
Interactive Theorem Proving

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

July, 2011

Interactive theorem proving

Formal verification involves using formal methods to verify
correctness, for example:

• verifying that a circuit description, an algorithm, or a network
or security protocol meets its specification; or

• verifying that a mathematical statement is true.

“Interactive theorem proving” is one important approach. (Model
checking is another.)

Working with a proof assistant involves conveying enough
information to the system to confirm that there is a formal
axiomatic proof.

In fact, most proof systems actually construct a formal proof
object, a complex piece of data that can be verified independently.

Interactive theorem proving

Some achievements to date:

• The four-color theorem (Gonthier, 2004)

• The prime number theorem (Avigad et al., 2004; Harrison,
2008)

• The Jordan curve theorem (Hales, 2005; Kornilowicz, 2005)

• The Gödel incompleteness theorem (Shankar, 1986; O’Connor,
2004; Harrison, 2005)

• Dirichlet’s theorem (Harrison, 2009)

• Complex analysis; Cartan fixed point theorems (Harrison;
Ciolli, Gentili, Maggesi, 2009)

• Measure theory, including Radon-Nikodym and entropy
(various authors)

. . . and much more; see the Journal of Automated Reasoning,
Journal of Formalised Reasoning, Journal of Formalized
Mathematics, Interactive Theorem Proving (conference, previously
TPHOLs), and Freek Wiedijk’s list of 100 theorems.

Interactive theorem proving

Thomas Hales is heading the Flyspeck project to verify a proof of
the Kepler conjecture.

• His 1998 proof involved three essential uses of computation
(enumerating tame graphs, solving linear programs, reducing
nonlinear constraints to linear ones).

• The formalization has led to even stronger results in discrete
geometry.

Georges Gonthier is heading a project to verify the Feit-Thompson
theorem:

• The original 1963 journal publication ran 255 pages.

• The formalization is constructive.

• The development includes libraries for finite group theory,
linear algebra, and representation theory.

Interactive theorem proving

Vladimir Voevodsky has launched a project to develop “univalent
foundations” for algebraic topology.

• Observation: constructive dependent type theory has natural
homotopy-theoretic interpretations (types are spaces, equality
is homotopy equivalence)

• Rules for identity types characterize homotopy theories
abstractly (Quillen model categories)

• One can consistency add an axiom to the effect that
“isomorphic structures are identical.”

Interactive theorem proving

Despite these successes, interactive theorem proving is not “ready
for prime time.”

• There is a steep learning curve (it helps to have background in
logic, functional programming, and/or type theory).

• Verifying even very straightforward facts can be time
consuming and painful.

Two questions:

• Why should mathematicians care?

• Why should logicians care?

Interactive theorem proving

Post claimed that the undecidability of arithmetic shows that

. . . mathematical thinking is, and must be, essentially
creative . . .

But do we need to appeal to undecidability?

Suppose we had an oracle that could decide the truth of any
mathematical statement.

How would mathematics change?

Interactive theorem proving

What we care about:

• We want our theories to be powerful, and useful.

• We want our definitions and concepts to be natural.

• We want our theorems to be interesting.

• We enjoy finding connections between different domains.

• We enjoy novel ideas and insights.

• We want to explain mathematical phenomena.

• We want to understand why theorems are true.

• We want our theorems and proofs to be correct.

Formal verification addresses only this last point.

So why bother?

Interactive theorem proving

Mathematics is distinguished by the rigorous standards for
justifying its assertions.

• We try very hard not to make mistakes.

• We invest a lot of effort in refereeing.

• Even slight inaccuracies in statements in proofs and lemmas
can be a source of frustration.

• Proofs are getting more and more complicated.

• Many proofs now rely on extensive computation.

• Computer algebra systems are unsound.

See Melvyn B. Nathanson’s “Desperately seeking mathematical
truth” in the August 2008 Notices of the AMS.

Interactive theorem proving

Interactive theorem proving is a technical tool, like mathematical
typesetting, that can help support mathematics.

It also goes hand in hand with symbolic computation and
computational support for the representation, storage,
communication, and discovery of mathematical knowledge.

In the long run, such technology will have an impact on everyday
mathematics.

