
Notes on Chapter 1 of Dedekind’s

Theory of Algebraic Integers

1 Algebraic background

Recall that in a commutative ring 〈R, 0, 1, +,×〉,
• 〈R, 0,+〉 is an abelian group,

• 〈R− {0}, 1,×〉 is an abelian semigroup, and

• multiplication distributes over addition.

The same structure is a field if, in the second clause, 〈R − {0}, 1,×〉, is a
group; in other words, every nonzero element has an inverse.

A vector space V over a field F is an abelian group 〈V, 0, +〉 with an
operation of “scalar multiplication” by elements of F , satisfying

• a(bv) = (ab)v

• a(v + w) = av + aw

• (a + b)v = av + bv

• 1v = v

Here a and b are any elements of F , v and w are any elements of V , and 1 is
the unit element of the field. The definition of a module M over a ring R
is exactly the same, replacing V and F by M and R, respectively. In other
words, a vector space is just a special case of a module, where the ring in
question happens to be a field.

You should be familiar with a number of important facts about vector
spaces from elementary linear algebra. For example, a basis for a vector
space is a linearly independent set that spans the space. Every vector space
has a basis, and any two bases have the same cardinality. For finite di-
mensional vector spaces (that is, spaces with a finite basis), any linearly
independent set of the right size is a basis. Linear transformations from one
finite dimensional vector space to another can be represented by a matrix,
and the transformation is invertible if and only if the determinant of the
associated matrix is nonzero.
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Many of these notions carry over to modules, but the situation is more
delicate. For example, there are modules, even finitely generated ones, that
do not have bases; and even if a module has a finite basis, it is not necessarily
the case that all bases are the same size, nor the case that any independent
set of the right size can serve as a basis. For example, both Zm (the integers
mod m, under addition) and Z can be interpreted as Z-modules (see below),
but the first has no basis, even though it is generated by the set {1}; {1}
can serve as a basis for the second, but the set {2} cannot.

A module with a basis is called a free module. As is the case with vector
spaces, a free R-module with a basis of n elements looks just like n copies
of R, R × R × . . . × R. Every R-module m can be written as a quotient
b/a, where b is a free R-module, and a is an appropriate submodule. (To
see this, let S be any set of generators of m, let a be the module generated
freely by this set, and let b be the kernel of the homomorphism obtained by
mapping each element of S in a to the associated element of m.)

2 The subject matter

In this chapter, when Dedekind uses the word module, he is referring to a
subgroup of 〈C, 0, +〉. But any abelian group can be viewed as a Z-module,
by interpreting nx as x + x + . . . + . . . x (n times) whenever n is a positive
integer and x is an element of the group. Dedekind is primarily interested
in finitely generated submodules of the complex numbers, and it turns out
that any such module is free.

In short, then, Dedekind is concerned with finitely generated free Z-
modules. Here are some examples:

• the integers Z, generated by {1}
• the Gaussian integers Z[i], generated by {1, i}
• the integers divisible by 5, denoted 5Z, generated by {5}
• the Gaussian integers divisible by 2, generated as a Z-module by {2, 2i}
• the Gaussian integers divisible by 1 + i, generated as a Z-module by
{1 + i, 1− i}.

You should check the last claim. (Notice that (1 + i)i = −(1 − i).) The
example is a little confusing. By definition, the set of Gaussian integers
divisible by 1 + i consists of all multiples of 1 + i by Gaussian integers,
whereas as set of generators has to yield all of them as linear combinations
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of multiples by elements of Z. This idea — ignoring various features of a
structure at times — is central to algebraic number theory. For example,
Q(i) is a field, but we can also view it as a vector space over Q by “forgetting”
complex multiplication. Similarly, the Gaussian integers Z[i] form a ring in
their own right, but can also be construed as a module over the smaller ring
Z.

Dedekind derives many fundamental properties of such modules, gather-
ing information about their bases, transformations, and submodules. Most
of what he does holds more generally for modules over a principle ideal do-
main, but we will not need the extra generality. Below, I will use word
“module” for “Z-module,” following Dedekind’s use.

