
Reflected Decision Procedures in Lean

Seul Baek

January 29, 2019

Submitted in partial fulfillment of the requirements for the degree of
M.S. in Logic, Computation and Methodology

Department of Philosophy
Carnegie Mellon University

Pittsburgh, PA, USA

Thesis committee:
Jeremy Avigad: Carnegie Mellon University, Department of Philosophy (committee chair)

Thomas Hales: University of Pittsburgh, Department of Mathematics
André Platzer: Carnegie Mellon University, Department of Computer Science

1

Acknowledgements

I would like to thank my advisor Jeremy Avigad, not only for his astute
guidance and the patience with which he supervised my development of ideas,
but also for his enthusiastic encouragements; whenever I am down and full of
skepticism, it’s an afternoon talk with Jeremy that makes me excited again
for new challenges. I’d like to thank my committee members Tom Hales and
André Platzer for their insightful comments, especially for the pointers to
future work that I look forward to explore. I owe thanks to Mario Carneiro,
discussions with whom provided many key ideas for this thesis (and are
always entertaining). I’d like to thank the members of the Lean developer
community, whose friendly help and expertise I could always count on. I
am grateful for my family, without whose love and support I could not have
come this far.

2

Contents

1 Introduction 4

2 Preliminaries 4
2.1 Quantifier Elimination . 4
2.2 Cooper’s Algorithm . 8
2.3 Computational Reflection . 16

3 Implementation 20
3.1 Planning . 20
3.2 Reification . 26
3.3 Discharging Goals . 31

4 Test Results 34

5 Conclusion and Future Work 37

6 Related Works 38

7 References 38

A List of Test Cases 39

3

1 Introduction

The term ‘computational reflection’ can mean very different things depending
on the context. In the broadest sense, it is defined as “the activity performed
by a computational system when reasoning about (and by that possibly af-
fecting) itself” [7]. In this thesis, we use the term more narrowly to refer to
the method of efficiently rewriting terms in interactive theorem provers via
computation, following Boyer and Moore [3].

This thesis aims to answer two main questions: (1) What are the main
steps and challenges in implementing reflected decision procedures in Lean?
(2) Can reflected decision procedures in Lean solve practical problems? Al-
though the basic principle of computational reflection is well-understood, it
is difficult to predict its effectiveness for a new theorem prover because the
technique is highly dependent on prover-specific features, such as its meta-
language and kernel evaluation. This is particularly true for Lean, which is
unusual in having its object language double as its metalanguage, and whose
existing examples of computational reflection are still small and experimen-
tal. To answer these questions, this thesis presents lia, a new Lean tactic
which implements Cooper’s algorithm, and uses it as an example to explore
the challenges and feasibility of reflected decision procedures in Lean.

The following sections are organized as follows: Section 2 covers the ba-
sic background for quantifier elimination, Cooper’s algorithm, and computa-
tional reflection. Section 3 shows how reflected decision procedures can be
implemented in Lean by tactic programming. Section 4 provides empirical
data from performance tests and evaluates them against initial expectations.
Section 5 sums up the results and discusses potential extensions of the work.

2 Preliminaries

2.1 Quantifier Elimination

This section presents a brief overview of quantifier elimination, a technique
pioneered by Tarski [10] which forms the basis of various decision procedures.
The core insight of quantifier elimination, in rough outlines, is as follows:
suppose you have a program which, given any formula, returns a quantifier-
free formula equivalent to the input. If you run this program with a sentence
as input, you get a ground propositional formula as output (or something

4

that can be turned into a ground propositional formula, in a sense that will
be made precise shortly), whose truth value is often decidable. Since the
input and output have the same truth values, this program can be used to
decide the truth value of a sentence.

In the following, we discuss the precise circumstances under which quan-
tifier elimination can decide the truth value of sentences. Before getting into
details, we first fix a few terminologies:

Definition 2.1. A structure S is decidable if there is an effective procedure
that decides S � φ for any sentence φ in the language of S.

Definition 2.2. For any structure S and formulas φ, ψ in its language, if φ
and ψ are S-equivalent (i.e., S � φ ↔ ψ) and ψ is quantifier-free, then ψ is
a quantifier-free equivalent, or QFE, of φ.

Note that whether a formula ψ is a QFE of another formula φ depends
on the structure S in which they are evaluated. This choice of background
structure will always be clear from context whenever we discuss QFEs.

Definition 2.3. For any structure S, an effective procedure which computes
a QFE of any formula φ in the language of S is a quantifier-elimination
procedure, or QEP, of S.

Not all structures that have QEPs are decidable. In order to decide a
structure S with its QEP, S has to satisfy a number of additional require-
ments:

1. For any ground atom a of S, S � a is decidable.

2. The signature of S includes at least one constant.

Although not necessary, it is convenient to assume that the structure also
allows elimination of negated atoms. This property holds for many useful
structures and significantly simplifies proofs:

3. For any atom a of S, we can compute a formula φ that is negation-free,
quantifier-free, and equivalent to ¬a.

For the rest of the section, we fix S to an arbitrary structure that satisfies
conditions 1-3, and L to the language of S.

Theorem 2.1. If S has a QEP, S is decidable.

5

Proof. Let φ be an arbitrary sentence of L. We show that S � φ is decid-
able. Let ψ be the QFE of φ computed by the QEP, and ψ′ the formula
obtained by replacing all free variables of ψ with a constant c (which exists
by assumption). ψ′ has neither quantifiers nor free variables, which means it
is a propositional combination of ground atoms. Since S � a is decidable for
any atom a in ψ′ by assumption, S � ψ′ is decidable. Therefore, it suffices
to show that ψ′ is S-equivalent to φ, which holds by

S � ψ′

⇐⇒ S, v � ψ

⇐⇒ S � ψ

⇐⇒ S � φ

where v is the valuation that maps every free variable of ψ to the value of c
in S. The second equivalence holds because the truth value of ψ is constant
under all valuations: since φ is a sentence whose truth value is unaffected by
valuations, the same holds for ψ, which is S-equivalent to φ.

For the remainder of the section, we show that the existence of a QEP
for S can be derived from successively weaker premises. For concision, we
present constructive proofs of existence in lieu of explicitly describing effective
procedures. In other words, the two lemmas

• There exists an effective procedure which computes an x such that ∆,
given Γ.

• If Γ holds, there exists an x such that ∆.

are equivalent, provided that the proof of the latter is constructive. In par-
ticular, the two lemmas

• There exists a QEP of S.

• For any φ ∈ L, there exists a QFE of φ.

are equivalent, and we show the various conditions under which the latter
can be proven constructively.

Theorem 2.2. Suppose that for any variable x and quantifier-free φ ∈ L,
there exists a QFE of ∃x.φ. Then for any φ ∈ L, there exists a QFE of φ.

6

Proof. By induction on φ. The only case not immediately obtained by re-
placing subformulas of φ with their respective QFEs (which exist by IH) is
φ = ∃x.χ.1 Let ψ be a QFE of χ (which also exists by IH). Since ψ is
quantifier-free, there exists a QFE of ∃x.ψ by assumption, which is also a
QFE of ∃x.χ by equivalence of ψ and χ.

Theorem 2.2 implies that any procedure which eliminates a single exis-
tential quantifier can be ‘lifted’ to a general QEP. This property is highly
useful, since proving the decidability of a structure boils down to the rela-
tively simple task of showing the steps for removing a single quantifier. We
can further facilitate proofs of decidability by assuming that the bodies of
existentially quantified formulas satisfy various additional properties.

Definition 2.4. A formula is a literal if it is either an atom or a negated
atom. A formula is in negation normal form, or NNF, if it consists
entirely of ⊥,>,∧,∨, and literals.

Theorem 2.3. For any quantifier-free φ ∈ L, there exists a a formula of L
that is in NNF and equivalent to φ.

Proof. By induction on the size of φ, measured by the total number of logical
constants and atomic formulas in a formula. Excluding the cases that are
either itself in NNF or can be immediately transformed into NNF by replacing
each subformula with its NNF-equivalent, it remains to show the conclusion
for cases where φ is ¬¬ψ, ¬(ψ ∨ χ), or ¬(ψ ∧ χ). For each of the cases,
ψnnf , (¬ψ)nnf ∧ (¬χ)nnf , and (¬ψ)nnf ∨ (¬χ)nnf are the respective NNF-
equivalents, where φnnf denotes the NNF-equivalent of φ whose existence is
implied by IH. Note that the application of IH in the latter cases is justified
since the size of ¬(ψ ∗ χ) is greater than that of either ¬ψ or ¬ψ by at least
2, where ∗ is either ∨ or ∧.

Theorem 2.4. For any quantifier-free φ ∈ L, there exists a ψ ∈ L such that
ψ is negation-free, quantifier-free, and equivalent to φ.

Proof. By Theorem 2.3, there exists a φnnf ∈ L which is in NNF and equiva-
lent to φ. By definition of NNF, the only negations in φnnf are negated atoms.
The result of replacing every negated atom ¬a in φnnf with the equivalent
negation-free and quantifier-free formula (which exists by assumption on S)
has all the requisite properties.

1For simplicity, we assume that the set of logical constants of L is {>,⊥,¬,∨,∧,∃}.

7

Theorem 2.5. Suppose that for any variable x and φ ∈ L such that φ is
negation-free and quantifier-free, there exists a QFE of ∃x.φ. Then for any
variable x and quantifier-free φ ∈ L, there exists a QFE of ∃x.φ.

Proof. By Theorem 2.4, there exists a ψ ∈ L such that ψ is negation-free,
quantifier-free, and equivalent to φ. By assumption, there exists a QFE of
∃x.ψ, which is also a QFE of ∃x.φ.

