
Structures in Dependent Type Theory

Jeremy Avigad

Department of Philosophy
Department of Mathematical Sciences

Hoskinson Center for Formal Mathematics

Carnegie Mellon University

February 15, 2024

(reporting on work by the Lean development team, the Lean
community, Josh Clune, Yicheng Qian, and Alex Bentkamp)

Mathematicians and formalization

In 2017, there were very few mathematicians using proof assistants.

Since then, many mathematicians have embraced Lean.

Why?

• It’s a well-designed system.

• It was written with both mathematicians and computer
scientists in mind.

• Documentation was written with both mathematicians and
computer scientists in mind.

• Some enthusiastic mathematicians drew attention early on.

• There’s an energetic online community.

• Mario Carneiro was there early on.

Mathematicians and formalization

More reasons mathematicians are comfortable with Lean:

• It has good support for classical mathematical reasoning.

• It has good support for reasoning about structures.

Systems like Isabelle and HOL Light meet the first requirement.

Systems like Coq and Agda meet the second requirement.

Both are essential.

Classical reasoning

noncomputable section

open Classical

def fact : N → N
| 0 => 1

| (n + 1) => (n + 1) * fact n

#eval fact 1000

def f (x : R) : R := if x ≤ 0 then 0 else 1

def g (x : R) : R := if Irrational x then 0 else 1

example : ∀ x, f x ≤ 1 := by

intro x; simp [f]; split <;> linarith

Structural reasoning

Since the early twentieth century, axiomatically characterized
structures have been central to mathematics.

Mathematicians now

• take products of structures,

• take powers of structures,

• take limits of structures,

• build quotients of structures,

• and lots more.

In short, they calculate with structures as easily as they calculate
with numbers.

Structures have to be first-class objects in a proof assistant.

Structural reasoning

This rules out simple type theory as an attractive option.

Set theory is an alternative, but types do a lot of work:

• They allow users to overload notation and leave information
implicit.

• They provide better error messages.

Clarification:

• Any foundational framework can be made to work, with
enough effort.

• Mizar-style soft-typing may be an option.

Claim: any practical solution will be at least as complicated as
dependent type theory.

Structural reasoning

From Sébastian Gouëzel’s web page (c. 2018?):

“Out of curiosity, I have given a try to several proof assistants, i.e.,
computer programs on which one can formalize and check
mathematical proofs, from the most basic statements (definition of
real numbers, say) to the most advanced ones (hopefully including
current research in a near or distant future). The first one I have
managed to use efficiently is Isabelle/HOL. In addition to several
facts that have been added to the main library (for instance
conditional expectations), I have developed the following
theories. . . ”

Structural reasoning

“However, I have been stuck somewhat by the limitations of the
underlying logic in Isabelle (lack of dependent types, making it
hard for instance to define the p-adic numbers as this should be a
type depending on an integer parameter p, and essentially
impossible to define the Gromov-Hausdorff distance between
compact metric spaces without redefining everything on metric
spaces from scratch, and avoiding typeclasses). These limitations
are also what makes Isabelle/HOL simple enough to provide much
better automation than in any other proof assistant, but still I
decided to turn to a more recent system, Lean, which is less
mature, has less libraries, and less automation, but where the
underlying logic (essentially the same as in Coq) is stronger (and,
as far as I can see, strong enough to speak in a comfortable way
about all mathematical objects I am interested in).”

Overview

I will talk about Lean’s handling of structures.

• The good: Lean and Mathlib support an extensive network of
structures.

• The bad: The complexity poses challenges for library
development and maintenance.

• The ugly: It also poses challenges for automation.

Structural reasoning is one of the sources of the impressive power
of modern mathematical reasoning.

With great power there must also come great responsibility.

Structures

Quiz:

• Who first gave an axiomatic characterization of a group?

• Who first defined a quotient group?

• Who first defined the notion of an ideal in a ring (and proved
unique factorization of ideals)?

• Who first gave the modern definition of a Riemann surface?

• Who first gave an axiomatic characterization of a topological
space?

• Who first gave an axiomatic characterization of a Hilbert
space?

• Who first gave the modern definition on a measure on a space
as a σ-additive function on a σ-algebra?

• Who defined the p-adic integers?

