Theory QuadraticReciprocity

Up to index of Isabelle/HOL/HOL-Complex/NumberTheory

theory QuadraticReciprocity = Gauss:

(*  Title:      QuadraticReciprocity.thy
    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
*)

header {* The law of Quadratic reciprocity *}

theory QuadraticReciprocity = Gauss:;

(***************************************************************)
(*                                                             *)
(*  Lemmas leading up to the proof of theorem 3.3 in           *)
(*  Niven and Zuckerman's presentation                         *)
(*                                                             *)
(***************************************************************)

lemma setsum_const_mult: "finite A ==> setsum (%x. c * ((f x)::int)) A = 
    c * setsum f A";
  apply (induct set: Finites, auto)
  by (auto simp only: zadd_zmult_distrib2); 

lemma (in GAUSS) QRLemma1: "a * setsum id A = 
  p * setsum (%x. ((x * a) div p)) A + setsum id D + setsum id E";
proof -;
  from finite_A have "a * setsum id A = setsum (%x. a * x) A"; 
    by(auto simp add: setsum_const_mult id_def)
  also have "setsum (%x. a * x) = setsum (%x. x * a)"; 
    by (auto simp add: zmult_commute)
  also; have "setsum (%x. x * a) A = setsum id B";
    by (auto simp add: B_def setsum_reindex_id finite_A inj_on_xa_A)
  also have "... = setsum (%x. p * (x div p) + StandardRes p x) B";
    apply (rule setsum_cong);
    by (auto simp add: finite_B StandardRes_def zmod_zdiv_equality)
  also have "... = setsum (%x. p * (x div p)) B + setsum (StandardRes p) B";
    by (rule setsum_addf)
  also; have "setsum (StandardRes p) B = setsum id C";
    by (auto simp add: C_def setsum_reindex_id [THEN sym] finite_B 
      SR_B_inj)
  also; from C_eq have "... = setsum id (D ∪ E)";
    by auto
  also; from finite_D finite_E have "... = setsum id D + setsum id E";
    apply (rule setsum_Un_disjoint)
    by (auto simp add: D_def E_def)
  also have "setsum (%x. p * (x div p)) B = 
      setsum ((%x. p * (x div p)) o (%x. (x * a))) A";
    by (auto simp add: B_def setsum_reindex finite_A inj_on_xa_A)
  also have "... = setsum (%x. p * ((x * a) div p)) A";
    by (auto simp add: o_def)
  also from finite_A have "setsum (%x. p * ((x * a) div p)) A = 
    p * setsum (%x. ((x * a) div p)) A";
    by (auto simp add: setsum_const_mult)
  finally show ?thesis by arith
qed;

lemma (in GAUSS) QRLemma2: "setsum id A = p * int (card E) - setsum id E + 
  setsum id D"; 
proof -;
  from F_Un_D_eq_A have "setsum id A = setsum id (D ∪ F)";
    by (simp add: Un_commute)
  also from F_D_disj finite_D finite_F have 
      "... = setsum id D + setsum id F";
    apply (simp add: Int_commute)
    by (intro setsum_Un_disjoint) 
  also from F_def have "F = (%x. (p - x)) ` E";
    by auto
  also from finite_E inj_on_pminusx_E have "setsum id ((%x. (p - x)) ` E) =
      setsum (%x. (p - x)) E";
    by (auto simp add: setsum_reindex)
  also from finite_E have "setsum (op - p) E = setsum (%x. p) E - setsum id E";
    by (auto simp add: setsum_subtractf id_def)
  also from finite_E have "setsum (%x. p) E = p * int(card E)";
    apply (subst setsum_constant);
    apply (assumption);
    apply (simp add: int_eq_of_nat);
    done;
  finally show ?thesis;
    by arith
qed;

lemma (in GAUSS) QRLemma3: "(a - 1) * setsum id A = 
    p * (setsum (%x. ((x * a) div p)) A - int(card E)) + 2 * setsum id E";
proof -;
  have "(a - 1) * setsum id A = a * setsum id A - setsum id A";
    by (auto simp add: zdiff_zmult_distrib)  
  also note QRLemma1;
  also; from QRLemma2 have "p * (∑x ∈ A. x * a div p) + setsum id D + 
     setsum id E - setsum id A = 
      p * (∑x ∈ A. x * a div p) + setsum id D + 
      setsum id E - (p * int (card E) - setsum id E + setsum id D)";
    by auto
  also; have "... = p * (∑x ∈ A. x * a div p) - 
      p * int (card E) + 2 * setsum id E"; 
    by arith
  finally show ?thesis;
    by (auto simp only: zdiff_zmult_distrib2)
qed;