Note, incidentally, that in the text the first statement of a numbered sub-
section is often the statement of a theorem, which the rest of the subsection
is devoted to proving.

3 The main definitions and theorems

Let us write, with Dedekind, [α1, . . . , αk] for the submodule of the complex
numbers generated by α1 to αk, i.e. the set of all finite sums

n∑

i=1

uiαi

where each ui is an element of Z. Considering as an example Z itself as
a Z-module, note that if m and n are integers, m divides n if and only if
[m] ⊇ [n]. (For example, [3] ⊇ [6].) More generally, Dedekind says that
a module b divides another module a if and only if b ⊇ a. This requires
getting used to, because the bigger set “divides” the smaller. It might help
to think of b dividing a in terms of b being “finer” than a.

Dedekind’s definitions are otherwise straightforward. The least common
multiple of two modules (sitting inside a bigger module, in this case, the
complex numbers) is their intersection, and the greatest common divisor
consists of sums of elements in each. The notion of equivalence modulo a
submodule is just the usual algebraic notion. Dedekind uses (b, a) to denote
the number of cosets of b modulo a; we would today call this the cardinality
of the quotient structure b/a.

(In Dedekind’s treatment, a does not have to be a submodule of b in the
expression (b, a). But, as he points out, in that case the result is the same as
what one would get by replacing a by a∩b. I, personally, find it confusing to
think of quotients by anything other than a substructure, so in the summary
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below I will often state Dedekind’s theorems in the more restrictive terms.
Also, keep in mind that the summary below is not exhaustive.)

The central theorem of Section 3 is as follows. Suppose a is a submodule
of b = [β1, . . . , βn], such that every element of b/a is of finite order (in other
words, for every b in b, some multiple nb by a rational integer is in a). Then
(b, a) is finite. Moreover, Dedekind shows how to find a set of generators
α1, . . . , αn for a such that the α’s are obtained from the β’s in a nice way,
i.e. by a lower-triangular matrix. Then (b, a) is just the determinant of
this matrix, in this case, the product of the elements along the diagonal.
(Dedekind uses µ’s instead of α’s, since they are elements of m = a ∩ b, as
in the preceeding parenthetical remark; my use of α is more natural in the
context of the summary below.)

Note that when Dedekind uses the word “basis,” he really means “set of
generators,” which is to say, he does not require that they be independent.
The notion of independence is introduced in Section 4; at the risk of con-
fusion, I will use “basis” in the modern sense to mean “independent set of
generators”.

There is a lot going on in Section 4. In 4.2, Dedekind shows

Theorem 3.1 If one applies the transformation defined by an n×n matrix
(c) with rational entries to an independent set α1, . . . , αn, the resulting set
of numbers α′1, . . . , α

′
n will be independent if and only if the determinant C

of (c) is nonzero.

Note that here I am following Dedekind’s practice of using (c) to denote the
matrix, and C to denote its determinant; modern presentations are more
likely to use C for the matrix. Combining this with information from the
preceeding section, we have the following very important fact: a submodule
of a free module is another free module. In other words, if b is a module, a

is a submodule, and b has a basis, then a has a basis too.
In 4.3, Dedekind shows the following:

Theorem 3.2 Let α1, . . . , αn be a basis for a module a, and let α′1, . . . , α
′
n

be elements of a. Then α′1, . . . , α
′
n is a basis for a if and only if there is a

unimodular matrix (e) (that is, a matrix with determinant ±1) with entries
in Z transforming one into the other.

We have already discussed the proof of this in class: if there is such a matrix,
it has an inverse transforming the second set back into the first; conversely,
if there are matrices transforming each set into the other, their product has
to be the identity, which has determinant 1. A similar argument shows that

4



any two bases have to have the same number of elements. (This is a nice
property of free Z-modules, and modules over a principle ideal domain more
generally.)