Corollary 2.5.1. Suppose that for any variable x and φ ∈ L such that φ
is negation-free and quantifier-free, there exists a QFE of ∃x. Then S is
decidable.

Proof. Follows from Theorems 2.1, 2.2, and 2.5.

2.2 Cooper’s Algorithm

The structure of linear integer arithmetic is a structure of the integers whose
terms and atoms are defined inductively as:

t := i
∣∣∣ i ∗ x ∣∣∣ t+ t

a := t ≤ t
∣∣∣ i | t ∣∣∣ i - t

In the definition above and the rest of the section, t, s range over terms, i, j, k
over integers constants, x, y, z over integer variables, and a over atoms, all of
them with or without subscripts (other symbols may also be used when they
are informative – e.g., l for integers that serve as lower bounds). ‘i - t’ denotes
‘i does not divide t’, and all symbols are given the usual interpretations for
integers. Examples of true sentences of the structure include ∃x. 5 + x ≤ 11
and ∀x. 3 | 6 ∗ x. We henceforth call this structure SLIA, and its language
LLIA.

There is a significant practical incentive for deciding SLIA, because sen-
tences in LLIA are frequently encountered in theorem proving involving in-
tegers, especially in software verification. The structure was first shown to
be decidable by Presburger [9] in 1929, after whom it is also known as Pres-
burger arithmetic. In 1972, Cooper [5] introduced a more efficient decision
procedure which avoids expensive DNF transformations, which is the algo-
rithm that lia is based on and we will review in this section. The proof

8

mostly follows that of Harrison [6], but we use syntaxes similar to that of
Nipkow [8] to stay closer to definitions used in the Lean implementation.

By Corollary 2.5.1 and the background assumptions of Section 2.1, a
structure is decidable if

1. Its ground atoms are decidable.

2. It has at least one constant symbol.

3. Its negated atoms can be eliminated.

4. The following can be proven constructively: for any variable x and
formula φ in its language such that φ is negation-free and quantifier-
free, there exists a QFE of φ.

Conditions 1 and 2 clearly hold for SLIA, and the equivalences

¬x ≤ y ↔ y + 1 ≤ x

¬x | y ↔ x - y
¬x - y ↔ x | y

suffice to show condition 3. For the rest of the section, we prove condition
4 for SLIA, where the construction of QFE follows Cooper’s algorithm. For
brevity, we implicitly assume SLIA and LLIA for the remainder of the section.
For instance, by ‘any formula,’ we mean any formula of LLIA; when formulas
φ and ψ are ‘equivalent,’ they are SLIA-equivalent (i.e., SLIA � φ↔ ψ).

The high-level proof sketch for the section is as follows: First, we define
a notion of normalcy for formulas, and show that for any variable x and
formula φ such that φ is free of negations and quantifiers, there exists a
normal formula ψ such that ∃x.φ and ∃x.ψ are equivalent. Second, we prove
that for any normal formula ψ, there exists a QFE of ∃x.ψ. Together, this
amounts to showing the existence of a QFE of ∃x.φ for arbitrary variable
x and formula φ whenever φ is free of negations and quantifiers. We begin
with defining a suitable normal form:

Definition 2.5. For any variable x and formula φ, φ is x-normal if it is
negation-free, quantifier-free, and each atom in φ is in one of the following

9

forms:

t ≤ 1 ∗ x
t ≤ 0

t ≤ −1 ∗ x
i | 1 ∗ x+ t

i | t
i - 1 ∗ x+ t

i - t

where t has no occurrences of x.

Theorem 2.6. For any variable x and formula φ such that φ is negation-free
and quantifier-free, there exists an x-normal formula ψ such that ∃x.φ and
∃x.ψ are equivalent.

Proof. By grouping and factoring terms, we can rewrite each atom of φ into
an equivalent atom that has one of the following forms:

t ≤ p ∗ x
t ≤ 0

t ≤ −p ∗ x
i | p ∗ x+ t

i | t
i - p ∗ x+ t

i - t

where t has no occurrences of x, and p, q range (both here and for the rest of
the section) over positive integers. We can ensure that the x-coefficients of
(non)divisibility atoms are positive since multiplying their right-hand sides
by −1 does not affect their truth values. Let φ1 be the formula obtained
by rewriting each atom of φ into one of these forms. φ and φ1 are clearly
equivalent, since all atom-pairs in corresponding positions of φ and φ1 are
equivalent. Let m be the least common multiple of all x-coefficients in φ1,

10

and Let φ2 be the result of replacing each atom of φ1 with the mapping

t ≤ p ∗ x 7→ (m/p) ∗ t ≤ m ∗ x
t ≤ −p ∗ x 7→ (m/p) ∗ t ≤ −m ∗ x
i | p ∗ x+ t 7→ (m/p) ∗ i | m ∗ x+ (m/p) ∗ t
i - p ∗ x+ t 7→ (m/p) ∗ i - m ∗ x+ (m/p) ∗ t

a 7→ a

where a (both here and in other mappings in the section) matches all atoms
not matched by preceding lines. The divisions and multiplications in (m/p)∗i
or (m/p) ∗ t are not actual function symbols that appear in the new atoms
(since that would not be generally well-formed), and we assume that they
are eliminated by distribution and normalization. Intuitively, atoms without
occurrences of x remain unchanged, and all coefficients of x are set to ±m.
Again, φ1 is equivalent to φ2, since each atom a in φ1 is either unchanged, or
all terms in a are multiplied by a positive integer.

Finally, let φ3 be the formula obtained by replacing each coefficient of x
in φ2 with its sign, by applying the mapping

t ≤ p ∗ x 7→ t ≤ 1 ∗ x
t ≤ −p ∗ x 7→ t ≤ −1 ∗ x
i | p ∗ x+ t 7→ i | 1 ∗ x+ t

i - p ∗ x+ t 7→ i - 1 ∗ x+ t

a 7→ a

Although φ3 is not equivalent to φ2, it satisfies a more limited kind of equiv-
alence

∃x.(m | 1 ∗ x+ 0 ∧ φ3)↔ ∃x.φ2

where m is the absolute value of all x-coefficients in φ2. The equivalence can
be shown by the following: if some k is a witness of ∃x.(m | 1 ∗ x + 0 ∧ φ3),
then φ3[x/k]2 holds, and also m ∗ j = k for some j since m | k holds. Then
j is a witness of ∃x.φ2, since φ2[x/j] ↔ φ3[x/m ∗ j] by definition of φ3, and
m ∗ j = k. Conversely, if some j is a witness of ∃x.φ2, then φ3[x/m ∗ j] holds
by definition of φ3 and m | m ∗ j holds trivially. Therefore, m ∗ j is a witness
of ∃x.(m | 1 ∗ x+ 0 ∧ φ3). Putting everything together, we have

∃x.φ↔ ∃x.φ1 ↔ ∃x.φ2 ↔ ∃x.(m | 1 ∗ x+ 0 ∧ φ3)

2φ[x/t] is the result of replacing all free occurrences of x in φ with t.

11

where the first two equivalences hold by equivalence of quantified bodies of
formulas. Also, m | 1 ∗ x+ 0 ∧ φ3 is x-normal by definition of φ3. Therefore,
m | 1 ∗ x+ 0 ∧ φ3 is the formula which satisfies all requisites.

Now it remains to show that there exists a QFE of ∃x.φ for any x-normal
formula φ. The key insight for this part is a case analysis on the value of x.
If ∃x.φ holds, it must fall into one of two cases: the unbounded case in which
there are arbitrarily small values of x for which φ holds, and the bounded case
in which there is a smallest value of x for which φ holds. If we can construct
formulas φU and φB such that φU is implied by φ in the unbounded case and
φB is implied by φ in the bounded case, then their disjunction φU ∨ φB is
implied by ∃x.φ. Furthermore, if φU and φB each independently imply ∃x.φ,
then φU ∨ φB is equivalent to ∃x.φ. Finally, if φU and φB are quantifier-free,
then φU ∨ φB is a QFE of ∃x.φ. We show that formulas φU and φB which
meet all these conditions can be constructed for any x-normal formula φ.

Definition 2.6. For any x-normal formula φ[x]3, φ−∞[x] is the result of
replacing every atom of φ[x] with the mapping

t ≤ 1 ∗ x 7→ ⊥
t ≤ −1 ∗ x 7→ >

a 7→ a

One useful way to think of φ−∞[x] is that it is the ‘limit’ of φ[x] as the
value of x approaches negative infinity:

Theorem 2.7. For any valuation v and x-normal formula φ[x], there exists
an integer l such that for any integer k < l, v{x 7→ k}4 |= φ[x]↔ φ−∞[x].

Proof. Observe that if the theorem holds in the limited case where φ[x] is
atomic, then it holds for an arbitrary φ[x] by the following: first, apply the
theorem to the atoms a1, ..., an of φ[x] to obtain the respective lower bounds
l1, ..., ln, and set l to their minimum. Then for any k < l, k is smaller
than the lower bound li of any atom ai in φ[x]. Therefore, each atom ai
in φ[x] is equivalent under v{x 7→ k} to the formula in the corresponding

3‘φ[t]’ is a simplified version of the notation ‘φ[x/t]’. The implicit variable x will always
be clear from context.

4v{x 7→ k} is the valuation that is identical to v except that it maps the variable x to
k.

12

position of φ−∞[x], and hence φ[x] and φ−∞[x] themselves are equivalent
under v{x 7→ k}.

For the case φ[x] = t ≤ 1 ∗ x (resp. φ[x] = t ≤ −1 ∗ x), any value of x
smaller than [[t]]v

5 (resp. −[[t]]v) will make φ[x] false (resp. true), and hence
equivalent to ⊥ (resp. >). The remaining cases hold by reflexivity.

Note that φ−∞[x] already has one of the properties we require of φU , as it
is implied by φ in the unbounded case. But it still includes free occurrences
of x, which requires a few extra steps to remove.