lemma (in GAUSS) QRLemma4: "a ∈ zOdd ==> 
    (setsum (%x. ((x * a) div p)) A ∈ zEven) = (int(card E): zEven)";
proof -;
  assume a_odd: "a ∈ zOdd";
  from QRLemma3 have a: "p * (setsum (%x. ((x * a) div p)) A - int(card E)) =
      (a - 1) * setsum id A - 2 * setsum id E"; 
    by arith
  from a_odd have "a - 1 ∈ zEven"
    by (rule odd_minus_one_even)
  hence "(a - 1) * setsum id A ∈ zEven";
    by (rule even_times_either)
  moreover have "2 * setsum id E ∈ zEven";
    by (auto simp add: zEven_def)
  ultimately have "(a - 1) * setsum id A - 2 * setsum id E ∈ zEven"
    by (rule even_minus_even)
  with a have "p * (setsum (%x. ((x * a) div p)) A - int(card E)): zEven";
    by simp
  hence "p ∈ zEven | (setsum (%x. ((x * a) div p)) A - int(card E)): zEven";
    by (rule EvenOdd2.even_product)
  with p_odd have "(setsum (%x. ((x * a) div p)) A - int(card E)): zEven";
    by (auto simp add: odd_iff_not_even)
  thus ?thesis;
    by (auto simp only: even_diff [THEN sym])
qed;

lemma (in GAUSS) QRLemma5: "a ∈ zOdd ==> 
   (-1::int)^(card E) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))";
proof -;
  assume "a ∈ zOdd";
  from QRLemma4 have
    "(int(card E): zEven) = (setsum (%x. ((x * a) div p)) A ∈ zEven)";..;
  moreover have "0 ≤ int(card E)";
    by auto
  moreover have "0 ≤ setsum (%x. ((x * a) div p)) A";
    proof (intro setsum_nonneg);
      from finite_A show "finite A";.;
      next show "∀x ∈ A. 0 ≤ x * a div p";
      proof;
        fix x;
        assume "x ∈ A";
        then have "0 ≤ x";
          by (auto simp add: A_def)
        with a_nonzero have "0 ≤ x * a";
          by (auto simp add: zero_le_mult_iff)
        with p_g_2 show "0 ≤ x * a div p"; 
          by (auto simp add: pos_imp_zdiv_nonneg_iff)
      qed;
    qed;
  ultimately have "(-1::int)^nat((int (card E))) =
      (-1)^nat(((∑x ∈ A. x * a div p)))";
    by (intro neg_one_power_parity, auto)
  also have "nat (int(card E)) = card E";
    by auto
  finally show ?thesis;.;
qed;

lemma MainQRLemma: "[| a ∈ zOdd; 0 < a; ~([a = 0] (mod p));p ∈ zprime; 2 < p;
  A = {x. 0 < x & x ≤ (p - 1) div 2} |] ==> 
  (Legendre a p) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))";
  apply (subst GAUSS.gauss_lemma)
  apply (auto simp add: GAUSS_def)
  apply (subst GAUSS.QRLemma5)
by (auto simp add: GAUSS_def)

(******************************************************************)
(*                                                                *)
(* Stuff about S, S1 and S2...                                    *)
(*                                                                *)
(******************************************************************)

locale QRTEMP =
  fixes p     :: "int"
  fixes q     :: "int"
  fixes P_set :: "int set"
  fixes Q_set :: "int set"
  fixes S     :: "(int * int) set"
  fixes S1    :: "(int * int) set"
  fixes S2    :: "(int * int) set"
  fixes f1    :: "int => (int * int) set"
  fixes f2    :: "int => (int * int) set"

  assumes p_prime: "p ∈ zprime"
  assumes p_g_2: "2 < p"
  assumes q_prime: "q ∈ zprime"
  assumes q_g_2: "2 < q"
  assumes p_neq_q:      "p ≠ q"

  defines P_set_def: "P_set == {x. 0 < x & x ≤ ((p - 1) div 2) }"
  defines Q_set_def: "Q_set == {x. 0 < x & x ≤ ((q - 1) div 2) }"
  defines S_def:     "S     == P_set <*> Q_set"
  defines S1_def:    "S1    == { (x, y). (x, y):S & ((p * y) < (q * x)) }"
  defines S2_def:    "S2    == { (x, y). (x, y):S & ((q * x) < (p * y)) }"
  defines f1_def:    "f1 j  == { (j1, y). (j1, y):S & j1 = j & 
                                 (y ≤ (q * j) div p) }"
  defines f2_def:    "f2 j  == { (x, j1). (x, j1):S & j1 = j & 
                                 (x ≤ (p * j) div q) }";

lemma (in QRTEMP) p_fact: "0 < (p - 1) div 2";
proof -;
  from prems have "2 < p" by (simp add: QRTEMP_def)
  then have "2 ≤ p - 1" by arith
  then have "2 div 2 ≤ (p - 1) div 2" by (rule zdiv_mono1, auto)
  then show ?thesis by auto
qed;

lemma (in QRTEMP) q_fact: "0 < (q - 1) div 2";
proof -;
  from prems have "2 < q" by (simp add: QRTEMP_def)
  then have "2 ≤ q - 1" by arith
  then have "2 div 2 ≤ (q - 1) div 2" by (rule zdiv_mono1, auto)
  then show ?thesis by auto
qed;

