
Unwinding Furstenberg’s proof of Szemerédi’s
Theorem

Jeremy Avigad

Department of Philosophy and Department of Mathematical Sciences
Carnegie Mellon University

(joint work with Henry Towsner)

January, 2008



Hilbert’s program

The end of nineteenth century brought the use of infinitary,
nonconstructive, set-theoretic methods to mathematics.

With the discovery of set-theoretic paradoxes at the turn of the
twentieth century, attention focused on the consistency of the new
methods.

Our principal result is that the infinite is nowhere to be
found in reality. It neither exists in nature nor provides a
legitimate basis for rational thought.. . . Operating with the
infinite can be made certain only with the finitary. (Hilbert,
“On the infinite,” 1925)

Gödel’s second incompleteness theorem shows the impossiblity of
providing a finitary justification for the new methods.



Hilbert’s program

Nonetheless, proof theorists continued trying to understanding
infinitary methods more explicit terms:

• formalizability in restricted fragments of set theory
• interpretability in constructive theories

Research like this yielded “reducibility in principle.”

In recent years, “proof mining” has aimed to apply these methods to
ordinary mathematical developments, to extract additional
information from nonconstructive arguments.

Applications of analysis in number theory and combinatorics are
particularly interesting, from a proof-theoretic perspective.



van der Waerden’s theorem

Theorem. If one colors the natural numbers with finitely many colors,
then there are arbitrarily long monochromatic arithmetic progressions.

The theorem has a 52 statement:

Theorem. For every k and r there is an n large enough such that if
one colors elements of the set {1, . . . , n} with r colors, there is a
monochromatic arithmetic progression of length k.

van der Waerden proved this in 1927. Furstenberg and Weiss
presented an elegant proof using topological dynamics in 1978.



Szemerédi’s theorem

Szemerédi’s theorem is a “density” version of van der Waerden’s
theorem.

Szemerédi’s Theorem. Every set S of natural numbers with positive
upper Banach density has arbitrarily long arithmetic progressions.

Equivalently:

Theorem. For every k and δ > 0, there is an n large enough, such that
if S is any subset of {1, . . . , n} with density at least δ, then S has an
arithmetic progression of length k.



History

• 1952: Roth showed existence of three-term arithmetic
progressions.

• 1969: Szemerédi showed existence of four-term arithmetic
progressions.

• 1974: Szemerédi proved the full theorem.
• 1977: Furstenberg

• gave an equivalent measure-theoretic statement,
• gave an ergodic-theoretic proof, and
• provided a structural analysis of ergodic measure preserving

systems.

• 1979: Furstenberg and Katznelson used the structure theorem to
give a streamlined proof of an even stronger statement.

Beleznay and Foreman (1996) show that the structure theorem
exhausts the countable ordinals.



A proof-theoretic analysis

The fact that such a detour through the infinite can be used to prove an
explicit combinatorial statement deserves logical analysis.

Our analysis runs like this:
• The proof based on the structure theorem can be carried out in a

restricted theory known as ID1.
• Proofs in ID1 can be translated into explicit computational proofs

involving functionals defined by recursion over well-founded
trees.

Combining these two steps, Towsner and I are working to obtain an
explicit combinatorial version of the proof.

For the second step, we are using a Dialectica-style functional
interpretation that we have developed.

This talk will focus on the first step.



Overview

Here is what I aim to do:
• Provide a sketchy overview of the transfinite proof.
• Tell you about ID1.
• Describe the central issues involved in formalizing the proof in

ID1.



The Furstenberg correspondence principle

A measure preserving system X = (X,B, µ, T ) consists of a finite
measure space (X,B, µ), and a measure preserving transformation,
T .

Given a sequence of subsets Sm of {1, . . . ,m} of density δ > 0, the
“Furstenberg correspondence” yields a separable mps and a set A
such that

• µ(A) ≥ δ

• If µ(A ∩ T −n A ∩ T −2n A ∩ . . . ∩ T −(k−1)n A) > 0 for some n
then there are arithmetic progressions of length k in the Sm’s.

Szemerédi’s theorem becomes equivalent to the following:

Theorem. For any measure preserving system (X,B, µ, T ), any set
A of positive measure, and any k, there is an n > 0 such that

µ(A ∩ T −n A ∩ T −2n A ∩ . . . ∩ T −(k−1)n A) > 0.