Definition 2.7. An integer k is a relevant divisor of an x-normal formula
φ[x] if an atom of the form k | 1 ∗ x + t or k - 1 ∗ x + t occurs in φ[x]. The
period of φ[x] is the least common multiple of its relevant divisors.

The significance of periods is that the truth value of all (non)divisibility
atoms in an x-normal formula is periodic in x with this value. This property
is useful for proving the following:

Theorem 2.8. If p is the period of an x-normal formula φ[x] and i, j are
integers such that i ≡ j (mod p), then |= φ−∞[i]↔ φ−∞[j].

Proof. Observe that x only occurs in φ−∞[x] in (non)divisibility atoms of the
form k | 1 ∗ x + t or k - 1 ∗ x + t. Since the mapping for obtaining φ−∞[x]
from φ[x] does not modify (non)divisibility atoms, the divisor k in any such
atom is a relevant divisor of φ[x], and hence divides p. Therefore, the truth
value of any atom in φ−∞[x] is preserved by incrementing or decrementing
the value of x by multiples of p. Since i = j + m ∗ p for some integer m,
φ−∞[i] and φ−∞[j] are equivalent under any valuation.

Theorem 2.8 shows that the truth value of φ−∞[x] is periodic in x, which
is the key to eliminating free occurrences of x.

Theorem 2.9. If p is the period of an x-normal formula φ[x], then � φ−∞[x]→∨
0≤x<p φ−∞[x].

Proof. If v |= φ−∞[x] for some v, then v � φ−∞[i] for some integer i. Since
i ≡ i mod p (mod p), φ−∞[i] and φ−∞[i mod p] are equivalent under any
valuation by Theorem 2.8, and hence v |= φ−∞[i mod p]. It follows that one
of the disjuncts of

∨
0≤x<p φ−∞[x] holds under v, since 0 ≤ i mod p < p.

5[[x]]v is the value of x under valuation v. If x is a term, [[x]]v is an integer; if it x is a
formula, [[x]]v is either true or false.

13

We now show that
∨

0≤x<p φ−∞[x] is the formula which satisfies the req-
uisites of φU .

Theorem 2.10. If p is the period of an x-normal formula φ[x] and v is an
arbitrary valuation, the two statements

1. For any integer i, there exists an integer j such that j < i and v{x 7→
j} |= φ[x]

2. v |=
∨

0≤x<p φ−∞[x]

are equivalent.

Proof. Suppose statement 1 holds. By theorem 2.7, there exists an l such
that for any i < l, φ[x] and φ−∞[x] are equivalent under v{x 7→ i}. Let
k be an integer such that v{x 7→ k} |= φ[x] and k < l, which exists by
statement 1. Then we have v{x 7→ k} |= φ−∞[x], which implies v{x 7→ k} |=∨

0≤x<p φ−∞[x] by Theorem 2.9. Since
∨

0≤x<p φ−∞[x] has no free occurrences
of x, we have v |=

∨
0≤x<p φ−∞[x].

For the converse, suppose statement 2 is true. Again, let l be the lower
bound which exists by Theorem 2.7, and i an arbitrary integer. It suffices
to show that there exists an integer j such that j < i and v{x 7→ j} |= φ[x].
By statement 2, there exists some integer k such that v |= φ−∞[k]. Let
j be an integer such that j < l, j < i, and j = k (mod p). We know
that such a j must exist, since p is nonzero. By Theorem 2.8 and j = k
(mod p), we have v |= φ−∞[j], and hence v{x 7→ j} |= φ−∞[x]. Since j < l,
v{x 7→ j} |= φ[x].

For the bounded case and φB, we first need to define some auxiliary
notions.

Definition 2.8. A term t is a boundary point of an x-normal formula φ[x]
if t ≤ 1 ∗x occurs in φ[x]. The set of all boundary points of φ[x] is its B-set.

The significance of boundary points is that they are the values of x at
which the truth value of φ[x] can change from true to false. This can be
made more precise by the following:

Theorem 2.11. For any valuation v, x-normal formula φ[x], integer k, and
positive integer p such that the period of φ[x] divides p, if v{x 7→ k} |= φ[x]
but v{x 7→ k− p} 6|= φ[x], then [[t]]v ≤ k < [[t]]v + p for some t in the B-set of
φ[x].

14

Proof. By induction on the x-normal formula φ[x]. There are two main cases
to consider.

1. If φ[x] = ψ[x] ∨ χ[x], then either ψ[x] or χ[x] is true under v{x 7→ k}
but false under v{x 7→ k − p}. Suppose ψ[x] is (proof is symmetrical
in the other case). Since any relevant divisor of ψ[x] is also a relevant
divisor of φ[x], the period of ψ[x] divides p. By IH, there exists some t
in the B-set of ψ[x] such that [[t]]v ≤ k < [[t]]v + p, and t is also in the
B-set of φ[x] by definition of B-sets.

2. If φ[x] = t ≤ 1 ∗ x, then we have [[t]]v ≤ k < [[t]]v + p from v{x 7→ k} |=
t ≤ 1 ∗ x and v{x 7→ k − p} 6|= t ≤ 1 ∗ x, and t is trivially in the B-set
of t ≤ 1 ∗ x, the singleton {t}.

The case φ[x] = ψ[x] ∧ χ[x] is similar to the case φ[x] = ψ[x] ∨ χ[x]. In the
remaining cases where φ[x] is atomic, φ[x] either has no occurrences of x,
or has the form t ≤ −1 ∗ x, i | 1 ∗ x + t, or i - 1 ∗ x + t, where the divisor
i divides p. In each of these cases, the truth value of φ[x] cannot change
from true to false when the value of x decreases by p, so the conclusion holds
vacuously.

Using B-sets, we can now construct a disjunction that satisfies the requi-
sites of φB.

Theorem 2.12. For any valuation v, x-normal formula φ[x], and integer
k such that v{x 7→ k} |= φ[x], if v{x 7→ i} 6|= φ[x] for any i < k, then
v |=

∨
b∈B
∨

0≤x<p φ[b+x], where B is the B-set of φ[x] and p is the period of
φ[x].

Proof. By assumption, v{x 7→ k − p} 6|= φ[x]. By theorem 2.11, [[t]]v ≤ k <
[[t]]v +p for some t ∈ B. In other words, there exists some 0 ≤ i < p such that
k = [[t+ i]]v. By substitution, v{x 7→ [[t+ i]]v} |= φ[x], which is equivalent to
v |= φ[t+i]. Since t ∈ B and 0 ≤ i < p, we have v |=

∨
b∈B
∨

0≤x<p φ[b+x].

Finally, the main theorem of the section:

Theorem 2.13. For any x-normal formula φ[x], if B is the B-set of φ[x]
and p its period, then

|= ∃x.φ[x]↔

((∨
0≤x<p

φ−∞[x]

)
∨

(∨
b∈B

∨
0≤x<p

φ[b+ x]

))

15

Proof. We show that the equivalence holds under an arbitrary valuation v.
If v |= ∃x.φ[x], then one of the following must hold: either (1) for any integer
i, there exists a j < i such that v{x 7→ j} |= φ[x], or (2) there exists
a smallest integer i such that v{x 7→ i} |= φ[x]. (1) and (2) each imply
v |=

∨
0≤x<p φ−∞[x] and v |=

∨
b∈B
∨

0≤x<p φ[b + x] by theorems 2.10 and
2.12, respectively.

In the converse direction, if v |=
∨

0≤x<p φ−∞[x], then there exists an
integer k such that v{x 7→ k} |= φ[x] by Theorem 2.10, so ∃x.φ[x] holds
under v with the witness k. If v |=

∨
b∈B
∨

0≤x<p φ[b + x], then there exists
some t ∈ B and 0 ≤ i < p such that v |= φ[t+ i]. Since this is equivalent to
v{x 7→ [[t+ i]]v} |= φ[x], ∃x.φ[x] holds under v with the witness [[t+ i]]v.

It is also clear from its construction that

(
∨

0≤x<p

φ−∞[x]) ∨ (
∨
b∈B

∨
0≤x<p

φ[b+ x])

has no quantifiers provided that φ[x] is quantifier free, so Theorem 2.13
implies that for any x-normal formula φ[x], there exists a QFE of ∃x.φ[x].
Together with Theorem 2.6, this is sufficient to show that whenever φ[x] is
free of negations and quantifiers, a QFE of ∃x.φ[x] exists.

2.3 Computational Reflection

This section provides an overview of computational reflection, mostly follow-
ing the presentation of Boutin [2].

A computational reflection procedure consists of the following:

• A target syntax α, the set of terms to be rewritten by reflection.
Note that by ‘terms’ we do not mean first-order terms, but terms of
the theorem prover’s object language. Therefore, α may or may not be
a subset of the terms of the object language that encode propositions.

• Shadow syntaxes β1, ..., βk+1, the sets of terms into which elements
of α are reflected and manipulated.

• An evaluation function Vi : βi → α for each 1 ≤ i ≤ k, defined in
the object language, which provides the semantics for βi in terms of α.
In other words, each term bi ∈ βi can be thought of as ‘denoting’ the
term Vi(bi) ∈ α. To emphasize this relationship, we say that bi ∈ βi

16

is a reflection of a ∈ α in βi, and that a is the denotation of bi, if
Vi(bi) = a holds.

• A normalization function Ni : βi → βi+1 for each 1 ≤ i ≤ k, also
defined in the object language, which satisfies

` ∀bi ∈ βi. Vi+1(Ni(bi)) = Vi(bi)

where ‘`’ denotes provability in the theorem prover. This is the func-
tion which performs the desired rewriting.