Why should logicians care?

Interactive theorem proving

The field of formal verification explores mathematical, logical,
computational, philosophical, and conceptual questions that are
interesting and important in their own right.

We need to better understand:

• mathematical language (assertions, proofs)

• the way mathematical knowledge is structured

• the way mathematical concepts are used

• the semantics of mathematical and symbolic computation

• The limits of computational reasoning; where (and how)
creativity sets in

Overriding themes:

• Current successes rely crucially on twentieth century advances
in mathematical logic.

• Continued success will require more theoretical advances.

Outline

• Interactive theorem proving

• Contemporary systems
• Formal frameworks
• Proof languages

• Automated reasoning
• Domain general search procedures
• Decision procedures
• Combination procedures

• Type theory and type inference

• Mathematical knowledge management

• A case study: Euclidean geometry

Formal Frameworks
Contemporary proof systems rely on a variety of frameworks:

• set theory (Mizar)

• simple type theory (HOL, HOL light, Isabelle, . . .)

• (constructive) dependent type theory (Coq)

Conisder the statement “there are no infinite descending sequences
of natural numbers.”

In set theory, one might render this as follows:

∀f (f ∈ (N→ N)→ ∃i (i ∈ N ∧ (f (i + 1) ≥ f (i)))

In simple type theory, there are base types like nat and bool, and
type constructors like σ → τ , σ × τ , list σ, etc.

∀f : N→ N ∃i : N (f (i + 1) ≥ f (i)).

This gives type inference, overloading, pattern matching.

Formal Frameworks

Here is Hales’ statement of the Jordan curve theorem in HOL light:

!C. simple_closed_curve top2 C ==>

(?A B. top2 A /\ top2 B /\

connected top2 A /\ connected top2 B /\

~(A = EMPTY) /\ ~(B = EMPTY) /\

(A INTER B = EMPTY) /\ (A INTER C = EMPTY) /\

(B INTER C = EMPTY) /\

(A UNION B UNION C = euclid 2)

Here is a statement of the prime number theorem:

(%x. pi x * ln (real x) / (real x)) ----> 1

Proof Languages

Computational proof assistants are supposed to verify the existence
of a formal axiomatic proof, ideally providing a communicable
“proof object.”

There are at least two distinct styles of entering formal “proof
scripts.”

LCF framework: developed by Robin Milner to implement Dana
Scott’s “Logic of Computable Functions”; now used by the HOL
theorem provers, Coq, Isabelle, . . . Apply tactics to reduce goals to
simpler ones.

Mizar: designed by Andrzej Trybulec, designed to model ordinary
proof language. A similar language, “Isar,” has been implemented
by Makarius Wenzel in Isabelle.

Proof Languages

Think of an ordinary proof as a high-level description of, or recipe
for constructing, a fully detailed axiomatic proof.

In formal verification, it is common to refer to proofs as “code.”

lemma prime_factor_nat: "n ~= (1::nat) ==>

EX p. prime p & p dvd n"

apply (induct n rule: nat_less_induct)

apply (case_tac "n = 0")

using two_is_prime_nat apply blast

apply (case_tac "prime n")

apply blast

apply (subgoal_tac "n > 1")

apply (frule (1) not_prime_eq_prod_nat)

apply (auto intro: dvd_mult dvd_mult2)

done

Proof Languages

proof (induct n rule: less_induct_nat)

fix n :: nat

assume "n ~= 1" and

ih: "ALL m < n. m ~= 1 --> (EX p. prime p & p dvd m)"

then show "EX p. prime p & p dvd n"

proof -

{ assume "n = 0"

moreover note two_is_prime_nat

ultimately have ?thesis by auto }

moreover

{ assume "prime n" then have ?thesis by auto }

moreover

{ assume "n ~= 0" and "~prime n"

with ‘n ~= 1‘ have "n > 1" by auto

with ‘~prime n‘ and not_prime_eq_prod_nat obtain m k where

"n = m * k" and "1 < m" and "m < n" by blast

with ih obtain p where "prime p" and "p dvd m" by blast

with ‘n = m * k‘ have ?thesis by auto }

ultimately show ?thesis by blast

Proof Languages

Theorem Burnside_normal_complement :

’N_G(S) \subset ’C(S) -> ’O_p^’(G) ><| S = G.