lemma (in QRTEMP) pb_neq_qa: "[|1 ≤ b; b ≤ (q - 1) div 2 |] ==> 
    (p * b ≠ q * a)";
proof;
  assume "p * b = q * a" and "1 ≤ b" and "b ≤ (q - 1) div 2";
  then have "q dvd (p * b)" by (auto simp add: dvd_def)
  with q_prime p_g_2 have "q dvd p | q dvd b";
    by (auto simp add: zprime_zdvd_zmult)
  moreover have "~ (q dvd p)";
  proof;
    assume "q dvd p";
    with p_prime have "q = 1 | q = p"
      apply (auto simp add: zprime_def QRTEMP_def)
      apply (drule_tac x = q and R = False in allE)
      apply (simp add: QRTEMP_def)    
      apply (subgoal_tac "0 ≤ q", simp add: QRTEMP_def)
      apply (insert prems)
    by (auto simp add: QRTEMP_def)
    with q_g_2 p_neq_q show False by auto
  qed;
  ultimately have "q dvd b" by auto
  then have "q ≤ b";
  proof -;
    assume "q dvd b";
    moreover from prems have "0 < b" by auto
    ultimately show ?thesis by (insert zdvd_bounds [of q b], auto)
  qed;
  with prems have "q ≤ (q - 1) div 2" by auto
  then have "2 * q ≤ 2 * ((q - 1) div 2)" by arith
  then have "2 * q ≤ q - 1";
  proof -;
    assume "2 * q ≤ 2 * ((q - 1) div 2)";
    with prems have "q ∈ zOdd" by (auto simp add: QRTEMP_def zprime_zOdd_eq_grt_2)
    with odd_minus_one_even have "(q - 1):zEven" by auto
    with even_div_2_prop2 have "(q - 1) = 2 * ((q - 1) div 2)" by auto
    with prems show ?thesis by auto
  qed;
  then have p1: "q ≤ -1" by arith
  with q_g_2 show False by auto
qed;

lemma (in QRTEMP) P_set_finite: "finite (P_set)";
  by (insert p_fact, auto simp add: P_set_def bdd_int_set_l_le_finite)

lemma (in QRTEMP) Q_set_finite: "finite (Q_set)";
  by (insert q_fact, auto simp add: Q_set_def bdd_int_set_l_le_finite)

lemma (in QRTEMP) S_finite: "finite S";
  by (auto simp add: S_def  P_set_finite Q_set_finite); 

lemma (in QRTEMP) S1_finite: "finite S1";
proof -;
  have "finite S" by (auto simp add: S_finite)
  moreover have "S1 ⊆ S" by (auto simp add: S1_def S_def)
  ultimately show ?thesis by (auto simp add: finite_subset)
qed;

lemma (in QRTEMP) S2_finite: "finite S2";
proof -;
  have "finite S" by (auto simp add: S_finite)
  moreover have "S2 ⊆ S" by (auto simp add: S2_def S_def)
  ultimately show ?thesis by (auto simp add: finite_subset)
qed;

lemma (in QRTEMP) P_set_card: "(p - 1) div 2 = int (card (P_set))";
  by (insert p_fact, auto simp add: P_set_def card_bdd_int_set_l_le)

lemma (in QRTEMP) Q_set_card: "(q - 1) div 2 = int (card (Q_set))";
  by (insert q_fact, auto simp add: Q_set_def card_bdd_int_set_l_le)

lemma (in QRTEMP) S_card: "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))";
  apply (insert P_set_card Q_set_card P_set_finite Q_set_finite)
  apply (auto simp add: S_def zmult_int setsum_constant); 
done

lemma (in QRTEMP) S1_Int_S2_prop: "S1 ∩ S2 = {}";
  by (auto simp add: S1_def S2_def)

lemma (in QRTEMP) S1_Union_S2_prop: "S = S1 ∪ S2";
  apply (auto simp add: S_def P_set_def Q_set_def S1_def S2_def)
  proof -;
    fix a and b;
    assume "~ q * a < p * b" and b1: "0 < b" and b2: "b ≤ (q - 1) div 2";
    with zless_linear have "(p * b < q * a) | (p * b = q * a)" by auto
    moreover from pb_neq_qa b1 b2 have "(p * b ≠ q * a)" by auto
    ultimately show "p * b < q * a" by auto
  qed;

lemma (in QRTEMP) card_sum_S1_S2: "((p - 1) div 2) * ((q - 1) div 2) = 
    int(card(S1)) + int(card(S2))";
proof-;
  have "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))";
    by (auto simp add: S_card)
  also have "... = int( card(S1) + card(S2))";
    apply (insert S1_finite S2_finite S1_Int_S2_prop S1_Union_S2_prop)
    apply (drule card_Un_disjoint, auto)
  done
  also have "... = int(card(S1)) + int(card(S2))" by auto
  finally show ?thesis .;
qed;

