
The Combinatorics of
Propositional Provability

Jeremy Avigad

Department of Philosophy

Carnegie Mellon University

avigad@cmu.edu

with thanks to DIMACS

(Center for Discrete Mathematics and

Theoretical Computer Science)

1



A Modern Look at Propositional Provability

Traditional Logic: Given a first-order theory T find
statements ϕ such that

T 6` ϕ.

Proof Complexity: Given a propositional proof sys-
tem P find a sequence of tautologies ϕn such that

P 6`p(|ϕn|) ϕn

for any polynomial p.

Motivation: if NP 6= co−NP , then no proof system
has polynomial-size proofs of every tautology.
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Frege Systems

Definition: A Frege system is an implicationally com-
plete propositional proof system, axiomatized by finitely
many schemata.

For example, in the Principia Mathematica, one finds

1. ¬(p ∨ p) ∨ p

2. ¬[p ∨ (q ∨ r)] ∨ q ∨ (p ∨ r)

3. ¬q ∨ p ∨ q

4. ¬(¬q ∨ r) ∨ ¬(p ∨ q) ∨ p ∨ r

5. ¬(p ∨ q) ∨ q ∨ p

combined with the single rule of modus ponens: from
¬p ∨ q and p conclude q.

Fact: Any two Frege systems p-simulate each other.
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Proving Lower Bounds

Goal: Given a proof system P , show that P does not
have polynomial-size proofs of every tautology.

A natural approach:

1. Define an explicit sequence of tautologies ϕn

2. Show that P can’t prove these tautologies effi-
ciently.

Example (Ajtai, et al.): if P is a fixed-depth Frege-
system, and ϕn is a propositional form of the pigeonhole
principle, then the shortest proofs of ϕn in P are O(2cn).
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Adding an Extension Rule

Definition: An extended Frege system allows one to
introduce new propositional constants, with axioms

Cϕ ≡ ϕ.

Conjecture: Extended Frege systems are exponen-
tially more efficient than Frege systems.

Problem: Find tautologies expressing a natural com-
binatorial principle that (1) have short extended Frege
proofs, but (2) don’t seem to have short Frege proofs.

Bonet, Buss, and Pitassi (1995) consider a wide range of
combinatorial theorems that have polynomial extended-
Frege proofs, and conclude that in most cases there
seem to be Frege proofs whose lengths are at most
quasipolynomial.
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Plausibly Hard Tautologies

Definition: The tautologies ConEF(n) express the as-
sertion “the variables x1 to xn do not code a proof of a
contradiction in a (fixed) extended Frege system.”

Theorem (Cook): Any extended Frege-system has
polynomial-size proofs of the assertions ConEF(n).

Theorem (Buss): Let F be any Frege-system. Then

F + {ConEF(n)}n∈ω
polynomially simulates any extended Frege system.

As a result, if there is any separation between Frege
systems and extended Frege systems, it is witnessed by
the tautologies ConEF(n).

“. . . But, this is not what we mean by a natural combi-
natorial assertion.”
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An Analogy

Theorem (Gödel): Peano Arithmetic doesn’t prove
ConPA.

Paris and Harrington construct a natural combinatorial
statement PH.

Theorem (Paris and Harrington): Peano Arithmetic
doesn’t prove PH.

Proof: PH implies ConPA.

Idea: Find a more “combinatorial” version of ConEF(n).
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A Multi-ary connective

Let NAND(ϕ1, . . . , ϕk) denote the assertion that at least
one of the ϕi is false.

NAND() can be interpreted as falsehood, and NAND(ϕ)
is equivalent to ¬ϕ.

Build formulas from variables xi and NAND’s.

Formulas of the following form are always true:

NAND(ϕ1, . . . , ϕk, ψ1, . . . , ψl, NAND(ψ1, . . . , ψl)).

The following rule is sound: from

NAND(ψ1, . . . , ψk, ϕ1, . . . , ϕl)

and

NAND(ψ1, . . . , ψk, NAND(ϕ1, . . . , ϕl))

conclude

NAND(ψ1, . . . , ψk).

