SMTCoq: a modular integration of SAT/SMT solvers to Coq

Valentin Blot IRIF - Université Paris-Diderot LRI - Université Paris-Sud

Chantal Keller (project leader) LRI - Université Paris-Sud

Two approaches

Certified ATP:

- prove correctness of the ATP's code
- + once and for all
- + completeness possible
 - not flexible nor modular
 - hard

Certifying ATP:

- the ATP gives certificates that can be checked
- certificates to check each time (but efficient)
- no completeness (or at the meta-level)
- + very flexible and modular
- + easier (certified checker)

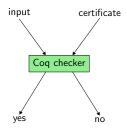
Outline

1 Skeptical interaction

2 Checker

- 3 Small checkers
- 4 Efficiency
- 5 Work in progress

6 Perspectives


Skeptical interaction

Checker 000000 Small checkers

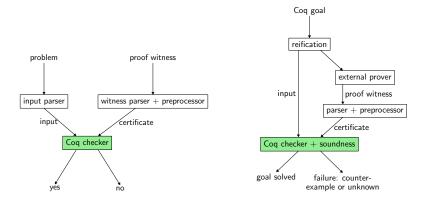
Efficiency

Work in progress

The heart: a certified checker for unsatisfiability

Certification:

checker : formula → certif → bool
correctness : $\forall \phi c, checker \phi c = true \rightarrow \forall \rho, |\phi|_{\rho} = false$ |•|_ρ : formula → bool is an interpretation function
can be extracted to ML


Skeptical interaction

Checker 000000

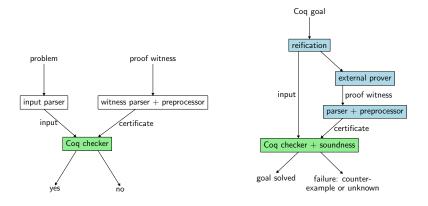
Small checkers

Efficiency 00 Work in progress

(At least) two usages

Skeptical interaction

Checker 000000 Small checkers

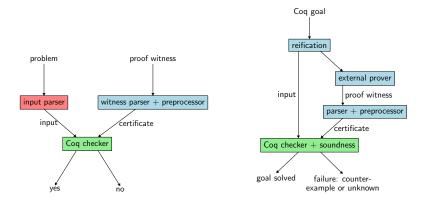

Efficiency

Work in progress

Perspectives

3/40

(At least) two usages


Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

(At least) two usages

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Perspectives

3/40

SMTCoq input and certificate formats

Input:

• a first-order formula ϕ in a combination of theories (SMT-LIB2)

Certificate:

 \blacktriangleright a resolution proof of the unsatisfiability of ϕ (seen as a set of clauses) with "theory lemmas"

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Resolution and theory lemmas

The resolution rule:

$$\frac{x \lor C \qquad \neg x \lor D}{C \lor D} \text{ Reso}$$

Theory lemmas:

$$\operatorname{CNF} \frac{\chi \bigwedge \psi}{\chi}$$

 $\frac{-}{\phi}$ LIA

if ϕ is a valid conjunction of atoms in LIA

Skeptical interaction 000000

Checker 000000 Small checkers

Efficiency 00 Work in progress

Perspectives

5/40

Example

Unsatisfiability of (the conjunction of): $x \ge 7 \land y \le -4$ $\neg x \ge 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\overline{\neg x \ge 7 \lor x \ge 2}}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \frac{\overline{\neg x \ge 7}}{\operatorname{Reso}}$$

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Example

Unsatisfiability of (the conjunction of): $x \ge 7 \land y \le -4$ $\neg x \ge 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\overline{\neg x \ge 7 \lor x \ge 2}}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \frac{\overline{\neg x \ge 7}}{\operatorname{Reso}}$$

[2; 3]

Concrete syntax:

- 1: INPUT $x \ge 7 \bigwedge y \le -4$
- 2: INPUT $\neg x \ge 2$
- 3: LIA
- 4: RESO
- 5: CNF_PROJ 1
- 6: RESO [4; 5]

