
Update procedures and the

1-consistency of arithmetic∗

Jeremy Avigad

February 8, 2002

Abstract

The 1-consistency of arithmetic is shown to be equivalent to the ex-
istence of fixed points of a certain type of update procedure, which is
implicit in the epsilon-substitution method.

1 Introduction

A theory in the language of arithmetic is said to be 1-consistent if it is consistent
with every true universal sentence, or, equivalently, if every existential sentence
it proves is true. The main theorem in this paper asserts that the 1-consistency
of first-order Peano arithmetic is equivalent, over a weak metatheory, to the
assertion that one can always solve certain systems of equations involving finite
partial functions on the natural numbers.

It has been noted before (for example, by Tait, in [17]) that one can view
Hilbert’s epsilon-substitution method as posing the problem of finding solutions
to systems of equations of a certain kind. The theorem just mentioned simply
characterizes the types of equations that need to be solved, in a way that, I
hope, is intuitive and helps clarify the computational content of the problem.

Lucid descriptions of epsilon-substitution method, with detailed references,
can be found in [11] and [12]. In this paper, I will use Skolem function symbols
instead of epsilon terms, more along the lines of [15] and [3]. The differences
between the two ways of formulating the problem are minor, however, and are
discussed below.

The outline of the paper is as follows. In Section 2, I describe the relevant
systems of fixed-point equations, and use a short, but non-finitary, proof to
show that the existence of solutions is guaranteed. This is similar to non-
finitary proofs of the existence of solutions for the epsilon-substitution method
in [12] and [16]. In Section 3, I show that, in a finitary metatheory, the existence
of solutions to the systems of equations described implies the 1-consistency of

∗Final version in Mathematical Logic Quarterly, 48(1):3–13, 2002. Work partially sup-
ported by NSF Grant DMS 0070600.

1



arithmetic. In Section 4, I provide a refined version of the existence proof, and
show that solutions to the equations in question can be found using recursion
on ordinals less than ε0. The idea behind this proof is, in a sense, implicit in
Ackermann’s proof of termination for the epsilon-substitution method [1]. It is
also implicit in Tait’s approach [16, 17], which is based on similar continuity
considerations.

Assuming one has enough basic functions in arithmetic so that every bounded
formula is equivalent to one that is quantifier-free, or appealing to the MRDP
theorem (see the discussion in [10, Section I.3.d]), the 1-consistency of arithmetic
is equivalent to its Π2 soundness. This is, in turn, equivalent to saying that ev-
ery recursive function whose totality is provable in arithmetic is, in fact, total.
Since PA proves that every ≺ε0-recursive function is total, we have the desired
equivalence of the 1-consistency of arithmetic and the fixed-point principle. In
addition, we see that the provably total recursive functions of arithmetic can
also be characterized as those functions that can be computed from fixed-point
solutions to the systems of equations we have described.

With these facts in mind, the main theorem of this paper can be seen as a
small contribution to the general proof-theoretic program of trying to charac-
terize the assertions of consistency or 1-consistency of various theories, in com-
binatorial or computational terms. This program is currently being pursued
vigorously by Harvey Friedman (see, for example, [8], or [9] and the references
at the end). Friedman’s results are more dramatic than the ones presented
here, in two respects: first, the theories he considers are much stronger than
arithmetic; and second, he has gone further in eliminating all traces of logical
and metamathematical notions from the principles he obtains. Nonetheless, the
fixed-point principle discussed here is interesting insofar as it is fairly natural
and simple. It is worth exploring whether or not this principle can be couched
in more common mathematical terms.

As in [3], the methods extend immediately to extensions of arithmetic with
transfinite induction principles. Using ideas from [2, 3, 13] it should be possible
to characterize the 1-consistency of predicative analysis in terms of fixed points
of certain transfinite sets of equations. With ideas from [4], it should be possible
to extend this to impredicative theories like Kripke-Platek set theory as well.
Here, too, it remains to be seen whether principles obtained in this way can be
made mathematically intuitive or compelling.

This paper grew out of a discussion with Grigori Mints on epsilon substi-
tution, and I am grateful to him for the conversation. I am also grateful to
William Tait for comments and suggestions, and especially for a simplification
in the proofs of Theorems 2.2 and 4.4.

