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Published in 1891, Edmund Husserl’s first book, Philosophie der Arithmetik,
aimed to “prepare the scientific foundations for a future construction of that
discipline.” His goals should seem reasonable to contemporary philosophers
of mathematics:

. . . through patient investigation of details, to seek foundations,
and to test noteworthy theories through painstaking criticism,
separating the correct from the erroneous, in order, thus in-
formed, to set in their place new ones which are, if possible,
more adequately secured. [7, p. 5]2

But the ensuing strategy for grounding mathematical knowledge sounds
strange to the modern ear. For Husserl cast his work as a sequence of
“psychological and logical investigations,” providing a psychological analy-
sis

. . . of the concepts multiplicity, unity, and number, insofar as they
are given to use authentically and not through indirect symbol-
izations. (ibid., pp. 6–7)

This emphasis on psychology is a reflection of Husserl’s training. As a
teenager studying in Leipzig, he attended the lectures of Wilhelm Wundt,
a seminal figure in the field of experimental psychology. Wundt held that,
via introspection, we can study and classify our inner experiences, in much
the same way that scientists study the natural world.3 People working
in his laboratory were therefore trained in procedures for observing and
reporting on their own thought processes, as a means of gathering scientific
data regarding our cognitive faculties. Bridging the gap between psychology
and epistemology, Wundt felt that the results of such inquiry could have
normative consequences, since the principles of reasoning employed in the

1Work partially supported by NSF grant DMS-0700174 and a grant from the John
Templeton Foundation.

2Here and below page numbers refer to the English translation indicated in the bibli-
ography.

3Wundt himself provided a readable overview of the method [27], which is still available
in English translation today, as well as a longer work [26] which describes the method in
greater detail.

1



sciences not only have their origins in psychological processes, but, moreover,
are justified by the fundamental role they play in thought. His two-volume
work, Logik (1880/1883), thus combined empirical considerations with a
Kantian emphasis on the way that knowledge depends on our cognitive
faculties.4

In The Philosophy of Arithmetic, Husserl applied something akin to
Wundt’s analysis to the the fundamental notions of arithmetic, to develop a
genetic account of concepts like “something,” “unit,” “one,”“collective com-
bination,” “multiplicity,” and “number.” What makes the work interesting
are the dynamic terms that are used to characterize the way these concepts
arise and the role they play in thought. For example, a collective combi-
nation arises from “focusing attention” on the relationship between objects
in a group, and “noticing” that they share something in common; a “mul-
tiplicity” then arises from “seeing” the objects as units, and “disregarding”
their individual nature. A number arises from the process of “thinking of”
a multiplicity as an answer to the question, “how many?” Husserl’s exposi-
tion is discursive and imprecise, but his lush account of concepts interacting
in a lively mental realm found resonance with cognitive scientists a century
later. One can get a sense of the project from his account of abstraction:

To disregard or abstract from something means merely to give
it no special notice. The satisfaction of the requirement wholly
to abstract from the peculiarities of the contents thus absolutely
does not have the effect of making those contents, and there-
with their combination, disappear from our consciousness. The
grasp of the contents, and the collection of them, is of course
the precondition of the abstraction. But in that abstraction the
isolating interest is not directed upon the contents, but rather
exclusively upon their linkage in thought – and that linkage is
all that is intended. (ibid., page 83)

Thus abstract concepts arise from a process of “disregarding” certain aspects
of a particular perception, “directing” attention at certain others, “isolating”
those aspects, and “intending” the concept to be the result of those acts.

The task of reviewing the work fell to Frege, who could hardly be ex-
pected to be sympathetic. In his Grundlagen der Arithmetik of 1884, he
had railed against psychologistic views of the philosophical enterprise, but
his scorn for the work was extreme, even by Frege’s standards. His critique
of Husserl’s account of abstraction, in particular, is a marvel of philosophical
sarcasm:

4Here I am relying on the characterization of this work in Alan Kim’s article [9].
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We attend less to a property and it disappears. By making one
characteristic after another disappear, we get more and more
abstract concepts. . . Inattention is a most efficacious logical fac-
ulty; presumably this accounts for the absentmindedness of pro-
fessors. [5, pp. 84–85]

The extent to which Husserl’s early philosophical work is susceptible to
Frege’s criticisms, as well as the extent to which these criticisms has sub-
stantial influence on Husserl’s later work, is still subject to debate (see, for
example, [18]). But Husserl clearly felt the need to respond to Frege’s invec-
tive and distinguish his project from brute psychology, and the Prolegomena
to the first volume of his Logische Untersuchungen [8] contains long passages
renouncing psychologism. Husserl’s later transcendental idealism reinforced
the distinction between his philosophical program and psychology by char-
acterizing the former as a determination of the essential capacities of an
idealized mind, rather than the determination of our own mental capacities.