Skeptical interaction

Checker 000000 Small checkers

Efficiency

 $\neg x > 7 \lor x > 2$

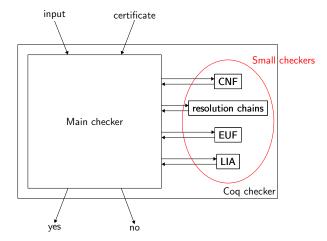
Work in progress

Outline

1 Skeptical interaction

2 Checker

- 3 Small checkers
- 4 Efficiency
- 5 Work in progress


6 Perspectives

Skeptical interaction

Checker •00000 Small checkers

Efficiency 00 Work in progress

A modular checker

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

The small checkers and the main checker

A small checker:

- takes some clauses and a piece of certificate as arguments
- returns a clause that is implied

The main checker:

- maintains a set of clauses, initialized with the input
- sequentially shares out the certificate steps to the corresponding small checkers
- checks that the last obtained clause is the empty clause

The correctness of each small checkers

implies the correctness of the whole checker

Skeptical interaction

Checker

Small checkers

Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \bigwedge y \le -4$ $\neg x \ge 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\neg x \ge 7 \lor x \ge 2}{\neg x \ge 7} \operatorname{RESO} \frac{\neg x \ge 2}{\operatorname{RESO}} \operatorname{RESO}$$

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ $\neg x \ge 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\neg x \ge 7 \lor x \ge 2}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \operatorname{Reso}_{\operatorname{Reso}}$$

A set of clauses:

Skeptical interaction 000000

Checker 000000 Small checkers

Efficiency

Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ $\neg x \ge 2$

A set of clauses:

Skeptical interaction 000000

Checker 000000 Small checkers

Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \bigwedge y \le -4$ $\neg x \ge 2$

A set of clauses:

Skeptical interaction 000000

Checker 000000 Small checkers

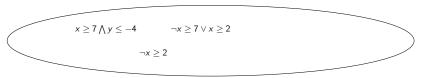
Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ $\neg x \ge 2$

$$\underbrace{ x \ge 7 \bigwedge y \le -4}_{\text{CNF}} \underbrace{ \neg x \ge 7 \lor x \ge 2 }_{\text{T} x \ge 2} \underbrace{ \text{LIA}}_{\text{T} x \ge 2 } \underbrace{ \neg x \ge 2 }_{\text{Reso}}$$

A set of clauses:

Skeptical interaction 000000


Checker 000000 Small checkers

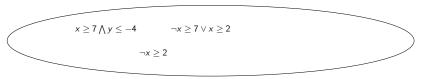
Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ $\neg x \ge 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{-4} \operatorname{CNF} \frac{\neg x \ge 7 \lor x \ge 2}{\neg x \ge 2} \operatorname{LIA} \neg x \ge 2 \operatorname{Reso} \operatorname{Reso}$$

A set of clauses:

Skeptical interaction 000000


Checker 000000 Small checkers

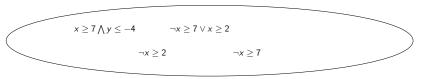
Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \bigwedge y \le -4$ $\neg x \ge 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{\sum_{x \ge 7} \operatorname{CNF}} \xrightarrow{\neg x \ge 7 \lor x \ge 2} \frac{\operatorname{LIA}}{\neg x \ge 7} \xrightarrow{\neg x \ge 2} \operatorname{Reso}_{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}}$$

A set of clauses:

Skeptical interaction 000000


Checker 000000 Small checkers

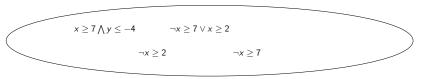
Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ $\neg x \ge 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{\sum_{x \ge 7} \operatorname{CNF}} \xrightarrow{\neg x \ge 7 \lor x \ge 2} \frac{\operatorname{LIA}}{\neg x \ge 7} \xrightarrow{\neg x \ge 2} \operatorname{Reso}_{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}}$$

A set of clauses:

Skeptical interaction 000000


Checker 000000 Small checkers

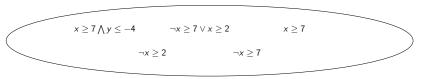
Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ $\neg x \ge 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\overline{\neg x \ge 7 \lor x \ge 2}}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \operatorname{Reso}_{\operatorname{Reso}}$$

A set of clauses:

Skeptical interaction


Checker 000000 Small checkers

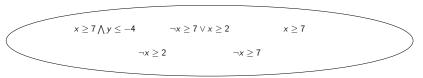
Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ $\neg x \ge 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\overline{\neg x \ge 7 \lor x \ge 2}}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \operatorname{Reso}_{\operatorname{Reso}}$$