Proof.

move=> cSN; set K := ’O_p^’(G); have [sSG pS _] := and3P sylS.

have [p’K]: p^’.-group K /\ K <| G by rewrite pcore_pgroup pcore_normal.

case/andP=> sKG nKG; have{nKG} nKS := subset_trans sSG nKG.

have{pS p’K} tiKS: K :&: S = 1 by rewrite setIC coprime_TIg ?(pnat_coprime pS).

suffices{tiKS nKS} hallK: p^’.-Hall(G) K.

rewrite sdprodE //= -/K; apply/eqP; rewrite eqEcard ?mul_subG //=.

by rewrite TI_cardMg //= (card_Hall sylS) (card_Hall hallK) mulnC partnC.

pose G’ := G^‘(1); have nsG’G : G’ <| G by rewrite der_normal.

suffices{K sKG} p’G’: p^’.-group G’.

have nsG’K: G’ <| K by rewrite (normalS _ sKG) ?pcore_max.

rewrite -(pquotient_pHall p’G’) -?pquotient_pcore //= -/G’.

by rewrite nilpotent_pcore_Hall ?abelian_nil ?der_abelian.

suffices{nsG’G} tiSG’: S :&: G’ = 1.

have sylG’S : p.-Sylow(G’) (G’ :&: S) by rewrite (pSylow_normalI _ sylS).

rewrite /pgroup -[#|_|](partnC p) ?cardG_gt0 // -{sylG’S}(card_Hall sylG’S).

by rewrite /= setIC tiSG’ cards1 mul1n pnat_part.

apply/trivgP; rewrite /= focal_subgroup_gen ?(p_Sylow sylS) // gen_subG.

apply/subsetP=> z; case/imset2P=> x u Sx; case/setIdP=> Gu Sxu ->{z}.

have cSS: forall y, y \in S -> S \subset ’C_G[y].

move=> y; rewrite subsetI sSG -cent_set1 centsC sub1set; apply: subsetP.

by apply: subset_trans cSN; rewrite subsetI sSG normG.

have{cSS} [v]: exists2 v, v \in ’C_G[x ^ u | ’J] & S :=: S :^ u :^ v.

have sylSu : p.-Sylow(G) (S :^ u) by rewrite pHallJ.

have [sSC sCG] := (cSS _ Sxu, subsetIl G ’C[x ^ u]).

rewrite astab1J; apply: (@Sylow_trans p); apply: pHall_subl sCG _ => //=.

by rewrite -conjg_set1 normJ -(conjGid Gu) -conjIg conjSg cSS.

rewrite in_set1 -conjsgM; case/setIP=> Gv; move/astab1P=> cx_uv nSuv.

apply/conjg_fixP; rewrite -cx_uv /= -conjgM; apply: astabP Sx.

by rewrite astabJ (subsetP cSN) // !inE -nSuv groupM /=.

Qed.

Automated reasoning

Most systems employ automated techniques to fill in small gaps in
reasoning.

One can distinguish between:

• Domain-general methods and domain-specific methods

• Search procedures and decision procedures

• “Principled” methods and heuristics

Automated reasoning

Domain-general methods:

• Propositional theorem proving

• First-order theorem proving

• Higher-order theorem proving

• Equality reasoning

• Nelson-Oppen “combination” methods

Domain-specific methods:

• Linear arithmetic (integer, real, or mixed)

• Nonlinear real arithmetic (real closed fields, transcendental
functions)

• Algebraic methods (such as Gröbner bases)

Automated methods do especially well on large, homogeneous
problems; but often fail to capture even the most straightforward
mathematical inferences.

Automated reasoning

General approaches to theorem proving:

• global / top-down (e.g. tableaux): goal directed, works
backwards to construct a proof (or countermodel)

• local / bottom-up (e.g. resolution): start with a set of facts,
reason forwards to derive additional facts

Automated reasoning

Tableau search: consider sets for formulas {ϕ1, . . . , ϕn}, read
disjunctively.