• A reification function which, for any given a ∈ α, generates a cor-
responding paq ∈ β1 such that ` V1(paq) = a. Note that it may not
be possible to define the reification function in the object language, in
which case it must be implemented in the metalanguage instead.

In the simplest case, k = 1 and β1 = β2 = β for a single shadow syntax β.
Given these components and a goal φ[a] with occurrences of a term a : α
to be rewritten, computational reflection can be carried out in the following
steps:

1. Call the reification function with a to generate its reflection paq ∈ β1.

2. Use paq to state and prove V1(paq) = a.

3. Rewrite the goal to φ[V1(paq)] using the equality proven in step 2.

4. For each 1 ≤ i ≤ k, do: let φ[Vi(t)] be the current goal. Instantiate the
correctness lemma ∀bi ∈ βi. Vi+1(Ni(bi)) = Vi(bi) to Vi+1(Ni(t)) = Vi(t),
and rewrite the goal with instantiated equality to φ[Vi+1(Ni(t))].

After the final iteration at i = k, the goal is transformed to the form
φ[Vk+1(Nk(...N1(paq)...))]. The premise is that Vk+1(Nk(...N1(paq)...)) nor-
malizes to some a′ ∈ α that you want to replace a with, which allows you
to obtain the new goal φ[a′]. Precisely how that normalization takes place
depends on the details of the theorem prover. In provers based on dependent
type theory with an inherent notion of computation, you may simply unfold
the definitions of N1, ..., Nk and Vk+1 to obtain the new goal φ[a′] directly in
the proof state. In other provers, you may have to resort to indirect methods,
such as proving Vk+1(Nk(...N1(paq)...)) = a′ as a separate lemma or using
code extraction.

17

For illustration, let us consider a concrete example. Suppose you want
a tactic for normalizing Lean terms of the form m*n:nat, where m:nat and
n:nat are very large. Naively normalizing m*n by unfolding the definition
of nat multiplication is highly inefficient because nat is defined as unary
numbers. One possible solution is to reflect m and n into the type num (a type
which is isomorphic to nat, but much more efficient for computation due to
its binary representation), normalize the product, and reflect the result back
to nat. Following the scheme given above, we can obtain a computational
reflection tactic by setting

α := { m*n | m:nat, n:nat }
β1 := num×num
β2 := num

V1 := λ(x:num×num),(↑x.fst:nat)*(↑x.snd:nat)6

V2 := λ(x:num),(↑x:nat)
N1 := λ(x:num×num),x.fst*x.snd

pm*nq := ((↑x:num),(↑y:num))

There is a slight abuse of notation in the definitions above as we supply Lean
types and functions to fields that expect abstract sets and functions, but the
intended meaning is clear. Using this setup and following the steps given
above, any m*n:nat can be rewritten into ↑((↑m:num)*(↑n:num)):nat, and
the normalization of this new term is more efficient than that of m*n:nat as
intended.

All this may seem like much ado for nothing, considering that we can sim-
ply prove ∀x:nat,∀y:nat,x*y=(↑((↑x:num)*(↑y:num)):nat) and rewrite
with it to the same effect. But notice that this simpler solution works only
because we have chosen a restrictive α whose elements have only one possible
form of m*n. Suppose α was defined more liberally as, say, the set of all terms
that can be constructed with nat and multiplication (e.g., (k*(m*n))*m ∈ α).
Then computational reflection would still work provided that β1 is set to a
new inductive type isomorphic to this new target syntax, whereas it would
require an infinite number of lemmas to achieve the same effect with simple
rewriting.

6The upward arrow ↑ is Lean’s notation for coercion: when Lean sees a term ↑n:nat
for some n:num, Lean uses the types to figure out that a num is being coerced into a nat,
finds the instance of coercion from num to nat in the environment, and applies it to n to
obtain its corresponding nat.

18

Also, note that reflected decision procedures in Lean can be obtained as
a special case of computational reflection by setting

α := { P | P:Prop denotes a formula in L}
βi := An inductive type B_i which encodes L

Vi := A function V_i:B_i→Prop which sends any b_i:B_i

to a Prop which denotes a formula in L

Ni := A function N_i:B_i→B_Si that performs some part of

normalization to decidable formulas

pPq := b_1:B_1, where b_1 satisfies V_1 b_1 = P

Again, k+ 1 is the number of shadow syntaxes, i ranges over 0 ≤ i ≤ k, and
L is the language of the structure decided by the procedure. Then for any
goal P:Prop which denotes a formula in L, computational reflection replaces
it with a new goal V_Sk (N_k (. . . N_1(b_1) . . .)) for some b_1:B_1, and
normalizing this goal yields a decidable Prop. Quantifier-elimination based
decision procedures, in turn, are special cases where the functions N_1,...,N_k
removes all quantifiers from an input.

At a cursory glance, computational reflection can seem a convoluted way
of rewriting terms. Why go through the trouble of defining new types and
reflecting terms between them? The foremost reason is performance. In some
cases, it is actually possible to replicate everything that computational re-
flection does with just tactical rewriting (i.e., by rewriting φ[a1] with lemmas
a1 = a2, a2 = a3 ... an−1 = an to obtain φ[an]), but this generally results in
an undesirably large proof term. If a theorem prover is based on first-order
logic, it implicitly applies the rule

Γ ` φ[a1] ∆ ` a1 = a2
Γ,∆ ` φ[a2]

every time you rewrite a goal φ[a1] with an equality a1 = a2, and a more
complex analogue of the rule if it is based on a richer calculus. In other
words, the proof term grows by at least the size of formula φ with every
rewrite. If we assume that the number of rewrites is linear with the size
of the goal, then the computational complexity of the whole procedure is
O(n2). Computational reflection, on the other hand, always performs a fixed
number of rewrites, and relegates rest of the work to term evaluation.

19

The second important consideration is control. Even if computational
reflection is superior to tactical rewriting, there is no need to complicate
things with shadow syntaxes if a normalization function N1 can be defined
directly from α to α. But there are many cases in which this is not possible.
One obvious example is quantifier elimination — it’s impossible to define
a quantifier elimination function qe:Prop→Prop in, say, Lean or Coq, be-
cause the type of propositions is not an inductive type and has no recursion
principle, which prevents the use of any control statements in qe that de-
pend on the shape of the input formula. The toy tactic we discussed above
for normalizing products of natural numbers is another example that suffers
from the same problem: we cannot define a function norm:nat→nat which,
given an argument m*n:nat, exploits the fact that it is a product of m and
n and normalizes it in an intelligent way, because the only case analysis we
get from the two constructors of nat is between 0 and n+ 1. In other words,
computational reflection is useful because reflecting a term into the shadow
syntax equipped with the right kind of constructors gives you the ability to
access and manipulate the term’s internal structure.

3 Implementation

In this section, we discuss how decision procedures can be implemented in
Lean by computational reflection, using the tactic lia as a concrete example.
The following subsections assume that you know what a tactic monad is and
can read basic tactic notations, but are otherwise self-contained.

One aspect of implementation which we will not discuss in detail is the
formal proof: the largest part of the codebase of a typical reflection tactic will
be taken up by the correctness proof of its normalization functions, but such
proofs are not interesting since they stay entirely within the object language
and are just like any other proof in the given theorem prover. Therefore, we
focus on how to implement a working tactic given that the key correctness
lemmas are already proven.

3.1 Planning

Recall from Section 2.3 that computational reflection consists of five main
components: target syntax, shadow syntaxes, evaluation functions, normal-
ization functions, and reification function. The first step in implementing a

20

reflected decision procedure in a theorem prover is choosing the datatypes and
functions that you will use for each of these components. These datatypes
and functions don’t have to be concretely defined yet; all you need is a short
description of their requirements, which serves as a high-level plan for your
implementation. For instance, what components do we need for implement-
ing Cooper’s algorithm in Lean? One intuitive answer would be:

α := { P | P:Prop denotes a formula in LLIA}
β1 := An inductive type form which encodes LLIA

(i.e., whose constructors correspond to the

function and predicate symbols of LLIA)

V1 := A function form.eval:form→Prop which

maps any f:form to its corresponding Prop

N1 := A function qe:form→form that eliminates

quantifiers using Cooper’s algorithm

pPq := f:form, where f satisfies f.eval = P7

But this setup is impractical, because LLIA imposes too rigid a restriction on
how its terms can be constructed. For instance, −1 ∗x is a well-formed term
of LLIA, but −x is not; and we wouldn’t want a tactic that fails whenever
the latter occurs in the goal. More generally, if L is the language on which a
decision procedure is defined, the set of Props which denote formulas of L is
usually not a good target syntax, because decision procedures are typically
defined on highly restricted languages to simplify their correctness proofs. In
many cases, it is more convenient to define and use a new language L+ that
makes some sensible extensions to L by adding syntactic sugars. For lia, we
use the language LLIA+, whose terms and atoms are defined as:

t := i
∣∣∣ x ∣∣∣ i ∗ x ∣∣∣ x ∗ i ∣∣∣ − t ∣∣∣ t+ t

∣∣∣ t− t
a := t ≤ t

∣∣∣ i | t
where t ranges over terms, i over integer constants, x over integer variables,
and a over atoms. Note that LLIA+ does not include the predicate symbol -;
since Lean’s core library does not include a nondivisibility predicate, there is

7For any terms a:A and A.f:A→B, the notation a.f is a shorthand for A.f a:B.