A set of clauses:

Skeptical interaction 000000


Checker 000000 Small checkers

Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ $\neg x \ge 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\neg x \ge 7 \lor x \ge 2}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \operatorname{Reso}_{\operatorname{Reso}}$$

A set of clauses:

Skeptical interaction 000000

Checker 000000 Small checkers

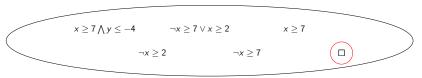
Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ $\neg x \ge 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\neg x \ge 7 \lor x \ge 2}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \operatorname{Reso}_{\operatorname{Reso}}$$

A set of clauses:

Skeptical interaction 000000


Checker 000000 Small checkers

Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ $\neg x \ge 2$

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\neg x \ge 7 \lor x \ge 2}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \operatorname{Reso}_{\operatorname{Reso}}$$

A set of clauses:

Skeptical interaction 000000

Checker 000000 Small checkers

Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ x < 2

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Unsatisfiability of: $x \ge 7 \bigwedge y \le -4$ x < 2

3 clauses alive at the same time:

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ x < 2

3 clauses alive at the same time:

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ x < 2

11/40

3 clauses alive at the same time:

Unsatisfiability of: $x \ge 7 \land y \le -4$ x < 2

$$\frac{x \ge 7 \bigwedge y \le -4}{\text{CNF}} \xrightarrow{\neg x \ge 7 \lor x \ge 2} \text{LIA} \quad \neg x \ge 2 \text{Reso}$$

3 clauses alive at the same time:

$$x \ge 7 \bigwedge y \le -4 \qquad \neg x \ge 2$$

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ x < 2

3 clauses alive at the same time:

$$x \ge 7 \land y \le -4$$
 $\neg x \ge 2$ $\neg x \ge 7 \lor x \ge 2$ \uparrow \uparrow

Skeptical interaction 000000

Checker 000000 Small checkers

Efficiency 00 Work in progress

Unsatisfiability of: $x \ge 7 \bigwedge y \le -4$ x < 2

$$\frac{x \ge 7 \bigwedge y \le -4}{\sum_{x \ge 7} \operatorname{CNF}} \xrightarrow{\neg x \ge 7 \lor x \ge 2} \frac{\operatorname{LIA}}{\neg x \ge 7} \xrightarrow{\neg x \ge 2} \operatorname{Reso}_{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}}$$

3 clauses alive at the same time:

$$x \ge 7 \bigwedge y \le -4 \qquad \neg x \ge 2 \qquad \neg x \ge 7 \lor x \ge 2$$

Skeptical interaction

Checker 0000●0 Small checkers

Efficiency

Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ x < 2

$$\frac{x \ge 7 \bigwedge y \le -4}{\sum_{x \ge 7} \operatorname{CNF}} \xrightarrow{\neg x \ge 7 \lor x \ge 2} \frac{\operatorname{LIA}}{\neg x \ge 7} \xrightarrow{\neg x \ge 2} \operatorname{Reso}_{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}}$$

11/40

3 clauses alive at the same time:

$$x \ge 7 \land y \le -4$$
 $\neg x \ge 2$
 $\neg x \ge 7 \lor x \ge 2$
 \uparrow
 \uparrow
 \uparrow

 keptical interaction
 Checker
 Small checkers
 Efficiency
 Work in progress
 Perspectives

 000000
 0000000
 00000000
 00
 0000000
 00
 000000

Unsatisfiability of: $x \ge 7 \land y \le -4$ x < 2

$$\frac{x \ge 7 \bigwedge y \le -4}{\sum_{x \ge 7} \operatorname{CNF}} \xrightarrow{\neg x \ge 7 \lor x \ge 2} \frac{\operatorname{LIA}}{\neg x \ge 7} \xrightarrow{\neg x \ge 2} \operatorname{Reso}_{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}}$$

11/40

3 clauses alive at the same time:

Unsatisfiability of: $x \ge 7 \bigwedge y \le -4$ x < 2

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\overline{\neg x \ge 7 \lor x \ge 2}}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \operatorname{Reso}_{\operatorname{Reso}}$$