Some rules for working backwards:

Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ
Γ, ϕ, ψ

Γ, ϕ ∨ ψ
Γ, ϕ(a)

Γ,∀x ϕ(x)

What about the existential quantifier?

Γ, ∃x ϕ(x), ϕ(?t(a, b, c , . . .))

Γ, ∃x ϕ(x)

Notes:

• ?t can be instantiated to any term involving the other
parameters.

• It’s best to delay the choice.

• More than one term may be needed.

• All the background knowledge is lumped into Γ.

Unification

Suppose you know that for every x and y ,
(A(x , f (x , y))→ B(x , y)).

Suppose you also know that for every w and z , A(g(w), z).

Then you can conclude B(g(w), y) by solving x = g(w) and
z = f (g(w), y).

Theorem (Robinson)

There is an algorithm that determines whether a set of pairs
{(s1, t1), . . . , (sn, tn)} of first-order terms has a unifier, and, if it
does, finds a most general unifier.

Skolemization

If ϕ is the formula ∀x ∃y ∀z ∃w θ(x , y , z ,w , u), the Skolem
normal form ϕS is the formula

∀x , z θ(x , g(x , u), z , f (x , g(x , u), z , u), u)

Dually, the Herbrand normal form ψH of ψ replaces the universal
quantifiers.

• ` ϕS → ϕ

• If ϕS ` α then ϕ ` α.

• ` ψ → ψH

• If ∆ ` ψH then ∆ ` ψ.

Resolution

Putting it all together: T ` ϕ if and only if TH ` ϕS .

TH is universal, and ϕS is existential. By Herbrand’s theorem,
TH ` ϕS if and only if there is a propositional proof of a
disjunction of instances of ϕS from instances of TH .

Resolution tries to prove ⊥ from TH ∪ {¬ϕS}:
• Leave the universal quantifiers implicit.

• Put all formulas in conjunctive normal form, and split up
conjuncts.

• So, the goal is to prove ⊥ from clauses, i.e. disjunctions of
atomic formulas and literals.

• Use the resolution rule:
Γ ∨ ϕ ∆ ∨ ¬ϕ

Γ ∨∆
More generally, use unification to instantiate clauses to the
form above.

Resolution
Main loop:

1. Use resolution to generate new clauses.

2. Check for redundancies (subsumption) and delete clauses.

Issues:

• How much effort to put into each phase?

• How to choose new clause (biggest, widest, heaviest, . . .)?

• How to handle equality? (Paramodulation, superposition)

• How to handle other equivalence relations, transitive relations?

• How to distinguish different kinds of information (like sort
information)?

• How to incorporate domain specific information, like
arithmetic, or AC operations?

There are endless variations and methods of restricting the search
and maintaining completeness.

Research is largely empirical (using e.g. TPTP database).

Equality reasoning

It is reasonable to simplify terms:

• x + 0 = x

• x > 0→ |x | = x

• y 6= 0→ (x/y) ∗ y = x

• x + (z + (y + 0) + x) = x + x + y + z

The Knuth-Bendix completion algorithm tries to extend a set of
equations to a normalizing and confluent rewrite system.

Three strategies:

• Use a simplifier.

• Build equality reasoning into other procedures.

• Use unification up to equivalence.

See Baader and Nipkow, Term rewriting and all that.

Higher-order unification

Sometimes mathematics requires higher-order unification:

P(0) ∧ ∀x (P(x)→ P(x + 1))→ ∀x P(x)

or ∑
x∈A

(f (x) + g(x)) =
∑
x∈A

f (x) +
∑
x∈A

g(x)

Notes:

• Second-order unification is undecidable (Goldfarb).

• Huet’s algorithm is complete.

• Miller patterns are a decidable fragment.

Decision procedures

Full first-order theory:

• Quantifier elimination (integer / linear arithmetic, RCF , ACF)

• “Global methods” (Cooper, CAD)

• Reductions to Rabin’s S2S

• Feferman-Vaught (product structures)

Sometimes it is enough to focus on the universal fragment:

• Some theories are only decidable at this level (e.g.
uninterpreted functions)

• Can be more efficient (integer / linear arithmetic).

• Can use certificates.

• A lot of mathematical reasoning is close to quantifier-free.

• We’ll see later: these can be combined.