With Frege, analytic philosophy took a different tack. When one reads
his characterization of the foundational project in the Grundlagen, there
is a striking absence of explanation as to whence the concept of number
that he presents derives its normative force. Rather, the work can be read
as an analysis of the concept of number as it is used in our scientific and
informal practice, and a clarification of the norms that govern that use.
However one interprets the project of the Grundlagen, Frege made it clear
that psychology has nothing to do with it: his first fundamental principle is
that there “must be a sharp separation of the psychological from the logical,
the subjective from the objective” [4, p. 90]. That attitude has held firm,
at least in analytic philosophy, to the present day.

But a lot has changed since the turn of the twentieth century. Traditional
research in the philosophy of mathematics has begun to stagnate, and the
various metaphysical and foundational “isms” on offer have by now sprouted
so many prefixes, modifiers, riders, and caveats that it is often hard to
tell what the discussion is about. Many now feel that if the philosophy of
mathematics is to have any bearing on mathematics itself, the subject has to
attend to the kinds of value judgments that govern everyday mathematical
practice, and provide a more realistic description of the goals and purpose of
mathematical activity. In this last respect, the goal of navigating a complex
world with limited cognitive resources seems to be a reasonable candidate,
in which case the nature of those cognitive resources becomes relevant.

Moreover, psychology now seems much better equipped to deliver. Cog-
nitive science offers a robust vocabulary and methodology for analyzing our

3



cognitive capacities, and experimental psychologists have made great strides
in mapping out our fundamental systems of numerical and spatial cognition.
In particular, the nature of visualization and visual reasoning has been an
especially rich topic, yielding not just interesting experimental data but also
spirited methodological debates as to how such data should be interpreted
and understood.5 Thus it is not surprising to come across a book like Mar-
cus Giaquinto’s Visual Thinking in Mathematics, a timely exploration of the
relationship between contemporary psychological theories of cognition, on
the one hand, and issues in the philosophy of mathematics, on the other.

The core methodology is presented in the first five chapters. After a
brief introduction in Chapter 1, Chapter 2 surveys recent findings in cogni-
tive science, which support a model of visual perception in which “perceptual
recognition” yields representations that have a kind of conceptual content.
In Chapters 3 and 4, Giaquinto uses this model to make the case that visual-
ization can secure mathematical knowledge. In Chapter 5, he considers the
role of diagrams and visualization in geometric proof. Having established
the basic approach with respect to geometry, Chapters 6 through 8 present
a similar analysis of arithmetic. Finally, Chapters 9 through 12 branch
out to consider other types of mathematical reasoning where visualization
seems to play a role, including reasoning in analysis, algebraic and symbolic
reasoning, and reasoning about mathematical structures.

The historical context I have provided is relevant insofar as it is im-
possible to provide a meaningful assessment of Giaquinto’s project without
addressing the broader question of the role that psychological data can or
should play in the philosophy of mathematics. Since my remarks will be
generally critical, I want to make one point clear up front: Giaquinto has
written an important book. The philosophy of mathematics has of late
shown a disappointing indifference to scientific developments that shed light
on many aspects of mathematical activity, lacking the temerity to engage is-
sues that are of interest anywhere other than academic philosophy journals.
Giaquinto is to be commended for forcing us to think about how the phi-
losophy of mathematics relates to important developments in experimental
psychology, and if some of the aspects of the work are problematic, we need
to find a better synthesis, rather than throw up our hands and go back to
business as usual.