8



A Surprising Fact

Theorem: The axiom and rule taken together are
complete, and p-simulate any Frege system.

Proof: Derive some additional rules; then show that
from a given a tautology one can “work backwards” to
axioms.
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The Hereditarily Finite Sets

Definition: The hereditarily finite sets are defined in-
ductively as follows:

• ∅ is a hereditarily finite set.

• If a1, a2, . . . , an are hereditarily finite sets, so is

{a1, a2, . . . , ak}.

By making the association

NAND(ϕ1, . . . , ϕk) {ϕ1, . . . , ϕk}
we can identify closed formulas with hereditarily finite
sets.

Definition: Call a hereditarily finite set a good if there
is some b ⊂ a such that b ∈ a.

For example,

{a, b, c, d, {a, b}}
is good.

10



A Somewhat Combinatorial Theorem

Theorem. Let C be a hereditarily finite set, such that
for every a in C, either

1. a is good, or

2. for some hereditarily finite b not contained in a, a∪b
and a ∪ {b} are both in C.

Then the empty set is not in C.

Proof. From a counterexample we could find a proof
of a contradiction in the simple Frege-system.
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Formulas and Directed Acyclic Graphs

Idea. Code formulas based on NAND as nodes in a
directed acyclic graph. Identify nodes v with the NAND
of the neighborhood of v.

Note. By explicitly “naming” every formula in sight,
we can think of an extended Frege system as reasoning
about such nodes.
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A Somewhat Combinatorial Theorem About
DAGS

Theorem. Let G be a directed acyclic graph, and
suppose C is a subset of the vertices of G such that for
every a in C, one of the following two conditions holds:

1. Either there is a vertex b in N(a) such that N(b) ⊆
N(a), or

2. there are vertices d and e in C, and a nonterminal
vertex b of G, such that

(a) N(d) = N(a) ∪ {b},

(b) N(e) = N(a) ∪N(b), and

(c) N(e) 6= N(a).

Then every element of C is nonterminal.

Proof. Once again, a counterexample would corre-
spond to a Frege-proof of a contradiction.

Thanks to the correspondence between DAGs and for-
mulas, this more or less expresses the consistency of an
extended Frege-system.
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Extracting a Propositional Tautlogy

Variables pij, where i < j ≤ n, express the assertion that
there is an edge from i to j. Variables qi asssert that
i ∈ C.

The hypothesis is of the form:∧
i

(qi → ϕ1(i) ∨ ϕ2(i))

where ϕ1(i) is the assertion∨
j

(
pij ∧

∧
k

(pjk → pik)

)
and ϕ2(i) is the assertion

∨
j,k,l

qk ∧ ql ∧ pkj ∧ ∧
m6=j

(pkm ↔ pim) ∧
∧
m

(plm ↔ (pim ∨ pjm))

 .

The conclusion is of the form:∧
i

(qi →
∨
j

pij).

Call the resulting tautology T (n).
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The Net Result

Theorem. EF has polynomial-size proofs of the tau-
tologies T (n).

Proof. Similar to the proof that EF has polynomial-size
proofs of the tautologies ConEF(n).

Theorem. F +{T (n)} p-simulates any extended Frege-
system.

Proof. Similar to the proof that F + {ConEF(n)} p-
simulates any extended Frege-system.
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A Historical Note

In 1913, Sheffer showed that the binary NAND is a
complete connective.

In 1917, Jean Nicod presented a Frege-system based on
the Sheffer stroke, with the single axiom

{[p | (q | r)] | [t | (t | t)]} | {[s | q] | [(p | s) | (p | s)]}
and rule

p | (r | q) p
q

.

In 1925, in the introduction to the second edition of the
Principia Mathematica, Russell calls Sheffer’s reduction
“the most definite improvement resulting from work in
mathematical logic during the past fourteen years.”
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Can This Be Put To Good Use?

Notice that now we know exactly what Frege proofs
look like:

Can this fact be used to prove lower bounds?
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