2 Update procedures

A finite partial function from N to N is a function from some finite subset of the
natural numbers to the set of natural numbers. Below, the phrase “finite partial
function” always means “finite partial function from N to N,” and the variables

2



ρ, σ, τ range over such functions. I will write σ ⊇ τ to denote that σ extends
τ , i.e. the domain of σ includes that of τ and the two functions agree on the
domain of τ . Also, I will use ∅ to denote the partial function that is nowhere
defined. If σ is a finite partial function, I will use σ̂ to denote the extension of
σ to a total function, defined by

σ̂(x) =
{

σ(x) if x is in the domain of σ
0 otherwise.

Given a pair 〈u, v〉 of natural numbers, let σ ⊕ 〈u, v〉 to denote the modifi-
cation of σ that maps u to v, and agrees with σ otherwise; in other words,

(σ ⊕ 〈u, v〉)(x) =

 σ(x) if x is in the domain of σ, and x 6= u
v if x = u
undefined otherwise.

It will be convenient to extend the ⊕ operation to a “null” value ∅, defining
σ ⊕ ∅ to be σ.

Let F (f1, . . . , fk) be a functional, mapping (total) functions f1, . . . , fk to
some set S. Say that F is continuous if it is continuous with respect to the
usual product topology on NN, assuming S is given the discrete topology. In
other words, F is continuous if for every f1, . . . , fk there is a finite set of nat-
ural numbers A, such that whenever functions g1, . . . , gk agree with f1, . . . , fk,
respectively, on A, then F (f1, . . . , fk) = F (g1, . . . , gk). Stated less formally, F
is continuous if the value of F (f1, . . . , fk) depends on only finitely many values
of the functions f1, . . . , fk.

Now, suppose F (g, f1, . . . , fk) is a continuous functional with range N×N∪
{∅}, and, for a given sequence f1, . . . , fk, consider the act of replacing a finite
partial function σ by σ⊕ F (σ̂, f1, . . . , fk). Say that F is an update procedure in
g if the following holds: whenever F (σ̂, f1, . . . , fk) = 〈a, b〉, τ extends σ⊕〈a, b〉,
and F (τ̂ , h1, . . . , hk) = 〈a, c〉, then b = c. In other words, once F “sets” the
value of σ(a) to b, it does not change it, no matter how the other arguments
vary.

If F (g) is a unary update procedure, a finite fixed point of F is a finite partial
function σ such that σ = σ ⊕ F (σ̂).

Lemma 2.1 Every unary update procedure has a finite fixed point. Moreover,
suppose H(g,~h) is a continuous functional and for each fixed choice of ~h the
functional g 7→ H(g,~h) is an update procedure. Then there is a continuous
functional G(~h) such that for every ~h, G(~h) is a finite fixed point of the func-
tional g 7→ H(g,~h).

Proof. Suppose H(g,~h) is continuous, and g 7→ H(g,~h) is an update procedure
for each ~h. Fix ~h for the moment, and define a sequence σ0, σ1, σ2, . . . by
letting σ0 = ∅ and, for each i, letting σi+1 = σi ⊕ H(σ̂i,~h). The crucial
point is that this is an increasing sequence: the fact that g 7→ H(g,~h) is an
update procedure implies that σ0 ⊆ σ1 ⊆ . . .. Let g be the partial function

3



extending all of the σi, that is, g =
⋃

i∈N σi. The continuity of H implies
that for some i, we have H(ĝ,~h) = H(σ̂i,~h) = H(σ̂i+1,~h) = . . .. But then
σi+1 = σi ⊕H(σ̂i,~h) = σi+1 ⊕H(σ̂i,~h), so σi+1 is the desired fixed point.

The continuity of H implies that only finitely many values of ~h are used
in the computation of σ0, σ1, . . . , σi+1. Hence, if we let G(~h) denote the fixed
point obtained by the procedure above, G is a continuous functional. �

A system of nested update procedures is a sequence of continuous functionals
F1(f1, . . . , fn), . . . , Fn(f1, . . . , fn) such that for each i and fixed f1, . . . , fi−1,
the functional

fi, fi+1, . . . , fn 7→ Fi(f1, . . . , fn)

is an update procedure for fi. Note that additional arguments are held fixed
as one proceeds from 1 to n, so the order is important. A finite fixed point of
such a system is a sequence of finite partial functions σ1, . . . , σn such that the
equations

σ1 = σ1 ⊕ F1(σ̂1, . . . , σ̂n)
...