Quantifier elimination

Theorem. The theory of (R, 0, 1,+, <) has quantifier-elimination,
and so is decidable.

Proof. It suffices to show that if ϕ is quantifier-free, ∃x ϕ is
equivalent to a quantifier-free formula.

Notes:

• Can put ϕ in disjunctive normal form.

• ∃x (θ ∨ η) is equivalent to ∃x θ ∨ ∃x η.

• s 6= t is equivalent to s < t ∨ t < s.

• s 6< t is equivalent to t < s ∨ s = t.

So, it suffices to assume ϕ is a conjunction of equalities and strict
inequalities.

Decision procedures

Expressions that don’t involve x can be brought outside the
existential quantifier.

Using rational coefficients, can put expressions involving x in pivot
form:

• x = s

• x < s

• s < x

ϕ is a conjunction of these.

If any conjunct has the form x = s, ∃x ϕ(x) is equivalent to ϕ(s),
and we’re done.

Decision procedures

Otherwise, ϕ is a conjunction of formulas of the form si < x and
x < tj .

It is not hard to check that ∃x ϕ is equivalent to∧
i ,j

si < tj .

Notes:

• Can allow multiplicative coefficients from any computable
field.

• There are much more efficient procedures, but
Fourier-Motzkin works well in practice.

Decision procedures

Other theories that are decidable:

• Presburger arithmetic

• Real closed fields

• Algebraically closed fields

• Mixed integer-linear arithmetic

• Real vector spaces, inner product spaces (Solovay, Arthan,
Harrison)

• Boolean Algebra with Presburger Arithmetic (and cardinality)
(Kuncak)

All have been implemented in theorem provers.

Decision procedures for universal fragments

• Integer / linear arithmetic reduces to integer / linear
programming

• Real closed fields: semidefinite optimization (Parillo, Harrison)

• Algebraically closed fields: Groebner bases

• Geometry: Wu’s method.

• Uninterpreted functions (congruence closure)

• Theories of arrays, lists, and so on.

• Normed spaces (Solovay, Arthan, Harrison)

Solovay et al. also show that the Π2 fragment of the theory of
metric spaces is decidable.

Harrison has also shown that Groebner bases provide a useful
partial decision procedure for Π2 statements on the integers.

Decision procedures

The bad news:

• Decision procedures are often infeasible.

• Undecidability sets in quickly.

• Ordinary mathematical reasoning is not homogeneous.

Some alternatives:

• Go back to domain general provers.

• Design heuristic procedures that use domain-specific
information.

• Use “satisfiability modulo theories” technology to combine
decision procedures.

Combining decision procedures

Theorem (Nelson-Oppen)

Suppose T1 and T2 are “stably infinite” and decidable. Suppose
that the languages are disjoint, except for the equality symbol.
Then the universal fragment of T1 ∪ T2 is decidable.

In particular, if T1 and T2 have only infinite models, they are
stably infinite.

This allows you to design decision procedures for individual
theories and then put them together.

With additional hypotheses on the source theories, the decision
procedures can be made efficient (Nelson-Oppen, Shostak, . . .).

Combining decision procedures

First idea: one can “separate variables” in universal formulas.

That is, ∀~x ϕ(~x) is equivalent to ∀~y (ϕ1(~y) ∨ ϕ2(~y)), where ϕ1 is
in the language of T1, and ϕ2 is in the language of T2.

To do this, just introduce new variables to name subterms.

Second idea: the Craig interpolation theorem.

Theorem
Suppose ψ1 is a sentence in L1 and ψ2 is a sentence in L2, such
that ` ψ1 → ψ2. Then there is a sentence θ in L1 ∩ L2 such that

• ` ψ1 → θ

• ` θ → ψ2

Combining decision procedures

Let ϕ be any universal sentence, equivalent to ∀~x (ϕ1(~x) ∨ ϕ2(~x)).

Then T1 ∪ T2 ` ϕ if and only if there is θ in the common
language, such that

• T1 ∪ {¬ϕ1(~x)} ` θ(~x)

• T2 ∪ {¬ϕ2(~x)} ` ¬θ(~x)

We can assume θ is in disjunctive normal form. All that each
disjunct can do is declare certain variables equal to one another,
and others unequal!