Structural language

def quadraticChar (α : Type) [MonoidWithZero α] (a : α) : Z :=

if a = 0 then 0 else if IsSquare a then 1 else -1

def legendreSym (p : N) (a : Z) : Z := quadraticChar (ZMod p) a

variable {p q : N} [Fact p.Prime] [Fact q.Prime]

theorem quadratic_reciprocity (hp : p ̸= 2) (hq : q ̸= 2)

(hpq : p ̸= q) :

legendreSym q p * legendreSym p q = (-1) ^ (p / 2 * (q / 2))

Structural language

def Padic (p : N) [Fact p.Prime] :=

CauSeq.Completion.Cauchy (padicNorm p)

def PadicInt (p : N) [Fact p.Prime] :=

{ x : Q_[p] // ∥x∥ ≤ 1 }

variable {p : N} [Fact p.Prime] {F : Polynomial Z_[p]}
{a : Z_[p]}

theorem hensels_lemma :

(hnorm : ∥Polynomial.eval a F∥ <

∥Polynomial.eval a (Polynomial.derivative F)∥ ^ 2)

∃ z : Z_[p],
F.eval z = 0 ∧
∥z - a∥ < ∥F.derivative.eval a∥ ∧
∥F.derivative.eval z∥ = ∥F.derivative.eval a∥ ∧
∀ z', F.eval z' = 0 →

∥z' - a∥ < ∥F.derivative.eval a∥ → z' = z

Structural language

def FreeAbelianGroup : Type :=

Additive <| Abelianization <| FreeGroup α

def IsPGroup (p : N) (G : Type) [Group G] : Prop :=

∀ g : G, ∃ k : N, g ^ p ^ k = 1

theorem IsPGroup.exists_le_sylow {P : Subgroup G}

(hP : IsPGroup p P) :

∃ Q : Sylow p G, P ≤ Q

Structural language

variable {R S : Type} (K L : Type) [EuclideanDomain R]

variable [CommRing S] [IsDomain S]

variable [Field K] [Field L]

variable [Algebra R K] [IsFractionRing R K]

variable [Algebra K L] [FiniteDimensional K L] [IsSeparable K L]

variable [algRL : Algebra R L] [IsScalarTower R K L]

variable [Algebra R S] [Algebra S L]

variable [ist : IsScalarTower R S L]

variable [iic : IsIntegralClosure S R L]

variable (abv : AbsoluteValue R Z)

/-- The main theorem: the class group of an integral closure `S`

of `R` in a finite extension `L` of `K = Frac(R)` is finite

if there is an admissible absolute value. -/

noncomputable def fintypeOfAdmissibleOfFinite :

Fintype (ClassGroup S) :=

. . .

Structural language

variable {α β ι : Type} {m : MeasurableSpace α}

variable [MetricSpace β] {µ : Measure α}

variable [SemilatticeSup ι] [Nonempty ι] [Countable ι]
variable {f : ι → α → β} {g : α → β} {s : Set α}

/-- Egorov's theorem: A sequence of almost everywhere

convergent functions converges uniformly except on an

arbitrarily small set. -/

theorem tendstoUniformlyOn_of_ae_tendsto

(hf : ∀ n, StronglyMeasurable (f n))

(hg : StronglyMeasurable g)

(hsm : MeasurableSet s) (hs : µ s ̸= ∞)

(hfg : ∀m x ∂µ, x ∈ s →
Tendsto (fun n => f n x) atTop (N (g x)))

{ε : R} (hε : 0 < ε) :

∃ (t : _) (_ : t ⊆ s),

MeasurableSet t ∧
µ t ≤ ENNReal.ofReal ε ∧
TendstoUniformlyOn f g atTop (s \ t) :=

. . .

Structures in dependent type theory

structure Point where

x : R
y : R
z : R

def myPoint1 : Point where

x := 2

y := -1

z := 4

def myPoint2 : Point := ⟨2, -1, 4⟩

#check myPoint1.x

#check myPoint1.y

#check myPoint1.z

def add (a b : Point) : Point :=

⟨a.x + b.x, a.y + b.y, a.z + b.z⟩

Structures in dependent type theory

structure StandardTwoSimplex where

x : R
y : R
z : R
x_nonneg : 0 ≤ x

y_nonneg : 0 ≤ y

z_nonneg : 0 ≤ z

sum_eq : x + y + z = 1

def midpoint (a b : StandardTwoSimplex) : StandardTwoSimplex

where

x := (a.x + b.x) / 2

y := (a.y + b.y) / 2

z := (a.z + b.z) / 2

x_nonneg :=

div_nonneg (add_nonneg a.x_nonneg b.x_nonneg) (by norm_num)

y_nonneg := . . .
z_nonneg := . . .
sum_eq := by field_simp; linarith [a.sum_eq, b.sum_eq]