21

no need to include a corresponding symbol in a language designed for accom-
modating Lean goals. There is a slight problem with using the set of Props
that denote formulas of LLIA+ as the target syntax, since Cooper’s algorithm
is not defined to work with its additional function symbols. This problem can
be solved by adding a normalization step that removes all syntactic sugars
from a formula of LLIA+ and returns an equivalent formula of LLIA. The
resulting setup is as follows:

α := { P | P:Prop denotes a formula in LLIA+}
β1 := An inductive type preform which encodes LLIA+

β2 := An inductive type form which encodes LLIA

V1 := A function preform.eval:preform→Prop which

maps any p:preform to its corresponding Prop

V2 := A function form.eval:form→Prop which maps

any f:form to its corresponding Prop

N1 := A function trim:preform→form that removes

the syntactic sugars of LLIA+

N2 := A function qe:form→form that eliminates

quantifiers using Cooper’s algorithm

pPq := p:preform, where p satisfies p.eval = P

In fact, the principal reason for accommodating multiple shadow syntaxes in
computational reflection is that it allows you to add this kind of preprocessing
step whenever necessary.

Now that the overall plan is fixed, we can start writing some concrete
Lean definitions. The definition of preform simply falls out of the definition
of LLIA+:

inductive preterm : Type

| const : int → preterm

| var : nat → preterm

| mulvar : int → nat → preterm

| varmul : nat → int → preterm

| neg : preterm → preterm

| add : preterm → preterm → preterm

| sub : preterm → preterm → preterm

22

inductive preform : Type

| le : preterm → preterm → preform

| dvd : int → preterm → preform

| true : preform

| false : preform

| not : preform → preform

| or : preform → preform → preform

| and : preform → preform → preform

| imp : preform → preform → preform

| iff : preform → preform → preform

| fa : preform → preform

| ex : preform → preform

The definition of preterm matches the definition of terms of LLIA+ exactly,
constructor-by-constructor, in the same order. Note that the definition uses
de Brujin indices, which means that each variable is represented by a nat. For
instance, the terms preterm.mulvar i n and preterm.varmul n i denote
terms i∗xn and xn∗i, where the variable xn is bound by the (n+1)th quantifier
encountered when traversing up the syntax tree from the variable. The con-
structors le, dvd, true, false, not, or, and, imp, iff, fa, ex en-
code the predicates and logical constants ≤, |,>,⊥,¬,∨,∧,→,↔, ∀, ∃, re-
spectively. The definition of preform.eval, which maps each constructor to
its corresponding function or predicate, is also straightforward:

def preterm.eval (l : list int) : preterm → int

| (preterm.const i) := i

| (preterm.var n) := l.inth n

| (preterm.mulvar i n) := i * (l.inth n)

| (preterm.varmul n i) := (l.inth n) * i

| (preterm.neg t) := -t.eval

| (preterm.add t1 t2) := t1.eval + t2.eval

| (preterm.sub t1 t2) := t1.eval - t2.eval

def preform.eval : list int → preform → Prop

| l (preform.le t1 t2) := t1.eval l ≤ t2.eval l

| l (preform.dvd i t) := i | t.eval l

| l preform.true := _root_.true8

| l preform.false := _root_.false

| l (preform.not p) := ¬(p.eval l)

23

| l (preform.or p q) := (p.eval l) ∨ (q.eval l)

| l (preform.and p q) := (p.eval l) ∧ (q.eval l)

| l (preform.imp p q) := (p.eval l) → (q.eval l)

| l (preform.iff p q) := (p.eval l) ↔ (q.eval l)

| l (preform.fa p) := ∀ x, p.eval (x::l)

| l (preform.ex p) := ∃ x, p.eval (x::l)

Note that the valuation of variables is given as a list of integers, which is
sufficient since each variable x is represented by a de Brujin index n, so you
can just look up the position n in the list to obtain the value of x. The only
nontrivial part is the evaluation of quantified formulas. Given a preform.ex

p:preform, it is clear that the result of evaluating it to Prop must have the
form ∃ x, P, but it is not obvious how we can define the quantified body P

to correctly include occurrences of the bound variable x. Passing valuations
encoded as lists as a side argument and updating them between recursive
calls is a clever solution used in Nipkow [8] which works well with de Brujin
indices: by adding x to the head of the list, the values of all other variables
are appropriately shifted by one position to accommodate the addition of a
quantifier, and the new x is correctly bound by the closest quantifier.

The definition of form is a bit less intuitive than that of preform:

inductive form : Type

| le : int → list int → form

| dvd : int → int → list int → form

| ndvd : int → int → list int → form

| true : form

| false : form

| not : form → form

| or : form → form → form

| and : form → form → form

| ex : form → form

The constructors le, dvd, and ndvd encode atomic formulas of LLIA in the

8_root_ is used to avoid ambiguities due to namespaces. Here, _root_.true un-
ambiguously refers to true:Prop instead of preform.true:preform.

24

following normal forms:

i ≤ c0 ∗ x0 + ...+ cn ∗ xn
i | j + c0 ∗ x0 + ...+ cn ∗ xn
i - j + c0 ∗ x0 + ...+ cn ∗ xn

Observe that any inequality atom of the form i ≤ c0 ∗x0 + ...+ cn ∗xn can be
completely characterized by a single integer i and a list of integers c0, ..., cn,
which is why the constructor le takes an integer and a list of integers as
arguments. Similarly, constructors dvd and ndvd take two integers and one
list of integers as arguments, which is sufficient for uniquely characterizing
any (non)divisibility atom. The main advantage of imposing these normal
forms on atoms is that it helps with the definition and correctness proof of
qe, the quantifier elimination function. As we have seen in Section 2.2, many
steps in Cooper’s algorithm involve performing calculations with (or making
changes to) the coefficient of the head variable (the variable to be eliminated)
in atoms, and exposing this coefficient at the head of a list considerably
simplifies operations on it. Also, notice that form does not have constructors
for implications, biconditionals, or universal quantifiers. This does not affect
the expressiveness of form since these logical constants can be eliminated
using the equivalences

P → Q ⇐⇒ ¬P ∨Q
P ↔ Q ⇐⇒ (P ∧Q) ∨ (¬P ∧ ¬Q)

∀x.P ⇐⇒ ¬∃x.¬P

and the absence of these constants makes it easier to define and verify qe by
reducing the number of cases to consider.

The evaluation function of form is very similar to that of preform:

def form.eval : list int → form → Prop

| l (form.le i is) := i ≤ l · is
| l (form.dvd i j is) := i | j + l · is
| l (form.ndvd i j is) := ¬(i | j + l · is)
| l form.true := _root_.true

| l form.false := _root_.false

| l (form.not f) := ¬(f.eval l)

| l (form.or f g) := (f.eval l) ∨ (g.eval l)

| l (form.and f g) := (f.eval l) ∧ (g.eval l)

| l (form.ex f) := ∃ x, f.eval (x::l)

25

where l · is denotes the dot product of l and is, defined by

def dot_prod : list int → list int → int

| [] [] := 0

| [] (_::_) := 0

| (_::_) [] := 0

| (i1::is1) (i2::is2) := (i1 * i2) + dot_prod is1 is2

infix `·` := dot_prod

The main takeaway from the contrast between preform and form is their
specialization for respective purposes: preform faithfully mirrors the struc-
ture of input formulas in order to allow lia work with a wider range of goals,
whereas form is optimized for performance and easy verification.

We omit the definition of normalization functions trim:preform→form

and qe:form→form, since trim involves tedious algebraic manipulations and
we have already discussed the algorithm of qe in Section 2.2. It suffices to
state their main correctness theorems:

theorem eval_trim (l : list int) (p : preform) :

(trim p).eval l ↔ p.eval l

theorem eval_qe (l : list int) (f : form) :

(qe f).eval l ↔ f.eval l

The only remaining component is the reification function, which we treat
separately in the next section.

3.2 Reification

Once we have fixed the target syntax α, the first shadow syntax β1, and its
evaluation function V1, the next step is implementing reification – i.e., writing
a tactic which replaces a given goal φ ∈ α with its equivalent V1(pφq), where
pφq ∈ β1 is the reflection of φ in β1. The hardest part in this step is stating
the correct subgoal V1(pφq) = φ; once this subgoal is stated, discharging it
by reflexivity and rewriting the goal with it is trivial. The simplest solution,
of course, is to prove the lemma

∀a ∈ α. V1(paq) = a

in the theorem prover, which would allow us to obtain the correct subgoal
by unifying a with the goal φ. But this is not generally possible, since the

26

reification function p.q is not always definable in the theorem prover’s object
language. To put it in informal terms, there are cases in which we cannot
state the theorem ‘for any a, evaluating result of reifying a is equal to a’,
because there is no way to express ‘the result of reifying a.’ In particular, this
is not possible for lia because we cannot (for reasons discussed in section
2.3) define a Lean function reify:Prop→preform that generates the right
p:preform for any given P:Prop.

For decision procedures in Lean, one possible solution to this problem
is to use the expr type. We can think of expr as the shadow syntax of
Lean’s object language, in the sense that Lean terms can be reified into its
reflection in expr, and exprs can be evaluated to obtain the Lean terms they
denote. The type expr is important for our purposes because a tx:expr

which denotes a term t:T encodes all relevant information about the term t.
Therefore, if we can’t perform recursion on an arbitrary goal P:Prop, we can
still achieve the same effect by recursion on the Px:expr which denotes P.

Here’s a series of steps that uses expr to perform reification for lia, in
informal terms:

1. Obtain Px:expr, the reflection of the goal P:Prop in expr.

2. Recurse on the structure of Px to obtain px:expr, the reflection of
p:preform in expr, which in turn is the reflection of P:Prop in preform.

3. Use px and Px to assert and prove p.eval [] ↔ P9

4. Rewrite the goal P into a new goal p.eval [] using the equivalence
proven in step 3.

The Lean tactic reify which carries out these steps is defined as:

meta10 def reify : tactic unit :=

do Px ← target,

px ← expr.to_preform Px,

apply (reify_aux px Px), skip

9We use the empty list here since it does not matter which list is used. Recall that
the list argument to preform.eval provides the valuation for free variables. Since
Cooper’s algorithm only works for sentences, we assume that lia is only called with
sentential goals, which means that the reflections of goals in preform are also sentences
whose truth values are unaffected by changes in variable valuations.