...
σn = σn ⊕ Fn(σ̂1, . . . , σ̂n)

are all satisfied.

Theorem 2.2 Every system of nested update procedures has a finite fixed point.

Proof. We will prove this by induction on n. The case where n = 1 is just
Lemma 2.1.

For the induction step, suppose F1(f1, . . . , fn+1), . . . , Fn+1(f1, . . . , fn+1) is
a system of nested update procedures of size n + 1. Using Lemma 2.1, let
G(f1, . . . , fn) be a continuous functional returning finite fixed points of the
functionals fn+1 7→ Fn+1(f1, . . . , fn+1). It is not difficult to verify that the
sequence of functionals

f1, . . . , fn 7→ Fi(f1, . . . , fn, G(f1, . . . , fn))

for i = 1, . . . , n is a system of nested update procedures of size n. (We know that
for each i and fixed f1, . . . , fi−1, the functional fi, . . . , fn+1 7→ Fi(f1, . . . , fn+1)
is an update procedure for fi; but this means that the appropriate monotonicity
condition holds, no matter how fn+1 varies.) By the induction hypothesis, the
smaller system has a finite fixed point, σ1, . . . , σn. Letting σn+1 = G(σ̂1, . . . , σ̂n)
yields a finite fixed point of the larger system. �

The statement of Theorem 2.2 is hardly finitary, since it quantifies over arbitrary
functionals. But the proof is is constructive, if one takes the continuous func-
tionals to be Brouwer functionals, meaning that the set of unsecured sequences
is well-founded. Lemma 4.3 below, as well as the developments in [16, 17], is
essentially a refinement of this observation.

4



We will obtain an assertion equivalent to the 1-consistency of PA by restrict-
ing the set of functionals we consider. There are a number of ways to do this;
one way is to restrict our attention to functionals that are elementary.

The set of elementary functions is a set of functions from the natural num-
bers to the natural numbers of various arities, where a 0-ary function is just
a constant; it can be defined as the smallest set of functions containing zero,
projections, successor, addition, multiplication, and exponentiation, and closed
under composition and bounded recursion. Similarly, the set of elementary func-
tions in f1, . . . , fk is the smallest set satisfying these conditions and containing
also f1, . . . , fk. One can view an l-ary elementary function in f1, . . . , fk as a
functional F (x1, . . . , xl, f1, . . . , fk), and any such functional is necessarily con-
tinuous. If l = 0, F has no numeric parameters, and one has a functional of the
kind considered above.

For the rest of this paper, the reader only needs to accept that elementary
functions are strong enough to carry out straightforward computations and syn-
tactic operations, and that one can develop an adequate theory of the elementary
functions in primitive recursive arithmetic, PRA. For more details, the reader
is referred to [3, 14].

A system of nested elementary update procedures is a system of nested update
procedures in which all the functionals are elementary. The main theorem in
this paper is the following:

Theorem 2.3 PRA proves that the following are pairwise equivalent:

1. Every ≺ε0-recursive function is total.

2. Every system of nested elementary update procedures has a finite fixed
point.

3. Every Π2 sentence provable in PA is true.

A definition of the ≺ε0-recursive functions will be provided below. The proof
that 3 implies 1 in PRA is fairly standard: for each α less than ε0, one can
prove instances of transfinite induction up to α in PA, and use that to show
that every α-recursive function is total (see, for example, [6]). Since this last
statement is Π2, we have the desired conclusion. In Section 3, I will show that
PRA proves that 1 implies 2, and in Section 4, I will show that PRA proves
that 2 implies 3. Of course, the fact that PRA proves the equivalence of 1 and
3 is well known; so what is new here is the equivalence of 2, and the resulting
proof that 1 implies 3.

There is nothing special about the choice of elementary functionals: we
only need a collection of functionals that is restricted enough so that we can
quantify over them in our metatheory, yet expressive enough so that we can
carry out the basic syntactic operations of Section 3. Also, with our current
setup, we can get by with a metatheory weaker than PRA; theories asserting
the totality of iterated exponentiation like I∆0 (superexp) or EFA∗ suffice (see
[10]). Finally, with some additional work, we can also characterize the strength
of the fragments of arithmetic IΣn in terms of nested systems of equations of
depth n. More information can be found in [3].