What is interesting about Giaquinto’s approach is that although it pushes
the boundaries of the philosophy of mathematics, it maintains a traditional

5The topic has sustained a healthy dialog between experimental psychologists, com-
puter scientists, and philosophers. See, for example [6, 11, 15, 22].
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focus on the appropriate means of obtaining mathematical knowledge. As
Giaquinto explains in the preface:

This book is not a mathematical text. . . , not a psychological
investigation. . . , nor a How-To manual. . . . It is a work of epis-
temology. But unlike almost all other writing in the epistemol-
ogy of mathematics, it is constrained by results of research in
cognitive science and mathematics education. (p. v)

One’s initial impulse may be to agree with Frege that psychology and epis-
temology should be kept distinct. We tend to feel that our subject matter
is mathematics in some abstract or transcendent sense, rather than human
cognitive capabilities. One way to clarify the difference is to distinguish be-
tween the appropriate methods of inquiry: experimental psychologists rely
on things like verbal reports and timing data gathered as subjects perform
various cognitive tasks, whereas philosophers tend to rely on conceptual
analysis and other forms of argumentation. Another sense in which bring-
ing in cognitive data seems to constitute a change of subject is that we
usually take philosophy, in contrast to psychology, to support normative
claims. When Boole portrayed the logician’s task as that of determining
the laws of thought, he was quick to distinguish this from a description of
how people actually think. After all, people make mistakes, and while the
mistakes that people make can provide useful insights into our cognitive
functioning, the very notion of “making a mistake” only makes sense rela-
tive to a normative stand as to what it means to “get it right.” Philosophy
has traditionally been concerned with the latter.

Giaquinto is fully aware of these conventional views, and argues forcefully
that they should be rejected. But once the usual methodological barriers are
lifted, his project suffers from an uncomfortable vagueness of purpose, and
it is ultimately unclear what the epistemological story is supposed to do.
The book’s opening chapters do not distinguish between diagram use and
visualization, that is, between the use of physical images and diagrams in our
reasoning, and the act of seeing such images and diagrams “in the minds eye”
(whatever that may mean). This indicates that Giaquinto’s primary concern
is not whether a diagram or an image can play a justificatory role in a proof,
but, rather, whether the perception of a diagram or image can play a role in
obtaining knowledge. This shifts the task from determining the appropriate
public warrants for mathematical assertions to something more hazy and
subjective, namely, the legitimacy of certain types of thought. In this sense,
it is possible for someone to have obtained mathematical knowledge without
being able to justify the claim to anyone else.
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Having shifted the focus in this way, Giaquinto adopts a broader episte-
mological stand whereby a true belief is considered knowledge if it is obtained
as a result of a reliable epistemic process.6 This is the sort of justification
one wants if knowledge is to be understood as a basis for rational action.
But in the case of mathematics, such justification factors naturally into a
mathematical and empirical component: if a mathematical belief is to jus-
tify a decision to design a bridge in a certain way, surely it should be true,
and so, for Giaquinto, the central question is whether visualization provides
us with a reliable means of obtaining true mathematical beliefs. This is the
sort of question that psychology and educational research are well-equipped
to handle: first one develops a set of instructions or pedagogical interven-
tions that is designed to get subjects to use the method of visualization
in question, and then one develops a series of assessments to measure the
method’s success. Performing the intervention on a group of subjects and
assessing the results relative to a control group yields statistical data that
can support claims as to the reliability of the method.

But Giaquinto is interested in reliability of a stronger sort. He takes
“visualization” to involve the use of inferential dispositions, related to our
perceptual faculties, that cause us to hold certain beliefs once certain input
conditions are triggered. Giaquinto then takes such an inferential disposition
to be reliable if “the output belief would be true for any input that satisfied
the given condition” (p. 41). These inferential dispositions can be chained to
yield more complex belief-forming dispositions: “a belief-forming disposition
is reliable if it is reliable by this criterion or if this disposition results from
other dispositions all of which are reliable by this criterion” (ibid).

