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Computability and convergence

For most of its history, mathematics was fairly constructive:

• Euclidean geometry was based on geometric construction.

• Algebra sought explicit solutions to equations.

• Analysis, probability, etc. were focused on calculations.

Nineteenth century developments in analysis challenged this view.

A sequence (an) in a metric space is said Cauchy if for every ε > 0,
there is an m such that for every n, n′ ≥ m, d(an, an′) < ε.

If the space is complete, such a sequence always has a limit.

The problem: “arbitrary” convergent sequences need not have
computable limits.



Computable analysis

A name for a real number is a Cauchy sequence (an) of rationals
such that for every m and n ≥ m, |an − am| ≤ 2−m.

A real number r is computable if it has a computable name.

Theorem (Specker)

There is a computable, nondecreasing sequence (an) of rationals in
[0, 1] with no computable limit.

In general, one can always compute a name for the limit from the
halting problem.

Conversely, there is a sequence (an) such that the halting problem
is computable from any such name.



Computable analysis

The Bolzano-Weierstrass theorem (proved by Bolzano in 1817)
fares even worse.

Theorem (Folklore?)

There is a computable sequence of rationals in [0, 1] with no
computable limit point.

In general, one can always find a limit low relative to 0′.

Conversely, there is a sequence of rationals such that any
computable limit point is a PA degree relative to 0′.

(See Kreuzer, “The cohesive principle and the Bolzano-Weierstrass
principle.”)



Computable analysis

A function from f from R to R is computable if there is a
computable procedure taking any name for x to a name for f (x).

Note: the procedure must work on arbitrary names, not just the
computable ones. This is “Type 2” or “Polish style” computability.

Computable functions are necessarily continuous.



Computable analysis

These notions transfer to complete separable metric spaces, and
mathematical structures that can be coded as such:

• Spaces of functions

• Hilbert spaces

• Banach spaces

• Measure spaces (measure algebras)

• Spaces of operators, measures, etc.

In modern terms, the nineteenth century tension is this: many
existence theorems in analysis are not computably valid.



Grappling with the tension

It appears . . . that there are certain mathematical statements that
are merely evocative, which make assertions without empirical
validity. There are also mathematical statements of immediate
empirical validity, which say that certain performable operations
will produce certain observable results. . . . Mathematics is a
mixture of the real and the ideal, sometimes one, sometimes the
other, often so presented that it is hard to tell which is which. The
realistic component of mathematics—the desire for pragmatic
interpretation—supplies the control which determines the course of
development and keeps mathematics from lapsing into meaningless
formalism. The idealistic component permits simplifications and
opens possibilities which would otherwise be closed. The methods
of proof and objects of investigation have been idealized to form a
game, but the actual conduct of the game is ultimately motivated
by pragmatic considerations. (Errett Bishop, 1967)
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Finiteness

Let α be an infinite sequence of 0’s and 1’s.

Three ways to say “there are finitely many 1’s”:

1. For some n, there are no 1’s beyond position n.

2. For some k , there are at most k-many 1’s.

3. There are not infinitely many 1’s.

These make very different existence claims:

1. ∃n ∀m ≥ n α(m) 6= 1

2. ∃k ∀m |{i ≤ m | α(i) = 1}| ≤ k

3. ∀f ∃n (f (n) > n→ α(f (n)) 6= 1).

(See Bezem, Nakata, Uustalu, “Streams that are finitely red.”)



Convergence

Corresponding ways of saying that a sequence (an) in a complete
space converges:

1. (an) is Cauchy.

2. For every ε > 0, (an) has finitely many ε-fluctuations.

3. (an) is metastably convergent.

These call for three types of information:

1. A bound on the rate of convergence.

2. A bound on the number of fluctuations.

3. A bound on the rate of metastability.



Rates of convergence

Suppose (an) is Cauchy:

∀ε > 0 ∃m ∀n, n′ ≥ n d(an′ , an) < ε

A function r(ε) satisfying

∀n, n′ ≥ r(ε) d(an′ , an) < ε

is called a bound on the rate of convergence.

