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The year 2012 marked the centennial of Alan Turing’s birth, with confer-
ences, articles, broadcasts, and celebrations in his honor. The popular media
has embraced Turing, and even in staid academic circles his status borders
on sainthood. In an essay in the collection under review, Jonathan Swinton
sums up the state of affairs nicely:

Propelled by a brilliant biography (Hodges, 1992), the awareness
of Turing as an iconic, field-defining figure passed from logicians
and philosophers, through gay rights activists, applied mathe-
maticians, cryptographers, artificial lifers, mainstream computer
scientists, and into popular scientific culture, where he is now
firmly established as a boffin of fiction, stage, and screen.

Some may wonder whether the level of praise that has been lavished
on Turing is justified. Yes, the 1936 paper in which he defined what are
now known as Turing machines is a landmark in the history of science,
but other logicians at the time were involved in the development of formal
models of computation, including Herbrand, Gödel, Post, and Church. And,
although Turing played an important part in the development of the modern
electronic computer, his role should not be overstated: a number of early
computing devices were built from the late 1930’s to mid-1940’s with little or
no influence of Turing’s early foundational work, and the real history involves
a complex mix of theoretical and practical insights, with contributions from
a substantial cast of researchers and engineers alongside Turing. Finally,
although the hideous abuses that Turing was subjected to as a homosexual
in postwar Britain are made even more ironic by the role he played in helping
the allies win the war, those abuses are no more morally offensive than those
suffered by countless others whose lives are left uncelebrated. With all this
in mind, it is reasonable to ask: was all the hoopla really called for?

One need only sit down with Turing’s work for an hour or two, however,
to find such doubts pushed aside. His papers are full of technical detail, but
are surprisingly easy to read. His writing is careful and methodical, but even
after all these years the work feels creatively fresh and original. He dealt
with weighty topics and raised important questions, but relied on technical
mastery and a good deal of hard work to back up his answers. When we read
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his original papers, we get a sense of Turing as an accomplished mathemati-
cian and scientist, one whose philosophical disposition, talent, and drive are
well worth celebrating.

One of many publications designed to mark the centennial is Alan Tur-
ing: His Work and Impact, a collection that surrounds some of Turing’s
most important works with a mixture of scholarly commentary, introduc-
tory background, historical and scientific surveys, and personal reflections.
These supporting essays are written by notable researchers in mathematics,
computer science, logic, biology, cognitive science, and philosophy, as well
as a few who knew Turing personally.

It may be helpful to compare Work and Impact to the Collected Works of
A. M. Turing, the four volumes of which appeared between 1992 and 2001.
Whereas the Collected Works was more than forty years in the making, Work
and Impact was completed in less than three. And whereas the Collected
Works is regimented and carefully edited, Work and Impact is a much more
heterogeneous sprawl, ranging from expositions of Turing’s work itself to
personal accounts of the effects that Turing’s contributions have had on some
of the essayists. According to the introduction, Work and Impact encourages
“a visceral engagement” with Turing’s work, and reflects “a personal organic
involvement” on the part of many of the authors. Reading the work of a
seminal and visionary thinker inevitably encourages one to try one’s own
hand at speculation, and there is no shortage of that, either. For all it
offers, the price is quite reasonable: you can have all 944 pages of Work and
Impact adorning your coffee table, in hardcover, for under $75. (It is worth
mentioning that there is also a smaller, more focused collection published
by Clarendon Press: The Essential Turing features a selection of Turing’s
most important works, edited by B. Jack Copeland with helpful introductory
notes.)

Turing is best known for his work on computability, the “Turing test,”
and his contributions to the British war effort in decrypting messages en-
coded by the German Enigma. But his collected works contain contributions
to a much broader array of topics, both pure and applied. The Collected
Works is divided into four volumes:

1. Mathematical logic

2. Pure mathematics

3. Mechanical intelligence

4. Morphogenesis
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The four parts of Work and Impact roughly mirror these divisions, but with
more colorful and descriptive labels:

1. How do we compute? What can we prove?

2. Hiding and unhiding information: cryptography, complexity, and num-
ber theory

3. Building a brain: intelligent machines, practice, and theory

4. The mathematics of emergence: the mysteries of morphogenesis

In the collection, more than 80 surveys and commentaries supplement two
dozen or so of Turing’s original works. Space does not allow me to discuss
all of the supporting essays, but I will try to convey a sense of the range of
topics they address, and pass along some of the observations and comments
that caught my attention. Some of the more speculative pieces stand in stark
contrast to Turing’s deliberate, measured style of writing, and I generally
preferred the more conservative analyses, as well as the essays that help
situate Turing’s work within our current scientific understanding. But these
preferences should not be interpreted as a value judgment: like the seven-
season run of Mad Men, everyone spending time with Work and Impact will
have their favorite parts, and it is often more interesting to talk about the
general plot lines rather than the individual scenes.

Part I contains Turing’s work on logic and computability. It begins
with the 1936 classic, “On computable numbers, with an application to
the Entscheidungsproblem,” which introduced what are now known as Tur-
ing machines. This is followed by a 1937 paper, “Computability and λ-
definability,” which demonstrates the equivalence of Turing computability
with Church’s notion of computability by λ-terms, and the Herbrand-Gödel-
Kleene notion of a general recursive function. In the years after World War
II, these papers played a key role in laying the foundations for a theory of
computation, which was needed to make sense of and support the technol-
ogy that has transformed our lives so dramatically. These early works are
so iconic that providing informative commentary is no easy to task, but a
number of essays in the collection rise to the occasion.

It is interesting to note, however, that Turing’s early work dealt with the
foundations of mathematics as much as with the foundation of computing.
In the wake of Gödel’s discovery of the incompleteness phenomena, Turing
wrote papers on truth and ordinal logics, which provide ways of extending
a formal system with stronger axioms. These are helpfully explained in
articles by Michael Rathjen, Solomon Feferman, and Philip Welch. Turing
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was interested not only in logical strength but in the expressivity of formal
languages, as is made clear in his essays “Practical forms of type theory,”
and “The reform of mathematical notation and phraseology.” The latter
begins amusingly as follows:

It has long been recognised that mathematics and logic are vir-
tually the same and that they may be expected to merge imper-
ceptably into one another. Actually this merging process has not
gone all that far, and mathematics has profited very little from
researches in symbolic logic. The chief reasons for this seem to be
a lack of liaison between the logician and the mathematician-in-
the-street. Symbolic logic is a very alarming mouthful for most
mathematicians, and the logicians are not very much interested
in making it more palatable. It seems however that symbolic
logic has a number of small lessons for the mathematician which
may be taught without it being necessary for him to learn very
much of symbolic logic.

The particular small lessons Turing discusses in this essay involve ways that
Church’s simple type theory provides a good framework to encode ordinary
mathematical assertions and make them precise. In his associated commen-
tary, Stephen Wolfram underscores the importance and difficulty of making
sense of informal notation, and relates the challenge to the design of com-
puter algebra systems.

Part II, which surveys the range of Turing’s mathematical contributions
outside of logic and the theory of computability, offers more surprises to
those only casually familiar with Turing’s work. For example, few may be
aware that, as an undergraduate, Turing did substantial work in probability.
After attending a series of lectures in 1933 in which the astrophysicist Sir
Arthur Stanley Eddington noted that repeated experimental measurements
are often normally distributed, Turing set himself the task of providing a
rigorous explanation. Within a few months, he had proved a general form of
the central limit theorem for independent but not necessarily identically dis-
tributed variables. What he had discovered was a version of a theorem that
the Finnish mathematician Lindeberg has proved 12 years earlier, as well as
part of a converse, due to Feller and Lévy, which had not yet been published
at the time. These results are now textbook standards, and fundamental to
modern probability. And Turing discovered them as an undergraduate.

Others will be pleased to learn that Turing had a longstanding interest
in the Riemann zeta hypothesis, an interest he shared with Littlewood’s
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student, Stanley Skewes, a regular rowing partner of his in Cambridge. Tur-
ing introduced a number of important ideas, including algorithmic methods
for computing the zeros of the zeta function that are now standard in com-
putational branches of analytic number theory. Denis Hejhal and Andrew
Odlyzko do a fine job of explaining the intricacies of Turing’s methods, but
the take-away message is that Turing was no mere dabbler: when he picked
up a problem, he threw himself into it, with ingenuity and hard work.

