

Asymptotic reasoning in Coq

Cyril Cohen (Inria, France) j.w.w. Reynald Affeldt and Damien Rouhling

Applications of Formal Methods to Control Theory and Dynamical Systems, Pittsburgh June 23, 2018

What this talk is about

Motivation

Ínría_

$$\begin{cases} \forall \varepsilon > 0. \ \exists \delta_f > 0. \ \forall x. \ |x - a| < \delta_f \Rightarrow |f(x) - l_f| < \varepsilon \\ \forall \varepsilon > 0. \ \exists \delta_g > 0. \ \forall x. \ |x - a| < \delta_g \Rightarrow |g(x) - l_g| < \varepsilon \end{cases},$$

$$\Rightarrow \quad \forall \varepsilon > 0. \ \exists \delta > 0. \ \forall x. \ |x - a| < \delta \Rightarrow |f(x) + g(x) - (l_f + l_g)| < \varepsilon.$$

$$o_{x \to 0} (x^n) + o_{x \to 0} (x^n) = o_{x \to 0} (x^n)$$

$$o_{x \to 0} (x^n) + O_{x \to 0} (x^n) = O_{x \to 0} (x^n)$$

. . .

Style for writing proofs

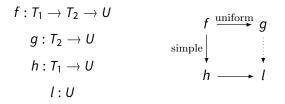
Declarative proof style:

- Lots of intermediate statements.
- Relying heavily on powerful automation.
- Script are human readable.
- Robustness guaranteed by appropriate choice of intermediate statements and automation.

Imperative proof style:

- Minimal amount of intermediate statements.
- Limited automation needed.
- Script contains orders you give to the system.
- Robustness guaranteed by the determinism in obeying orders.
 ⇒ Most likely to happen with small scale orders.

Example: double limit theorem



Justification:

 $||l-g(x_2)|| \leq ||l-h(x_1)|| + ||h(x_1) - f(x_1, x_2)|| + ||f(x_1, x_2) - g(x_2)||$

In Coq

- C-CoRN
- Coq standard library + Coquelicot

In Coq

- $C-CoRN \rightarrow$ Constructive analysis
- Coq standard library + Coquelicot \rightarrow **Constructive** + \mathbb{R} axioms

In Coq

- $C-CoRN \rightarrow$ Constructive analysis
- CoQ standard library + CoQUELICOT \rightarrow Constructive + $\mathbb R$ axioms

Classical analysis in

- HOL LIGHT
- ISABELLE/HOL
- LEAN

• ...

In Coq

- $C-CoRN \rightarrow$ Constructive analysis
- Coq standard library + Coquelicot \rightarrow Constructive + \mathbb{R} axioms

Classical analysis in

- HOL LIGHT
- ISABELLE/HOL
- LEAN
- ...

In Coq

- $C-CORN \rightarrow$ Constructive analysis
- Coq standard library + Coquelicot \rightarrow Constructive + \mathbb{R} axioms

Classical analysis in

- HOL LIGHT
- ISABELLE/HOL
- LEAN
- • •

Disclaimer: the proofs I am going to show have clearly not been reworked to their best shape.

ISABELLE/HOL proof

```
lemma swap uniform limit:
  assumes f: "\forall e n \text{ in } F. (f n \longrightarrow q n) (at x within S)"
  assumes q: (q \longrightarrow 1) \in \mathbb{P}^{n}
  assumes uc: "uniform limit S f h F"
  assumes "-trivial limit F"
  shows "(h \longrightarrow l) (at x within S)"
proof (rule tendstoI)
  fix e :: real
  define e' where "e' = e/3"
  assume "\theta < e"
  then have "\theta < e'' by (simp add; e' def)
  from uniform limitD(OF uc <0 < e'>)
  have "\forall_{F} n in F. \forall_{X} \in S, dist (h x) (f n x) < e'"
    by (simp add: dist commute)
  noreover
  from f
  have "\forall e n in F. \forall e x in at x within S. dist (q n) (f n x) < e'"
    by eventually elim (auto dest!: tendstoD[OF <0 < e'>] simp: dist commute)
  moreover
  from tendstoD[OF q < 0 < e'] have "\forall_F x in F, dist l (q x) < e'"
    by (simp add: dist commute)
  ultimately
  have "\forall_F in F. \forall_F x in at x within S. dist (h x) l < e"
  proof eventually elim
    case (elim n)
     note fh = elim(1)
     note gl = elim(3)
     have "\forall_F x in at x within S, x \in S"
      by (auto simp: eventually at filter)
     with elim(2)
     show ?case
     proof eventually elim
      case (elim x)
       from fhirule format. OF (x \in S) elim(1)
      have "dist (h x) (q n) < e' + e'''
         by (rule dist triangle lt[OF add strict mono])
       from dist triangle lt[OF add strict mono, OF this gl]
       show ?case by (simp add; e' def)
    aed
  aed
  thus "VF x in at x within S. dist (h x) l < e"
    using eventually happens by (metis <-trivial limit F>)
```

