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The end of philosophy of mathematics?

“Philosophy of mathematics is dead. Philosophy of mathematics

remains dead. And we have killed it.”

“Not only is philosophy of mathematics dead, but just try to find a

plumber on weekends.”

“Reports of its death are greatly exaggerated.”

(Apologies to Friedrich Nietzsche, Woody Allen, and Mark Twain.)
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Twentieth century philosophy of mathematics

The central questions, in the analytic tradition:

1. What is mathematical knowledge, and what justifies a claim

to mathematical knowledge?

2. What sorts of things are mathematical objects, and how do we

(or can we, or should we) come to have knowledge of them?

Nobody seems to care any more.
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Twentieth century philosophy of mathematics

Why not?

1. For close to a century, there has been remarkable consensus

about how to talk about mathematical objects, and about the

standards of correctness for proofs.

2. Formal logic provides good accounts of these.

3. Of course, we learn about mathematical objects from our

parents, teachers, and textbooks.

4. Answering more fundamental questions (why these objects?

why these rules?) requires hard work and sensitivity to the

mathematics, not clever rhetoric.
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Twentieth century philosophy of mathematics

There are normative assessments in mathematics that go beyond

questions of correctness:

• Theorems can be interesting or illuminating or surprising.

• Concepts and methods can be powerful.

• Historical developments can be important.

• Proofs can be elegant.

• Questions can be natural.

We do care about these judgments.
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Twenty-first century philosophy of mathematics

I’ll argue for these claims:

1. There are philosophical questions about mathematics that are

interesting and important beyond academic philosophy.

2. Contemporary developments in logic and computer science

offer new analytic tools.

3. The new questions shed light on the old questions, and make

it possible to address them in substantial and satisfying ways.
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Outline

• motivating questions

• intuitions

• formal methods in mathematics

• from formal methods to epistemology
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The problem of multiple proofs

On the standard account, the value of a mathematical proof is that

it warrants the truth of the resulting theorem.

Why, then, do we often value a new proof of a previous established

theorem?

For example, Gauss published six proofs of the law of quadratic

reciprocity in his lifetime, and left us two unpublished versions as

well.

Franz Lemmermeyer has documented 246 proofs through 2013.

(The list, with references, is available online.)
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The problem of multiple proofs

This question not new. For example:

It might be said: “—that every proof, even of a proposi-

tion which has already been proved, is a contribution to

mathematics”. But why is it a contribution if its only point

was to prove the proposition? Well, one can say: “the new

proof shews (or makes) a new connexion”. — Wittgen-

stein, Remarks on the Foundations of Mathematics, III–60

Indeed, it is not a great mystery. There is a lot we can say about

what we learn from different proofs.

But the philosophy of mathematics has had relatively little to say

about this.
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The problem of conceptual possibility

It is often said that some mathematical advance was “made

possible” by a prior conceptual development.

For example, Riemann’s introduction of the complex zeta function

and the use of complex analysis made it possible for Hadamard and

de la Vallée Poussin to prove the prime number theorem in 1896.

What is the sense of “possibility” here?

Intuition: a certain understanding guides us.
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The nature of diagrammatic inference
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The nature of diagrammatic inference

B C

A

D

By side-angle-side, 4AEB ≡ 4CEF . So ∠BAC = ∠ACF .

Clearly ∠ACD > ∠ACF . So ∠ACD > ∠BAC .

But why is it clear that ∠ACD > ∠ACF?
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The problem of reliability

On a standard account, a proof is correct if each inference can be

expanded to a formal derivation.

Such formal derivations can be extremely long. Even a single error

renders one invalid.

How can ordinary mathematical proofs reliably warrant the

existence of something so complex and fragile?

Why doesn’t mathematics fall apart?
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The role of abstraction

The value of algebraic reasoning is often attributed to its generality.

For example, the axiomatization of groups in the nineteenth

century unified instances in Galois theory, number theory, and

geometry.

But sometimes abstraction is valued even when there is only one

instance.

In 1871, Dedekind introduced the notion of an ideal in a number

ring. In 1882 he and Weber generalized it to rings of functions.

But Dedekind clearly thought the notion was useful, even before

the 1882 generalization.

Why?
14



The use of computers in proofs

Kenneth Appel and Wolfgang Haken used extensive computation

to prove the four-color theorem in 1976.

Thomas Hales announced a proof of the Kepler conjecture in 1998,

again using extensive computation.

Propositional satisfiability provers are being used to solve

combinatorial problems, in some cases, producing proofs that are

terabytes long. (More on this later.)

Does this make for good mathematics?
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Motivating questions

What the questions have in common:

• They have a general epistemological character.

