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The new epistemology of mathematics

Since Plato, the philosophy of mathematics has been concerned
with:

• the nature of mathematical objects, and

• the appropriate justification for mathematical knowledge
claims.

But we employ other normative judgments as well:

• some theorems are interesting

• some questions are natural

• some concepts are fruitful, or powerful

• some proofs provide better explanations than others

• some historical developments are important

• some observations are insightful

. . . and so on.

The problem of multiple proofs

On the standard story, the value of a mathematical proof is that it
warrants the truth of the resulting theorem.

Why, then, do we often value a new proof of a previous established
theorem?

For example, Gauss published six proofs of the law of quadratic
reciprocity in his lifetime, and left us two unpublished versions as
well.

Franz Lemmermeyer has documented 233 proofs (available online,
with references).

The problem of multiple proofs

Others have made these observations. For example:

It might be said: “—that every proof, even of a
proposition which has already been proved, is a
contribution to mathematics”. But why is it a
contribution if its only point was to prove the
proposition? Well, one can say: “the new proof shews (or
makes) a new connexion”. — Wittgenstein, Remarks on
the Foundations of Mathematics, III–60

Indeed, it is not a great mystery. There is a lot we can say about
what we learn from different proofs.

But the philosophy of mathematics has had relatively little to say
about the matter.



The problem of conceptual possibility

It is often said that some mathematical advance was “made
possible” by a prior conceptual development.

For example, Riemann’s introduction of the complex zeta function
and ideas from complex analysis made it possible for Hadamard and
de la Vallée Poussin to prove the prime number theorem in 1896.

What is the sense of “possibility” here?

Intuition: a certain “understanding” guides us. (But let’s focus on
the phenomena, not the word.)
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Vague intuitions

Mathematics is hard.

Mathematical solutions, proofs, and calculations involve long
sequences of steps, that have to be chosen and composed in
precise ways.

To compound matters, there are too many options; among the
many steps we may plausibly take, most will get us absolutely
nowhere.

And we have limited cognitive capacities — we can only keep track
of so much data, anticipate the result of a few small steps,
remember so many background facts.

We rely on our understanding to help us and to guide us.

Vague intuitions

Does understanding the demonstration of a theorem consist in
examining each of the syllogisms of which it is composed in
succession, and being convinced that it is correct and conforms to
the rules of the game? In the same way, does understanding a
definition consist simply in recognizing that the meaning of all the
terms employed is already known, and being convinced that it
involves no contradiction?

. . . Almost all are more exacting; they want to know not only
whether all the syllogisms of a demonstration are correct, but why
they are linked together in one order rather than in another. As
long as they appear to them engendered by caprice, and not by an
intelligence constantly conscious of the end to be attained, they do
not think they have understood.

(Poincaré, Science et méthod)



Vague intuitions

Logic teaches us that on such and such a road we are sure of not
meeting an obstacle; it does not tell us which is the road that leads
to the desired end. (Ibid.)

Discovery consists precisely in not constructing useless
combinations, but in constructing those that are useful, which are
an infinitely small minority. Discovery is discernment, selection.
(Ibid.)

Vague intuitions

But not yet have we solved the incantation of this whiteness, and
learned why it appeals with such power to the soul; and more
strange and far more portentous. . . and yet should be as it is, the
intensifying agent in things the most appalling to mankind.

Is it that by its indefiniteness it shadows forth the heartless voids
and immensities of the universe, and thus stabs us from behind
with the thought of annihilation, when beholding the white depths
of the milky way? Or is it, that as in essence whiteness is not so
much a colour as the visible absence of colour; and at the same
time the concrete of all colours; is it for these reasons that there is
such a dumb blankness, full of meaning, in a wide landscape of
snows–a colourless, all-colour of atheism from which we shrink?

(Meville, Moby Dick, Chapter 42).

Vague intuitions

By the merest chance the ship itself at last rescued him; but from
that hour the little negro went about the deck an idiot; such, at
least, they said he was. The sea had jeeringly kept his finite body
up, but drowned the infinite of his soul. Not drowned entirely,
though. Rather carried down alive to wondrous depths, where
strange shapes of the unwarped primal world glided to and fro
before his passive eyes; and the miser-merman, Wisdom, revealed
his hoarded heaps; and among the joyous, heartless, ever-juvenile
eternities, Pip saw the multitudinous, God-omnipresent, coral
insects, that out of the firmament of waters heaved the colossal
orbs. He saw God’s foot upon the treadle of the loom, and spoke
it; and therefore his shipmates called him mad. So man’s insanity
is heaven’s sense; and wandering from all mortal reason, man
comes at last to that celestial thought, which, to reason, is absurd
and frantic; and weal or woe, feels then uncompromised, indifferent
as his God.
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Formal verification

Formal verification involves the use of formal methods to verify
correctness, for example:

• verifying that a circuit description, an algorithm, or a network
or security protocol meets its specification; or

• verifying that a proof of a mathematical theorem is correct.