Giaquinto’s goal is to show that our visual faculties provide us with
belief-forming dispositions of this sort. At the risk of oversimplifying, the
story goes something like this. Marrying contemporary cognitive models of
visualization with a model of concepts advocated by the philosopher Christo-
pher Peacocke, Giaquinto suggests that visual perception can trigger certain
acts of “recognition” that cause us to represent our perceptions with a type
of conceptual content. These representations can then trigger belief-forming
dispositions that reliably result in true mathematical beliefs. Consider, for
example, the diagram below. In Chapter 2, Giaquinto proposes that per-

6Giaquinto notes (p. 40) that, in addition to reliability, there may be other rationality
constraints as well. In Chapter 4, he also considers the question as to whether visualization
makes it possible to “discover” mathematical knowledge, where the word “discover” is used
in a technical sense to describe a process that is not just reliable and epistemically rational,
but also independent. But his discussions of epistemic rationality and independence are
brief, so I will focus on the reliability requirement.
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ceiving the outer figure as a square means representing it with a certain
“perceptual concept,” which registers that the perceived object is a plane
figure bounded by straight edges, that the opposite edges are parallel, and
so on. According to Giaquinto, the only difference between this and the ge-
ometric concept of a square is that instances of the latter are required to be
perfect exemplars of their kind. The story is thus very similar to Husserl’s,
but any acts of “noticing” or “disregarding” needed to represent the per-
ception as a square are carried out by our basic perceptual hardware, which
is configured to do the work for us automatically. Similarly, on Giaquinto’s
account, perceiving the inner figure as a tilted square, and perceiving the
figure as bearing certain symmetries, means representing those with certain
perceptual concepts. In Chapter 4, he argues that our belief-forming dis-
positions can act on the content of these perceptual concepts to deliver the
following justified true belief:

If ci (“the inner square”) is the square whose vertices are mid-
points of the side of a square c (“the original square”), then the
parts of c beyond ci (“the corner triangles”) can be arranged to
fit exactly into ci, without overlap or gap, without change of size
or shape.

Combined with other types of reasoning, this can provide the geometric
knowledge that in the configuration depicted by the diagram, the area of
the inner square is half the area of the outer square.
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Giaquinto allows that his proposals are speculative, pending cognitive
data that support the claim that we employ perceptual representations that
are distinct from the linguistic representations that are more traditionally
taken to underwrite inferences involving squares and areas. But even mod-
ulo the legitimacy of the cognitive model, it is not clear what the account is
supposed to tell us. Suppose we were to come across a subject who some-
how drew a false conclusion from the diagram above, but showed perfectly
ordinary behavior in the types of visualization experiments that produced
the type of data Giaquinto describes in the opening chapters of his book.
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Would we conclude that the subject has a system of visual perception that
is different from ours? We would more likely conclude that the subject had
“misunderstood” the image, and reasoned about it in an incorrect way; or,
in Giaquinto’s terminology, that the wrong belief-forming dispositions were
triggered. But now consider the contrary case where the subject comes to
believe the theorem in question on the basis of the diagram. Is this belief
knowledge? Well, perhaps — but only if, in this case, the right belief-forming
dispositions were triggered. But how can we tell whether this is the case?
The fact that the right dispositions were triggered has to amount to more
than the fact that the subject ends up with the right answer, because oth-
erwise having the knowledge is no different from having the belief (modulo,
perhaps, the assumption that some belief-forming disposition was triggered
in obtaining the belief). But in the absence of any independent scientific
or philosophical account of what it means for the “right” process to have
occurred, we can only conclude that an epistemically significant event may
have taken place, without any tangible effects.

The problem is that the story lays two theoretical domains side by side
without sufficient linkages between them. Perceptual categories like “edge,”
“region,” and “surface” in the cognitive scientist’s vocabulary are theoret-
ical terms designed to explain experimentally observed cognitive abilities
and behaviors. They do not refer to the same sorts of things as “line,”
“square,” and “plane” in the mathematician’s vocabulary, which describe
abstract objects, governed by mathematical rules. It seems fanciful to think
that the cognitive scientist’s theoretical posits will line up neatly with the
basic mathematical notions. But even if they do, the problem is that Gi-
aquinto has done nothing to connect the two domains, beyond postulating
a “correspondence” between the two types of concepts. For a cognitive rep-
resentation to “correspond” to the mathematical concept it has to trigger a
belief-forming disposition which results in a normatively correct mathemat-
ical inference; for, in the face of an incorrect “output,” we simply conclude
the “wrong” belief-forming disposition was triggered. But without ground-
ing talk of belief-forming dispositions in empirical terms or providing an
account of which belief-forming dispositions are triggered by external stim-
uli, Giaquinto’s account tells us little more than the fact that visualization
(whatever it is) can, possibly, provide us with mathematical knowledge, pro-
vided that it employs processes that reliably give us the right answer.