5



3 The 1-consistency of arithmetic

In this section I will show that the existence of finite fixed points of systems
of nested elementary update procedures implies the 1-consistency of arithmetic.
All the definitions, theorems, and proofs in this section and the next should be
thought of as taking place in PRA.

I will take the language of arithmetic to include symbols for all the elemen-
tary functions and relations. Peano arithmetic then consists of quantifier-free
axioms for the basic function and relation symbols, together with a schema of
induction for arbitrary formulae in the language. The advantage to including
elementary functions among the basic symbols is that now, as noted in the in-
troduction, the Π2 soundness of arithmetic is easily shown to be equivalent to
its 1-consistency.

We would like to embed PA in a quantifier-free calculus. To that end, we
can use either epsilon terms or Skolem functions to name least witnesses to
existential formulae. The main difference is that in the epsilon calculus, terms
can be read ambiguously; for example, if x and y are not free in s and x is not
free in η, one can read a term

εxθ(x, εyη(y, s))

as either the result of applying the “function” λw εxθ(x, w) to εyη(y, s), or as
applying the “function” λu εxθ(x, εyη(y, u)) to s. We will use Skolem functions
instead, which forces one to distinguish between the two, thereby simplifying
some of the definitions and proofs below. Epsilon terms have the advantage of
allowing one to interpret quantifiers directly, and that would have enabled us to
avoid the use of Herbrand’s theorem in the proof of Lemma 3.2. Alternatively,
one can interpret epsilon terms as Skolem functions in a canonical way, as in
[12, 17]. In the end, the differences between the two approaches are minor.

The lemmata below provide, essentially, an “abstract” version of the usual
epsilon substitution method; compare, for example, the proof of Lemma 3.3 to
the presentation in [12].

Our first task, then, is to use Skolem functions to embed PA in a quantifier-
free theory. Let L0 be the language of arithmetic, and recursively let Li+1 denote
the language that results from adding to Li a new function symbol µθ(~y) for
each quantifier-free formula θ(x, ~y) in Li with the distinct free variables shown.
Let Lω denote the union of the Li. Let PAh be the theory in the language Lω

axiomatized by the quantifier-free defining axioms for the elementary functions
and relations, together with axioms

θ(x, ~y) → θ(µθ(~y), ~y) ∧ µθ(~y) ≤ x. (1)

The rank of a symbol µθ is the least i such that µθ is in Li.
Using the new axioms, it is not difficult to show that in PAh every formula

in the language of Lω is equivalent to a quantifier-free one, and the schema of
induction then follows from (1). As a result, PA is contained in PAh .

6



Let S be a finite set of closed instances of the µ-axioms involving only the µ-
symbols µ1, µ2, . . . , µn. Given a sequence of unary functions f1, . . . , fn, we can
interpret each symbol µi(~y) by the function ~y 7→ fi(〈~y〉), assuming that we have
chosen a reasonable (elementary) coding of sequences 〈~y〉 of natural numbers by
a single natural number. If t is a term mentioned in S, let t

~f denote its value
under ~f , interpreting the function symbols of L0 by the elementary functions
they are intended to denote. Since every sentence in S is quantifier-free, for
each sentence ϕ we can compute its truth value ϕ

~f under this interpretation of
the terms, interpreting the relation symbols of L0 in the expected way.

Definition 3.1 Let S be a finite set of closed instances of µ-axioms involving
only the µ-symbols µ1, . . . , µn. Let σ1, . . . , σn be a sequence of finite partial
functions. The sequence σ1, . . . , σn is a finite partial model of S if every formula
in S is true under the interpretation σ̂1, . . . , σ̂n.

Lemma 3.2 Suppose every finite set of closed instances of µ-axioms has a finite
partial model. Then PA is 1-consistent.