Structures in dependent type theory

structure Group where

carrier : Type

mul : carrier → carrier → carrier

one : carrier

inv : carrier → carrier

mul_assoc : ∀ x y z : carrier,

mul (mul x y) z = mul x (mul y z)

mul_one : ∀ x : carrier, mul x one = x

one_mul : ∀ x : carrier, mul one x = x

mul_left_inv : ∀ x : carrier, mul (inv x) x = one

variable (G : Group) (g1 g2 : G.carrier)

Structures in dependent type theory

structure Group (α : Type) where

mul : α → α → α

one : α

inv : α → α

mul_assoc : ∀ x y z : α, mul (mul x y) z = mul x (mul y z)

mul_one : ∀ x : α, mul x one = x

one_mul : ∀ x : α, mul one x = x

mul_left_inv : ∀ x : α, mul (inv x) x = one

variable {G : Type} [Group G] (g1 g2 : G)

Design specifications

Doing mathematics requires:

• defining algebraic structures and reasoning about them
(groups, rings, fields, . . .)

• defining instances of structures and recognizing them as such
(R is an ordered field, a metric space, . . .)

• overloading notation (x + y , “f is continuous”)

• inheriting structure: every normed additive group is a metric
space, which is a topological space.

• defining functions and operations on structures: we can take
products, powers, limits, quotients, and so on.

Design specifications

Structure is inherited in various ways:

• Some structures extend others by adding more axioms (a
commutative ring is a ring, a Hausdorff space is a topological
space).

• Some structures extend others by adding more data (a module
is an abelian group with a scalar multiplication, a normed field
is a field with a norm).

• Some structures are defined in terms of others (every metric
space is a topological space, there are various topologies on
function spaces).

Defining structures and instances

We have seen how to define the group structure Group α on a
type α.

We can define instances of Group α the same way we define
instances of Point and StandardTwoSimplex.

def permGroup {α : Type} : Group (Perm α) where

mul f g := Equiv.trans g f

one := Equiv.refl α

inv := Equiv.symm

mul_assoc f g h := (Equiv.trans_assoc _ _ _).symm

one_mul := Equiv.trans_refl

mul_one := Equiv.refl_trans

mul_left_inv := Equiv.self_trans_symm

Defining structures and instances

We are not there yet. We need:

• Notation: given g1 g2 : Perm α, we want to write g1 * g2
and g1

−1 for the multiplication and inverse.

• Definitions: we want to use defined notions like g1^n and
conj g1 g2.

• Theorems: we want to apply theorems about arbitrary groups
to the permutation group.

Defining structures and instances

The magic depends on three things:

1. Logic. A definition that makes sense in any group takes the
type of the group and the group structure as arguments.

A theorem about the elements of an arbitrary group quantifies
over the type of the group and the group structure.

2. Implicit arguments. The arguments for the type and the
structure are generally left implicit.

3. Type class inference.
• Instance relations are registered with the system.
• The system uses this information to resolve implicit arguments.

Notation

We overload notation by associating it to trivial structures.

class Add (α : Type u) where

add : α → α → α

#check @Add.add

-- @Add.add : {α : Type u_1} → [self : Add α] → α → α → α

infixl:65 " + " => Add.add

instance : Add Point where

add := Point.add

Notation

variable (p q : Point)

#check p + q

-- p + q : Point

set_option pp.notation false

#check p + q

-- Add.add p q

set_option pp.explicit true

#check p + q

-- @Add.add Point instPointAdd p q

-- This is a slight simplification! We also have `HAdd`.

Classes and instances

The class command is a variant of the structure command that
makes the structure a target for type class inference.

The instance command registers particular instances for type
class inference.

We can register concrete instances (R is a field, the permuations
of α form a group), as well as generic instances (every field is a
ring, every metric space is a topological space, every normed
abelian group is a metric space.)