• They have to do with mathematical understanding. (Proofs

and concepts convey understanding, and require

understanding.)

• They raise normative questions. (What do we value? What

makes for good mathematics?)

• We have some intuitions.

• We care about the answers.

This doesn’t guarantee that there is room for philosophy here.

But it should encourage us to take a look.
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Intuitions

Responses will likely require talking about:

• methods

• concepts

• representations

• cognitive effort

Let’s consider each, in turn.
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Methods

Mathematical knowledge is often cast as propositional knowledge,

like definitions and theorems.

But understanding seems to require something more dynamic, a

kind of procedural knowledge.

Thinking means passing through epistemic states. Understanding

guides thought.

One approach: talk about methods, i.e. heuristic, fallible,

procedures for solving problems, searching for proofs, verifying

inferences, etc.
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Methods

Another approach: talk about abilities, or capacities for thought.

Understanding involves:

• Being able to recognize the nature of the objects and

questions before us.

• Being able to marshall the relevant background knowledge

and information.

• Being able to traverse space the of possibilities before us in a

fruitful way.

• Being able to identify features of the context that help us cut

down complexity.
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Concepts

In the psychological literature, concepts are sometimes thought of

in terms of categorization (e.g. prototypes and exemplars).

From a logical perspective, a concept is given by a definition, in a

suitable formal language.

These don’t work so well for the philosophy of mathematics.

What does it mean to understand the concept of a group? Or the

concept of a function? Or the concept of a Riemannian manifold?
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Concepts

Mathematical concepts have some interesting features:

• Membership is often sharply defined.

• Mathematical concepts evolve over time.

• Understanding a concept admits degrees.

• Various things can “improve our understanding” of a concept.

• One can speak of implicit uses of a concept.
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Concepts

One solution: think of a mathematical concept as a bundle of

abilities.

For example, the group concept includes:

• Knowing the definition of a group.

• Knowing common examples of groups, and being able to

recognize implicit group structures when it is fruitful to do so.

• Knowing how to construct groups from other groups or other

structures, in fruitful ways.

• Recognizing that there are different kinds of groups (abelian,

nilponent, solvable, finite vs. infinite, continuous vs. discrete)

and being able/prone to make these distinctions.

• Knowing various theorems about groups, and when and how

to apply them.
22



Concepts

This renders “the group concept,” for example, vague and

open-ended.

But the notion is vague and open-ended:

• We can talk about student understanding.

• We can talk about the role of the concept in contemporary

mathematics.

• We can talk about the historical development.

The proposal suggests that we can make our talk more precise by

being more precise about the abilities (or methods, or capacities)

we have in mind.
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Representations

In philosophy of mind, sometimes a concept is taken to be some

sort of mental representation, maybe in a language of thought.

Understanding seems to have something to do with having the

right representations.

In contemporary philosophy of mathematics, there has been a lot

of interest in the nature of representations, especially

diagrammatic representations.

Ken Manders has advocated using the word artifacts. Roy Wagner

likes presentations.

What is important is not what they represent, but what we can do

with them.
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Cognitive effort

As cognitive agents, we have limited time, energy, memory,

processing capacity.

We value developments that make things easier.

But how can we measure difficulty?

• Computer science: algorithmic complexity

• Logic: descriptive complexity, length of proof

• Experimental psychology: timing tasks

We can consider the number of pages in a proof, the number of

symbols in an expression, or the number of steps in a calculation.

But we need better ways of talking about cognitive difficulty.
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Recap

Motivating questions:

• the problem multiple proofs

• the problem of conceptual

possibility

• the nature of diagrammatic

inference

• the problem of reliability

• the role of abstraction

• the use of computers in proofs

We need to understand:

• methods

• concepts

• representations

• cognitive effort
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Goals

We are looking for a philosophical account that:

• is clear, precise, and internally coherent

• accords with our intuitions

• fits the data (what we see in mathematics)

• can inform (and can be informed by) other pursuits:

• history of mathematics

• interactive theorem proving and automated reasoning

• psychology and cognitive science

• mathematics education

• mathematics itself

I will discuss formal methods, as one source of insight.
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Outline

• motivating questions

• intuitions

• formal methods in mathematics

• from formal methods to epistemology
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Disclaimers

There are some very good young people thinking about questions

like the ones I have raised.

This is not a survey.

(See the references at the end of this talk.)

Computer science is certainly not the only promising source for

insight.

(Go back two slides.)
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Formal methods in computer science

Formal methods are used for

• specifying,

• developing, and

• verifying

complex hardware and software systems.