Ínría_

COQUELICOT's proof (our benchmark)

```
Lemma filterlim switch 1 {U : UniformSpace}
   F1 (FF1 : ProperFilter F1) F2 (FF2 : Filter F2) (f : T1 -> T2 -> U) g h (l : U) :
   filterlim f F1 (locally g) \rightarrow
   (forall x. filterlim (f x) F2 (locally (h x))) \rightarrow
   filterlim h F1 (locally l) \rightarrow filterlim g F2 (locally l).
 Proof
   intros Hfg Hfh Hhl P.
   case: FF1 => HF1 FF1.
   apply filterlim locally.
   move => eps.
   have FF := (filter prod filter F1 F2 FF1 FF2).
   assert (filter_prod F1 F2 (fun x => ball (g (snd x)) (eps / 2 / 2) (f (fst x) (snd x))
         ))).
     apply Filter prod with (fun x : T1 => ball g (eps / 2 / 2) (f x)) (fun => True).
     move: (proil (@filterlim locally F1 FF1 f g) Hfg (pos div 2 (pos div 2 eps)))
           => {Hfg} /= Hfg.
     by [].
     by apply FF2.
     simpl ; intros.
     apply H.
   move: H => {Hfg} Hfg.
   assert (filter prod F1 F2 (fun x : T1 * T2 => ball l (eps / 2) (h (fst x)))).
     apply Filter prod with (fun x : T1 => ball l (eps / 2) (h x)) (fun => True).
     move: (proj1 (@filterlim_locally _ _ F1 FF1 h l) Hhl (pos_div 2 eps)) => {Hhl} /=
           Hhl.
                                (* next page *)
nnía
           Affeldt, Cohen, Rouhling - Asymptotic reasoning in Coq - June 23, 2018
```

COQUELICOT' proof (page 2)

End of boilerplate, and now, the meaningful part.

```
rewrite (double_var eps).
apply ball_triangle with (h x).
apply (p x y).
by [].
by apply Hy.
rewrite (double_var (eps / 2)).
apply ball_triangle with (f x y).
by apply Hy.
apply ball_sym, p.
by [].
by apply Hy.
Qed.
```


Achievement of our work

Design techniques to:

1. Do imperative style small scale proofs

- 2. Reduce the size of the boilerplate
- 3. Make it robust to change
- 4. Go straight to the point

Framework

Context

Constaints:

- **1.** Robotics: kinematic chains as composition of MATHEMATICAL COMPONENTS matrices
- ⇒ Mix Coquelicot and Mathematical Components
- 2. Undergraduate classic textbook analysis
- 3. Catch up with ISABELLE/HOL and LEAN
- ⇒ COQUELICOT and Hilbert's epsilon

Context

Constaints:

- **1.** Robotics: kinematic chains as composition of MATHEMATICAL COMPONENTS matrices
- ⇒ Mix Coquelicot and Mathematical Components
- 2. Undergraduate classic textbook analysis
- 3. Catch up with ISABELLE/HOL and LEAN
- ⇒ COQUELICOT and Hilbert's epsilon

Conclusion:

- rewrite Coquelicot, on top of Mathematical Components
- using stronger axioms:
 - Hilbert's epsilon (constructive_indefinite_description)
 - Propositional and functional extensionality

Hierarchy

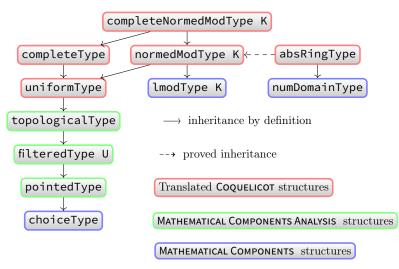


Figure: MATHEMATICAL COMPONENTS ANALYSIS hierarchy

Filters

A one-slide introduction to filters

Definition (same as COQUELICOT in COQ)

 $\top \in F$, $\forall A, B \in F. A \cap B \in F$ and $\forall A, B. A \subseteq B \Rightarrow A \in F \Rightarrow B \in F$.