lemma (in QRTEMP) aux1a: "[| 0 < a; a ≤ (p - 1) div 2; 
                             0 < b; b ≤ (q - 1) div 2 |] ==>
                          (p * b < q * a) = (b ≤ q * a div p)";
proof -;
  assume "0 < a" and "a ≤ (p - 1) div 2" and "0 < b" and "b ≤ (q - 1) div 2";
  have "p * b < q * a ==> b ≤ q * a div p";
  proof -;
    assume "p * b < q * a";
    then have "p * b ≤ q * a" by auto
    then have "(p * b) div p ≤ (q * a) div p";
      by (rule zdiv_mono1, insert p_g_2, auto)
    then show "b ≤ (q * a) div p";
      apply (subgoal_tac "p ≠ 0")
      apply (frule zdiv_zmult_self2, force)
      by (insert p_g_2, auto)
  qed;
  moreover have "b ≤ q * a div p ==> p * b < q * a";
  proof -;
    assume "b ≤ q * a div p";
    then have "p * b ≤ p * ((q * a) div p)";
      by (insert p_g_2, auto simp add: mult_le_cancel_left);
    also have "... ≤ q * a";
      by (rule zdiv_leq_prop, insert p_g_2, auto)
    finally have "p * b ≤ q * a" .;
    then have "p * b < q * a | p * b = q * a";
      by (simp only: order_le_imp_less_or_eq)
    moreover have "p * b ≠ q * a";
      by (rule  pb_neq_qa, insert prems, auto)
    ultimately show ?thesis by auto
  qed;
  ultimately show ?thesis ..;
qed;

lemma (in QRTEMP) aux1b: "[| 0 < a; a ≤ (p - 1) div 2; 
                             0 < b; b ≤ (q - 1) div 2 |] ==>
                          (q * a < p * b) = (a ≤ p * b div q)";
proof -;
  assume "0 < a" and "a ≤ (p - 1) div 2" and "0 < b" and "b ≤ (q - 1) div 2";
  have "q * a < p * b ==> a ≤ p * b div q";
  proof -;
    assume "q * a < p * b";
    then have "q * a ≤ p * b" by auto
    then have "(q * a) div q ≤ (p * b) div q";
      by (rule zdiv_mono1, insert q_g_2, auto)
    then show "a ≤ (p * b) div q";
      apply (subgoal_tac "q ≠ 0")
      apply (frule zdiv_zmult_self2, force)
      by (insert q_g_2, auto)
  qed;
  moreover have "a ≤ p * b div q ==> q * a < p * b";
  proof -;
    assume "a ≤ p * b div q";
    then have "q * a ≤ q * ((p * b) div q)";
      by (insert q_g_2, auto simp add: mult_le_cancel_left)
    also have "... ≤ p * b";
      by (rule zdiv_leq_prop, insert q_g_2, auto)
    finally have "q * a ≤ p * b" .;
    then have "q * a < p * b | q * a = p * b";
      by (simp only: order_le_imp_less_or_eq)
    moreover have "p * b ≠ q * a";
      by (rule  pb_neq_qa, insert prems, auto)
    ultimately show ?thesis by auto
  qed;
  ultimately show ?thesis ..;
qed;

lemma aux2: "[| p ∈ zprime; q ∈ zprime; 2 < p; 2 < q |] ==> 
             (q * ((p - 1) div 2)) div p ≤ (q - 1) div 2";
proof-;
  assume "p ∈ zprime" and "q ∈ zprime" and "2 < p" and "2 < q";
  (* Set up what's even and odd *)
  then have "p ∈ zOdd & q ∈ zOdd";
    by (auto simp add:  zprime_zOdd_eq_grt_2)
  then have even1: "(p - 1):zEven & (q - 1):zEven";
    by (auto simp add: odd_minus_one_even)
  then have even2: "(2 * p):zEven & ((q - 1) * p):zEven";
    by (auto simp add: zEven_def)
  then have even3: "(((q - 1) * p) + (2 * p)):zEven";
    by (auto simp: EvenOdd2.even_plus_even)
  (* using these prove it *)
  from prems have "q * (p - 1) < ((q - 1) * p) + (2 * p)";
    by (auto simp add: int_distrib)
  then have "((p - 1) * q) div 2 < (((q - 1) * p) + (2 * p)) div 2";
    apply (rule_tac x = "((p - 1) * q)" in even_div_2_l);
    by (auto simp add: even3, auto simp add: zmult_ac)
  also have "((p - 1) * q) div 2 = q * ((p - 1) div 2)";
    by (auto simp add: even1 even_prod_div_2)
  also have "(((q - 1) * p) + (2 * p)) div 2 = (((q - 1) div 2) * p) + p";
    by (auto simp add: even1 even2 even_prod_div_2 even_sum_div_2)
  finally show ?thesis 
    apply (rule_tac x = " q * ((p - 1) div 2)" and 
                    y = "(q - 1) div 2" in div_prop2);
    by (insert prems, auto)
qed;