Defining structures and instances

class Group (α : Type) :=

. . .

instance {α : Type} : Group (Perm α) :=

. . .

instance : Ring R :=

. . .

instance {M : Type} [MetricSpace M] :

TopologicalSpace M :=

. . .

-- Again, this is a simplification.

Defining structures and instances

#check @Add.add

-- @Add.add : {α : Type u_1} → [self : Add α] → α → α → α

#check @add_comm

-- @add_comm : ∀ {G : Type u_1} [inst : AddCommSemigroup G]

-- (a b : G), a + b = b + a

#check @abs_add

-- @abs_add : ∀ {α : Type u_1}

-- [inst : LinearOrderedAddCommGroup α] (a b : α),

-- |a + b| ≤ |a| + |b|

#check @Continuous

-- @Continuous : {α : Type u_2} → {β : Type u_1} →
-- [inst : TopologicalSpace α] →
-- [inst : TopologicalSpace β] →
-- (α → β) → Prop

Defining structures and instances

variable (f g : R × R → R)

#check f + g

-- f + g : R × R → R

example : f + g = g + f := by rw [add_comm]

#check Continuous f

-- Continuous f : Prop

Defining structures and instances

set_option pp.explicit true

#check Continuous f

/-

@Continuous (R × R) R
(@instTopologicalSpaceProd R R

(@UniformSpace.toTopologicalSpace R
(@PseudoMetricSpace.toUniformSpace R
Real.pseudoMetricSpace))

(@UniformSpace.toTopologicalSpace R
(@PseudoMetricSpace.toUniformSpace R
Real.pseudoMetricSpace)))

(@UniformSpace.toTopologicalSpace R
(@PseudoMetricSpace.toUniformSpace R
Real.pseudoMetricSpace)) f : Prop

-/

Defining a hierarchy of structures

Currently, Mathlib has roughly:

• 1,300 classes

• 22,110 instances.

I will pause here to show you:

• some graphs

• how to look up the (direct) instances of a class in the Mathlib
documentation

• how to look up the classes that an object is an instance of.

Defining a hierarchy of structures

What are all these classes?

• Notation (Add, Mul, Inv, Norm, . . .)

• Algebraic structures (Group, OrderedRing, Lattice,
Module, . . .)

• Computation and bookkeeping: Inhabited, Decidable

• Mixins and add-ons: LeftDistribClass, Nontrivial

• Unexpected generalizations: GroupWithZero, DivInvMonoid

Defining a hierarchy of structures

class DivisionSemiring (α : Type*) extends Semiring α,

GroupWithZero α

class DivisionRing (K : Type u) extends Ring K, DivInvMonoid K,

Nontrivial K, RatCast K

class Semifield (α : Type*) extends CommSemiring α,

DivisionSemiring α, CommGroupWithZero α

class Field (K : Type u) extends CommRing K, DivisionRing K

To bundle or not to bundle?

A group consists of a carrier type and a structure on that type.

We have seen that we can represent that as one object or two.

Choices like this come up often:

• A monoid morphism is a function that preserves multiplication
and 1.

• A subgroup is a subset of the carrier closed under the group
operations.

To bundle or not to bundle?

variable (G H : Type) [Monoid G] [Monoid H]

structure isMonoidHom (f : G → H) : Prop where

map_one : f 1 = 1

map_mul : ∀ g g', f (g * g') = f g * f g'

structure MonoidHom : Type where

toFun : G → H

map_one : toFun 1 = 1

map_mul : ∀ g g', toFun (g * g') = toFun g * toFun g'

structure Subgroup (G : Type) [Group G] where

carrier : Set G

mul_mem {a b} : a ∈ carrier → b ∈ carrier →
a * b ∈ carrier

one_mem : (1 : G) ∈ carrier

inv_mem {x} : x ∈ carrier → x−1 ∈ carrier

To bundle or not to bundle?

The bundled and unbundled approaches each have advantages and
drawbacks.

Mathlib has ways of handling subobjects and morphisms that tries
to get the best of both worlds.

You can read about it in Chapter 7 of Mathematics in Lean.

See also Anne Baanen, “Use and abuse of instance parameters in
the Lean mathematical library.”

Diamond problems

Consider the following facts:

• The product of metric spaces is a metric space.

• The product of topological spaces is a topological space.

• Every metric space is a topological space.

Suppose M1 and M2 are metric spaces.