In 4.4, Dedekind shows the following:

Theorem 3.3 If a matrix (b) whose entries are (rational) integers trans-
forms a basis β1, . . . , βn of a module b into a basis α1, . . . , αn of a submodule
a, then (b, a) is the determinant of (b).

The property of the lower-diagonal matrix described in section 3 is just a
particular instance of this.

In 4.5, Dedekind shows the following:

Theorem 3.4 Suppose a is generated by α1, . . . , αm. Suppose that some
subset of n of them are independent, but there is no independent subset with
more than n elements. Then there is a basis of n elements, α′1, . . . , α

′
n.

This is subtle: it is not necessarily the case that n of the α’s can serve
as a basis, but Dedekind is thorough in explaining how one can find suitable
α′’s. In fact, he is computationally explicit. Suppose the α’s are given in
terms of linear combinations of a basis for a larger module, ω1, . . . , ωn by a
matrix (r). Dedekind shows how to find the α′’s in terms of ω1, . . . , ωn by a
matrix (e), and then express the original α’s in terms of the α’s by a matrix
(p).

He then works through an example. Let a denote the module generated
by the following four numbers, described relative to a basis ω1, ω2 of a bigger
module b (i.e. a module dividing a):

α1 = 21ω1

α2 = 7ω1 + 7ω2

α3 = 9ω1 − 3ω2

α4 = 8ω1 + 2ω2

For concreteness, you can think of a as being the submodule of Z[i] generated
by α1, . . . , α4, with ω1 = 1, ω2 = i.

The preceeding considerations tell us that we should be able to find a
basis of a with two elements, α′1, α

′
2; and that we should be able to represent

α′1 and α′2 in terms of ω1, ω2 by a lower-triangular matrix. Dedekind carries
out the calculation to find

α′1 = 21ω1

α′2 = −17ω1 + ω2.
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With this representation, it is easy to see that (b, a) = 21 × 1 = 21. Fur-
thermore, Dedekind finds the matrices that express the α’s in terms of the
α′’s and vice versa.

4 Additional notes

There are useful ways of thinking of finitely generated free Z-modules and
their submodules in terms of lattices and sublattices. Matrices transform
lattices; the number of elements in a quotient corresponds to the number of
elements of the finer lattice in a fundamental region of the larger one. I will
supply a short excerpt from Jay Goldman’s The Queen of Mathematics: a
historically motivated guide to number theory that discusses this perspective.

Recall that Dedekind shows that if b is a free module with basis β1, . . . , βn

and a is a submodule of b such that b/a is finite, then a is also free, and a

has a basis of n elements obtained from the β’s by a lower diagonal matrix.
This makes it easy to read off the cardinality of b/a. If we are allowed to
use a different basis of b, we can do even better: there are a basis β′1, . . . , β

′
n

of b and another basis u1β
′
1, . . . , unβ′n of a, where u1, . . . , un are integers,

and, moreover, u1|u2| . . . |un. In other words, the basis of a is obtained from
the basis of b by a very specific type of diagonal matrix. This makes the
structure of b/a very transparent.

Remember that, viewing abelian groups as Z-modules, any finite abelian
group can be represented as such a quotient. So the net result is a structure
theorem for finite abelian groups. If a is presented via a set of generators
given in terms of a basis of b, then describing a group as b/a in this way
is known as “defining a group by generators and relations.” The results
just described generalize to modules over a principle ideal domain, and to
submodules a of b that have smaller rank (that is, a smaller basis, in which
case b/a is no longer finite). A modern presentation of the relevant structure
theorem, specialized to abelian groups, is found in the excerpt from Stewart
and Tall’s Algebraic Number Theory and Fermat’s Last Theorem. The same
proof is found in Hungerford’s Algebra, but a later appendix also sketches
a more explicitly algorithmic proof, which shows how to actually find the
relevant bases for b and a. So, these two presentations yield another op-
portunity for contrasting “structural” and “algorithmic” proofs of the same
theorem.
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