Put differently, we don’t “see” numbers, squares, and functions. We
often use representations of numbers, squares, and functions in our reason-
ing, and what we perceive are the representations. The figure above can
represent a square even though the lines are pixilated and wide and imper-
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fect, and could continue to represent a square even if there lines were to
grow squiggly and splintered, provided the representation is used correctly;
which is to say, provided our inferences conform to the proper mathematical
norms for reasoning about squares. Mathematical logic and conventional
approaches to the philosophy of mathematics do a pretty good job of clar-
ifying the latter. From a psychological standpoint, it is also important to
understand how we are able to reason about squares correctly, and how we
represent them. But these are empirical questions, and well addressed by
the methods of experimental psychology.

What, then, is the epistemological story supposed to do? It doesn’t tell
us whether we should be comfortable acting on the results of visualization,
whether we should accept visual arguments as sufficient warrants to truth,
or whether we should encourage visualization in our teaching practices. In
what sense, then, are we to understand the term “knowledge”? The open-
ing chapters of the book read better as speculative psychology, suggesting
cognitive models that may help explain our mathematical behaviors. But
then it is not a matter of providing an epistemological account of the way
visualization can provide knowledge; it is a matter of providing an adequate
empirical explanation of how we are successful in acquiring beliefs that our
normative accounts sanction as true.

And when it comes to understanding our mathematical behavior, the
body of psychological data is not nearly as clean as Giaquinto’s presenta-
tion suggests. In recent years, there has been remarkable progress in charting
our core systems of cognition, including cognition of numeric and geomet-
ric relationships.7 The results are fascinating, but often wild and unruly.
Consider, for example, disorientation experiments. Take a rat, put it in a
rectangular box, and let it discover food in one corner, say, with the long
edge to the left and the short edge to the right. Take it out, spin it around,
and put it back; the rat will look for food in the two symmetric corners
of the box. What works for rats works for young children: show a young
child a toy in the corner of a rectangular room, spin her around, and return
her to the room, and she, too, will utilize the same geometric cues. So far,
as is well and good: we seem to have a fundamental perceptual ability to
recognize differences in lengths and orient ourselves accordingly. But now
put the same child in a room shaped like a rhombus, where all the sides have
the same length, but two angles are larger than the others. Remarkably, the

7For overviews, see [10, 24], as well as [3] for a popular exploration of contemporary
research on core systems of numeric cognition. Details on the disorientation experiments
described below can be found in [2, 12, 13, 25].

9



ability to distinguish the corners vanishes, and the child will look for the
toy in all four corners. The child also looks in all four corners if, instead
of using a rectangular room, experimenters use masking tape to mark off
a rectangular region on the floor. But here is the kicker: instead of tape,
build a small rectangular barrier, just a few inches high, and the geometri-
cally normative behavior returns: children will once again search for the toy
in the two geometrically identical corners.

What are we to make of this? Are we to infer that visualization can
provide us with mathematical knowledge of lengths, but not angles? Or
that visualization can provide us with mathematical knowledge of barrier-
lengths, but not line-lengths? Again, it is the lack of a clear correspondence
between the cognitive and mathematical notions that leaves us hanging. One
notion of “perceiving a square” may be useful for explaining what happens
when we try to orient ourselves in a square room; another may be useful in
explaining our responses to optical illusions; yet another may be useful in
understanding the mistakes we tend to make on geometry tests. The psy-
chological challenge is to weave the data together to provide a compelling
account of our fundamental cognitive faculties and the role they play is pro-
ducing the various observed behaviors. In this regard, Giaquinto’s account
of perceptual concepts and belief-forming dispositions provides interesting
and potentially useful ideas. But then the goal is to develop cognitive models
that are carefully supported and tested by experimental data, rather than
to determine the proper ways of obtaining mathematical knowledge.

