJCAR 2012,

Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes

in Computer Science, pages 339-354. Springer, 2012.
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Another Application of MetiTarski

NASA Langley has developed multiple systems with geofencing capabilities.

Geofencing: Ensuring that an aircraft obeys stay-in and stay-out regions.
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Another Application of MetiTarski

A recent problem: Restrict the controller input so that the component of
acceleration (control input) in the direction of each edge guarantees future
separation from that edge.
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Another Application of MetiTarski
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Another Application of MetiTarski

Is it absolutely necessary to prove this automatically? No.

Is it easier than proving it manually? Yes! 18



Integration of MetiTarski into PVS

Formally proving the algorithm in PVS:

Metit is used as an oracle in PVS (an addition to the kernel)

Ultimate Goal: Build and formally prove a version of metit on top of
the kernel of PVS

We have two different implementations for the univariate case

... and zero implementations for the multivariate case

19



Exact Real Algebraic Geometry

Exact Real Algebraic Geometry

Sturm Sequences

Tarski Queries

Tarski queries use Sturm sequences

Tarski queries determine if any polynomial system
p1(x1, . . . , xn) > 0 ∧ · · · ∧ pm(x1, . . . , xm) ≤ 0 has a solution.

20



Tarski’s Theorem

Let p and g be polynomials. Compute the remainder sequence

p0(x), p1(x), . . . , pm(x),

where p0 = p, p1 = g · p′, pj+2 = −rem(pj , pj+1), and pm ≡ 0

TQ(p, q) - A Tarski Query - a computable function based on the sequence
p0, . . . , pm.

Tarski’s Basic Theorem

card{x | p(x) = 0 ∧ g(x) > 0}−card{x | p(x) = 0 ∧ g(x) < 0} = TQ(p, g)
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Tarski’s Theorem

Book: Algorithms in Real Algebraic Geometry by Saugata Basu, Richard
Pollack, Marie-Franoise Roy

Tarski’s (Basic) Matrix Theorem

Corollary

Call this matrix M
22



Multiple Polynomials

This is the base case of an induction proof for multiple polys

Tarski
TQ(p, g0, . . . , gk) = M⊗(k+1) · N(p, g0, . . . , gk)

Corollary

N(p, g0, . . . , gk) = (M⊗(k+1))−1TQ(p, g0, . . . , gk)

We want to compute entries of N(p, g0, . . . , gk) (cards of solution sets)

Just need to compute (M⊗(k+1))−1 = (M−1)⊗(k+1) =

23



Sturm’s Theorem

We can therefore compute cardinalities

card{x ∈ R : p(x) = 0 ∧ g0(x) R0 0 ∧ . . . ∧ gk(x) Rk 0}

We can also determine if

card{x ∈ R : g0(x) R0 0 ∧ . . . ∧ gk(x) Rk 0} = 0

(i.e. If the system g0(x) R0 0 ∧ . . . ∧ gk(x) Rk 0 has a solution)

This proves now by simply typing “(tarski)” in the PVS prover. It’s all
automated.
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Implementation of Tarski

There is a deep embedding of the algorithm in PVS...

... and an theorem stating its correctness

A property is proved by invoking the theorem in the prover...

... and the evaluating the resulting call to the algorithm...

through reflection... The evaluation is done in PVS’s underlying LISP
language.
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Hutch

A simpler method for proving unsatisfiability of a univariate system
p1(x) < 0 ∧ · · · ∧ p5(x) < 0

https://commons.wikimedia.org/wiki/File:Legendrepolynomials6.svg, edited: CC-by-SA 3.0,
https://creativecommons.org/licenses/by-sa/3.0/

Subdivide until every every interval has at most one root of any
polynomial.

Check this by counting roots of
∑

i pi (x)2 or
∏

i pi (x)...

using Tarski queries.
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Hutch

A simpler method for proving unsatisfiability of a univariate system
p1(x) < 0 ∧ · · · ∧ p5(x) < 0
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https://creativecommons.org/licenses/by-sa/3.0/

Subdivide until every every interval has at most one root of any
polynomial.

Check this by counting roots of
∑

i pi (x)2 or
∏

i pi (x)...

using Tarski queries.

26



Hutch

This new command is called Hutch.

This proves now by simply typing “(tarski)” or “(hutch)” in the PVS
prover. It’s all automated.

The implemenations are similar and both use reflection.

Narkawicz, A. J.; Munoz, C. A.; and Dutle, A. M.: A Decision Procedure
for Univariate Polynomial Systems Based on Root Counting and Interval
Subdivision, Journal of Formalized Reasoning, 2018 (To appear)
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Comparison of Tarski and Hutch

28



Multivariate Subdivision Algorithm

Is there a multivariate version of Hutch, and would that be the same as
standard CAD?

This would be much easier to prove in PVS

... and add on top of the kernel (in a sound way)

Subdivide n-dim box until every sub-box is small enough so that
For every nonempty subvariety of the form {x |

∑
i pi (x)2 = 0} taken

over a subset of the polynomials, either

it has positive dimension and is sliced by the edge of some box, or
it has zero dimension and is contained in a sub-box that contains no
other zero dimensional subvariety

Check satisfiability on the boundary of each sub-box and at every
zero dimensional subvariety

29



Multivariate Subdivision Algorithm

2-dimensional example: plot the zero sets of polynomials R2 → R:

Such a subdivision probably exists.
But can we compute whether we are finished subdividing without
doing a full CAD projection? (maybe not)

30
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Nonlinear Arithmetic

We have implemented/formalized/proved several other algorithms for
determining satisfiability of a system

p1(x1, . . . , xn) > 0 ∧ · · · ∧ pm(x1, . . . , xm) ≤ 0

This includes some approximation methods:

Interval Arithmetic

Bernstein Polynomials

Affine Arithmetic

31



Numerical Methods

Numerical Approximation Methods

Interval Arithmetic

Bernstein Polynomials

Both of these methods give a crude estimate of a range of pi (x1, . . . , xn).
These estimates get better for small boxes

Solution: Keep subdividing a big box into smaller boxes until you can
prove the result.
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A Generic Branch and Bound Algorithm

Using the branch and bound algorithm in PVS is automated

These theorems can both be proved by simply typing “(bernstein)” or
“(interval)” in PVS
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Conclusion

We depend heavily on built-in decision procedures for real arithmetic

We have built our own in PVS

Bernstein polynomials
Interval arithmetic
Sturm and Tarski theorems
Sturm’s theorem and subdivision
Affine arithmetic
Exact real arithmetic

We would like a fast, verified multivariate CAD in PVS (Integrated in
a sound way).

Matt Damon used the PVS libraries
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Questions

Questions?
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