Two distinct behaviors

A measure preserving system is weak mixing if we have

lim
n→∞

1
n

∑
i<n

|µ(T −i A ∩ B)− µ(A)µ(B)| = 0

for every A and B.

A weak mixing system exhibits a high degree of randomness.

A measure-preserving transformation T of X induces an isometry T̂
of L2(X ), T̂ f = f ◦ T . A measure-preserving system is compact if it
has the property that for every f in L2(X,B, µ), the orbit

{ f, T̂ f, T̂ 2 f, . . .}

is totally bounded, i.e. has compact closure.

A compact system exhibits a high degree or regularity.



Lack of randomness implies order

Let X = (X,B, µ, T ) be an ergodic measure preserving system.

Lemma (Koopman-von Neumann). If X is not weak mixing, it has
a nontrivial compact T -invariant factor.

Three ways of thinking of a T -invariant factor:
• (X,B′, µ, T ), for a T -invariant sub-σ -algebra B′

⊆ B
• a homomorphic image, or quotient, of (X,B, µ, T )
• T̂ -invariant subspace of L2(X ), containing the constant

functions and closed under max.



The Furstenberg structure theorem

The notions of compactness and weak mixing relativize to factors.

Lemma (Furstenberg). If an ergodic measure preserving system
(X,B, µ, T ) is not weak mixing relative to a factor B′, there there is
an intermediate factor B′′ ) B′ such that (X,B′′, µ, T ) is compact
relative to (X,B′, µ, T ).

We can iterate this, taking unions at limit stages. If the system is
separable, the process comes to an end at a countable ordinal.



The Furstenberg structure theorem

The Furstenberg Structure Theorem. Let (X,B, µ, T ) be an
ergodic measure preserving system. Then there is a transfinite
increasing sequence of factors (Bα)α≤γ such that:

• B0 is the trivial factor.
• For each α < γ , (X,Bα+1, µ, T ) is compact relative to
(X,Bα, µ, T ).

• For each limit λ ≤ γ , Bλ = ∪α<λBα.
• (X,B, µ, T ) is weakly mixing relative to (X,Bγ , µ, T ).

If B = Bγ the system is distal, and Bγ is the maximal distal factor.

Theorem (Beleznay and Foreman). For any countable ordinal α,
there is a separable measure preserving system such that any
Furstenberg tower has height at least α.



The proof of Szemerédi’s theorem

If µ(A) > 0, say that A is SZ if for every k,

lim inf
N→∞

1
n

∑
n<N

µ(A ∩ T −n A ∩ T −2n A ∩ . . . ∩ T −(k−1)n A) > 0.

Say a factor is SZ if every element is SZ.

If the set A from the Furstenberg correspondence is SZ, we have the
desired conclusion.

The property of being SZ:
• holds of the trivial factor;
• is maintained under compact extensions;
• is maintained under limits; and
• is maintained under weak mixing extensions.



The theory ID1

Let ψ(P, x) be an arithmetic formula with a new predicate symbol P
that occurs only positively.

This determines a monotone operator

0ψ(S) = {x | ψ(S, x)},

which thus has a least fixed point, I =
⋂

{S | 0ψ(S) ⊆ S}.

The theory ID1 has axioms asserting:
• 0ψ -closure: 0ψ(I ) ⊆ I
• 0ψ -induction: if 0ψ(S) ⊆ S, then I ⊆ S, for any definable set S.

This theory has the same strength as Kripke-Platek set theory with an
axiom of infinity.



Formalizing the proof in ID1

Issue: ID1 has variables ranging over the natural numbers, and
inductively defined predicates.

Solution: The Furstenberg construction yields a separable measure
space. Use the inductively defined predicate to represent the maximal
distal factor.

The relevant analytic objects can be dealt with at different levels:
• The measure preserving system, (X,B, µ, T )
• The measure algebra, B modulo null sets
• The corresponding L2 space
• The spectral decomposition of T

“Ordinary” mathematics moves seamlessly across representations.



Formalizing the proof in ID1

Measure and integral are morally the same,

µ(A) =

∫
χAdµ

We found it most natural to work exclusively with functions.

Take simple functions to be finite rational linear combinations of
characteristic functions of simple sets:

f =

∑
i<n

aiχ[σi ]

where [σi ] are the basic open sets given by the correspondence.