Part II contains excerpts from, and commentaries on, Turing’s 1940 pa-
per on the Enigma. It also contains Turing’s 1944 notes on the design of
a system, “Delilah,” for voice encryption. A few years later Turing turned
his attention to the burgeoning field of electronic computers, whose early
days are colorfully described in an article by Toby Howard. The first dig-
ital stored-program computer was designed and built at the University of
Manchester, and known as the “Baby.” Its first program ran on June 21,
1948, and was designed to take an input, N , and compute the largest proper
divisor. Within a few weeks, the program was able to compute the largest
factor of N = 218. It took the Baby, however, 52 minutes to complete the
task.

Turing had accepted a post in Manchester in May 1948, but he did not
arrive until October 1948, having written programs for the Baby in the in-
terim. Work and Impact contains a remarkable report written by Turing,
“Checking a large routine,” which discusses strategies for verifying the cor-
rectness of a computer program. As Cliff B. Jones correctly points out in
his essay, this foreshadows the study of methods of program verification, an
ongoing and active research area in computer science. Part II also devotes
7 pages to excerpts from Turing’s 90-page programmer’s handbook for a
successor to the Baby, known as the Ferranti Mark I. Though the machine
code was rudimentary, the excerpt reads much like any contemporary intro-
duction to programming, with advice on how to break a problem down to
components and modularize the task through the use of subroutines.

Part II also contains Turing’s 1949 paper that shows that the word prob-
lem in semi-groups with cancellation is undecidable. Having shown in 1936
that the halting problem is algorithmically unsolvable, here he was con-
cerned with exploring the extent to which unsolvability arises in traditional
mathematical questions. The work improves on the prior result, due to Post
and Markov independently, that the word problem for semi-groups is un-
solvable. The result was later extended to groups by Novikov and Boone
independently, in the mid-1950’s. There is now, of course, a well-developed
theory of undecidability phenomena in mathematics. One of the crowning
achievements is the result of Matiyasevich, Robinson, Davis, and Putnam,
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who showed that there is no algorithm to determine whether a given dio-
phantine equation has a solution in the integers, thereby providing a negative
answer to Hilbert’s 17th problem.

The last work by Turing presented in this section is a paper called
“Rounding off errors in matrix processes.” As Lenore Blum explains, this
paper introduces the notion of the condition number of a matrix, a quan-
tity which measures the extent to which calculations with linear systems of
equations are subject to rounding errors. Both the problem of managing
rounding errors and the notion of condition number itself are now central to
numeric computation.

Part III turns to Turing’s work on mechanized intelligence, with such
landmark papers as “Intelligent machinery,” “Computing machinery and
intelligence,” and “Digital computers applied to games.” Discussions of
the Turing test are now commonplace in undergraduate philosophy classes,
but the essays make clear that the idea was not just a passing fancy for
Turing. These writings are among his most speculative and most prescient.
“Intelligent machinery” in and of itself inaugurated the field of artificial
intelligence, distinguished clearly between discrete and continuous models
of computation, and even foreshadowed the study of neural networks and
machine learning.

The essays are also among his most provocative. “Computing machinery
and intelligence,” which proposes the Turing test, addresses a wide range of
objections to the thesis that machines can exhibit intelligent behavior, in-
cluding theological, philosophical, and mathematical arguments. Respond-
ing to a sceptical 1947 lecture, “The Mind of Mechanical Man,” by the
British neurologist and neurosurgeon Geoffrey Jefferson, Turing challenges
us to imagine how we might react to a machine that could not only com-
pose a sonnet, but also respond to an interrogator’s queries about the choice
of words and the sentiments expressed. But even when Turing was being
provocative, he was making a clear scientific point. Recognizing that ques-
tions as to whether machines can think are not only vague but also loaded
with social and religious implications, Turing deftly shifted focus to the much
more scientifically fruitful question as to whether machines can exhibit in-
telligent behavior. (The Turing test was designed to frame that question
in even more pointed observational terms.) The essays moreover provide a
thorough and thoughtful exploration of what it means to exhibit intelligent
behavior, ranging from carrying out mathematical calculations and playing
games to composing sonnets and even engaging in frivolous banter. The first
step in developing a new science is to gain clarity as to the phenomena one
is trying to model and explain, and Turing did an admirable job in mapping
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out the landscape.
But Turing went further than that, with concrete proposals as to how