If there is a computable bound on the rate of convergence of (an),
then (an) has a computable limit.



Rates of convergence

The converse does not always hold. For example, there are
computable sequences (an) that converge to 0, but without a
computable bound on the rate of convergence.

(The idea: when the nth Turing machine halts, output 1/n.)

The Specker example shows that a computable, monotone,
bounded sequence of rationals need not have a computable rate of
convergence.



Oscillations

Definition
Say that (an) admits m ε-fluctuations if there are
i1 ≤ j1 ≤ . . . ≤ im ≤ jm such that, for each u = 1, . . . ,m,
d(aju , aiu) ≥ ε.

These are also sometimes called ε-jumps, or ε-oscillations.

A moment’s reflection shows that (an) is Cauchy if and only if for
every ε > 0, it admits only finitely many ε-fluctuations.

Call a bound ε 7→ k(ε) on m a bound on the number of
fluctuations.



Oscillations

A bound on the rate of convergence is, a fortiori, a bound on the
number of fluctuations.

On the other hand, a nondecreasing sequence in [0, 1] clearly has
at most d1/εe many ε-fluctuations.

So, for the Specker sequence, there is a computable bound on the
number of fluctuations, but no computable bound on the rate of
convergence.

It is not hard to cook up a computable sequence that converges to
0, but with no computable bound on the number of fluctuations.

(Idea: when Turing machine n halts, oscillate by 1/n lots of times.)



Uniformity

We just observed that a nondecreasing sequence in [0, 1] has at
most d1/εe many ε-fluctuations.

This bound is entirely independent of the sequence (an).

So not only do we get a computable version of the monotone
convergence theorem, but also a highly uniform one.

Generally, theorems depend on parameters (a space, a sequence, a
transformation, . . . )

Sometimes, bounds are independent of some of these: instead of
∀p ∀ε > 0 ∃n . . . one has ∀ε > 0 ∃n ∀p . . ..

Such uniformities are mathematically useful.



Upcrossings

Oscillations are closely related to upcrossings.

Definition
Given α < β, say that a sequence (an) of real numbers has m
upcrossings from α to β if there are i1 ≤ j1 ≤ . . . ≤ im ≤ jm such
that, for each u = 1, . . . ,m, aiu < α and aju > β.

If (an) is a bounded sequence, (an) is Cauchy if and only if for
every α < β, there are only finitely many upcrossings.

A bound b(α, β) on the number of upcrossings can be computed
from a bound k(ε) on the number of fluctuations, and vice-versa.



Metastability

Recall that (an) is Cauchy if

∀ε > 0 ∃m ∀n, n′ ≥ m d(an, an′) < ε

But in general m is not computable from (an) and ε.

The statement above is equivalent to

∀ε > 0,F ∃m ∀n, n′ ∈ [m,F (m)] d(an, an′) < ε.

Given ε > 0 and F , one can find such an m by blind search.

Call M(F , ε) a bound on the rate of metastability if it is a bound
on such an m.



Metastability

The translation is an instance of Kreisel’s “no-counterexample
interpretation,” and provides any convergence statement with a
computational meaning.

Moreover, there are often very uniform bounds.

Notice that if k(ε) is a bound on the number of ε-fluctuations,
then M(F , ε) = F k(ε)(0) is a bound on the rate of metastability,
since one of the intervals

[0,F (0)], [F (0),F (F (0))], . . . , [F k(ε)(0),F k(ε)+1(0)]

must fail to contain an ε-fluctuation.



Metastability

The no-counterexample interpretation is, in turn, special case of
the Gödel’s Dialectica interpretation.

Ulrich Kohlenbach has developed extensive “proof mining”
methods based on these ideas.

In particular, he has shown that strong uniformities hold in very
general situations.

He and his students have also extracted particular bounds from
many theorems in functional analysis.

Metastability has played a role in work by Terence Tao in ergodic
theory and additive combinatorics, including his proof with Ben
Green that there are arbitrarily long arithmetic progressions in the
primes.