They rely on:

• formal languages to make assertions and express constraints,

• formal semantics to specify intended meaning, and

• formal rules of inference to verify claims and carry out search.
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Formal methods in computer science

In short, they are used to

• say things,

• find things,

• and check things.

Examples:

• Model checkers search for counterexamples to specifications.

• Interactive theorem provers show that hardware and software

designs meet their specifications
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Formal methods in mathematics

Formal methods hold promise for mathematics as well.

I will discuss three domains of application:

• verification

• discovery

• knowledge management

I will convey some of the things we have learned, and are learning.
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Verification

Interactive Theorem Proving provides one method of verifying

mathematical theorems.

Working with a proof assistant, users construct a formal axiomatic

proof.

In many systems, this proof object can be extracted and verified

independently.
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Verification

Some systems with substantial mathematical libraries:

• Mizar (set theory)

• HOL (simple type theory)

• Isabelle (simple type theory)

• HOL Light (simple type theory)

• Coq (constructive dependent type theory)

• ACL2 (primitive recursive arithmetic)

• PVS (classical dependent type theory)

• Agda (constructive dependent type theory)

• Metamath (set theory)

• Lean (dependent type theory)
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Verification

Accomplishments:

• There are good libraries for elementary number theory, real

and complex analysis, point-set topology, measure-theoretic

probability, abstract algebra, Galois theory, . . .

• Lots of big name theorems have been verified.

• There have been some milestones: the verification of the

Feit-Thompson theorem, the verification of the Hales’ proof of

the Kepler conjecture.

• Core mathematicians have begun to get involved.

But the technology is not where we want it to be.

Formalizing anything is a huge pain in the neck.
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Verification

/- Author: Chris Hughes -/

def legendre_sym (a p : N) (hp : nat.prime p) : Z :=

if (a : zmodp p hp) = 0 then 0 else

if ∃ b : zmodp p hp, b ^ 2 = a then 1 else -1

theorem quadratic_reciprocity (hp1 : p % 2 = 1)

(hq1 : q % 2 = 1) (hpq : p 6= q) :

legendre_sym p q hq * legendre_sym q p hp =

(-1) ^ ((p / 2) * (q / 2)) :=

have hpq0 : (p : zmodp q hq) 6= 0,

from zmodp.prime_ne_zero _ hp hpq.symm,

have hqp0 : (q : zmodp p hp) 6= 0,

from zmodp.prime_ne_zero _ hq hpq,

by rw [eisenstein_lemma _ hq1 hp1 hpq0,

eisenstein_lemma _ hp1 hq1 hqp0, ← _root_.pow_add,

sum_mul_div_add_sum_mul_div_eq_mul _ hpq0, mul_comm]
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Verification

One strategy for supporting interactive theorem proving is to use

automation to justify small inferences.

Ideally, anything “obvious” would be handled automatically.

Some systems, like Isabelle, Coq, and Lean provide

metaprogramming languages, which allow users to write their

domain-specific, small-scale automation.

The moral: mathematical knowledge is not just the theorems and

definitions, but also the procedures, methods, and heuristics.
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Discovery

Automated reasoners, constraint solvers, and theorem provers

implement powerful search methods.

Alas, applications to mathematics to date are few and far between.

But there have been some.
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Discovery

In 1996, William McCune used an equational theorem prover to

prove the Robbins conjecture, which states that a certain system of

equations axiomatizes Boolean algebras.

This was posed by a logician, Tarski.

McCune showed that (w((x−1w)−1z))((yz)−1y) = x axiomatizes

groups.

Kenneth Kunen showed that this is the shortest such axiom.

Theorem provers and model finders have added to the theory of

some (fringe) algebraic structures, like quasigroups and loops.
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Discovery

Ronald Graham once posed the Pythagorean triples problem:

Is it possible to color the positive integers red and blue

such that there is no monochromatic pythagorean triple

(a2 + b2 = c2)?

In 2016, Marijn Heule, Oliver Kullmann, and Victor Marek showed:

• There is such a coloring of the integers from 1 to 7,824.

• There is no such coloring of the integers from 1 to 7,825.
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Discovery

They used a propositional satisfiability solver for this purpose.

The proof of the negative result is 200 terabytes long.
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Discovery

It is clearly not possible to tile the plane with unit squares in such

a way that no two squares share a common edge.

In 1930, Keller conjectured the corresponding claim holds in all

dimensions.

In 1940, Perron showed that it is true for n ≤ 6.

In 1992, Lagarias and Shor showed that it is false for n ≥ 10.

42



Discovery

It is clearly not possible to tile the plane with unit squares in such

a way that no two squares share a common edge.

In 1930, Keller conjectured the corresponding claim holds in all

dimensions.