lemma (in QRTEMP) aux3a: "∀j ∈ P_set. int (card (f1 j)) =
    (q * j) div p"; 
proof;
  fix j;
  assume j_fact: "j ∈ P_set";
  have "int (card (f1 j)) = int (card {y. y ∈ Q_set & 
      y ≤ (q * j) div p})";
  proof -;
    have "finite (f1 j)";
    proof -;
      have "(f1 j) ⊆ S" by (auto simp add: f1_def)
      with S_finite show ?thesis by (auto simp add: finite_subset)
    qed;
    moreover have "inj_on (%(x,y). y) (f1 j)";
      by (auto simp add: f1_def inj_on_def)
    ultimately have "card ((%(x,y). y) ` (f1 j)) = card  (f1 j)";
      by (auto simp add: f1_def card_image)
    moreover have "((%(x,y). y) ` (f1 j)) = {y. y ∈ Q_set & 
        y ≤ (q * j) div p}";
      by (insert prems, auto simp add: f1_def S_def Q_set_def P_set_def 
        image_def)
    ultimately show ?thesis by (auto simp add: f1_def)
  qed;
  also have "... = int (card {y. 0 < y & y ≤ (q * j) div p})";
  proof -;
    have "{y. y ∈ Q_set & y ≤ (q * j) div p} = 
        {y. 0 < y & y ≤ (q * j) div p}";
      apply (auto simp add: Q_set_def)
      proof -;
        fix x;
        assume "0 < x" and "x ≤ q * j div p";
        with j_fact P_set_def  have "j ≤ (p - 1) div 2"; by auto
        with q_g_2; have "q * j ≤ q * ((p - 1) div 2)";
          by (auto simp add: mult_le_cancel_left)
        with p_g_2 have "q * j div p ≤ q * ((p - 1) div 2) div p";
          by (auto simp add: zdiv_mono1)
        also from prems have "... ≤ (q - 1) div 2";
          apply simp apply (insert aux2) by (simp add: QRTEMP_def)
        finally show "x ≤ (q - 1) div 2" by (insert prems, auto)
      qed;
    then show ?thesis by auto
  qed;
  also have "... = (q * j) div p";
  proof -;
    from j_fact P_set_def have "0 ≤ j" by auto
    with q_g_2 have "q * 0 ≤ q * j" 
      by (auto simp only: mult_left_mono);
    then have "0 ≤ q * j" by auto
    then have "0 div p ≤ (q * j) div p";
      apply (rule_tac a = 0 in zdiv_mono1)
      by (insert p_g_2, auto)
    also have "0 div p = 0" by auto
    finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)
  qed;
  finally show "int (card (f1 j)) = q * j div p" .;
qed;

lemma (in QRTEMP) aux3b: "∀j ∈ Q_set. int (card (f2 j)) = (p * j) div q";
proof;
  fix j;
  assume j_fact: "j ∈ Q_set";
  have "int (card (f2 j)) = int (card {y. y ∈ P_set & y ≤ (p * j) div q})";
  proof -;
    have "finite (f2 j)";
    proof -;
      have "(f2 j) ⊆ S" by (auto simp add: f2_def)
      with S_finite show ?thesis by (auto simp add: finite_subset)
    qed;
    moreover have "inj_on (%(x,y). x) (f2 j)";
      by (auto simp add: f2_def inj_on_def)
    ultimately have "card ((%(x,y). x) ` (f2 j)) = card  (f2 j)";
      by (auto simp add: f2_def card_image)
    moreover have "((%(x,y). x) ` (f2 j)) = {y. y ∈ P_set & y ≤ (p * j) div q}";
      by (insert prems, auto simp add: f2_def S_def Q_set_def 
        P_set_def image_def)
    ultimately show ?thesis by (auto simp add: f2_def)
  qed;
  also have "... = int (card {y. 0 < y & y ≤ (p * j) div q})";
  proof -;
    have "{y. y ∈ P_set & y ≤ (p * j) div q} = 
        {y. 0 < y & y ≤ (p * j) div q}";
      apply (auto simp add: P_set_def)
      proof -;
        fix x;
        assume "0 < x" and "x ≤ p * j div q";
        with j_fact Q_set_def  have "j ≤ (q - 1) div 2"; by auto
        with p_g_2; have "p * j ≤ p * ((q - 1) div 2)";
          by (auto simp add: mult_le_cancel_left)
        with q_g_2 have "p * j div q ≤ p * ((q - 1) div 2) div q";
          by (auto simp add: zdiv_mono1)
        also from prems have "... ≤ (p - 1) div 2";
          by (auto simp add: aux2 QRTEMP_def)
        finally show "x ≤ (p - 1) div 2" by (insert prems, auto)
      qed;
    then show ?thesis by auto
  qed;
  also have "... = (p * j) div q";
  proof -;
    from j_fact Q_set_def have "0 ≤ j" by auto
    with p_g_2 have "p * 0 ≤ p * j" by (auto simp only: mult_left_mono);
    then have "0 ≤ p * j" by auto
    then have "0 div q ≤ (p * j) div q";
      apply (rule_tac a = 0 in zdiv_mono1)
      by (insert q_g_2, auto)
    also have "0 div q = 0" by auto
    finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)
  qed;
  finally show "int (card (f2 j)) = p * j div q" .;
qed;