Filter of neighborhoods:

$$\operatorname{locally}(x) := \{A \mid \exists \varepsilon > 0. \operatorname{ball}_{\varepsilon}(x) \subseteq A\}.$$

A one-slide introduction to filters

Definition (same as COQUELICOT in COQ)

 $\top \in F, \quad \forall A,B \in F. A \cap B \in F \quad \text{and} \quad \forall A,B. A \subseteq B \Rightarrow A \in F \Rightarrow B \in F.$

Filter of neighborhoods:

$$\operatorname{locally}(x) := \{A \mid \exists \varepsilon > 0. \operatorname{ball}_{\varepsilon}(x) \subseteq A\}.$$

Filter application:

$$f@F := \{X \mid f^{-1}(X) \in F\}.$$

Limit:

nría

 $f@F \to G := G \subseteq f@F.$

Filter Notations

Definitions/notations:

set A	A -> Prop
A '<=' B	set inclusion
[set a P a]	the set of elements a that satisfy P
F> G	reverse set inclusion for filters $F \supseteq G$
f @ F	filter f(F)
+00	$+\infty$
\forall x \near x_0, P x	$locally(x_0)(P)$

Double Limit Theorem

DEMO!

```
Lemma flim_switch_1 {U : uniformType}
  F1 {FF1 : ProperFilter F1} F2 {FF2 : Filter F2}
  (f : T1 \rightarrow T2 \rightarrow U) (g : T2 \rightarrow U) (h : T1 \rightarrow U) (l : U) :
  f @ F1 ---> g --> (forall x1, f x1 @ F2 ---> h x1) --> h @ F1 ---> l
       _>
  g @ F2 ---> l.
Proof.
move=> fg fh hl; apply/flim_ballPpos => e; rewrite near_simpl.
near F1 => x1: first near=> x2.
- apply : ( @ball_split _ ( h x1 ) ) ; first by near: x1 .
  by apply: (@ball_splitl_(f x1 x2)); [near: x2] move: (x2);
      near: x1].
- by end near; apply/fh/locally ball .
- by end_near; [exact/hl/locally_ball|exact/(flim_ball fg)].
Qed.
```

Double limit, comparison with COQUELICOT

 $Lemma \ \frac{\texttt{flim_switch_1}}{\texttt{ff}} \ \{ U \ : \ uniformType \} \ F1 \ \{ \mathsf{FF1} \ : \ \mathsf{ProperFilter} \ F1 \} \ F2 \ \{ \mathsf{FF2} \ : \ \mathsf{Filter} \ F2 \} \\ (f \ : \ T1 \ \rightarrow \ T2 \ \rightarrow \ U) \ (g \ : \ T2 \ \rightarrow \ U) \ (h \ : \ T1 \ \rightarrow \ U) \ (l \ : \ U) \ :$

 $f @ F1 \longrightarrow g \longrightarrow (forall x, f x @ F2 \longrightarrow h x) \longrightarrow h @ F1 \longrightarrow l \longrightarrow g @ F2 \longrightarrow l.$

Proof.

```
(*...*)
(*25 lines of boilerplate, then*)
rewrite (double_var eps).
apply ball_triangle with (h x).
apply (p x y).
by [].
by apply Hy.
rewrite (double_var (eps / 2)).
apply ball_triangle with (f x y).
by apply Hy.
apply ball_sym, p.
by [].
by apply Hy.
Qed.
```

Proof.

```
move=> fg fh hl; apply/flim_ballPpos => e; rewrite !
    near_simpl.
near F1 => x1; first near=> x2.
(* 2 lines of boilerplate, then *)
- apply: (@ball_split_ (h x1)); first by near: x1.
    by apply: (@ball_split1 _ (f x1 x2)); [near: x2]
        move: (x2); near: x1].
(* Two lines of boilerplate: *)
- by end_near; apply/fh/locally_ball.
- by end_near; [exact/hl/locally_ball|exact/(
    flim_ball fg]].
Oed.
```