Use the decision procedures for T1 and T2 to test each possibility.

Combining decision procedures

Nelson-Oppen methods are based on this idea.
• A fast propositional SAT solver “core” tries to build a

satisfying assignment.
• Individual decision procedures examine proposals, and report

conflicts.
• The SAT solver incorporates this information into the search.
• Some systems go beyond the universal fragment, for example,

instantiating universal axioms in sensible ways.

See SMT-LIB and SMT-COMP.

There are currently (still somewhat experimental) interfaces
between interactive theorem provers and SAT solvers (which can,
in principle, return certificates).

There has also been some reasearch on combining theories with
nontrivial overlaps. For example, Harvey Friedman and I have
considered what happens when one combines linear and
multiplicative fragments of RCF.

Others have begun to combine decision procedures with resolution
theorem proving (e.g. Paulson, RCF; linear arithmetic).

Automated reasoning

Contemporary successes build on core results in logic:

• formal axiomatic systems (equational, first-order,
higher-order), semantics, and completness proofs

• cut elimination and cut-free provability

• normalization and lambda terms

• Skolemization and properties

• decision procedures (arithmetic, real closed fields, algebraically
closed fields)

• model theory of algebraic structures

• Craig’s interpolation lemma

The theory is a long way from useful implementation; computer
scientists have produced very many novel and important ideas in
that respect.

But the theory frames the whole enterprise.

Automated reasoning

Logicians really like decision procedures. But:

• A decision procedure that runs too slowly on the examples you
care about is worthless.

• An unprincipled hack that gets all your inferences is fine.
• Some undecidability results rely on coding and contrived

examples that never come up in practice.
• The set of inferences that can be verified in ZFC with less

than 10100 symbols is decidable (in constant time!).

First-order and SMT frameworks are domain general, but in
particular domains, there is additional information and structure.

Challenge: design partial decision procedures, or heuristic search
procedures, that work well in practice.

Conceptual problem: develop a theoretical framework to make
sense of the last phrase.

Decidability and completeness are a poor proxy.

Automated reasoning

There is a tension between domain general methods and domain
specific methods. What we need are general approaches to domain
specific reasoning (e.g. with domain specific features encoded by
specific rules and parameters).

One wants transparency: one should have a sense of when the
methods should succeed, and when they fail, it should be possible
to determine why (using traces, or “binary” checks).

One wants flexibility to get things working again (adding local
information, setting parameters, adjusting behavior based on
context).

One wants efforts to scale.

Automated reasoning

Further speculation:

• “Guided” forward reasoning seems promising, especially if one
can limit the data gathered (type information, set inclusions,
inequalities, relationships in a diagram, etc.).

• Cooperation between specialized modules seems important.

• A lot more experimentation is needed, with real mathematical
contexts.

• We also need a better theory, to characterize the situations in
which one can expect good behavior.

This provides good opportunities for collaborations between
logicians, mathematicians, and computer scientists (and
philosophers).

Outline

• Interactive theorem proving

• Contemporary systems
• Formal frameworks
• Proof languages

• Automated reasoning
• Domain general search procedures
• Decision procedures
• Combination procedures

• Type theory and type inference

• Mathematical knowledge management

• A case study: Euclidean geometry

Type inference

Georges Gonthier’s Mathematical components group has been
working on a formal verification of the Feit-Thompson theorem.

This involves finite group theory, linear algebra, and representation
theory.

I spent a sabbatical year (2009-2010) working on the project.

Here are some things I learned.

Type inference

Consider the following mathematical statements:

“For every x ∈ R, ex =
∑∞

i=0
x i

i! .”

“If G and H are groups and f is a homomorphism from G to H,
then for every a, b ∈ G , f (ab) = f (a)f (b).”

“If F is a field of characteristic p and a, b ∈ F , then
(a + b)p =

∑p
i=0

(p
i

)
aibp−i = ap + bp.”

How do we parse these?

Type inference

Observations:

1. The index of the summation is over the natural numbers.

2. N is embedded in R.

3. In “a ∈ G ,” G really means the underlying set.

4. ab means multiplication in the relevant group.