Moreover, perceptual models alone are not likely to get us very far.
Mathematics is something that we learn to do, and even Giaquinto’s most
elementary examples of geometric knowledge involve distinctly mathemati-
cal concepts like “square” and “area” that are governed by mathematical,
and not behavioral, norms. If that’s the mathematics we are trying to un-
derstand, cognitive science seems to support the claim that Frege had it
right all along: the data suggest that our core cognitive systems only be-
gin to provide what we take to be bona-fide mathematical behavior when
language sets in, and that language provides mechanisms that are essen-
tial to mathematics.8 This makes it unlikely that satisfying explanations of
our properly mathematical abilities will be grounded in our core systems of
perception.9

8For example, it is possible to prevent geometrically normative behavior in adult dis-
orientation tasks by “turning off” the language faculty, that is, by distracting the subject
with other verbal stimuli or tasks. See also [3], and [23] for neurobiological evidence that
some mathematical tasks are linked to language ability.

9Maddy [14] reaches a similar conclusion.
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All this is not to deny that the philosophy of mathematics can play an
important role in supporting efforts in experimental psychology to determine
how we understand mathematics, or, say, how it can be taught effectively.
Philosophical considerations are needed in formulating the basic questions,
which implicitly rely on a conception of what it means to “understand math-
ematics,” and what the goals of a mathematical education are. But such
an interaction does not mean that we need to overhaul the methodological
apparatus that has served both disciplines well for the last century or so. By
conflating normative and empirical issues, Giaquinto’s presentation muddies
the waters in a way that is not helpful.

Chapter 5 returns to more familiar ground with a discussion of geometric
proof, and Giaquinto argues that diagrammatic inferences can play a legiti-
mate role in such proofs. He addresses two objections to such a claim. The
first objection is that diagrammatic inferences do not always yield general
conclusions. In response, Giaquinto simply argues that, if performed cor-
rectly, they can, so long as the inferences do not depend on any features of
the diagram that are not guaranteed to hold by the assumptions at play at
the relevant stage of the proof. The second objection is that diagrammatic
inferences lack the transparency of verbal inferences. Here Giaquinto simply
responds that the notion of transparency is context dependent; in ordinary
life, diagrammatic inferences can be just as transparent as verbal inferences,
and the latter are no less fallible.

It is telling that, in this chapter, models of perception slip into the back-
ground. Giaquinto does not make it clear whether he thinks that diagram-
matic inferences in proofs have to be justified on the basis of the perceptual
models that he describes in his first four chapters, but these issues seem
to be orthogonal to the discussion. The more interesting claim is that, in
a mathematical proof, proper diagram use can support inferences that are
both valid and transparent. Giaquinto had earlier used the perceptual mod-
els to make the case that we may be justified in drawing certain immediate
inferences even without being able to explain the reasoning to someone else;
but there is a better route to this conclusion. The very notion of a proof
presupposes that there are some inferences that are fundamental in the sense
that they can be applied without any further need of justification. Asked to
explain why “A” follows from “A and B,” we can do little more than say it
is obvious, or appeal to the meaning of the word “and.” Understanding the
word “and” means, in part, accepting inferences of that sort.

But why should diagrammatic inferences be any different? Doing Eu-
clidean geometry correctly means, in part, being able to recognize the cor-
rectness of certain conclusions that are “clear” from the diagram. Under-
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standing the use of Venn diagrams means accepting that regional inclusions
can be used to license an implication. Knowing how to read the category-
theoretic literature means, in part, knowing how to chase diagrams and
infer appropriate equalities. That is not to say that diagrammatic infer-
ences cannot be explained in verbal terms. Indeed, a substantial portion
of Giaquinto’s prose is devoted to doing just that. Similarly, inferences in
Euclidean geometry can be explained in terms of the Cartesian interpre-
tation of points, lines, and circles; and diagram chases in category theory
can be replaced by lengthy equational derivations. But the story goes both
ways: diagrams can just as well be used to explain verbal inferences, as
when we try to convince someone of the validity of an Aristotelian syllo-
gism by drawing a diagram that renders it obvious. The point is simply
that in ordinary mathematical practice, certain inferential steps are taken
to be immediate and in need of no further explanation. Understanding the
mathematics involves accepting these inferences.