Filter tactics

The lemmas that make it all work

forall (Q : set T), F Q \rightarrow exists x : T, Q x.

```
Lemma filter P T (F : set (set T)) {FF : Filter F} (P : set T) :

(exists2 Q : set T, F Q & forall x : T, Q x \rightarrow P x) \langle \rightarrow F P.

Lemma filter_ex T (F : set (set T)) '{ProperFilter F} :
```

```
Ínría_
```

Filter tactics

The lemmas that make it all work

```
Lemma <u>filterP</u> T (F : set (set T)) {FF : Filter F} (P : set T) :

(exists2 Q : set T, F Q & forall x : T, Q x \rightarrow P x) \iff F P.

Lemma <u>filter ex</u> T (F : set (set T)) '{ProperFilter F} :

forall (Q : set T), F Q \rightarrow exists x : T, Q x.
```

Tactics

near=> x	applies filterP with metavariable Q
near F => x	takes x from filter_ex with metavariable Q
near: x	given a goal ($R_i x$), accumulates R_i in Q
end_near	leaves accumulated (F R_i) to be proven

Cauchy completeness

```
Definition cauchy_ex {T : uniformType} (F : set (set T)) :=
forall eps : R, 0 < eps -> exists x, F (ball x eps).
```

or

```
Definition cauchy {T : uniformType} (F : set (set T)) :=
forall e, e > 0 -> \forall x & y \near F, ball x e y.
```

equivalently

```
Definition cauchy_entourage T (F : set (set T)) :=
   (F, F) --> entourages.
```


Function space is complete

```
Lemma fun_complete (F : set (set (T -> U))) {FF: ProperFilter F} :
    cauchy F -> cvg F.
Proof.
move=> Fc; have /(_ _) /complete_cauchy Ft_cvg : cauchy (@^~_ @ F).
    by move=> t e ?; rewrite near_simpl; apply: filterS (Fc _ _).
    apply/cvg_ex; exists (fun t => lim (@^~t @ F)).
    apply/flim_ballPpos => e; near=> f => [t|].
    near F => g => /=.
        by apply: (@ball_splitl _ (g t)); last move: (t); near: g.
    by end_near; [exact/Ft_cvg/locally_ball|near: f].
by end_near; apply: nearP_dep; apply: filterS (Fc _ _).
    Qed.
```


little-o and big- \mathcal{O}

Definition

```
Context {T : Type} {K : absRingType} {V W : normedModType K}.
Definition littleo (F : set (set T)) (f : T -> V) (e : T -> W) :=
forall eps : R, 0 < eps ->
   \forall x \near F, '|[f x]| <= eps * '|[e x]|.
Definition big0 (F : set (set T)) (f : T -> V) (e : T -> W) :=
   \forall k \near +oo, \forall x \near F, '|[f x]| <= k * '|[e x]|.</pre>
```


Definition

```
Context {T : Type} {K : absRingType} {V W : normedModType K}.
Definition littleo (F : set (set T)) (f : T -> V) (e : T -> W) :=
forall eps : R, 0 < eps ->
    \forall x \near F, '|[f x]| <= eps * '|[e x]|.
Definition big0 (F : set (set T)) (f : T -> V) (e : T -> W) :=
    \forall k \near +oo, \forall x \near F, '|[f x]| <= k * '|[e x]|.</pre>
```

But these are not predicates in the mathematical practice!

Use cases

Inría

We want to write:

$$f = o(e) \quad \text{and} \quad f = \mathcal{O}(e)$$

$$f(x) = o(e(x)) \quad \text{and} \quad f(x) = \mathcal{O}(e(x))$$

$$f = g + o(e) \quad \text{and} \quad f = g + \mathcal{O}(e)$$

$$f(x) = g(x) + o(e(x)) \quad \text{and} \quad f(x) = g(x) + \mathcal{O}(e(x))$$
Do arithmetic on little-*o* and big-*O*:

 $-o\left(e\right)=o\left(e\right),\quad o\left(e\right)+o\left(e\right)=o\left(e\right),\quad o\left(e\right)+\mathcal{O}\left(e\right)=\mathcal{O}\left(e\right),\quad \ldots$

• Substitute! (these are equalities)

Use cases

Inría

We want to write:

$$f = o(e) \quad \text{and} \quad f = \mathcal{O}(e)$$

$$f(x) = o(e(x)) \quad \text{and} \quad f(x) = \mathcal{O}(e(x))$$

$$f = g + o(e) \quad \text{and} \quad f = g + \mathcal{O}(e)$$

$$f(x) = g(x) + o(e(x)) \quad \text{and} \quad f(x) = g(x) + \mathcal{O}(e(x))$$
Do arithmetic on little-*o* and big- \mathcal{O} :

 $-o\left(e\right)=o\left(e\right),\quad o\left(e\right)+o\left(e\right)=o\left(e\right),\quad o\left(e\right)+\mathcal{O}\left(e\right)=\mathcal{O}\left(e\right),\quad \ldots$

• Substitute! (these are equalities)

DEMO!