3 clauses alive at the same time:

$$x \ge 7 \bigwedge y \le -4 \qquad \neg x \ge 7 \qquad \neg x \ge 7 \lor x \ge 2$$

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ x < 2

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\overline{\neg x \ge 7 \lor x \ge 2}}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \operatorname{Reso}_{\operatorname{Reso}}$$

3 clauses alive at the same time:

$$x \ge 7 \land y \le -4$$
 $\neg x \ge 7$ $\neg x \ge 7 \lor x \ge 2$ \uparrow

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Unsatisfiability of: $x \ge 7 \land y \le -4$ x < 2

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\overline{\neg x \ge 7 \lor x \ge 2}}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \operatorname{Reso}_{\operatorname{Reso}}$$

3 clauses alive at the same time:

$$x \ge 7$$
 $\neg x \ge 7$ $\neg x \ge 7 \lor x \ge 2$ \uparrow

Skeptical interaction

Checker 0000●0 Small checkers

Efficiency

Work in progress

Unsatisfiability of: $x \ge 7 \bigwedge y \le -4$ x < 2

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\overline{\neg x \ge 7 \lor x \ge 2}}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \frac{\overline{\neg x \ge 7} \lor x \ge 2}{\operatorname{Reso}} \operatorname{Reso}_{\operatorname{Reso}}$$

3 clauses alive at the same time:

Skeptical interaction	Checker	Small checkers	Efficiency	Work in progress	Perspectives
000000	000000	000000000000000000000000000000000000000	00	000000	00

11/40

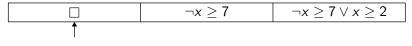
Unsatisfiability of: $x \ge 7 \land y \le -4$ x < 2

$$\frac{x \ge 7 \bigwedge y \le -4}{x \ge 7} \operatorname{CNF} \frac{\overline{\neg x \ge 7 \lor x \ge 2}}{\neg x \ge 7} \operatorname{Reso}_{\operatorname{Reso}} \operatorname{Reso}_{\operatorname{Reso}}$$

11/40

3 clauses alive at the same time:

$$x \ge 7$$
 $\neg x \ge 7$
 $\neg x \ge 7 \lor x \ge 2$
 \uparrow
 \uparrow
 \uparrow
 \uparrow


 keptical interaction
 Checker
 Small checkers
 Efficiency
 Work in progress
 Perspectives

 000000
 0000000
 00
 00
 00
 00
 00
 00
 00

Unsatisfiability of: $x \ge 7 \bigwedge y \le -4$ x < 2

3 clauses alive at the same time:

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

After preprocessing

INPUT $x \ge 7 \land y \le -4$ 1: INPUT $\neg x > 2$ 2: 3: LIA $\neg x > 7 \lor x > 2$ RESO [2; 3] 4: 5: CNF_PROJ 1 RESO [4; 5] 6:

Skeptical interaction

Checker

Small checkers

Efficiency

Work in progress

After preprocessing

INPUT $x \ge 7 \bigwedge y \le -4$ 1 1: INPUT $\neg x > 2$ 2 2: 3 3: LIA $\neg x > 7 \lor x > 2$ RESO [2; 3] 2 4: 5: CNF_PROJ 1 1 RESO [4; 5] 1 6:

Skeptical interaction

Checker 00000 Small checkers

Efficiency

Work in progress

After preprocessing

INPUT $x \ge 7 \bigwedge y \le -4$ 1 1: INPUT $\neg x > 2$ 2 2: 3 3: LIA $\neg x > 7 \lor x > 2$ RESO [2; 3] 2 4: 5: CNF_PROJ 1 1 RESO [1; 2] 1 6:

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Outline

1 Skeptical interaction

2 Checker

- 3 Small checkers
- 4 Efficiency
- 5 Work in progress

6 Perspectives

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Current small checkers

Current small checkers:

- resolution chains
- CNF computation
- Linear Integer Arithmetic (using Micromega)
- Simplifications (eg. $x < 2 \rightsquigarrow \neg x \ge 2$)
- Equality of Uninterpreted Functions

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Current small checkers

Current small checkers:

- resolution chains
- CNF computation
- Linear Integer Arithmetic (using Micromega)
- Simplifications (eg. $x < 2 \rightsquigarrow \neg x \ge 2$)
- Equality of Uninterpreted Functions