In 1940, Perron showed that it is true for n ≤ 6.

In 1992, Lagarias and Shor showed that it is false for n ≥ 10.

42



Discovery

It is clearly not possible to tile the plane with unit squares in such

a way that no two squares share a common edge.

In 1930, Keller conjectured the corresponding claim holds in all

dimensions.

In 1940, Perron showed that it is true for n ≤ 6.

In 1992, Lagarias and Shor showed that it is false for n ≥ 10.

42



Discovery

It is clearly not possible to tile the plane with unit squares in such

a way that no two squares share a common edge.

In 1930, Keller conjectured the corresponding claim holds in all

dimensions.

In 1940, Perron showed that it is true for n ≤ 6.

In 1992, Lagarias and Shor showed that it is false for n ≥ 10.

42



Discovery

It is clearly not possible to tile the plane with unit squares in such

a way that no two squares share a common edge.

In 1930, Keller conjectured the corresponding claim holds in all

dimensions.

In 1940, Perron showed that it is true for n ≤ 6.

In 1992, Lagarias and Shor showed that it is false for n ≥ 10.

42



Discovery

It is clearly not possible to tile the plane with unit squares in such

a way that no two squares share a common edge.

In 1930, Keller conjectured the corresponding claim holds in all

dimensions.

In 1940, Perron showed that it is true for n ≤ 6.

In 1992, Lagarias and Shor showed that it is false for n ≥ 10.

42



Discovery

In 1986 Szabó reduced the conjecture to periodic tilings, and in

1990 Corrádi and Szabó reduced the problem to a question about

the existence of a cliques of size 2n in certain graphs Gn,s .

The Lagarias and Shor result exhibited a clique of size 210 in G10,2.

In 2002, Mackey showed the conjecture is false for n ≥ 8 by

exhibiting a clique of size 28 in G8,2.

In 2017, Kisielewicz showed it is enough to consider G7,6 (which

has 167 nodes).

Very recently, Brakensiek, Heule, Mackey, and Narvéz showed that

there is no clique of size 27 there, settling the last case.

They used a SAT solver, with clever reductions and methods to

break the symmetry.
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Discovery

There are no 4-cliques in G2,2:
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Discovery

A 256-clique in G8,2:
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Knowledge management

Latex, e-mail, the web, MathOverflow, MathSciNet, and so on

have had a strong influence on mathematical research.

Contemporary digital technologies for

• storage,

• search, and

• communication

of mathematical information provide another market for formal

methods in mathematics.
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Knowledge management

Thomas Hales has launched the Formal Abstracts project to

encourage mathematicians to write formal abstracts of their

papers.

Think of MathSciNet, except:

• Every abstract is parsed to a formal language with a precise

semantics.

• The library of abstracts be used by search engines.

• Formal proofs can be added later.

• Automated reasoners can use definitions and the results.

• The library is amenable to machine learning.
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Knowledge management

The idea is to use controlled natural language.

The user enters something like this:

\begin{definition}

\deflabel{greatest element} We say that $y$ is a

\df{greatest\~element} in $R$ iff for all\ $x,\ x \le y$.

\end{definition}

Let $x < y$ stand for $x \le y$ and $x \ne y$.

The Latex renders something like this:

Definition (greatest element)

We say that y is a greatest element in R iff for all x , x ≤ y .
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Recap

Formal methods hold promise for mathematics.

Three domains of application:

• verification

• discovery

• knowledge management
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Lessons

Some of the things we have learned:

• Language and notation are important.

• Definitions are important.

• Representations are important.

• Abstraction is important.

• Structure is important.

• Pattern matching is important.

• Context is important.

• Relevance and salience are important.

• Expertise is important.

• Heuristics are important.

We need to understand all these better, from logical,

computational, and philosophical perspectives.
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Structures and domains

Some nontrivial aspects of mathematical reasoning are so

fundamental as to be almost invisible.

A homomorphism between groups is a function f : G → H such

that for every g1, g2 ∈ G , f (g1 · g2) = f (g1) · f (g2).

What is the meaning of each ·?

If X is a square matrix over C, define

eX =
∞∑
i=0

1

i !
X i .

What sort of object is i? What does this expression mean?
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Structures and domains

Sometimes “is” means “is isomorphic to.”

Both Z/7Z and {α ∈ C | α7 = 1} are the cyclic group on 7

elements.

As structures given by a construction, Q[
√

2][
√

3] and Q[
√

3][
√

2]

are distinct but isomorphic.

As subsets of the complex numbers, they are identical. (This is a

reason to embed structures in common completions.)
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Structures and domains

We often identify not only isomorphic structures, but elements of

different structures.