Summmary

Given that a sequence converges, we can ask for:

• A bound on the rate of convergence.

• A bound on the number of fluctuations.

• A bound on the rate of metastability.

These are successively weaker.

The last is always computable from the sequence itself.

Beyond computability, we may be interested in quantitative data,
and/or uniformities.



Convergence questions

Given a convergence theorem, ask:

• Is there a computable bound on the rate of convergence?
• If so: give quantitative bounds.
• If not: determine complexity, missing information.

• Is the rate of convergence uniform in any of the parameters?

• Is there a computable bound on the number of fluctuations?

• Are there uniform bounds on the number of fluctuations?

• Give quantitative bound on the rate of metastability.

• Is the rate of metastability uniform in any of the parameters?



The role of logic

Computable analysis is needed to frame the general question as to
computability.

• Analysis: particular rates of convergence and particular
uniformities

• Logic: general characterizations of what information can be
had

Proof theory and proof mining provide general methods for
extracting additional information from proofs.

• Analysis: seek rates and uniformities in particular cases

• Logic: provide general methods for finding them

Methods from model theory and nonstandard analysis should also
be useful.
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Ergodic theory

A measure-preserving system X = (X ,B, µ,T ) consists of:

• a set, X (the “states” of the system)

• a σ-algebra, B a (the “measurable subsets”)

• a finite σ-additive measure, µ; wlog µ(X ) = 1

• a measure-preserving transformation, T : µ(T−1A) = µ(A) for
every A ∈ B

If x is a state, think of Tx as being the state after one unit of time.

The system is said to be ergodic if there are no non-trivial
T -invariant subsets; in other words, T−1(A) = A implies µ(A) = 0
or µ(A) = 1.



Ergodic theory

Applications:

• Stochastic processes (µ(A) is the probability of being in state
A)

• Statistical mechanics

• Physics (e.g. evolution by Hamilton’s equations preserves
Lebesgue measure)

• Diophantine analysis

• Additive combinatorics



The pointwise ergodic theorem

Consider the orbit x ,Tx ,T 2x , . . ., and let f : X → R be some
measurement. Consider the averages

1

n
(f (x) + f (Tx) + . . .+ f (T n−1x)).

For each n ≥ 1, define Anf to be the function 1
n

∑
i<n f ◦ T i .

Theorem (Birkhoff)

For every f in L1(X ), (Anf ) converges pointwise almost
everywhere, and in the L1 norm.

It is easy to see that the limit, f ∗, is T -invariant, that is, f ◦T = f .

If X is ergodic, then (Anf ) converges to the constant function∫
f dµ.



The mean ergodic theorem

Recall that L2(X ) is the Hilbert space of square-integrable
functions on X modulo a.e. equivalence, with inner product

〈f , g〉 =

∫
fg dµ

Theorem (von Neumann)

For every f in L2(X ), (Anf ) converges in the L2 norm.

A measure-preserving transformation T gives rise to an isometry T̂
on L2(X ),

T̂ f = f ◦ T .

Riesz showed that the von Neumann ergodic theorem holds, more
generally, for any nonexpansive operator T̂ on a Hilbert space
(i.e. satisfying ‖T̂ f ‖ ≤ ‖f ‖ for every f in H.)



Computability

Let us focus on the mean ergodic theorem.

Question: can we compute a bound on the rate of convergence of
(Anf ) from the inital data (T and f )?

In other words: can we compute a function r : Q→ N such that
for every rational ε > 0,

‖Anf − An′f ‖ < ε

whenever n, n′ ≥ r(ε)?

Krengel (et al.): convergence can be arbitrarily slow. But
computability is a different question.



Noncomputability

Observation (Bishop): the ergodic theorems imply the limited
principle of omniscience.

Theorem (V’yugin)

There is a computable shift-invariant measure µ on 2ω such that
there is no computable bound on the rate of convergence of An1[1].

Theorem (Avigad)

There is a computable shift-invariant measure µ on 2ω such that
there is no computable bound on the complexity of limn→∞ An1[1].