“Interactive theorem proving” is one important approach.

Working with a proof assistant involves conveying enough
information to the system to confirm that there is a formal
axiomatic proof.

In fact, most proof systems actually construct a formal proof
object, a complex piece of data that can be verified independently.

Formal verification

Some of the bigger theorems that have been verified:

• The four-color theorem (Gonthier, 2004)

• The prime number theorem (Avigad et al., 2004; Harrison,
2009)

• The Jordan curve theorem (Hales, 2005; Kornilowicz, 2005)

Two very ambitious projects are well underway:

• Hales is currently heading an ambitious project to verify a
proof of the Kepler conjecture.

• Gonthier is heading a similar project to verify the
Feit-Thompson theorem.

Understanding mathematical language

Contemporary proof systems rely on a variety of frameworks:

• set theory (Mizar)

• higher-order logic (HOL, HOL light, Isabelle, . . . )

• (constructive) dependent type theory (Coq)

Assertions are made in the corresponding assertion language.

For example, here is Hales’ statement of the Jordan curve theorem
in HOL light:

!C. simple_closed_curve top2 C ==>
(?A B. top2 A /\ top2 B /\
connected top2 A /\ connected top2 B /\

~(A = EMPTY) /\ ~(B = EMPTY) /\
(A INTER B = EMPTY) /\ (A INTER C = EMPTY) /\

(B INTER C = EMPTY) /\
(A UNION B UNION C = euclid 2)

Understanding mathematical language

Steve Kieffer implemented a parser for an extension of set theory
designed by Harvey Friedman, and entered hundreds of definitions
from Suppes’ Set theory and Munkres’ Topology.

DEFINITION MunkTop.13.2: 2-ary function Basisgentop. If
TOPBASIS[B, X ] then Basisgentop(B, X ) '
(!T ⊆℘(X ))((∀U ⊆X )(U ∈T ↔ (∀x ∈U)(∃B ∈B)
(x ∈B ∧ B ⊆U))).

DEFINITION MunkTop.13.3.c: 0-ary function Krealtop.
Krealtop ' Basisgentop(Stdrealtopbasis∪{V ⊆R :
(∃W ∈ Stdrealtopbasis)
(V = W \{InclFrR(1N /n) : n∈N})}, R).



Understanding mathematical language

Natural language output:

Definition: If B is a basis for a topology on X then the topology
on X generated by B is the unique T ⊆ ℘(X ) such that for every
U ⊆ X , U ∈ T if and only if for every x ∈ U, there exists B ∈ B
such that x ∈ B and B ⊆ U.

Definition: The K-topology on R is the topology on R generated
by the standard basis for a topology on R union the set of V ⊆ R
such that there exists W in the standard basis for a topology on R
such that V = W \ {1/n : n ∈ N}.

Understanding mathematical language

Understanding mathematical language, involves, in part, being able
to identify the fundamental logical and mathematical structure of
an assertion: recognizing connectives and quantifiers, function
application, predication, and so on.

Understanding mathematical proof

Think of an ordinary proof as a high-level description of, or recipe
for constructing, a fully detailed axiomatic proof.

In formal verification, it is common to refer to proofs as “code.”

lemma prime_factor_nat: "n ~= (1::nat) ==>
EX p. prime p & p dvd n"

apply (induct n rule: nat_less_induct)
apply (case_tac "n = 0")
using two_is_prime_nat apply blast
apply (case_tac "prime n")
apply blast
apply (subgoal_tac "n > 1")
apply (frule (1) not_prime_eq_prod_nat)
apply (auto intro: dvd_mult dvd_mult2)

done

Understanding mathematical proof

proof (induct n rule: less_induct_nat)
fix n :: nat
assume "n ~= 1" and

ih: "ALL m < n. m ~= 1 --> (EX p. prime p & p dvd m)"
then show "EX p. prime p & p dvd n"
proof -
{ assume "n = 0"

moreover note two_is_prime_nat
ultimately have ?thesis by auto }

moreover
{ assume "prime n" then have ?thesis by auto }
moreover
{ assume "n ~= 0" and "~prime n"

with ‘n ~= 1‘ have "n > 1" by auto
with ‘~prime n‘ and not_prime_eq_prod_nat obtain m k where
"n = m * k" and "1 < m" and "m < n" by blast

with ih obtain p where "prime p" and "p dvd m" by blast
with ‘n = m * k‘ have ?thesis by auto }

ultimately show ?thesis by blast



Understanding mathematical proof

Theorem Burnside_normal_complement :