The fact that diagrams are often invoked in such settings raises a num-
ber of important questions. What roles do diagrams play in proofs? What
kinds of information can be recorded in diagrams, and what are the con-
sequences that can validly and transparently be inferred? How do we dis-
tinguish between features of the diagram that are essential from the ones
that are incidental? These questions provide a basis for rich and rewarding
epistemological inquiry. Edward Dean, John Mumma, and I, for example,
have undertaken a study [1] of the nature of diagrammatic inference in the
Elements, building on Mumma’s PhD thesis [20] and work by Ken Manders
[16]. (Giaquinto cites another analysis of diagram use in Euclidean geometry
due to Nathaniel Miller [17]; see also [19, 21].) Our analysis makes it clear
that whatever role diagrams are playing in a Euclidean proof, using them
correctly is not just a matter of reporting on features observed in a partic-
ular diagram. Rather, there are subtle protocols that govern the proper use
of diagrams, and making these norms explicit can tell us a lot about the
nature of Euclidean geometry.

But characterizing the norms that govern a mathematical practice is
simply a form of logical analysis, in a sense that is perhaps broader than
Frege intended, but which still renders the analysis distinct from psychology.
This enables us to separate the task of characterizing mathematical norms
from the more difficult task of explaining why the norms are the way they
are. The reason the latter task is more difficult is that it is often not clear
what kind of “explanation” we are after; one may reasonably invoke psy-
chological, historical, pedagogical, social, or computational data to explain
why we do the mathematics we do. We may, instead, try to understand our
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mathematical efforts in terms of the role they play in the broader scientific
process, or invoke general theoretical or broadly epistemic virtues to justify
the practice. But the most important prerequisite to making philosophical
progress is to ask questions in such a way that one has at least some sense
of what might constitute an answer, and what methods should have bearing
on the question. One should therefore be wary of blurring methodological
boundaries in the absence of compelling reasons to do so.

By now (perhaps too late) it should be clear that I should by no means
be considered an impartial reviewer, having come to Giaquinto’s work with
a substantial commitment to at least one method of analyzing the role of
diagrams in mathematics, as well as an understanding of mathematical prac-
tice that cordons off psychology. But this does not mean that these are the
only reasonable approaches. I have argued that some of the basic presup-
positions of Giaquinto’s project are problematic, but that does not rule out
the possibility that other ways of incorporating psychological data into the
philosophy of mathematics will be more fruitful.

And even if Giaquinto’s book does not succeed in attaining its stated
goals, it succeeds in a more important way. Giaquinto’s explorations of
various types of visual reasoning in mathematics, and his exploration of
geometric, arithmetic, analytic, symbolic, and structural reasoning, show
that our capacities for mathematical thought are structured in deep and
subtle ways. A variety of disciplinary approaches will be needed if we are
to appreciate the subject in all its complexity and grandeur. By challenging
us to embrace the complexity and think about how different disciplinary
perspectives fit together, Giaquinto has done us a great service, and provided
us with a book that is lively, thought-provoking, and enjoyable.

Acknowledgments. I am very grateful to Spencer Breiner, Jeremy Heis, and
Paolo Mancosu for their helpful and insightful criticism of an earlier draft. I
am also grateful to Mark van Atten for drawing my attention to Mohanty’s
book on Husserl and Frege, and David Danks for guidance with respect to
the contemporary literature in cognitive science.

References

[1] Jeremy Avigad, Edward Dean, and John Mumma. A formal system for
Euclid’s Elements. In preparation.

13



[2] Ken Cheng and Nora S. Newcombe. Is there a geometric module for
spatial orientation? Squaring theory and evidence. Psychonomic Bul-
letin & Review, 12(1):1–23, 2005.

[3] Stanislas Dehaene. The number sense: how the mind creates mathe-
matics. Oxford Universty Press, Oxford, 1999.

[4] Gottlob Frege. Die Grundlagen der Arithmetic. Eine logisch mathema-
tische Untersuchung über den Begriff der Zahl. W. Koebner, Breslau,
1884. Excepts translated in Michael Beaney, editor, The Frege reader,
Blackwell, Malden, MA, 1997.

[5] Gottlob Frege. Translations from the philosophical writings of Gottlob
Frege. Blackwell, Oxford, third edition, 1980. Edited by Peter Geach
and Max Black.

[6] Janice Glasgow, N. Hari Narayanan, and B. Chandrasekaran, edi-
tors. Diagrammatic reasoning: cognitive and computational perspec-
tives. MIT Press, Cambridge, MA, 1995.