M1 ×M2 can be viewed as a topological space in two ways:

• A product of the induced topological spaces.

• The topological space induced by the product of the metric
spaces.

Fortunately, they come out the same.

Diamond problems

Why diamonds are problematic:

• The multiple pathways slow down searches.

• The results may not be the same (an ambiguity in the
mathematics).

• The results may be provably the same, but not syntactically
(definitionally) the same.

Here’s how you know things have gone wrong:

tactic ’apply’ failed, failed to unify

Continuous f

with

Continuous f

Diamond problems

Diamond problems come up surprisingly often.

Mathematics in Lean explains how to resolve them, and the
community has gotten good at it.

See also Affeldt et al, “Competing inheritance paths in dependent
type theory” and Wieser, “Multiple-inheritance hazards in
dependently-typed algebraic hierarchies.”

A philosophical question:

• Mathematicians are good at inferring canonical structure.

• A priori, there is no guarantee that our conventions yield
coherent assignments.

• Why don’t we get in trouble more often?

Automation

Current automation for Lean:

• lots of small-scale tactics for doing useful things (casing on
data, doing calculations, logical manipulations)

• domain specific automation, linarith, ring, omega,
monotonicity, FunProp

• simp, equational reasoning and conditional simplification

• Aesop, a tableaux reasoner like Isabelle’s auto.

We don’t have anything like Isabelle’s sledgehammer.

Automation

Isabelle’s sledgehammer:

• uses premise selection to choose a manageable set of relevant
facts from the library

• exports problems from Isabelle to external ATPs and SMT
solvers

• uses the results of the external tools to construct formally
verified proofs.

Two key components:

• a monomorphization / translation procedure

• metis, a proof-producing resolution procedure.

What will these look like in Lean?

Automation

Targets for automation:

• equational reasoning

• propositional reasoning

• domain-specific decision procedures (linear arithmetic, linear
integers arithmetic)

• first-order reasoning

• higher-order reasoning

• dependent types

• structural reasoning

Establishing a goal in Lean generally requires a mixture of these.

Automation

Josh Clune, Yicheng Qian, and Alex Bentkamp are working on
Duper:

• the Lean analogue of Metis

• can be used as internal automation and for proof
reconstruction

• can handle some higher-order reasoning and features of
dependent type theory.

Yicheng Qian has been working on Lean-Auto:

• a tool that can translate Lean goals to TPTP and SMT
format

• it can also do preprocessing for Duper

• it has to deal with specific features of dependent type theory.

Their talks from Lean Together 2024 are online.

Automation

Duper’s “comfort zone” is first-order reasoning.

But it has mechanisms to handle:

• type inhabitation

• variables over types

• variables over type universes

• higher-order unification

The last is expensive, but is needed e.g. to use identities like this:∑
x∈A

x2 + 2x =
∑
x∈A

x2 + 2
∑
x∈A

x .

Automation

Lean-Auto provides preprocessing for Duper as well as external
tools.

Given a Lean expression e, Lean-Auto produces a simpler
expression e’, an assignment σ, and a proof that e is equal to
evaluating e’ under σ.

Duper or external automation can then be used to prove the
simpler expression.

Automation

Things that Lean-Auto does:

• Canonicalizes expressions, so e.g. two definitionally equal
expressions (like s ≤ t) are represented by the same term.

• Iteratively instantiates theorems ∀α . . ., where α ranges over
type variables. (Monomorphization)

• It instantiates type classes.

• Similarly instantiates other variables that types depend on.

• It moves everything to one universe.

• It does other preprocessing.

Automation

To use external automation, we can use premise selection,
Lean-Auto, and proof reconstruction.

For internal Lean automation and proof reconstruction we need:

• equational reasoning (Duper, simp)

• propositional reasoning (Duper)

• domain-specific decision procedures (linarith, omega)

• first-order reasoning (Duper)

• higher-order reasoning (Lean-Auto or Duper)

• dependent types (Lean-Auto or Duper)

• structural reasoning (Lean-Auto)

Conclusions

• Structural reasoning is one of the most salient and powerful
features of modern mathematics.

• Any viable proof assistant for mathematics has to support it.

• It’s not easy.

• Lean and Mathlib do pretty well.
• We are not out of the woods.

• The complexity poses challenges for library development and
maintenance.

• It also poses challenges for automation.