’N_G(S) \subset ’C(S) -> ’O_p^’(G) ><| S = G.

Proof.

move=> cSN; set K := ’O_p^’(G); have [sSG pS _] := and3P sylS.

have [p’K]: p^’.-group K /\ K <| G by rewrite pcore_pgroup pcore_normal.

case/andP=> sKG nKG; have{nKG} nKS := subset_trans sSG nKG.

have{pS p’K} tiKS: K :&: S = 1 by rewrite setIC coprime_TIg ?(pnat_coprime pS).

suffices{tiKS nKS} hallK: p^’.-Hall(G) K.

rewrite sdprodE //= -/K; apply/eqP; rewrite eqEcard ?mul_subG //=.

by rewrite TI_cardMg //= (card_Hall sylS) (card_Hall hallK) mulnC partnC.

pose G’ := G^‘(1); have nsG’G : G’ <| G by rewrite der_normal.

suffices{K sKG} p’G’: p^’.-group G’.

have nsG’K: G’ <| K by rewrite (normalS _ sKG) ?pcore_max.

rewrite -(pquotient_pHall p’G’) -?pquotient_pcore //= -/G’.

by rewrite nilpotent_pcore_Hall ?abelian_nil ?der_abelian.

suffices{nsG’G} tiSG’: S :&: G’ = 1.

have sylG’S : p.-Sylow(G’) (G’ :&: S) by rewrite (pSylow_normalI _ sylS).

rewrite /pgroup -[#|_|](partnC p) ?cardG_gt0 // -{sylG’S}(card_Hall sylG’S).

by rewrite /= setIC tiSG’ cards1 mul1n pnat_part.

apply/trivgP; rewrite /= focal_subgroup_gen ?(p_Sylow sylS) // gen_subG.

apply/subsetP=> z; case/imset2P=> x u Sx; case/setIdP=> Gu Sxu ->{z}.

have cSS: forall y, y \in S -> S \subset ’C_G[y].

move=> y; rewrite subsetI sSG -cent_set1 centsC sub1set; apply: subsetP.

by apply: subset_trans cSN; rewrite subsetI sSG normG.

have{cSS} [v]: exists2 v, v \in ’C_G[x ^ u | ’J] & S :=: S :^ u :^ v.

have sylSu : p.-Sylow(G) (S :^ u) by rewrite pHallJ.

have [sSC sCG] := (cSS _ Sxu, subsetIl G ’C[x ^ u]).

rewrite astab1J; apply: (@Sylow_trans p); apply: pHall_subl sCG _ => //=.

by rewrite -conjg_set1 normJ -(conjGid Gu) -conjIg conjSg cSS.

rewrite in_set1 -conjsgM; case/setIP=> Gv; move/astab1P=> cx_uv nSuv.

apply/conjg_fixP; rewrite -cx_uv /= -conjgM; apply: astabP Sx.

by rewrite astabJ (subsetP cSN) // !inE -nSuv groupM /=.

Qed.

Understanding mathematical proofs

Understanding mathematical proof involves, in part, being able to
recognize contextual cues: explicit or implicit reliances on local
assumptions, background knowledge, recently established facts,
and so on; and to determine whether inferences are a matter of
calculation, unwrapping definitions, applying a lemma, etc.

Understanding mathematical domains and structures

Let z be a complex number, with |z | ≤ 1. Then

|ez | =

∣∣∣∣∣
∞∑
i=0

z i

i !

∣∣∣∣∣ ≤ 1 + |z |+

∣∣∣∣∣
∞∑
i=2

z i

i !

∣∣∣∣∣ ≤ . . .

What types of objects are these?

• i

• z i

• The division symbol

• The less-than relation

• The summation symbol

Theorem provers use various forms of type inference.

Understanding mathematical types

Glossary:

• Type inference: methods of determining, in a given context,
the type of a given term.