When talking about polynomials, we often identify the real number

3 with the polynomial 3, and the integer 3 with the real number 3.

Sometimes we care about a smaller domain in isolation, and then

view it as part of a larger domain.

Rn denotes n-dimensional Euclidean space, whose elements are

n-tuples of numbers. We commonly conflate R1 and R.
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Relevance and context

In interactive theorem proving, there is a notion of a context or

local context.

1 goal

p : N,
hp : prime p,

a : zmodp p hp,

ha : a 6= 0

` a ^ (p - 1) = 1

This is distinguished from the environment or global context.

A lot of effort is involved in mediating between the two.
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Relevance and context

Given an inference to verify, Isabelle’s sledgehammer uses a

relevance filter (which uses both heuristics and machine learning)

to select ∼200 facts from the library.

The problem is sent with these lemmas, and facts from the local

context, to an external automated theorem prover.

If the external prover succeeds in verifying the inference, it reports

on which fact from the library were used.

Isabelle uses this information (and often nothing else) to

reconstruct a proof.
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Relevance and context

How do we make computers better at finding the relevant

information?

• Use better heuristics.

• Let mathematicians provide annotations and advice.

• Use machine learning.
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Modularity

Mathematics is modular:

• Mathematics has fields and subfields.

• Algebraic structures are defined hierarchically.

• Proofs are broken down into lemmas.

Well-defined interfaces support encapsulation.

• One can use a theorem without knowing the proof.

• One can combine algebraic structures as components.

• External developments are not sensitive to precise definitions.

• We can generalize theorems, definitions, notation, and proofs.

• We can interpret and reuse the mathematics of the past.
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Modularity

Contemporary theorem provers provide lots of ways of supporting

modularity:

• namespaces

• theories

• modules

• private or opaque annotations

• means for defining and extending algebraic structures

• generic notation and class inference

These support reuse of notation, facts, and patterns of inference.
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Generality and specificity

Automation ranges from domain general to domain specific.

• propositional logic

• first-order logic

• equality

• normalization and rewriting

• symbolic calculation with operations that are associative,

commutative, idempotent, . . .

• general equational reasoning

• linear arithmetic (integer / real)

• algebraic geometry, real algebraic geometry

• higher-order reasoning

Combination methods try to incorporate various domain-specific

methods into a general search.

59



Outline

• motivating questions

• intuitions

• formal methods in mathematics

• from formal methods to epistemology
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Problems and intuitions

Motivating questions:

• the problem multiple proofs

• the problem of conceptual

possibility

• the nature of diagrammatic

inference

• the problem of reliability

• the role of abstraction

• the use of computers in proofs

We need to understand:

• methods

• concepts

• representations

• cognitive effort
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Insights from formal methods

We have more refined models of:

• mathematical language

• domains and structures

• relevance and context

• modularity

• methods of inference, both domain general and domain

specific.

We have learned a lot about how to put formal methods to good

use in mathematics, and what the challenges are.
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From formal methods to epistemology

This should help us develop a philosophical theory of mathematical

understanding.

But we still have a long way to go, and it would help to have a

better conceptual foundation.

I advocate a three-pronged approach.
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From formal methods to epistemology

First prong: articulate the big questions.

We’re hacking through the wilderness.

We need to start mapping out the terrain, clarifying the issues.

Do this sparingly.
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From formal methods to epistemology

Second prong: focus on concrete, down-to-earth questions:

• How can we design formal languages to capture specific

aspects of mathematical language?

• How can we automate various kinds of inference?

• What sorts of problems can we reduce to manageable search?

• How do diagrams support reasoning in specific domains?

• What types of activities promote student understanding?

• How can we model successful problem solving in specific

domains?

• How did some particular historical development open up new

possibilities for thought?
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From formal methods to epistemology

Third prong: be patient.

If we

• continue to make progress on specific questions and

• keep the general questions in mind,

a theory of mathematical understanding will eventually emerge.

What about the overarching questions: Why do we do

mathematics the way we do?
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From formal methods to epistemology

View mathematics as a communal practice designed to meet

fundamental constraints:

• scientific utility

• cognitive efficiency

• communicability

• reliability

• stability

The best justification for mathematics is that it serves its purposes

well.

We need to better understand how and why.
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Concluding remarks

The modes of analysis used in late twentieth-century analytic

philosophy of mathematics have been thoroughly explored.

But there are new questions to ask, and new avenues to consider.

If we think of philosophy of mathematics in narrow terms, we are

at the end.

But if we think of it more broadly, we have just started, and there

is a lot to look forward to.
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Concluding remarks

Philosophy of mathematics is dead.

Long live philosophy of mathematics!
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