Skeptical interaction

Checker 000000 Small checkers

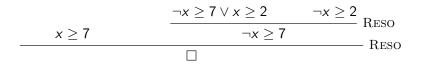
Efficiency

Work in progress

A need for a good representation of atoms and literals

Running example:

Skeptical interaction


Checker 000000 Small checkers

Efficiency

Work in progress

A need for a good representation of atoms and literals

Running example:

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

A need for a good representation of atoms and literals

Running example:

the resolution checker does not need to know the content of atoms

Skeptical interaction

Checker

Small checkers

Efficiency 00 Work in progress

Atoms and literals

Atoms:

entirely hashed (maximum sharing)

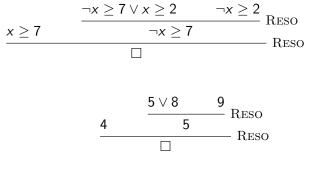
•
$$x \ge 7 \bigwedge y \le -4$$
 is $\mathcal{A}(5)$ in

0	1	2	3	4	5
x	y	$\mathcal{A}(0) \geq 7$	$\mathcal{A}(1) \leq -4$	$\mathcal{A}(0) \geq 2$	$\mathcal{A}(2) \bigwedge \mathcal{A}(3)$

Literals:

- ▶ 2*i* represents $\mathcal{A}(i)$
- ▶ 2i + 1 represents $\neg A(i)$
- ▶ / is the negation of m iff $I \oplus m = 1...$ etc.

Skeptical interaction


Checker 000000 Small checkers

Efficiency 00 Work in progress

Back to the example

0	1	2	3	4	5
X	y	$\mathcal{A}(0) \geq 7$	$\mathcal{A}(1) \leq -4$	$\mathcal{A}(0) \geq 2$	$\mathcal{A}(2) \bigwedge \mathcal{A}(3)$

The tree becomes:

Skeptical interaction 000000

Checker 000000 Small checkers

Efficiency 00 Work in progress

Clauses and resolution

Clause:

ordered list of integers (representing literals)

Resolution:

- does not need to know the hash-table of atoms
- is computed by running through the lists
- ▶ is efficient because comparison is based on bitwise operations

Skeptical interaction

Checker 000000 Small checkers

Efficiency 00 Work in progress

Current small checkers

Current small checkers:

- resolution chains
- CNF computation
- Linear Integer Arithmetic (using Micromega)
- Simplifications (eg. $x < 2 \rightsquigarrow \neg x \ge 2$)
- Equality of Uninterpreted Functions

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Tseitin variables by example

Given the formula $(a \land b) \lor (c \Rightarrow d)$:

introduce a new variable for each subformula:

$$\blacktriangleright F_2 = c \Rightarrow d$$

$$\blacktriangleright F_3 = F_1 \bigvee F_2$$

introduce projection rules and tautologies associated to each of the variables:

$$\frac{F_1}{a} \quad \frac{F_1}{b} \quad \frac{\neg F_1}{\neg a \lor \neg b} \qquad \overline{\neg F_1 \lor a} \quad \overline{\neg F_1 \lor b} \quad \overline{F_1 \lor a \lor \neg b}$$

$$\frac{F_2}{\neg c \lor d} \quad \frac{\neg F_2}{c} \quad \frac{\neg F_2}{\neg d} \qquad \overline{\neg F_2 \lor \neg c \lor d} \quad \overline{F_2 \lor c} \quad \overline{F_2 \lor \neg d}$$

$$\frac{F_3}{F_1 \lor F_2} \quad \frac{\neg F_3}{\neg F_1} \quad \frac{\neg F_3}{\neg F_2} \qquad \overline{\neg F_3 \lor F_1 \lor F_2} \quad \overline{F_3 \lor \neg F_1} \quad \overline{F_3 \lor \neg F_2}$$

Skeptical interaction

Checker 000000 Small checkers

Efficiency 00 Work in progress

Perspectives

In our representation of terms

- Tseitin variables are already introduced by the hash of atoms
- the CNF checker computes projections and tautologies by unfolding atoms at first level
- running example:

4

0	1	2	3	4	5
x	y	$\mathcal{A}(0) \geq 7$	$\mathcal{A}(1) \leq -4$	$\mathcal{A}(0) \geq 2$	$\mathcal{A}(2) \bigwedge \mathcal{A}(3)$
10)	10	11		
	-				