Noncomputability

This is essentially a recasting of V’yugin’s result:

Theorem (Avigad and Simic)

There are a computable measure-preserving transformation of [0, 1]
under Lebesgue measure and a computable characteristic function
f = χA, such that if f ∗ = limn Anf , then ‖f ∗‖2 is not a
computable real number.

In particular, f ∗ is not a computable element of L2(X ), and there
is no computable bound on the rate of convergence of (Anf ) in
either the L2 or L1 norm.

In general, everything is computable from 0′, and this is sharp.



Computability

Theorem (Avigad, Gerhardy, and Towsner)

Let T̂ be a nonexpansive operator on a separable Hilbert space and
let f be an element of that space. Let f ∗ = limn Anf . Then f ∗,
and a bound on the rate of convergence of (Anf ) in the Hilbert
space norm, can be computed from f , T̂ , and ‖f ∗‖.

In particular, if T̂ arises from an ergodic transformation T , then f ∗

is computable from T and f .



Oscillations

Say the total variation of a sequence (an) in a metric space is∑
n d(an, an+1).

If the total variation of a sequence is less than B, then (using the
triangle inequality) there are at most dB/εe-many ε-fluctutions.

For the mean ergodic theorem, though, this is too strong. Consider
R as a 1-dimensional Hilbert space, with Tx = −x .

The orbit of 1 is
1,−1, 1,−1, . . .

and the averages are

1, 0, 1/3, 0, 1/5, 0, . . .

and the total variation diverges.



Square functions

Theorem (Jones, Ostrovskii, and Rosenblatt)

Let T be any nonexpansive operator on a Hilbert space, and f and
element. Then for any sequence n1 ≤ n2 ≤ . . .,

(
∞∑
k=1

‖Ank+1
f − Ank f ‖2)1/2 ≤ 25‖f ‖.

This implies that, in particular, the number of ε-fluctuations is at
most (25‖f ‖/ε)2.

The proof uses the spectral theorem to reduce to the simple case
where T is just a rotation. (But additional cleverness is needed
even in that special case.)



Uniformly convex spaces

Definition
A Banach space B is uniformly convex if for every ε ∈ (0, 2] there
exists a δ ∈ (0, 1] such that for all x , y ∈ B, if ‖x‖ ≤ 1, ‖y‖ ≤ 1,
and ‖x − y‖ ≥ ε, then ‖(x + y)/2‖ ≤ 1− δ.

Lp(X ) for 1 < p <∞ are uniformly convex, but not L1(X ) or
L∞(X ).

Any function η(ε) returning such a δ for every ε ∈ (0, 2] is called a
modulus of uniform convexity.

In 1939, Garrett Birkhoff gave a short and elegant proof that the
mean ergodic theorem holds for uniformly convex spaces.



Uniformly convex spaces

Building on work by Kohlenbach and Leuştean, Jason Rute and I
showed:

Theorem
Let f ∈ B, ε > 0, T nonexpansive. Write ρ = ‖f ‖/ε. Then (Anf )
admits at most O(ρ2 log ρ · η(1/(8ρ))−1)-many ε-fluctuations.

If η(ε) = ε · η̃(ε) with η̃ nondecreasing, the conclusion holds with η
replaced by η̃.

Leuştean extended the result to power bounded operators,
i.e. assuming ‖T nf ‖ ≤ C‖f ‖ for every n.

The result is not sharp for Hilbert spaces: we get O(ρ3 log ρ)
instead of O(ρ2).

The three of us are working to extend this result.



Metastability

Note that the bound on the number of ε-fluctuations depends only
on ‖f ‖/ε and η, and not at all on B or T .

The metastable formulation of the mean ergodic theorem says that
for any function F ,

∀ε > 0 ∃m ∀n, n′ ∈ [m,F (m)] (‖Anf − An′f ‖ < ε).

The results above give an explicit bound on m in terms of F and
‖f ‖/ε.