5. p is a natural number (in fact, a prime).

6. The summation operator make sense for any monoid (written
additively).

7. The summation enjoys extra properties if the monoid is
commutative.

8. The additive part of any field is so.

9. N is also embedded in any field.

10. Alternatively, any abelian group is a Z-module, etc.

Type inference

Spelling out these details formally can be painful.

Typically, the relevant information can be inferred by keeping track
of the type of objects we are dealing with:

• In “a ∈ G ,” the “∈” symbol expects a set on the right.

• In “ab,” multiplication takes place in “the” group that a is
assumed to be an element of.

• In “x i/i !,” one expects the arguments to be elements of the
same structure.

Type inference: not only inferring types, but also inferring
information from type considerations.

Type inference

Structure hierarchies:

• Subclasses: every abelian group is a group

• Reducts: the additive part of a ring is an abelian group

• Instances: the integers are an abelian group

• Embedding: the integers are embedded in the reals

• Uniform constructions: the automorphisms of a field form a
group

Advantages:

• Reusing notation: 0, +, a · b
• Reusing definitions:

∑
i∈I ai

• Reusing facts: identities involving sums

Type inference

Observations:

• Type inference occurs when one parses an expression, but also
when one applies a lemma.

• The goal is to omit information systematically.

• There are really two kinds of information that is omitted:
• data: the relevant group multiplication, the relevant

embedding
• facts: the fact that an operation is associative, the fact that a

set is closed under an operation

• Under the Curry-Howard isomorphism, facts and data look the
same.

• A good deal of technology is imported from the theory of
programming languages (but there are differences).

• There is no sharp line between “type” information and
genuinely mathematical information. (Consider

(n
k

)
.)

Type inference

System Framework Type inference

Isabelle Simple type theory Axiomatic type classes

Mizar Set theory Soft typing

Coq Dependent type theory
Canonical structures or

Type classes, etc.

Features of Coq:

• It is based on a expressive dependent type theory.

• The underlying logic is constructive.

• Every term has a computational interpretation.

• Type checking is, in principle, decidable.

• For that reason, it is also rigid.

Type inference in Coq

Mechanisms for type inference in Coq:

• Implicit arguments: one can omit arguments that can be
inferred from a dependent type

• Coercions: cast objects to different types

• Canonical structures: can view a particular structure as an
instance of a class

In addition, Coq’s type inference engine makes use of the
computational interpretation, e.g. expanding definitions and
simplifying terms as necessary.

Dependent types

Sometimes one wants a type to depend on parameters.

Examples:

• list A n: lists of elements of type A of length n

• Zmod n: the integers modulo n (say, as a ring)

• Rvec n: the vector space Rn

The type constructor A→ B is generalized to a dependent
product,

∏
x∈A B x .

In Coq, this is written forall(x : A)Bx.

The type constructor A× B is generalized to a dependent sum,∑
x∈A B x .

Dependent types

Record group : Type := Group

{

carrier : Type;

mulg : carrier -> carrier -> carrier;

oneg : carrier;

invg : carrier -> carrier;

mulgA : associative mulg;

...

}

The components of G : group are carrier G, mulg G, . . .

Given g, h : carrier G, we have mulg G g h : carrier G.

So mulg has type forall (G : group), carrier G ->

carrier G -> carrier G.

Implicit arguments and coercions

One can also write mulg _ g h, leaving the first argument
implicit.

Type inference has to solve carrier ? = carrier G, which is
easy.

Notation "g * h" := (mulg _ g h).

Now one can write g * h for group multiplication.

One can also define

Coercion carrier : group >-> Type.

Then g : G is interpreted as g : carrier G.

Canonical structures

Suppose we define

IntGroup := Group int addi zeroi negi addiA ...

Given i,j : int, this will let us (perversely) write mulg

IntGroup i j for i + j, and (less perverseley) apply facts about
groups.

What happens if write i * j?

Type inference has to solve carrier ? = int, and gets stuck.

Declaring

Canonical Structure IntGroup.

registers the hint carrier IntGroup = int for use in type
inference.

Summary / recap

Type checking is triggered when:

• parsing an expression

• applying a lemma

Often implicit arguments or facts need to be inferred.