27

tactic.target11 is a tactic which returns the reflection of the current goal
in expr, so the first line Px ← target corresponds to step 1 where Px is
bound to the reflection of P in expr. The second line performs step 2, where
the tactic expr.to_preform is defined as

meta def expr.to_preterm : expr → tactic expr

| (var n) := return (app `(preterm.var) `(n))

| `(%%(var n) * %%ix) :=

return (app (app `(preterm.varmul) `(n)) ix)

| `(%%ix * %%(var n)) := . . .
| `(-%%tx) := . . .
| `(%%t1x + %%t2x) :=

do pt1x ← t1x.to_preterm,

pt2x ← t2x.to_preterm,

return (app (app `(preterm.add) pt1x) pt2x)

| `(%%t1x - %%t2x) := . . .
| ix := return (app `(preterm.const) ix)

meta def expr.to_preform : expr → tactic expr

| `(%%t1x ≤ %%t2x) :=

do pt1x ← t1x.to_preterm,

pt2x ← t2x.to_preterm,

return (app (app `(preform.le) pt1x) pt2x)

| `(%%ix | %%tx) := . . .
| `(true) := return `(preform.true)

| `(false) := . . .
| `(¬%%Px) := . . .
| `(%%Px ∨ %%Qx) :=

do px ← Px.to_preform,

qx ← Qx.to_preform,

return (app (app `(preform.or) px) qx)

| `(%%Px ∧ %%Qx) := . . .
| `(%%Px ↔ %%Qx) := . . .

10The keyword meta is used to mark definitions of metaprograms. Metaprograms differ
from regular Lean programs in important ways, including use of arbitrary recursive calls.
For more details, see Avigad, de Moura, and Roesch [1].

11We assume that namespaces expr and tactic are open, and freely drop prefixes in
the code examples.

28

| (pi _ _ `(int) Qx) :=

do qx ← Qx.to_preform,

return (app `(preform.fa) qx)

| `(%%Px → %%Qx) :=

do px ← Px.to_preform,

qx ← (Qx.lower_vars 1 1).to_preform,

return (app (app `(preform.imp) px) qx)

| `(Exists %%(lam _ _ _ Px)) :=

do px ← Px.to_preform,

return (app `(preform.ex) px)

| `(Exists %%Prx) :=

do px ← (app (Prx.lift_vars 0 1) (var 0)).to_preform,

return (app `(preform.ex) px)

| _ := failed

(Note that several match cases have their bodies abbreviated to . . ., because
they are very similar to that of other cases and hence redundant.) Parts
of the definition might not make sense if you’re not used to working with
exprs, so we’ll explain them one by one. As we mentioned in earlier dis-
cussions, expr.to_preform works by indirect recursion on expr. In other
words, instead of recursing on a Prop and returning a corresponding preform,
it recurses on the expr of a Prop and returns the expr of the corresponding
preform. This introduces some complications for pattern matching, because
expr does not have the right kind of constructors for our purposes. For in-
stance, the intuitive definition of expr.to_preform for the match case where
the argument is a disjunction would be:

| (Px ∨ Qx) :=

do px ← Px.to_preform,

qx ← Qx.to_preform,

. . .

where you would then construct the return value using px and qx. But this
is not possible, since ∨ is not a constructor of expr. To work around this
problem, we use two features of Lean metaprogramming called quotation and
antiquotation:

• For any term t:T, the term `(t):expr is the reflection of t in expr. In
other words, the denotation of `(t) is t. `(t) is called the quotation
of t.

29

• For any x:expr such that x denotes some t:T, appending %% to x

gives back the denotation of x, such that %%x = t. %%x is called the
antiquotation of x. Note that antiquotations can only be used inside
quotations.

Quotations and antiquotations enable a much more intuitive kind of pattern
matching on exprs; instead of dealing with the low-level details of the in-
ductive definition of expr, we can case-analyze according to what each expr

denotes. The disjunction match case in expr.to_preform, for instance, can
be defined as

| `(%%Px ∨ %%Qx) :=

do px ← Px.to_preform,

qx ← Qx.to_preform,

. . .

Let’s take a close look at what happens in this case. Suppose expr.to_preform
is applied to the argument x:expr, where x denotes the proposition P ∨ Q.
When the pattern `(%%Px ∨ %%Qx) is unified with x, their denotations must
agree after unification, so %%Px and %%Qx are unified with propositions P and
Q, respectively. By definition of antiquotations, this means that the exprs
Px and Qx denote P and Q, respectively. Therefore, Px and Qx are precisely
the arguments we need for recursive calls to expr.to_preform.

We also need to pay attention to how the return value is constructed,
since the return type is expr and not preform. expr.app is the constructor
of expr which encodes function application. In other words, if fx:expr

denotes f:A→B and ax:expr denotes a:A, then app fx ax:expr denotes
f a:B. Similarly, app (app `(preform.or) px) qx denotes preform.or

p q, provided that px and qx denote p:preform and q:preform.
The match cases for quantifiers are a bit more complicated due to a

number of subtle pitfalls. Notice, for instance, that the match cases are out
of their usual order and places the case for universal quantifier (with the
constructor expr.pi) before that of implication. Reification breaks down
if this order is reversed, because both universal formulas and implications
are instances of Π-types in Lean’s dependent type theory (the proposition
P→Q is just a shorthand for Πx:P,Q) and the pattern `(%%Px→%%Qx) will
indiscriminately match both kinds of formulas. Also, the argument of Exists
can be either a lambda term (e.g., Exists (λx:int,0≤x)) or a partially
applied predicate (e.g., Exists (int.le 0)), so we need two separate match
cases to accommodate them.

30

One of the principal reasons for using de Brujin indices in preform is that
expr is also defined using them. This similarity helps reification (note the
simplicity of the first match case of expr.to_preterm), but the downside
of de Brujin indices is that you have to make minute modifications to make
sure that they are always bound by the same quantifier. In the implication
case of expr.to_preform, for instance, the indices in the consequent Qx

have to be decremented using expr.lower_vars before recursive call because
implication counts as a variable binder in expr, (due to the conflation of
implications and universal quantifiers explained above), but not in preform.
The second match case for existential formulas uses expr.lift_vars for
similar reasons.

We now turn to the last line of reify, which carries out steps 3 and 4:

apply (reify_aux px Px), skip

Before getting into details, let’s think about how you’d perform steps 3 and 4
if you were in interactive mode instead of programming a tactic. Given that
the goal is P:Prop and its reflection p:preform is available in the context,
the following would do the trick:

apply (@iff.elim_left (p.eval []) P (iff.refl _))

Therefore, it suffices to write a tactic that has the same effect as the interac-
tive one-liner above. The main difference between the interactive and non-
interactive versions of apply is that the latter requires an expr argument,
so we need to construct an expr that denotes the term @iff.elim_left

(p.eval []) P (iff.refl _). This is precisely what reify_aux does,
which is defined as:

meta def reify_aux (px Px : expr) : expr :=

app_of_list `(@iff.elim_left)

[(app `(preform.eval []) px), Px, (app `(iff.refl) Px)]

The final skip does not do anything, and is only added to ensure that reify
has the right type.

3.3 Discharging Goals

After reifying the goal and rewriting with correctness lemmas of normalizing
functions, we obtain a goal of the form Vk+1(Nk(...N1(pφq)...). In case of
lia, this means we replace a goal P:Prop that denotes a formula of LLIA+

31

with (qe f).eval [] for some f:form. Since qe f is a QFE of f, and QFEs
of sentences of LLIA+ are decidable, it should be possible to automatically
discharge the goal (qe f).eval [] provided that it is a true sentence of
linear integer arithmetic. The actual implementation of this step, however,
is subject to some important caveats.

The standard way to deal with decidable propositions in Lean is to use
the class decidable, which is defined as:

class inductive decidable (p : Prop)

| is_false (h : ¬p) : decidable

| is_true (h : p) : decidable

Intuitively, if you have a term t:decidable P for some P:Prop, you have a
proof of either P or ¬P. Since decidable is a class, this means that you can
automatically obtain a proof of either P or ¬P by typeclass inference, provided
that an instance of type decidable P is available in the environment.

The easiest way to prove decidable and true propositions in Lean is to
use the tactic exact_dec_trivial. Given a goal P:Prop, the tactic works
by the following steps: first, it attempts to synthesize a term t:decidable

P by typeclass inference. If it succeeds, it proceeds to pattern match on
t. If t reduces to is_false _, the tactic fails; if t reduces to is_true

h for some h:P, it applies h to close off the goal. Therefore, in order to
use exact_dec_trivial for discharging goals of the form (qe f).eval [],
Lean must be able to (1) synthesize t:decidable ((qe f).eval []) for any
f:form, and (2) reduce the synthesized t to either is_false h or is_true
h for some h. Condition (1) can be easily met by providing a few lemmas
and instances. First, define a predicate qfree to express that a form is
quantifier-free :

def qfree : form → Prop

| (form.not f) := qfree f

| (form.or f g) := qfree f ∧ qfree g

| (form.and f g) := qfree f ∧ qfree g

| (form.ex _) := false

| _ := true

Then show that qe f is always quantifier-free, and also that the result of
evaluating any quantifier-free f:form is decidable:

theorem qfree_qe : ∀ f : form, qfree (qe f)

32

theorem dec_eval_of_qfree : ∀ f : form, qfree f →
∀ l : list int, decidable (f.eval l)

This gives the instance that Lean can use to synthesize necessary decidability
term for any f.

instance dec_eval_qe (f : form) (l : list int) :

decidable ((qe f).eval l) :=

dec_eval_of_qfree _ (qfree_qe _) _

Condition (2) is more tricky to meet, because it concerns the evalua-
tion behaviour of Lean which users have little direct control over. Although
evaluation of any non-meta Lean term always terminates, the normal form
of t:decidable ((qe f).eval []) is not guaranteed to be is_false h or
is_true h. The main problem here is well-founded recursion, which Lean
does not always know how to unfold correctly. For example, one of the earlier
versions of lia had a bug which prevented automatic discharging of goals us-
ing exact_dec_trivial. The culprit was the NNF-transformation function
used in qe, which was defined as

def nnf : form → form

. . .
| (form.not (form.not f)) := nnf f

| (form.not (form.or f g)) :=

form.and (nnf f.not) (nnf g.not)

| (form.not (form.and f g)) :=

form.or (nnf f.not) (nnf g.not)

. . .