Metastability

Without knowing about Jones, Rosenblatt, and Ostrovskii’s result,
Gerhardy, Towsner, and I gave such bounds for the Hilbert space
case in 2007.

Kohlenbach and Leuştean extended this to uniformly convex
Banach spaces.

In 2007, Tao used metastability to prove a generalization of the
mean ergodic theorem to certain “multiple” averages.



Metastability

There are two directions in which one can extend the mean ergodic
theorem:

• More general spaces (e.g. reflexive spaces).

• More general averaging schemes.

For example, given a sequence of elements αn ∈ [0, 1], Halpern
considered the iteration:

un+1 = αn+1u0 + (1− αn+1)Tun.

For αn = 1/(n + 1), these are the ergodic averages. With
conditions on the αn, the space, and the operator, these iterates
converge too.



Metastability

Kohlenbach analyzed a theorem of Wittman, and obtained a
primitive recursive functional bound on the rate of metastability for
Halpern iterations on a Hilbert space.

Kohlenbach and Leuştean analyzed a theorem of Saejung, and
obtained a much more complex bound on the rate of metastability
for Halpern iterations on CAT(0) spaces.
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Measure-theoretic convergence

In measure theory, one can also consider:

• pointwise convergence

• convergence in measure

• convergence in the various Lp norms

For example, the dominated convergence theorem says that if a
sequence fn is dominated by an integrable function g and
converges pointwise a.e., then it converges in the L1 norm.

Tao gave a metastable version of the dominated convergence
theorem.

Dean, Rute, and I gave a more explicit bound.



Bishop’s upcrossing inequalities

Let ωα,β(x) be the number of upcrossings of (Anf (x))n∈N.

The pointwise ergodic theorem is equivalent to saying that ωα,β(x)
is finite a.e. for every rational α < β.

Theorem (Bishop)

For any f in L1(X ) and α < β, we have∫
X
ωα,β dµ ≤ 1

β − α

∫
X

(f − α)+ dµ.



Related work

Bishop’s upcrossing inequalities were modeled on Doob’s
analogous result for martingales. (Cf. also Lepingle’s theorem.)

There are variations on Bishop’s result due to Ivanov,
Kachurovskii, Kalikow and Weiss, Hochman, Bourgain.

See especially “Oscillation in ergodic theory” by Jones, Rosenblatt,
and Weirdl.

There is also a literature on upcrossing inequalities, oscillations,
variational inequalities, with respect to martingale convergence
theorems, the Lebesgue differentiation theorem, and many other
settings.

See papers by Jones and various co-authors, and “A variation norm
Carleson theorem” by Oberlin, Seeger, Tao, Thiele, and Wright.



Related work

Kohlenbach and his students have done extensive work on proof
mining theorems in fixed-point theory and approximation theory.

Students include Paulo Oliva, Philipp Gerhardy, Branimir Lambov,
Eyvind Briseid, Jaime Gaspar, Alexander Kreuzer, and Pavol
Safarik.



Related work

There has, of late, been a lot of work in computable aspects of
probability and measure theory.

See work by Ackermann, Freer, Gács, Galatolo, Hoyrup, Rojas,
Roy, Simpson, V’yugin, Xu.

Algorithmic randomness makes it possible to characterize the
counterexamples to a.e. theorems of mathematics.

The ergodic theorems, the Lebesgue differentiation theorem,
Lebesgue’s theorem, martingale convergence theorems, and more
have been studied by this perspective.

See work by Bienvenu, Brattka, Day, Franklin, Freer, Gács,
Greenberg, Hoyrup, Kjos-Hanssen, Miller, Miyabe, Nies, Ng,
Pathak, Rojas, Rute, Shen, Simpson, Stephan, Towsner, V’yugin.



General questions

When should we expect to have computable bounds on rates of
convergence?

When should we expect to have computable bounds on the
number of fluctuations?

Can general logical methods help find such bounds, and
uniformities?

How and where can the additional information be put to good
work?

• Ergodic theory and dynamical systems

• Probability and statistics

• Applications to combinatorics and number theory