Proof. Suppose every finite set of closed instances of µ-axioms has a finite partial
model, and suppose PA proves ∃x1, . . . , xk θ(x1, . . . , xk), where θ(x1, . . . , xk)
is quantifier-free with at most the free variables shown. Then PAh proves
θ(t1, . . . , tk), where t1, . . . , tk are appropriate closed terms involving the µ-
symbols. By Herbrand’s theorem, there is a propositional proof of θ(t1, . . . , tk)
from closed instances of the equality axioms and axioms of PAh . Let S be
the set of instances of µ-axioms used in this propositional proof, and let ~σ be
a finite partial model of S. The equality axioms are clearly true when inter-
preted under ~σ, and instances of the axioms for the elementary functions and
relations are true because they are interpreted in the standard way. (We can
interpret µ-symbols not appearing in S by the constant zero function.) Since
all the axioms used in the propositional proof are true under ~σ, the conclusion
is also true under ~σ. Then θ holds of the interpretation of t1, . . . , tk, and so
∃x1, . . . , xk θ(x1, . . . , xk) is true. �

The converse of the statement of Lemma 3.2 is also provable in PRA, but we will
not need this fact below. To finish proving the first implication of Theorem 2.3,
we only need to prove the following lemma.

Lemma 3.3 Suppose every system of nested elementary update procedures has
a finite fixed point. Then every set of closed instances of µ-axioms has a finite
partial model.

Proof. Fix a finite set S of closed instances of µ-axioms. We will design a
system of nested elementary update procedures, such that a finite fixed point
of the system is a finite partial model of S.

Suppose that µ1, . . . , µn are the µ-symbols mentioned in S. By reordering
them if necessary, we can assume that whenever i is less than j, the rank of µi

is less than or equal to the rank of µj . This means that if µi(~y) is intended to

7



denote the least element function for θ(x, ~y) according to axiom (1) above, then
at most the µ-symbols µ1, . . . , µi−1 occur in θ.

For each i, define Fi(f1, . . . , fn) as follows. If µi has defining axiom (1), then
S contains finitely many closed substitution instances of this axiom, and these
are of the form

θ(s, t1, . . . , tk) → θ(µi(t1, . . . , tk), t1, . . . , tk) ∧ µi(t1, . . . , tk) ≤ s. (2)

We can assume that the sentences occurring in S are ordered in some canonical
way, say, by their Gödel numbers. If every instance of (2) in S is true under ~f ,
let Fi(f1, . . . , fn) return the null update, ∅. Otherwise, choose the first instance
of (2) that is false. In that case, we know that θ

~f (s~f , t
~f
1 , . . . , t

~f
k) is true, but

either θ
~f (f(t

~f
1 , . . . , t

~f
k), t

~f
1 , . . . , t

~f
k) is false or s

~f is less than f(t
~f
1 , . . . , t

~f
k). Let m

be the least natural number less than or equal to s
~f such that θf (m, t

~f
1 , . . . , t

~f
k)

is true, and let Fi(f1, . . . , fn) return the update 〈〈t~f
1 , . . . , t

~f
k〉,m〉.

There are only two things to check. First, we need to confirm that for each
i and fixed f1, . . . , fi−1, the functional fi, . . . , fn 7→ Fi(f1, . . . , fn) is an update
procedure. But this is true since Fi(f1, . . . , fn) outputs an update 〈a, b〉 only
if b is the least value making θ

~f (b, (a)0, . . . , (a)k) true, and this determination
does not change if we vary fi, . . . , fn, since µi, . . . , µn do not appear in θ(x, ~y).

Second, we need to confirm that if σ1, . . . , σn is a finite fixed point of the
system of update procedures, then it is a finite partial model of S. But this is
also clear: if an instance (2) of an axiom for µi is false under the interpretation
σ̂1, . . . , σ̂k, then σi ⊕ Fi(σ̂1, . . . , σ̂n) is different from σi. �

It may be worth noting that the lemma does not depend on the interpretation
of µ-symbols in terms of least witnesses, so these methods can also be used for
theories with Skolem functions that return witnesses that are not unique.

4 Ordinal recursion

Theorem 2.2 asserted that every system of nested update procedures has a fixed
point. In this section, I will present a more constructive proof, for the case
where the functionals involved are elementary. First, I will characterize the
≺ε0-recursive functionals as set of functionals that can be computed using an
iterative procedure that counts down through ordinals below ε0. Then I will
show that for the systems of equations under considerations, the fixed points
can be computed by such functions.

Classically, ε0 can be defined as the least fixed point of the function α 7→ ωα.
Equivalently, it is the limit of the sequence 〈ωn〉n∈ω, where ω0 = 1 and ωn+1 =
ωωn , and the least ordinal closed under addition and exponentiation. I will
assume that we have fixed an elementary well-ordering ≺ of order-type ε0, with
elementary operations mirroring the usual functions of addition, exponentiation,
etc. on ordinals, such that basic properties can be proved in PRA. One can make

8



this more precise by assuming that we have an elementary recursive ordinal
notation system for ε0, in the terminology of [7]; a list of the “usual properties”
the functions are are to satisfy appears in [7, Section 1].