Given µ on basic open sets, take elements of L1 (or L2, L∞) to be
given by Cauchy sequences in the given norm.



Formalizing the proof in ID1

In fact, we work exclusively with simple approximations to the
relevant objects.

Two major constraints:
• With our representation, pointwise notions have to be avoided.
• Talk of sets (via their characteristic functions) is unnatural, and

artificially adds to the axiomatic requirements.

We’ve invested most of our effort in “purifying” the Furstenberg
proof, so it is an argument about (simple approximations to) L∞

functions.



Formalizing the proof in ID1

Fix (X,B, µ, T ). Given a factor, Y , let Z(Y ) be the maximal compact
extension of Y , i.e. the space spanned by functions that are compact
relative to Y .

With a reasonable coding of factors, Y 7→ Z(Y ) is arithmetic. Then
the maximal distal factor has a 51

1-definition:

Y =

⋂
Y

(Z(Y ) ⊆ Y ).

Details can be found in Beleznay and Foreman.

Issue: to formalize the Furstenberg proof, you need not just the
maximal distal factor, but also the structure theorem.

An alternative characterization,

f ∈ Y ↔ Y comes into some well-founded hierarchy H . . .

is 61
2 .



Formalizing the proof in ID1

Solution: show the map Y 7→ Z(Y ) can be given by a positive
arithmetic formula, and use the induction principle in ID1.

Code a factor, Y , as a set of pairs ( f, ε) asserting that f is within ε of
the factor being represented.

Cast the closure operation as follows: “( f, ε) is in Z(Y ) if and only if
there is sufficient (positive) information in Y to see that f is within ε
of a function that is compact relative to Y .”

Corollary (A-T). If X codes a measure-preserving system, the height
of the tower is less than or equal to ωC K ,X

1 . The αth level is
computable in H X

2·α.



Formalizing the proof in ID1

Recall that the structure of the Furstenberg proof is as follows:
• By transfinite induction, every factor Yα is SZ.
• So the maximal distal factor, Y , is SZ.
• (X,B, µ, T ) is weak mixing relative to Y , so it is SZ too.

Issue: Our “factors” are sets of pairs ( f, ε). The property of being SZ
is not (a priori) closed under limits.

Solution: Use a strengthening of that property.



Formalizing the proof in ID1

Recall the finitary statement of Szemerédi’s theorem:

Theorem. For every k and δ > 0, there is an n large enough, such that
if S is any subset of {1, . . . , n} with density at least δ, then S has an
arithmetic progression of length k.

Outline of the Furstenberg proof:
• Suppose for some k and δ > 0 there is no such n.
• Construct the corresponding space X = (X,B, µ, T ).
• Every element of L2(X ) is SZ.
• Contradiction.

How do you turn this into a proof that computes an n based on k and
δ?



Formalizing the proof in ID1

Solution: the proof shows

For every k and δ, and every µ, there is an n such that if
µ(A) ≥ δ, then µ(∩i<k T −ik(A)) > 0.

The space of measures µ is compact in the weak-* topology, so, a
priori, we know that there is a bound on n(k, δ) independent of µ.

Proof mining techniques enable one to cast the proof so that we keep
track of the bounds.



Conclusions

What we have:
• A computational interpretation of ID1.
• A detailed sketch of the Furstenberg proof in ID1.
• A computational (Dialectica) interpretation of the mean ergodic

theorem.

What we need to do:
• Apply the computational interpretation to each intermediate

lemma.
• Make the result comprehensible.

The mean ergodic theorem is the central nonconstructive component
of the Furstenberg proof. It is needed to show that if a system is not
weak mixing, it has a nontrivial compact factor.



Conclusions

Two possibilities:
• Worst case: each bit of “unwinding” analytic notions will lead to

incomprehensibility.
• Best case: when the analytic notions are specialized to the

instances needed here, general baggage is shed, and the resulting
concepts are combinatorially natural.

It is too early to make strong claim here, but we are hopeful that the
situation is closer to the best-case scenario.



Conclusions

We do not expect to get good bounds from our unwinding. (Note that
elementary bounds due to Gowers required significant new ideas.)

What we do hope to get:

• A perspicuous new proof of Szemerédi’s theorem.
• Combinatorial ideas that might lead to more general results.
• Possibly logically strong combinatorial statements.
• A better understanding of how ergodic-theoretic methods work,

and their combinatorial and computational content.