various types of intelligent machine behavior might be obtained. For ex-
ample, “Digital computers applied to games” presents an explicit two-move
lookahead algorithm for playing chess, and a “run” of this algorithm against
a novice player, with Turing playing the role of the computer and simulating
the algorithm by hand. In this way, Turing’s essays on machine behavior are
as scientifically substantive as they are entertaining. As a result, it is fitting
that almost two dozen supplementary essays in Section III are devoted to
exploring the significance of this work.

The historical data presented in Part II makes the essays in Part III even
more poignant. It is one thing for us, today, to take a break from shuttling
between Google and Siri to speculate on the nature of machine intelligence.
It is yet another thing entirely to spend as much time as Turing did writing
machine code to compute basic numeric operations, and come away from
the experience with the conviction that computers are capable of exhibiting
intelligent behavior.

Part IV deals with Turing’s work in biology, centered on the single long
paper, “The chemical basis of morphogenesis.” The paper was published in
1952, just after Turing was tried and convicted for homosexual activities, and
is reproduced in full. It addresses a fundamental question: how do structured
and complex organisms, like plants, animals, and humans, develop from a
single cell? Somehow, the information and mechanisms stored in the original
cell have to govern a reproductive process in which future cells are created
and assume radically different roles.

One might speculate about the path that led Turing to this work. Al-
though Crick and Watson did not discover the structure of DNA until 1953,
the paradigm of classical genetics — based on the Mendelian notion of a
gene — was firmly in place in the early 1950’s, when Turing took up the
project. What was called for, it would seem, is an analysis of genes as a
method of encoding computer programs powerful enough to orchestrate the
growth process.

But this is emphatically not the approach the Turing took. He was not
one to use a tool or method just because it was near to hand. He approached
every problem afresh, distilled it down to what he took to be the essentials,
and adopted the methods that he felt were most appropriate. In the case
at hand, Turing was more interested in the physical and chemical processes
that could give rise to such complex behavior, and he found the language
of dynamical systems and partial differential equations more appropriate to
the analysis.
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Turing’s approach to the problem is intricate, but his exposition is, as
usual, clear and methodical. The supplementary essays in Part IV, especially
the surveys by Henri Berestycki and Hans Meinhardt, James D. Murray,
Peter Saunders, and Jonathan Swinton do a good job of explaining the
scientific substance of Turing’s work and its contemporary relevance. We do
not often think of Turing as an influential biologist, but, as Saunders points
out, the paper has had a tremendous impact, with well over 3,000 citations
listed on the ISI Web of Science. And although the general consensus is
that the processes that Turing described cannot be the entire story, the
mechanisms that underly morphogenesis are still poorly understood today.
Which is to say, more than 60 years later, it is still too early to fully assess
the importance of Turing’s contributions to biology.

The editors of Work and Impact, S. Barry Cooper and Jan van Leeuwen,
are right to emphasize the rewards of a personal engagement with Turing’s
work. The sheer magnitude of Turing’s accomplishments is impressive; as
Rodney A. Brooks notes in his essay:

It is humbling to read Alan Turing’s papers. He thought of it
all. First.

But reading Turing is as encouraging as it is humbling. When we spend time
with his work, we become keenly aware that Turing was not a comic-book
superhero or a demigod; he was a pure and applied mathematician, practic-
ing his craft, like the rest of us. He was exceedingly clever and talented, but
he was also careful, methodical, thoughtful, and hard-working. He sought
out questions and problems that he felt were interesting and important, and
pursued answers with energy, focus, creativity, and élan. He was not afraid
to entertain big ideas, but big ideas by themselves are light and airy things,
and Turing did the work that was needed to make them substantial. There
is a lot to be learned from his outlook and temperament, and Alan Turing:
His Work and Impact can serve as both an instructional and an inspirational
text.
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