(Match cases not relevant to the discussion are omitted.) Notice that nnf uses
non-structural recursion (recursive calls with indirect subformulas) when the
argument is a negation, which introduced well-founded recursion and caused
the evaluation of decidability terms to prematurely terminate. Although such
error may seem obvious in hindsight, it requires tedious code inspection to
spot once it is introduced, and there seems to be no easy way to automate
the debugging process (e.g., an option which displays all definitions in a file
with well-founded recursion) at the moment. So the best one can do is to
adhere to simple structural recursion whenever possible.

Once conditions (1) and (2) are satisfied, exact_dec_trivial can be used
to automatically discharge quantifier-eliminated goals, but there still remain

33

concerns regarding its performance. exact_dec_trivial relies on the ker-
nel to evaluate decidability terms, which means it actually proves that the
result of evaluation is equal to the original term. Although this is inevitable
for proof synthesis and is the behaviour that you usually want, there may
be exceptional circumstances where you must maximize performance at the
expense of rigour. In such cases, we may opt to evaluate decidability terms
via Lean’s VM (virtual machine) instead. VM evaluation is much faster than
kernel evaluation because it does not retain any information about types or
proofs; the downside is that the user must trust the VM to correctly imple-
ments Lean’s evaluation rules. The VM analogue of exact_dec_trivial is
defined as follows:

meta def vm_dec_eval : tactic unit :=

do `((qe %%fx).eval []) ← target,

f ← eval_expr form fx,

match (dec_eval_qe f []) with

| (is_true _) := admit

| _ := failed

end

Assuming that vm_dec_eval is called with the goal (qe f).eval [], the
first line binds fx:expr to the expr which denotes f. The next line f ←
eval_expr form fx makes f available inside the tactic. If dec_eval_qe

f [] evaluates to is_true _, the goal is closed off by admit, the tactic
for admitting a goal without a proof term.12 In the other case, the tactic
simply fails. Although the way vm_dec_eval works is very similar to that of
exact_dec_trivial, it is much faster because it is a metaprogram evaluated
by the VM.

4 Test Results

When beginning work on this project, there was considerable skepticism re-
garding whether computational reflection is the right approach for automat-
ing linear integer arithmetic. The main concern was that evaluation of large

12The justification for using admit in this case is that, if a term is_true h has
the type decidable ((qe f).eval []), then the term h must have the type (qe
f).eval []. This reasoning, of course, relies on the crucial assumption that the evalu-
ation to is_true h was performed correctly by the VM.

34

goals with Lean’s kernel might be impractically slow. In order to assess the
feasibility of reflected decision procedures in Lean, the tactic lia was tested
using a sample of 50 sentences of linear integer arithmetic. Some typical
examples used in the test are as follows (see Appendix A for the full list):

ex02 : ∀ x y : int, (x ≤ 5 ∧ y ≤ 3) → x + y ≤ 8

ex06 : ∀ x : int, (x = -5 ∨ x = 7) → ¬x = 0

ex16 : ∀ x : int, (∃ y : int, 2 * y + 1 = x) →
¬∃ y : int, 4 * y = x

ex23 : ∀ x : int, (x < 43 ∧ x > 513) → ¬x = x

ex24 : ∀ x : int, ∃ y : int, x = 3 * y - 1 ∨
x = 3 * y ∨ x = 3 * y + 1

Notice that the examples include symbols not in LLIA+, such as <,=, and
>. The version of lia used in the test included some minor optimizations on
top of the baseline version whose code we discussed in Section 3, including
a preprocessor that eliminates syntactic sugars and the use of more efficient
datatypes. All tests were performed on an Intel Core i7-7500U CPU machine
with 8 gigabytes of RAM. In a batch test using examples 1-34, lia took
12.536 seconds to discharge all goals, with an average of ≈ .36874 seconds
per goal. Although it’s hard to tell how this compares to other tactics with-
out running a controlled experiment, it’s fast enough to save time for users
working with integer arithmetic, and surprising given the pessimistic initial
expectations regarding kernel evaluation. Here’s the detailed breakdown of
execution time from Lean’s profiler, with uninteresting entries omitted for
legibility:

12536ms 100.0% lia

8801ms 70.2% tactic.to_expr

8771ms 70.0% tactic.exact_dec_trivial._lambda_2

8771ms 70.0% tactic.interactive.exact

3754ms 29.9% reify

3438ms 27.4% reify._lambda_2

3435ms 27.4% tactic.try

3435ms 27.4% tactic.try_core

3434ms 27.4% tactic.interactive.propagate_tags

3434ms 27.4% tactic.interactive.simp_core

3157ms 25.2% tactic.interactive.simp_core_aux

3156ms 25.2% tactic.interactive.simp_core_aux._lambda_5

35

3156ms 25.2% tactic.simp_target

3147ms 25.1% tactic.simplify

The amount of time spent in reify is notable; before the test, it was expected
that 90% or more of the total execution time would be spent in the kernel
evaluation of exact_dec_trivial. In fact, the initial figures observed during
early stages of development were close to 90%, but subsequent optimizations
brought the percentage down to around 70. Furthermore, it seems that
most of the reification time is taken up by the simplifier, which was used for
elimination of syntactic sugars. This suggests that rewriting reify to be less
reliant on the simplifier (e.g., by extending preterm and performing more
syntactic sugar elimination with trim) may bring significant performance
improvements.

For comparison, the same setup and examples were also used to test
lia_vm, an alternative version of lia that is identical to lia in all respects
except that it uses VM evaluation. Its total execution time clocked at 4.309
seconds, with the following breakdown:

4309ms 100.0% lia_vm

3616ms 83.9% reify

3318ms 77.0% reify._lambda_2

3318ms 77.0% tactic.try

3318ms 77.0% tactic.try_core

3317ms 77.0% tactic.interactive.propagate_tags

3317ms 77.0% tactic.interactive.simp_core

3057ms 70.9% tactic.interactive.simp_core_aux

3056ms 70.9% tactic.interactive.simp_core_aux._lambda_5

3056ms 70.9% tactic.simp_target

3045ms 70.7% tactic.simplify

391ms 9.1% vm_dec_eval

355ms 8.2% tactic.to_expr

351ms 8.1% dec_eval_qe

285ms 6.6% tactic.exact_dec_trivial._lambda_2

285ms 6.6% tactic.interactive.exact

The overall pattern in the result is as expected, with a steep decrease in
time spent evaluating goals (vm_dec_eval). Although a threefold increase
in performance is a disappointing payoff for giving up proof synthesis, this
was expected since reification already took one third of the total time for

36

lia, with which lia_vm shares the same reify tactic. If these results are
representative, lia_vm would not be worth using for goals that lia proves
under standard settings. At the same time, it suggests that the difference
could be much more pronounced for harder goals, where the proportion of
time spent in reification is smaller. In order to test this hypothesis, a separate
test was performed using the harder examples 35-41, with the time limit
increased to 1000000 (the default is 100000). In this test, lia_vm took a
total of 55.406 seconds to prove all goals. The result for lia, however, was
somewhat unexpected: it failed for all examples, but timed out for only
one (36), and ran into either deep recursion or memory limit for all others.
Therefore, the hypothesis regarding execution time could not be confirmed,
but it still seems safe to say that there is a dramatic performance difference
between lia and lia_vm for more difficult goals.

Finally, since lia_vm does not produce proofs and runs the risk of admit-
ting false goals, a separate test was performed using the nontheorem examples
42-50. In this test, lia_vm failed as expected for all goals in 2.547 seconds.

5 Conclusion and Future Work

In this thesis, we outlined the main steps for implementing a decision proce-
dure as a Lean tactic via computational reflection, and demonstrated that it
is a viable approach to automation in Lean. One obvious direction in which
we could extend this work is to implement more reflected decision procedures
in Lean; since a large part of lia’s codebase can be reused for this purpose,
it would take minimal effort to implement a tactic for, say, linear arithmetic
over natural numbers.

Furthermore, the application of computation reflection is not limited to
decision procedures: as we mentioned in Section 2.3, it can be used for
virtually any kind of computational rewriting where the equivalence between
the input and output can be proven. A potential alternative application
would be a tactic that performs algebraic manipulations similar to computer
algebra systems, for which there is high demand in the developer community
working on Lean’s standard math library.

Another related but more challenging goal would be to remove the limita-
tions in the goal-discharging step. In the current version of lia, the only two
options for closing off a quantifier-eliminated goal are either complete proof
synthesis by kernel evaluation, or taking the result of VM evaluation on trust.

37

In many situations, it would be attractive to have a middle-ground solution
that is faster than the kernel but provides at least a partial ground for trust
– e.g., a verified evaluator like Coq’s vm_compute. lia is also limited in that
both the kernel and VM options for discharging goals are entirely automatic,
which means it either succeeds completely or makes zero progress. If it were
possible to step through intermediate stages of evaluation or switch to inter-
active mode after evaluating as much as possible, the tactic could offer useful
information even in cases where it cannot prove a goal by itself.

