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Type inference

Consider the following mathematical statements:
“For every x e R, e¥ =} "72 %"

“If G and H are groups and f is a homomorphism from G to H,
then for every a,b € G, f(ab) = f(a)f(b).”

“If F is a field of characteristic p and a, b € F, then
(a+b)P=3", (‘,’) a'bP~i = aP 4 pP."

How do we parse these?



Type inference

Observations:

1.

I

The index of the summation is over the natural numbers.

N is embedded in R.

In "a € G,” G really means the underlying set.

ab means multiplication in the relevant group.

p is a natural number (in fact, a prime).

The summation operator make sense for any monoid (written
additively).

The summation enjoys extra properties if the monoid is
commutative.

8. The additive part of any field is so.

10.

N is also embedded in any field.

Alternatively, any abelian is a Z-module, etc.



Type inference

Spelling out these details formally can be painful.

Typically, the relevant information can be inferred by keeping track
of the type of objects we are dealing with:

e In “a € G," the "€" symbol expects a set on the right.

e In “ab,” multiplication takes place in “the” group that a is
assumed to be an element of.

e In “x'/il," one expects the arguments to be elements of the
same structure.

Type inference: not only inferring types, but also inferring
information from type considerations.



Type inference

Structure hierarchies:

Subclasses: every abelian group is a group

Reducts: the additive part of a ring is an abelian group

Instances: the integers are an abelian group

Embedding: the integers are embedded in the reals

Uniform constructions: the automorphisms of a field form a
group

Advantages:
e Reusing notation: 0, +, a- b
e Reusing definitions: >, a;

o Reusing facts: identities involving sums



Type inference

Observations:

Type inference occurs when one parses an expression, but also
when one applies a lemma).

The goal is to omit information systematically.

There are really two kinds of information that are omitted:
o data: the relevant group multiplication, the relevant
embedding
e facts: the fact that an operation is associative, the fact that a
set is closed under an operation
Under the Curry-Howard isomorphism, facts and data look the
same.

A good deal of technology is imported from the theory of
programming languages (but there are differences).

There is no sharp line between “type" information and
genuinely mathematical information.



Type inference

] System \ Framework \ Type inference
Isabelle Simple type theory Axiomatic type classes
Mizar Set theory Soft typing

Canonical structures or

Coq Dependent type theory Type classes, etc.

Features of Coq:
e |t is based on a expressive dependent type theory.

The underlying logic is constructive.

Every term has a computational interpretation.

Type checking is, in principle, decidable.

For that reason, it is also rigid.



Type inference in Coq

Mechanisms for type inference in Coq:
e Implicit arguments: one can omit arguments that can be
inferred from a dependent type
o Coercions: cast objects to different types
e (Canonical structures: can view a particular structure as an
instance of a class

In addition, Coq'’s type inference engine makes use of the
computational interpretation, e.g. expanding definitions and
simplifying terms as necessary.



Dependent types

Record group : Type := Group
{
carrier : Type;
mulg : carrier -> carrier -> carrier;
oneg : carrier;
invg : carrier -> carrier;
mulghA : associative mulg;

}
The components of G : group are carrier G, mulg G, ...
Given g, h : carrier G, we havemulg G g h : carrier G.

So mulg has type forall (G : group), carrier G ->
carrier G -> carrier G.



Implicit arguments and coercions

One can also write mulg _ g h, leaving the first argument
implicit.

Type inference has to solve carrier 7 = carrier G, which is
easy.

Notation "g * h" := (mulg _ g h).
Now one can write g * h for group multiplication.

One can also define
Coercion carrier : group >-> Type.

Then g : Gis interpreted as g : carrier G.



Canonical structures

Suppose we define
IntGroup := Group int addi zeroi negi addiA ...

Given i,j : int, this will let us (perversely) write mulg
IntGroup i j for i + j, and (less perverseley) apply facts about
groups.

What happens if write i * j?
Type inference has to solve carrier 7 = int, and gets stuck.

Declaring
Canonical Structure IntGroup.

registers the hint carrier IntGroup = int for use in type
inference.



Summary / recap

Type checking is triggered when:
® parsing an expression
e applying a lemma

Often implicit arguments or facts need to be inferred.

Mechanisms:

Unification: pattern matching to infer implicit arguments.

o Coercions: cast objects to different types

Canonical structures: register unification hints that associate
structures with instances

Unfolding definitions, simplifying terms



Finite group library

In the finite group library, type inference is used in a number of
ways:

To recognize when structures have decidable equality and
choice functions, satisfy extensionality, and so on.

To define “big operations” such as >, [[, (). U, A, V

To mediate between sets and structures (e.g. G N H and
Cc(A) act as both sets and groups).

To manage class inclusions (rings, commutative rings, fields)

To manage algebraic constructions (matrices over a ring,
polynomials over a ring, quotient groups)

To infer views (e.g. abelian group as a Z-module)
The mediate between functions and morphisms

To view both predicates and lists as sets (e.g. Px vs. x € P).



Examples

Lemma commg_subl : forall G H,
([7: G, H] \subset G) = (H \subset ’N(G)).

Lemma nilpotent_proper_norm : forall G H,
nilpotent G -> H \proper G -> H \proper ’N_G(H).

Lemma morphim_center : forall rT A D
(f : {morphism D >-> rT}),
f @x ’Z(A) \subset *Z(f @x A).

Lemma quotient_cents2 : forall A B K,
A \subset ’N(K) -> B \subset ’N(K) ->
(A / K \subset C(B / K)) = ([T: A, B] \subset K).



Examples

Theorem Sylow’s_theorem :
[/\ forall P,
[max P | p.-subgroup(G) P] = p.-Sylow(G) P,
[transitive G, on ’Syl_p(G) | ’JGI,
forall P, p.-Sylow(G) P ->
#1°Syl_p(G)| = #|G : "N_G(P) |
& prime p -> #|’Syl_p(G)| %% p = 1%N].

Lemma card_GL : forall n, n > 0 —>
#[°GL_n[F]| = (#IF| =~ ’C(n, 2) *
\prod_(1 <= i < n.+1) (#IF| =~ i - 1))%N.

Theorem Cayley_Hamilton : forall A,
(Zpoly (char_poly A)).[A] = 0.
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