Mechanisms:

• Unification: pattern matching to infer implicit arguments.

• Coercions: cast objects to different types

• Canonical structures: register unification hints that associate
structures with instances

• Unfolding definitions, simplifying terms

Finite group library

In the finite group library, type inference is used in a number of
ways:

• To recognize when structures have decidable equality and
choice functions, satisfy extensionality, and so on.

• To define “big operations” such as
∑

,
∏

,
⋂

,
⋃

,
∧

,
∨

• To mediate between sets and structures (e.g. G ∩ H and
CG (A) act as both sets and groups).

• To manage class inclusions (rings, commutative rings, fields)

• To manage algebraic constructions (matrices over a ring,
polynomials over a ring, quotient groups)

• To infer views (e.g. abelian group as a Z-module)

• The mediate between functions and morphisms

• To view both predicates and lists as sets (e.g. Px vs. x ∈ P).

Examples

Lemma commg_subl : forall G H,

([~: G, H] \subset G) = (H \subset ’N(G)).

Lemma nilpotent_proper_norm : forall G H,

nilpotent G -> H \proper G -> H \proper ’N_G(H).

Lemma morphim_center : forall rT A D

(f : {morphism D >-> rT}),

f @* ’Z(A) \subset ’Z(f @* A).

Lemma quotient_cents2 : forall A B K,

A \subset ’N(K) -> B \subset ’N(K) ->

(A / K \subset ’C(B / K)) = ([~: A, B] \subset K).

Examples

Theorem Sylow’s_theorem :

[/\ forall P,

[max P | p.-subgroup(G) P] = p.-Sylow(G) P,

[transitive G, on ’Syl_p(G) | ’JG],

forall P, p.-Sylow(G) P ->

#|’Syl_p(G)| = #|G : ’N_G(P)|

& prime p -> #|’Syl_p(G)| %% p = 1%N].

Lemma card_GL : forall n, n > 0 ->

#|’GL_n[F]| = (#|F| ^ ’C(n, 2) *

\prod_(1 <= i < n.+1) (#|F| ^ i - 1))%N.

Theorem Cayley_Hamilton : forall A,

(Zpoly (char_poly A)).[A] = 0.

Mathematical Knowledge Management

Suppose one proves a theorem in one theorem prover. Can one
import it into another?

Problems:

• different foundational frameworks

• different axiomatic bases

• different definitions (e.g. reals as Cauchy sequences
vs. Dedekind cuts.)

• different side conditions (e.g. x/0.)

• proof terms get really big

Mathematical Knowledge Management

How can we decide which theorems from the library should be sent
to a resolution theorem prover?

Machine learning methods: Larry Paulson, Josef Urban.

How do we register the fact that certain facts are meant to be
used in certain ways?

• x + 0 = x is a simplification rule.

• (A = B)↔ ∀x (x ∈ A↔ x ∈ B) is the canonical way to
prove set equality in some contexts, but not others (such as
finite group theory).

Being able to store, find, and exchange mathematical information
is important. We just don’t know how to do it.

Mathematical Knowledge Management

How can we reason about and verify mathematical computation?

Verifying code is a big industry.

But mathematical code is a very special case.

Reflection is an important mechanism, allowing one to internalize
computation.

Outline

• Interactive theorem proving

• Contemporary systems
• Formal frameworks
• Proof languages

• Automated reasoning
• Domain general search procedures
• Decision procedures
• Combination procedures

• Type theory and type inference

• Mathematical knowledge management

• A case study: Euclidean geometry

References

Google around to find tutorials and introductions to the major
theorem provers: Isabelle, Coq, HOL light, Mizar. . .

There are also web pages for the major projects:

• Gonthier’s “Mathematical components”

• Hales’ “Flyspeck”

• Voevodsky, Homotopy type theory (HoTT)

For automated reasoning and decision procedures:

• John Harrison, Handbook of Practical Logic and Automated
Reasoning

Conclusions

Remember the main message:

• Successes in formal verification are based on the deep
understanding of mathematical deductive reasoning that
mathematical logic provides.

• There are still a number of fundamental conceptual problems
that need to be addressed.

• We need entirely new logical theories to address them.