• Overloading: using the same symbol for more than one
purpose (e.g. + for the natural numbers and the reals)

• Polymorphism, type classes: using general operations and
facts (like x + y = y + x) that have multiple instantiations.

• Coercions: casting a value of one type to another.

• Implicit arguments: systematically leaving out information
when it can be inferred from context.

• Unification and matching: instantiating variables to get two
terms to agree.



Understanding mathematical domains and structures

The following make sense in any commutative monoid:

∑
i<n+1

ai =

(∑
i<n

ai

)
+ an∑

i∈S∪T

ai =
∑
i∈S

ai +
∑
i∈T

ai if S ∩ T = ∅∑
i∈S

(ai + bi ) =
∑
i∈S

ai +
∑
i∈S

bi

Also,

c ·
∑
i∈S

ai =
∑
i∈S

c · ai

makes sense if · distributes over +.

Understanding mathematical domains and structures

Instances include not only specific sums (natural numbers, reals,
rings, . . . ) but also

•
∏

i∈S ai

•
∨

i∈S ai ,
∧

i∈S ai

• mini∈S ai , maxi∈S ai ,

•
⋃

i∈S ai ,
⋂

i∈S ai

• lcmi∈Sai , gcdi∈Sai

and many others.

Another example: if H and K are subgroups of a group, G , then
H ∩ K is both a set and a group. So, e.g., 1 ∈ H ∩ K , and
|H ∩ K | ≥ 1.

Understanding mathematical domains and structures

Understanding mathematical conventions regarding domains and
types involves being able to resolve ambiguities and infer type
information from the context; being able to recognize concrete
domains as implicitly embedded in other domains; being able to
recognize concrete and abstract structures as instances of more
general classes of structures; and so on.

Understanding mathematical inference

So far, we have just scratched the surface; this doesn’t begin to
get at nontrivial mathematical inferences.

Most systems employ automated techniques to fill in small gaps in
reasoning.

One can distinguish between:

• Decision procedures and search procedures

• Domain-general methods and domain-specific methods

• “Principled” methods and heuristics



Understanding mathematical inference

Domain-general methods:

• Propositional theorem proving

• First-order theorem proving

• Higher-order theorem proving

• Equality reasoning

• Nelson-Oppen “combination” methods.

Domain-specific methods:

• Linear arithmetic (integer, real, or mixed)

• Nonlinear real arithmetic (real closed fields, transcendental
functions)

• Algebraic methods (such as Gröbner bases)

Automated methods do especially well on large, homogeneous
problems; but often fail to capture even the most straightforward
mathematical inferences.

Understanding mathematical inference

Understanding mathematics involves being able to carry out
straightforward mathematical inferences in specific mathematical
domains, even when those inferences are difficult to spell out in
formal axiomatic terms.

Understanding mathematical diagrams

Diagrammatic reasoning plays an important role in mathematics.

Since the end of the nineteenth century, they have been used only
sparingly in “rigorous” proofs. Still:

• They are often used to accompany / illustrate a mathematical
argument.

• Sometimes a diagram can be entirely convincing.

• Sometimes a diagrams can be viewed as shorthand for a
longer text argument.

• In specific domains, diagram use is often governed by implicit
conventions.

In fact, in some domains, diagrammatic arguments can be viewed
as being as rigorous as text arguments.

Understanding mathematical diagrams

Ken Manders observed that, in a Euclidean proof, diagrams are
used only in precise, restricted ways.

For example, the diagram can only be used to license certain types
of topological (diagrammatic, co-exact) assertions. Other (metric,
exact) assertions are licensed explicitly by the text.

Building on Mumma’s Ph.D. thesis, Ed Dean, John Mumma, and
I:

• Gave a detailed analysis of Euclidean diagrammatic inference.

• Showed soundness and completeness with respect to the
modern semantics.

• Used off-the-shelf automated reasoning tools to verify such
inferences.



Understanding mathematical diagrams

Understanding mathematical diagram use involves being able to
represent information in a diagram appropriately, and draw valid
inferences from the information so represented.
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The philosophy of mathematics

What does this all have to do with the philosophy of mathematics?

Notes:

• This is not a turf war.

• Also not a matter of value judgement.

Rather, it is a question as to what role distinctly philosophical
methods can play in relation to the theorem proving and software
engineering.

Talking about understanding

Understanding mathematical language, involves, in part, being able
to identify the fundamental logical and mathematical structure of
an assertion. . .