 $5 \vee 7$

Skeptical interaction

Checker 000000 6

Small checkers

Efficiency

Work in progress

In our representation of terms

- Tseitin variables are already introduced by the hash of atoms
- the CNF checker computes projections and tautologies by unfolding atoms at first level
- running example:

0	1	2	3	4	5	
X	y	$\mathcal{A}(0) \geq 7$	$\mathcal{A}(1) \leq -4$	$\mathcal{A}(0) \geq 2$	$\mathcal{A}(2) \bigwedge \mathcal{A}(3)$	
<u>10</u> 4)	$\frac{10}{6}$	$\frac{11}{5 \lor 7}$	$x \ge $	$\frac{7\bigwedge y \le -4}{x \ge 7} \text{ CNF}$	7

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

In our representation of terms

- Tseitin variables are already introduced by the hash of atoms
- the CNF checker computes projections and tautologies by unfolding atoms at first level
- running example:

0	1	2	3	4	5	
x	y	$\mathcal{A}(0) \geq 7$	$\mathcal{A}(1) \leq -4$	$\mathcal{A}(0) \geq 2$	$\mathcal{A}(2) \bigwedge \mathcal{A}(3)$	
10)	10	11	$x \ge$	$7 \bigwedge y \leq -4$	
4	-	6	$\overline{5 \lor 7}$		$x \ge 7$	NF

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Current small checkers

Current small checkers:

- resolution chains
- CNF computation
- Linear Integer Arithmetic (using Micromega)
- Simplifications (eg. $x < 2 \rightsquigarrow \neg x \ge 2$)
- Equality of Uninterpreted Functions

Skeptical interaction

Checker 000000 Small checkers

Efficiency 00 Work in progress

Perspectives 00 22/40 LIA: using a decision procedure as a blackbox

Micromega works like SMTCoq:

- call of an external solver that produces a certificate
- call a Coq checker on the formula and the certificate

Very easy to use:

- translate our representation of formulas into Micromega's representation
- call the external solver during preprocessing
- call the Coq checker during checking
- no need for a certificate from the SMT solver!

Skeptical interaction

Checker 000000 Small checkers

Efficiency 00 Work in progress

Perspectives 00 23/40

Current small checkers

Current small checkers:

- resolution chains
- CNF computation
- Linear Integer Arithmetic (using Micromega)
- Simplifications (eg. $x < 2 \rightsquigarrow \neg x \ge 2$)
- Equality of Uninterpreted Functions

Skeptical interaction

Checker 000000 Small checkers

Efficiency 00 Work in progress

Perspectives 00 24/40

The simplification problem

Simplifications:

- silent simplification at the beginning (the formula that is proved is not the input: flattening, canonical form)
- simplifications inside the proof
- usually no certificate

Problem:

- given two terms
- prove their interpretations are "equivalent"

Skeptical interaction

Checker

Small checkers

Efficiency 00 Work in progress

Perspectives 00 25/40

Two approaches

Syntactical approach:

- simultaneous descent of the two terms
- ► usage: associativity of conjunction and disjunction, double negation, simple rewriting of linear equations (a ≥ b ≡ b ≤ a)
- possibility to mix theories

Semantical approach:

- send the equivalence between the terms to a decision procedure
- chose the decision procedure by looking at the head symbol of the terms
- usage: $3 + x + y + 7 + x \equiv 2x + 10 + y$
- no mixing of theories

Skeptical interaction

Checker 000000 Small checkers

Efficiency 00 Work in progress

Perspectives 00 26/40

Current small checkers

Current small checkers:

- resolution chains
- CNF computation
- Linear Integer Arithmetic (using Micromega)
- Simplifications (eg. $x < 2 \rightsquigarrow \neg x \ge 2$)
- Equality of Uninterpreted Functions

Skeptical interaction

Checker 000000 Small checkers

Efficiency 00 Work in progress

Perspectives 00 27/40 Congruence closure: a theory at the heart of SMT solvers

Equality of Uninterpreted functions:

• if
$$x = y$$
 then $f(x) = f(y)$ and $P(x) \Leftrightarrow P(y)$

used in SMT solvers to share equalities between theories

Skeptical interaction

Checker 000000 Small checkers

Efficiency 00 Work in progress

Perspectives 00 28/40 A theory which is easy to check

With certificates:

three rules considered modulo the symmetry of equality

$$\frac{1}{x_1 \neq x_2 \vee \cdots \vee x_{n-1} \neq x_n \vee x_1 = x_n} \text{ Trans}$$

$$\frac{1}{x_1 \neq y_1 \vee \cdots \vee x_n \neq y_n \vee f \ x_1 \ \ldots \ x_n = f \ y_1 \ \ldots \ y_n} CONGF$$

$$\frac{1}{x_1 \neq y_1 \vee \cdots \vee x_n \neq y_n \vee \neg P \ x_1 \ \dots \ x_n \vee P \ y_1 \ \dots \ y_n} \text{ CongP}$$

Without certificates:

not difficult to write a decision procedure

Skeptical interaction

Checker

Small checkers

Efficiency 00 Work in progress

Perspectives 00 29/40

Conclusion about small checkers

Small checkers:

- independent from each other
- large notion of "theory"
- different small checkers for overlapping theories might cohabit
- can choose the most appropriate one

Skeptical interaction

Checker 000000 Small checkers

Efficiency 00 Work in progress

Perspectives 00 30/40

Outline

1 Skeptical interaction

2 Checker

- 3 Small checkers
- 4 Efficiency
- 5 Work in progress

6 Perspectives

Skeptical interaction

Checker 000000 Small checkers

Efficiency •0 Work in progress

Certifying SMT solvers

In addition to finding a proof:

- generation of the proof witness
- pre-processing
- checking

Benchmarks:

- finding + generation > pre-processing + checking
- faster than the state-of-the-art certified SMT solvers

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Perspectives 00 32/40

Outline

1 Skeptical interaction

2 Checker

- 3 Small checkers
- 4 Efficiency
- 5 Work in progress

6 Perspectives

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

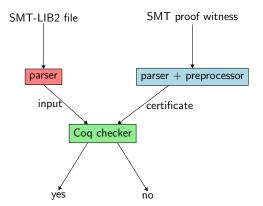
Perspectives 00 33/40

To sum-up

SMTCoq:

- efficient checker for a general notion of certificates
- on top of it, preprocessors for zChaff and veriT
- Coq tactics
- modular at two levels: in terms of provers and in terms of small checkers

Skeptical interaction


Checker 000000 Small checkers

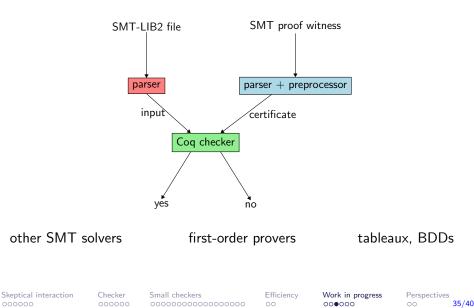
Efficiency

Work in progress

Perspectives 00 34/40

Integration of new solvers

Skeptical interaction


Checker 000000 Small checkers

Efficiency

Work in progress

Perspectives 00 35/40

Integration of new solvers

Some certificates can be very big (up to 200TB)

- Connect more tightly SMTCoq with the solvers
- Develop an API for solvers
- Replace writing a line in the certificate by calling the API

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Perspectives 00 36/40 SMT solvers can take advantage in using universally-quantified lemmas

- Include support for these in SMTCoq
- Pick lemmas from Coq standard library to send to the prover
- Recognize their instances in the certificate
- Apply the appropriate lemmas whn reconstructing the proof

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Perspectives 00 37/40

Other work in progress

- Coq package
- integration of CVC4
- new theories: bit vectors, quantifiers, reals

(arithmetic, differential equations)

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Perspectives 00 38/40

Outline

1 Skeptical interaction

2 Checker

- 3 Small checkers
- 4 Efficiency
- 5 Work in progress

6 Perspectives

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Perspectives • 0 39/40

Conclusion

smtcoq.github.io

Long-term perspectives:

- improve the tactics
- mix SMT solvers
- design a new certificate format
 - handle other provers (LF, HOL, ...)
 - standard?

Skeptical interaction

Checker 000000 Small checkers

Efficiency

Work in progress

Perspectives 0 40/40