The trick

Definition (little-*o* with explicit witness):

$$o(e)[h] := \begin{cases} h, & \text{if } h & \text{is a little-} o \text{ of } e \\ 0, & \text{otherwise} \end{cases}$$

Parsing:

$$f = g + o(e)$$
 is parsed $f = g + o(e)[f - g]$

Change of witness:

$$f = g + o(e)[f - g] \Leftrightarrow \exists h, f = g + o(e)[h]$$

The trick

Definition (little-*o* with explicit witness):

$$o(e)[h] := \begin{cases} h, & \text{if } h & \text{is a little-} o \text{ of } e \\ 0, & \text{otherwise} \end{cases}$$

Parsing:

$$f = g + o(e)$$
 is parsed $f = g + o(e)[f - g]$

Change of witness:

$$f = g + o(e)[f - g] \Leftrightarrow \exists h, f = g + o(e)[h]$$

Display:

$$f = g + o(e)[h]$$
 is displayed $f = g + o(e)$

Applications

Equivalence:

Notation "f $\sim x$ g" := (f = g + o_x g)

Differential:

```
Definition diff (F : filter_on V) (f : V -> W) :=
  (get (fun (df : {linear V -> W}) =>
  continuous ('d_F f) /\ forall x,
  f x = f (lim F) + df (x - lim F) +o_(x \near F) (x - lim F))).
```

```
Lemma diff_locallyxP (x : V) (f : V \rightarrow W) :
differentiable x f <-> continuous ('d_x f) /\
forall h, f (h + x) = f x + 'd_x f h +o_(h \near 0) h.
```


A short proof of the chain rule

```
Fact dcomp (U V W : normedModType R)
  (f : U \rightarrow V) (g : V \rightarrow W) x :
  differentiable x f \rightarrow differentiable (f x) g \rightarrow
  forall h, g (f (h + x)) =
    g(f x) + ('d (f x) g \setminus o 'd x f) h + o (h \setminus near 0) h.
Proof.
move=> df dg; apply: eqaddoEx => y.
rewrite diff_locallyx// -addrA diff_locallyxC// linearD.
rewrite addrA -addrA; congr (_ + _ + _).
rewrite diff_eq0 // ['d_x f : _ -> _]diff_eq0 //.
by rewrite {2}eqo0 add0x comp0o_eqox compo0_eqox addox.
Qed.
```


Conclusion and future work

Conclusion

- Toolset to give high-level orders, preserving determinism.
- Tested in the library http://github.com/math-comp/analysis

What I did not show:

- Tool for manifest positivity
- Lightweight automatic differentiation (Damien Rouhling, CPP 2018)

Incoming improvements

Improve the workflow of near tactics Go from this

```
move=> fg fh hl; apply/flim_ballPpos => e; rewrite near_simpl.
near F1 => x1; first near=> x2.
- apply : (@ball_split _ (h x1)); first by near: x1.
by apply: (@ball_splitl _ (f x1 x2)); [near: x2|move: (x2); near: x1].
- by end_near; apply/fh/locally_ball.
- by end_near; [exact/hl/locally_ball|exact/(flim_ball fg)].
```


Incoming improvements

Improve the workflow of near tactics Go from this

to this

```
move=> fg fh hl; apply/flim_ballPpos => e ; rewrite near_simpl; near F1 => x1 x2.
apply: (@ball_split _ (h x1)); first by near: x1; apply/fh/locally_ball.
apply: (@ball_splitl _ (f x1 x2)); first by near: x2; apply/hl/locally_ball.
by near: x1 (x2); apply/flim_ball fg).
```


Other possible improvements

- Manuel Eberl's multiseries for automated limits, little-o, etc
- Semi-automated bounding tools (ingredients: same as big-O and manifest positivity)
- add Lebesgue integration and power series
- find limits, derivatives, differentials, integrals and converging sums in a semi-automated automated way.

Thank you for your attention.