Understanding mathematical proof involves, in part, being able to
recognize contextual cues. . .

Understanding mathematical conventions regarding domains and
types involves being able to resolve ambiguities and infer type
information from the context . . .

Understanding mathematics involves being able to carry out
straightforward mathematical inferences in specific mathematical
domains. . .

Understanding mathematical diagram use involves being able to
represent information in a diagram appropriately, and draw valid
inferences from the information so represented.



Talking about understanding

Understanding mathematical language, involves, in part, being able
to identify the fundamental logical and mathematical structure of
an assertion. . .

Understanding mathematical proof involves, in part, being able to
recognize contextual cues. . .

Understanding mathematical conventions regarding domains and
types involves being able to resolve ambiguities and infer type
information from the context . . .

Understanding mathematics involves being able to carry out
straightforward mathematical inferences in specific mathematical
domains. . .

Understanding mathematical diagram use involves being able to
represent information in a diagram appropriately, and draw valid
inferences from the information so represented.

Mathematical methods and abilities

Informally, we often explain our ascriptions of understanding by
characterizing the associated abilities.

This provides a helpful way of thinking about mathematical
knowledge:

• not just a list of definitions and theorems, knowing that
certain statements are true;

• but a protocol, a manner of thinking, a way of life, knowing
how to proceed.

Mathematical method and abilities

Straightforward model:

• We face various tasks (solving a problem, proving a theorem,
verifying an inference, developing a theory, forming a
conjecture).

• “Reasoning” involves passage though various epistemic states.

• “Understanding” (methods, techniques, procedures, protocols,
tactics, strategies, . . . ) makes this passage possible.

Understanding involves:

• Being able to recognize the nature of the objects and
questions before us.

• Being able to marshall the relevant background knowledge
and information.

• Being able to traverse space the of possibilities before us in a
fruitful way.

• Being able to identify features of the context that help us cut
down complexity.

Mathematical methods and abilities

We lack a clear methodological framework:

• Algorithms are overly specific; different methods may account
for the same ability.

• Yet there is a compositional aspect to methods and abilities.

• Methods are fallible.

• Identity criteria are murky.

Machine models, cognitive models, programming languages,
psychological data, etc. seem so be at the wrong level of detail.

We need a level of abstraction that is appropriate for talking about
the interesting features of the mathematics.



Mathematical concepts

Conventional psychological approaches (involving categories and
exemplars) don’t do well with mathematical concepts.

• Mathematical concepts can have very sharp boundaries.

• Mathematical concepts can evolve over time.

• Understanding a concept admits degrees.

• Various things can “improve our understanding” of a concept.

• One can speak of implicit uses of a concept.

Mathematical concepts

One solution: think of a mathematical concept as a bundle of
abilities.

For example, the group concept includes:

• Knowing the definition of a group.

• Knowing common examples of groups, and being able to
recognize implicit group structures when it is fruitful to do so.

• Knowing how to construct groups from other groups or other
structures, in fruitful ways.

• Recognizing that there are different kinds of groups (abelian,
nilponent, solvable, finite vs. infinite, continuous vs. discrete)
and being able/prone to make these distinctions.

• Knowing various theorems about groups, and when and how
to apply them.

Mathematical ease and difficulty

Foundational reduction washes out all the nuances.

• There is only one type of mathematical object (set).

• There is only one binary relation (element-of).

• One only needs one “method” of proof: unwrap definitions
and search.

This makes it hard to recognize

• differences between algebraic and geometric methods;

• differences between elementary proofs, conceptual proofs, and
so on;

• the value of a good definition;

and so on.

Mathematical ease and difficulty

It comes down to complexity: the differences in organization and
expression matter because we have limited time, energy, memory,
and so on.

But how can we measure complexity?

• Computer science: algorithmic complexity

• Logic: descriptive complexity, length of proof

• Cognitive science and psychology: timing tasks and cognitive
models.

We need measures that are better tailored to the mathematics.



Concluding remarks

Advice:

• Start with focused questions.

• Look to domains of application:
• Formal verification
• Mathematical pedagogy and cognitive science
• Historiography of mathematics
• Mathematics itself.

Over time, small but concrete advances will hopefully come
together to give us a coherent theory of mathematical
understanding.

Concluding remarks

And what if they don’t?

Then we will have merely contributed to the conceptual
foundations of automated reasoning, cognitive science, pedagogy,
and so on — and learned some interesting things about
mathematics as well.