lemma (in QRTEMP) S1_card: "int (card(S1)) = setsum (%j. (q * j) div p) P_set";
proof -;
  have "∀x ∈ P_set. finite (f1 x)";
  proof;
    fix x;
    have "f1 x ⊆ S" by (auto simp add: f1_def)
    with S_finite show "finite (f1 x)" by (auto simp add: finite_subset)
  qed;
  moreover have "(∀x ∈ P_set. ∀y ∈ P_set. 
      x ≠ y --> (f1 x) ∩ (f1 y) = {})";
    by (auto simp add: f1_def)
  moreover note P_set_finite;
  ultimately have "int(card (UNION P_set f1)) = 
      setsum (%x. int(card (f1 x))) P_set";
    apply (auto simp add: card_UN_disjoint int_setsum o_def);
    done;
  moreover have "S1 = UNION P_set f1";
    by (auto simp add: f1_def S_def S1_def S2_def P_set_def Q_set_def aux1a)
  ultimately have "int(card (S1)) = setsum (%j. int(card (f1 j))) P_set" 
    by auto
  also have "... = setsum (%j. q * j div p) P_set";
  proof -;
    note aux3a
    with  P_set_finite show ?thesis
      apply (intro setsum_cong);
      apply auto;
      done;
  qed;
  finally show ?thesis .;
qed;

lemma (in QRTEMP) S2_card: "int (card(S2)) = setsum (%j. (p * j) div q) Q_set";
proof -;
  have "∀x ∈ Q_set. finite (f2 x)";
  proof;
    fix x;
    have "f2 x ⊆ S" by (auto simp add: f2_def)
    with S_finite show "finite (f2 x)" by (auto simp add: finite_subset)
  qed;
  moreover have "(∀x ∈ Q_set. ∀y ∈ Q_set. 
      x ≠ y --> (f2 x) ∩ (f2 y) = {})";
    by (auto simp add: f2_def)
  moreover note Q_set_finite;
  ultimately have "int(card (UNION Q_set f2)) = 
      setsum (%x. int(card (f2 x))) Q_set";
      apply (auto simp add: card_UN_disjoint int_setsum o_def);
      done;
  moreover have "S2 = UNION Q_set f2";
    by (auto simp add: f2_def S_def S1_def S2_def P_set_def Q_set_def aux1b)
  ultimately have "int(card (S2)) = setsum (%j. int(card (f2 j))) Q_set" 
    by auto
  also have "... = setsum (%j. p * j div q) Q_set";
  proof -;
    note aux3b;
    with Q_set_finite show ?thesis 
      by (intro setsum_cong, auto);
  qed;
  finally show ?thesis .;
qed;

lemma (in QRTEMP) S1_carda: "int (card(S1)) = 
    setsum (%j. (j * q) div p) P_set";
  by (auto simp add: S1_card zmult_ac)

lemma (in QRTEMP) S2_carda: "int (card(S2)) = 
    setsum (%j. (j * p) div q) Q_set";
  by (auto simp add: S2_card zmult_ac)

lemma (in QRTEMP) pq_sum_prop: "(setsum (%j. (j * p) div q) Q_set) + 
    (setsum (%j. (j * q) div p) P_set) = ((p - 1) div 2) * ((q - 1) div 2)";
proof -;
  have "(setsum (%j. (j * p) div q) Q_set) + 
      (setsum (%j. (j * q) div p) P_set) = int (card S2) + int (card S1)";
    by (auto simp add: S1_carda S2_carda)
  also have "... = int (card S1) + int (card S2)";
    by auto
  also have "... = ((p - 1) div 2) * ((q - 1) div 2)";
    by (auto simp add: card_sum_S1_S2)
  finally show ?thesis .;
qed;

lemma pq_prime_neq: "[| p ∈ zprime; q ∈ zprime; p ≠ q |] ==> (~[p = 0] (mod q))";
  apply (auto simp add: zcong_eq_zdvd_prop zprime_def)
  apply (drule_tac x = q in allE)
  apply (drule_tac x = p in allE)
by auto