[7] Edmund Husserl. Philosophie der Arithmetik. Pyschologische und logis-
che Untersuchungen. C.E. M. Pfeffer, Halle, 1891. Translated by Dallas
Willard as Philosophy of Arithmetic. Psychological and Logical Investi-
gations - with Supplementary Texts from 1887-1901. Kluwer Academic
Publishers, 2003.

[8] Edmund Husserl. Logische Untersuchungen. Erster Teil: Prolegomena
zur reinen Logik. M. Niemeyer, Halle, 1900/1901. Translated by J. N.
Findlay as Logical Investigations, Routledge & Kegan Paul, London,
1970.

[9] Alan Kim. Wilhelm Maximilian Wundt. In Edward N.
Zalta, editor, Stanford encyclopedia of philosophy. CSLI, 2006.
http://plato.stanford.edu/entries/wilhelm-wundt.

[10] Katherine D. Kinzler and Elizabeth S. Spelke. Core systems in human
cognition. In Claus Von Hosten and Kersin Rosander, editors, From
action to cognition, pages 257–264. Elsevier, Amsterdam, 2007.

[11] Stephen M. Kosslyn, William L. Thompson, and Giorgio Ganis. The
case for mental imagery. Oxford University Press, Oxford, 2006.

14



[12] Sang Ah Lee, Anna Shusterman, and Elizabeth S. Spelke. Reorientation
and landmark-guided search by young children. Psychological Science,
17(7):577-582, 2006.

[13] Sang Ah Lee and Elizabeth S. Spelke. Children’s use of geometry for
reorientation. Developmental Science, 11(5):743–749, 2008.

[14] Penelope Maddy. Second philosophy: a naturalistic method. Oxford
University Press, Oxford, 2007.

[15] Paolo Mancosu, Klaus Frovin Jorgensen, and Stig Andur Pedersen, ed-
itors. Visualization, explanation, and reasoning styles in mathematics.
Springer, Dordrecht, 2005.

[16] Kenneth Manders. The Euclidean diagram. In Paolo Mancosu, editor,
The philosophy of mathematical practice, pages 80–133. Oxford Univer-
sity Press, Oxford, 2008. MS first circulated in 1995.

[17] Nathaniel Miller. Euclid and his twentieth century rivals: diagrams
in the logic of Euclidean geometry. CSLI, Stanford, 2007. Based on
Miller’s 2001 PhD thesis, “A diagrammatic formal system for Euclidean
geometry,” Cornell University.

[18] J. N. Mohanty. Husserl and Frege. Indiana University Press, Bloom-
ington, 1982.

[19] John Mumma. Proofs, pictures, and Euclid. To appear in Synthese.

[20] John Mumma. Intuition formalized: ancient and modern methods of
proof in elementary geometry. PhD thesis, Carnegie Mellon University,
2006.

[21] John Mumma. Review of Euclid and his twentieth century rivals:
diagrams in the logic of Euclidean geometry by Nathaniel Miller.
Philosophia Mathematica, 16:256–264, 2008.

[22] Zenon Pylyshyn. Seeing and visualizing: it’s not what you think. MIT
Press, Cambridge, MA, 2003.

[23] Olivier Simon, Ferath Kherif, Guillaume Flandin, Jean-Baptiste Poline,
Denis Rivière, Jean-François Mangin, Denis Le Bihan, and Stanislas
Dehaene. Automatized clustering and functional geometry of human
parietofrontal networks for language, space, and number. Neuroimage,
23:1192–1202, 2004.

15



[24] Elizabeth S. Spelke and Katherine D. Kinzler. Core knowledge. Devel-
opmental Science, 10(1):89–96, 2007.

[25] Ranxiao Frances Wang and Elizabeth S. Spelke. Human spatial rep-
resentation: insights from animals. Trends in Cognitive Sciences,
6(9):376–382, 2002.

[26] Wilhelm Wundt. Grundriss der Psychologie. Wilhelm Engelmann,
Leipzig, 1896. Translated by Charles Hubbard Judd as Outlines of
psychology, Wilhelm Englemann, Leipzig, 1897. Reprinted by Scholarly
Press, St. Clair Shores, Michigan, 1969.
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