6 Related Works

This thesis was most directly influenced by Nipkow [8], whose definitions and
statements of theorems were ported to Lean and formed the basis of lia. This
work is particularly interesting for its use of Isabelle’s locales to factor out
the common components of QEPs, which could save a significant amount of
work when implementing multiple QEPs. The informal proofs in Section 2
and the formal correctness proofs of lia mostly follow those of Harrison [6].
Avigad et al. [1] is a comprehensive introduction to programming in Lean,
including the tactic programming techniques used in Section 3.

Computational reflection was first proposed by Boyer and Moore [3].
Boutin [2] is an accessible introduction which gives intuitive explanations
of the strengths of the technique. Empirical support for performance claims
made in Section 2.3 can be found in Chaieb and Nipkow [4], which imple-
ments Cooper’s algorithm in Isabelle/HOL twice, once in tactic style and
and once via computational reflection, and shows the latter to be faster by
1-2 orders of magnitude.

7 References

[1] Jeremy Avigad, Leonardo de Moura, and Jared Roesch. Programming
in lean, Dec 2016. https://leanprover.github.io/programming_in_
lean/programming_in_lean.pdf.

[2] Samuel Boutin. Using reflection to build efficient and certified deci-
sion procedures. In International Symposium on Theoretical Aspects of
Computer Software, pages 515–529. Springer, 1997.

38

[3] Robert S Boyer and J Strother Moore. Metafunctions: Proving them
correct and using them efficiently as new proof procedures. Technical
report, SRI INTERNATIONAL MENLO PARK CA COMPUTER SCI-
ENCE LAB, 1979.

[4] Amine Chaieb and Tobias Nipkow. Proof synthesis and reflection for
linear arithmetic. Journal of Automated Reasoning, 41(1):33, 2008.

[5] David C Cooper. Theorem proving in arithmetic without multiplication.
Machine intelligence, 7(91-99):300, 1972.

[6] John Harrison. Handbook of practical logic and automated reasoning.
Cambridge University Press, 2009.

[7] Pattie Maes. Computational reflection. The Knowledge Engineering
Review, 3(1):1–19, 1988.

[8] Tobias Nipkow. Linear quantifier elimination. J. Automated Reasoning,
45:189–212, 2010.

[9] Mojzesz Presburger. Uber die vollstandigkeiteines gewissen systems der
arithmetik ganzer zahlen, in welchen die addition als einzige operation
hervortritt. In Comptes-Rendus du ler Congres des Mathematiciens des
Pays Slavs, 1929.

[10] Alfred Tarski. A decision method for elementary algebra and geometry.
1951.

A List of Test Cases

ex01 : ∀ x : int, x ≤ -x → x ≤ 0

ex02 : ∀ x y : int, (x ≤ 5 ∧ y ≤ 3) → x + y ≤ 8

ex03 : ∀ x y z : int, x < y → y < z → x < z

ex04 : ∀ x y z : int, x - y ≤ x - z → z ≤ y

ex05 : ∀ x : int, (x = 5 ∨ x = 7) → 2 < x

ex06 : ∀ x : int, (x = -5 ∨ x = 7) → ¬x = 0

ex07 : ∀ x : int, 31 * x > 0 → x > 0

ex08 : ∀ x y : int, (-x - y < x - y) →
(x - y < x + y) → (x > 0 ∧ y > 0)

39

ex09 : ∀ x : int, (x ≥ -1 ∧ x ≤ 1) →
(x = -1 ∨ x = 0 ∨ x = 1)

ex10 : ∀ x : int, ∃ y : int, x = 2 * y ∨ x = (2 * y) + 1

ex11 : ∀ x : int, 5 * x = 5 → x = 1

ex12 : ∀ x y : int, ¬(2 * x + 1 = 2 * y)

ex13 : ∀ x y z : int, (2 * x + 1 = 2 * y) → x + y + z > 129

ex14 : ∃ x y : int, 5 * x + 3 * y = 1

ex15 : ∀ x y : int, x + 2 < y →
∃ z w : int, (x < z ∧ z < w ∧ w < y)

ex16 : ∀ x : int, (∃ y : int, 2 * y + 1 = x) →
¬∃ y : int, 4 * y = x

ex17 : ∀ x y z : int, x = y → y = z → x = z

ex18 : ∀ x : int, x < 349 ∨ x > 123

ex19 : ∀ x y : int, x ≤ 3 * y → 3 * x ≤ 9 * y

ex20 : ∃ x : int, 5 * x = 1335

ex21 : ∃ x y : int, x + y = 231 ∧ x - y = -487

ex22 : ∃ x y : int, 32 * x = 2023 + y

ex23 : ∀ x : int, (x < 43 ∧ x > 513) → ¬x = x

ex24 : ∀ x : int, ∃ y : int, x = 3 * y - 1 ∨
x = 3 * y ∨ x = 3 * y + 1

ex25 : ∀ a : int, ∃ b : int, a < 4 * b + 3 * a ∨
(¬(a < b) ∧ a > b + 1)

ex26 : ∃ x y : int, x > 0 ∧ y ≥ 0 ∧ 3 * x - 5 * y = 1

ex27 : ∃ x y : int, x ≥ 0 ∧ y ≥ 0 ∧ 5 * x - 6 * y = 1

ex28 : ∃ x y : int, x ≥ 0 ∧ y ≥ 0 ∧ 5 * x - 3 * y = 1

ex29 : ∃ x y : int, x ≥ 0 ∧ y ≥ 0 ∧ 3 * x - 5 * y = 1

ex30 : ∃ a b : int, ¬(a = 1) ∧ ((2 * b = a) ∨
(2 * b = 3 * a + 1)) ∧ (a = b)

ex31 : ∀ x : int, ∃ y : int, x = 5 * y - 2 ∨ x = 5 * y - 1 ∨
x = 5 * y ∨ x = 5 * y + 1 ∨ x = 5 * y + 2

ex32 : ∀ x y : int, 6 * x = 5 * y → ∃ d : int, y = 3 * d

ex33 : ∀ x : int, ¬(∃ m : int, x = 2 * m) ∧
(∃ m : int, x = 3 * m + 1) ↔
(∃ m : int, x = 12 * m + 1) ∨
(∃ m : int, x = 12 * m + 7)

ex34 : ∀ x y : int, (∃ d : int, x + y = 2 * d) ↔
((∃ d : int, x = 2 * d) ↔ (∃ d : int, y = 2 * d))

ex35 : ∀ x : int, x > 5000 →

40

∃ y : int, y ≥ 1000 ∧ 5 * y < x

ex36 : ∀ x : int, (∃ y : int, 3 * y = x) →
(∃ y : int, 7 * y = x) → (∃ y : int, 21 * y = x)

ex37 : ∀ y : int, (∃ d : int, y = 65 * d) →
(∃ d : int, y = 5 * d)

ex38 : ∀ n : int, 0 < n ∧ n < 2400 →
n ≤ 2 ∧ 2 ≤ 2 * n ∨
n ≤ 3 ∧ 3 ≤ 2 * n ∨
n ≤ 5 ∧ 5 ≤ 2 * n ∨
n ≤ 7 ∧ 7 ≤ 2 * n ∨
n ≤ 13 ∧ 13 ≤ 2 * n ∨
n ≤ 23 ∧ 23 ≤ 2 * n ∨
n ≤ 43 ∧ 43 ≤ 2 * n ∨
n ≤ 83 ∧ 83 ≤ 2 * n ∨
n ≤ 163 ∧ 163 ≤ 2 * n ∨
n ≤ 317 ∧ 317 ≤ 2 * n ∨
n ≤ 631 ∧ 631 ≤ 2 * n ∨
n ≤ 1259 ∧ 1259 ≤ 2 * n ∨
n ≤ 2503 ∧ 2503 ≤ 2 * n

ex39 : ∀ z : int, z > 7 → ∃ x y : int,

x ≥ 0 ∧ y ≥ 0 ∧ 3 * x + 5 * y = z

ex40 : ∃ w x y z : int, 2 * w + 3 * x + 4 * y + 5 * z = 1

ex41 : ∀ x : int, x ≥ 8 → ∃ u v : int,

u ≥ 0 ∧ v ≥ 0 ∧ x = 3 * u + 5 * v

ex42 : ∀ x y : int, x ≤ y → 2 * x + 1 < 2 * y

ex43 : ∀ a b : int, ∃ x : int, a < 20 * x ∧ 20 * x < b

ex44 : ∃ y : int, ∀ x : int, x + 5 * y > 1 ∧
13 * x - y > 1 ∧ x + 2 < 0

ex45 : ∃ x y : int, 5 * x + 10 * y = 1

ex46 : ∀ x y : int, x ≥ 0 ∧ y ≥ 0 →
12 * x - 8 * y < 0 ∨ 12 * x - 8 * y > 2

ex47 : ∃ x y : int, x ≥ 0 ∧ y ≥ 0 ∧ 6 * x - 3 * y = 1

ex48 : ∀ x y : int, ¬(x = 0) →
5 * y < 6 * x ∨ 5 * y > 6 * x

ex49 : ∀ x y : int, ¬(6 * x = 5 * y)

ex50 : ∃ a b : int, a > 1 ∧ b > 1 ∧ ((2 * b = a) ∨
(2 * b = 3 * a + 1)) ∧ (a = b)

41

Examples 1-41 are theorems, (roughly) in the order of increasing difficulty.
1-15 are easy theorems that can be proven by any version of lia, including
the non-optimized prototype (now deprecated). 16-34 are medium difficulty
theorems solved by the current version of lia under standard settings. 35-41
are hard theorems included for tests under increased time settings. 42-50
are nontheorems used for testing the soundness of lia_vm. Examples 1-11,
16-24, and 35 are my own; the rest are from Harrison [6].

42