lemma (in QRTEMP) QR_short: "(Legendre p q) * (Legendre q p) = 
    (-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))";
proof -;
  from prems have "~([p = 0] (mod q))";
    by (auto simp add: pq_prime_neq QRTEMP_def)
  with prems have a1: "(Legendre p q) = (-1::int) ^ 
      nat(setsum (%x. ((x * p) div q)) Q_set)";
    apply (rule_tac p = q in  MainQRLemma)
    by (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
  from prems have "~([q = 0] (mod p))";
    apply (rule_tac p = q and q = p in pq_prime_neq)
    apply (simp add: QRTEMP_def)+;
    by arith
  with prems have a2: "(Legendre q p) = 
      (-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)";
    apply (rule_tac p = p in  MainQRLemma)
    by (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
  from a1 a2 have "(Legendre p q) * (Legendre q p) = 
      (-1::int) ^ nat(setsum (%x. ((x * p) div q)) Q_set) *
        (-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)";
    by auto
  also have "... = (-1::int) ^ (nat(setsum (%x. ((x * p) div q)) Q_set) + 
                   nat(setsum (%x. ((x * q) div p)) P_set))";
    by (auto simp add: zpower_zadd_distrib)
  also have "nat(setsum (%x. ((x * p) div q)) Q_set) + 
      nat(setsum (%x. ((x * q) div p)) P_set) =
        nat((setsum (%x. ((x * p) div q)) Q_set) + 
          (setsum (%x. ((x * q) div p)) P_set))";
    apply (rule_tac z1 = "setsum (%x. ((x * p) div q)) Q_set" in 
      nat_add_distrib [THEN sym]);
    by (auto simp add: S1_carda [THEN sym] S2_carda [THEN sym])
  also have "... = nat(((p - 1) div 2) * ((q - 1) div 2))";
    by (auto simp add: pq_sum_prop)
  finally show ?thesis .;
qed;

theorem Quadratic_Reciprocity:
     "[| p ∈ zOdd; p ∈ zprime; q ∈ zOdd; q ∈ zprime; 
         p ≠ q |] 
      ==> (Legendre p q) * (Legendre q p) = 
          (-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))";
  by (auto simp add: QRTEMP.QR_short zprime_zOdd_eq_grt_2 [THEN sym] 
                     QRTEMP_def)

end

lemma setsum_const_mult:

  finite A ==> (∑xA. c * f x) = c * setsum f A

lemma QRLemma1:

  GAUSS p a
  ==> a * setsum id {x. 0 < xx ≤ (p - 1) div 2} =
      p * (∑x | 0 < xx ≤ (p - 1) div 2. x * a div p) +
      setsum id
       (StandardRes p ` (%x. x * a) ` {x. 0 < xx ≤ (p - 1) div 2} ∩
        {x. x ≤ (p - 1) div 2}) +
      setsum id
       (StandardRes p ` (%x. x * a) ` {x. 0 < xx ≤ (p - 1) div 2} ∩
        {x. (p - 1) div 2 < x})

lemma QRLemma2:

  GAUSS p a
  ==> setsum id {x. 0 < xx ≤ (p - 1) div 2} =
      p * int (card (StandardRes p `
                     (%x. x * a) ` {x. 0 < xx ≤ (p - 1) div 2} ∩
                     {x. (p - 1) div 2 < x})) -
      setsum id
       (StandardRes p ` (%x. x * a) ` {x. 0 < xx ≤ (p - 1) div 2} ∩
        {x. (p - 1) div 2 < x}) +
      setsum id
       (StandardRes p ` (%x. x * a) ` {x. 0 < xx ≤ (p - 1) div 2} ∩
        {x. x ≤ (p - 1) div 2})

lemma QRLemma3:

  GAUSS p a
  ==> (a - 1) * setsum id {x. 0 < xx ≤ (p - 1) div 2} =
      p * ((∑x | 0 < xx ≤ (p - 1) div 2. x * a div p) -
           int (card (StandardRes p `
                      (%x. x * a) ` {x. 0 < xx ≤ (p - 1) div 2} ∩
                      {x. (p - 1) div 2 < x}))) +
      2 * setsum id
           (StandardRes p ` (%x. x * a) ` {x. 0 < xx ≤ (p - 1) div 2} ∩
            {x. (p - 1) div 2 < x})

lemma QRLemma4:

  [| GAUSS p a; a ∈ zOdd |]
  ==> ((∑x | 0 < xx ≤ (p - 1) div 2. x * a div p) ∈ zEven) =
      (int (card (StandardRes p ` (%x. x * a) ` {x. 0 < xx ≤ (p - 1) div 2} ∩
                  {x. (p - 1) div 2 < x}))
       ∈ zEven)

lemma QRLemma5:

  [| GAUSS p a; a ∈ zOdd |]
  ==> -1 ^
      card (StandardRes p ` (%x. x * a) ` {x. 0 < xx ≤ (p - 1) div 2} ∩
            {x. (p - 1) div 2 < x}) =
      -1 ^ nat (∑x | 0 < xx ≤ (p - 1) div 2. x * a div p)

lemma MainQRLemma:

  [| a ∈ zOdd; 0 < a; ¬ [a = 0] (mod p); p ∈ zprime; 2 < p;
     A = {x. 0 < xx ≤ (p - 1) div 2} |]
  ==> Legendre a p = -1 ^ nat (∑xA. x * a div p)

lemma p_fact:

  QRTEMP p q ==> 0 < (p - 1) div 2

lemma q_fact:

  QRTEMP p q ==> 0 < (q - 1) div 2

lemma pb_neq_qa:

  [| QRTEMP p q; 1 ≤ b; b ≤ (q - 1) div 2 |] ==> p * bq * a

lemma P_set_finite:

  QRTEMP p q ==> finite {x. 0 < xx ≤ (p - 1) div 2}

lemma Q_set_finite:

  QRTEMP p q ==> finite {x. 0 < xx ≤ (q - 1) div 2}

lemma S_finite:

  QRTEMP p q
  ==> finite ({x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2})

lemma S1_finite:

  QRTEMP p q
  ==> finite
       {(x, y).
        (x, y) ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
        p * y < q * x}

lemma S2_finite:

  QRTEMP p q
  ==> finite
       {(x, y).
        (x, y) ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
        q * x < p * y}

lemma P_set_card:

  QRTEMP p q ==> (p - 1) div 2 = int (card {x. 0 < xx ≤ (p - 1) div 2})

lemma Q_set_card:

  QRTEMP p q ==> (q - 1) div 2 = int (card {x. 0 < xx ≤ (q - 1) div 2})

lemma S_card:

  QRTEMP p q
  ==> (p - 1) div 2 * ((q - 1) div 2) =
      int (card ({x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2}))

lemma S1_Int_S2_prop:

  QRTEMP p q
  ==> {(x, y).
       (x, y) ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
       p * y < q * x} ∩
      {(x, y).
       (x, y) ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
       q * x < p * y} =
      {}

lemma S1_Union_S2_prop:

  QRTEMP p q
  ==> {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} =
      {(x, y).
       (x, y) ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
       p * y < q * x} ∪
      {(x, y).
       (x, y) ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
       q * x < p * y}

lemma card_sum_S1_S2:

  QRTEMP p q
  ==> (p - 1) div 2 * ((q - 1) div 2) =
      int (card {(x, y).
                 (x, y)
                 ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
                 p * y < q * x}) +
      int (card {(x, y).
                 (x, y)
                 ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
                 q * x < p * y})

lemma aux1a:

  [| QRTEMP p q; 0 < a; a ≤ (p - 1) div 2; 0 < b; b ≤ (q - 1) div 2 |]
  ==> (p * b < q * a) = (bq * a div p)

lemma aux1b:

  [| QRTEMP p q; 0 < a; a ≤ (p - 1) div 2; 0 < b; b ≤ (q - 1) div 2 |]
  ==> (q * a < p * b) = (ap * b div q)

lemma aux2:

  [| p ∈ zprime; q ∈ zprime; 2 < p; 2 < q |]
  ==> q * ((p - 1) div 2) div p ≤ (q - 1) div 2

lemma aux3a:

  QRTEMP p q
  ==> ∀j∈{x. 0 < xx ≤ (p - 1) div 2}.
         int (card {(j1, y).
                    (j1, y)
                    ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
                    j1 = jyq * j div p}) =
         q * j div p

lemma aux3b:

  QRTEMP p q
  ==> ∀j∈{x. 0 < xx ≤ (q - 1) div 2}.
         int (card {(x, j1).
                    (x, j1)
                    ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
                    j1 = jxp * j div q}) =
         p * j div q

lemma S1_card:

  QRTEMP p q
  ==> int (card {(x, y).
                 (x, y)
                 ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
                 p * y < q * x}) =
      (∑j∈{x. 0 < xx ≤ (p - 1) div 2}. q * j div p)

lemma S2_card:

  QRTEMP p q
  ==> int (card {(x, y).
                 (x, y)
                 ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
                 q * x < p * y}) =
      (∑j∈{x. 0 < xx ≤ (q - 1) div 2}. p * j div q)

lemma S1_carda:

  QRTEMP p q
  ==> int (card {(x, y).
                 (x, y)
                 ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
                 p * y < q * x}) =
      (∑j∈{x. 0 < xx ≤ (p - 1) div 2}. j * q div p)

lemma S2_carda:

  QRTEMP p q
  ==> int (card {(x, y).
                 (x, y)
                 ∈ {x. 0 < xx ≤ (p - 1) div 2} × {x. 0 < xx ≤ (q - 1) div 2} ∧
                 q * x < p * y}) =
      (∑j∈{x. 0 < xx ≤ (q - 1) div 2}. j * p div q)

lemma pq_sum_prop:

  QRTEMP p q
  ==> (∑j∈{x. 0 < xx ≤ (q - 1) div 2}. j * p div q) +
      (∑j∈{x. 0 < xx ≤ (p - 1) div 2}. j * q div p) =
      (p - 1) div 2 * ((q - 1) div 2)

lemma pq_prime_neq:

  [| p ∈ zprime; q ∈ zprime; pq |] ==> ¬ [p = 0] (mod q)

lemma QR_short:

  QRTEMP p q
  ==> Legendre p q * Legendre q p = -1 ^ nat ((p - 1) div 2 * ((q - 1) div 2))

theorem Quadratic_Reciprocity:

  [| p ∈ zOdd; p ∈ zprime; q ∈ zOdd; q ∈ zprime; pq |]
  ==> Legendre p q * Legendre q p = -1 ^ nat ((p - 1) div 2 * ((q - 1) div 2))