To interpret the following definition as taking place in PRA, one should take
the variables f1, . . . , fk to range over elementary functions (via their codes). A
α-recursive functional F (x1, . . . , xl, f1, . . . , fk) is given by a notation α and ele-
mentary functions start(x1, . . . , xl), next(q, u1, . . . , uk), query1(q), . . . , queryk(q),
norm(q), and result(q). Informally, these data describe the functional whose
values are computed in the following way: on input x1, . . . , xl, the algorithm
begins in state start(x1, . . . , xl). As long as the norm of the current state q
is less than α and the norm of the previous state, the algorithm queries the
functions f1, . . . , fk at query1(q), . . . , queryk(q), respectively, and, based on the
responses u1, . . . , uk to these queries and the current state, proceeds to the next
state, next(q, u1, . . . , uk). When the norm of the state q is not less than the
norm of the previous state, the computation returns result(q).

More formally, s is a computation sequence for F at the values ~x, ~f if s is
a sequence 〈s0, s1, s2, . . . , sm〉 satisfying the following: s0 = start(~x); for every
i < m, si+1 = next(si, f1(query1(si)), . . . , fk(queryk(si))); and either m = 0
and norm(s0) 6≺ α, or m > 0, norm(s0) ≺ α, norm(si+1) ≺ norm(si) for every
i < m − 1, and norm(sm) 6≺ norm(sm−1). F is defined at ~x, ~f if there is a
computation sequence s for F at ~x, ~f , and in that case, the value of F (~x, ~f) is
said to be result(sm), where sm is the last element of s.

A functional is said to be ≺ε0-recursive if it is α-recursive for some α≺ε0. If
k = 0 in the example above, F (x1, . . . , xl) is a ≺ε0-recursive function, so we can
now take the statement “every ≺ε0-recursive function is total” to mean that for
every such F and x1, . . . , xl, F (x1, . . . , xl) is defined. Even in the special case
where l is also zero, the general statement that every ε0-recursively specified
value F is defined is nontrivial (and is, in fact, equivalent to corresponding
assertion for functions). In [3] it is shown, for example, that the set of ≺ε0-
recursive functions is closed under composition.

Some basic properties of this model of recursion are described in [3]. In
particular, we will need the following:

Lemma 4.1 Suppose F (x1, . . . , xl, f1, . . . , fk) is an elementary recursive (or
even primitive recursive) functional. Then it is ≺ωω-recursive.

Lemma 4.2 Suppose α is infinite and closed under addition. Then the set of
≺α-recursive functionals is closed under composition.

In particular, set of the ≺ε0-recursive functionals includes the set of elementary
recursive ones, and is closed under composition.

The following is our constructive analogue of Lemma 2.1. The idea behind
the proof is also used in [5] and [3]; see also [16, Section 7].

Lemma 4.3 Suppose H(g, h1, . . . , hl) is α-recursive, and for each fixed sequence
of elementary functions ~h, the functional g 7→ H(g,~h) is an update procedure.

9



Then there is an ωα-recursive functional G(~h), such that for each ~h, if G(~h) is
defined, then it is a finite fixed point of g 7→ H(g,~h).

Proof. The proof has the flavor of a finite injury priority argument. Given ~h,
the idea is as follows. Start by setting σ0 = ∅, the first approximation to a
fixed point, and then carry out the computation of H at σ̂0,~h. This yields
a computation sequence s0, s1, . . . , sm and a descending sequence of ordinals
α0, α1, . . . , αm−1. If the computation yields a pair 〈u, v〉, we must update σ0

by setting the value of the function at u equal to v. This may invalidate the
computation sequence, say at stage i, if the computation of H(σ̂0,~h) queried
the value of σ̂0(u) at that stage. In that case, we have to throw away the rest of
the computation sequence, and begin anew from stage i with updated value of
σ̂(u). But some progress has been made: we know we will never have to change
this value again. Of course, a later update might invalidate the computation
sequence at an even earlier stage, say at stage j < i; but then even greater
progress will have been made. An appropriate assignment of ordinals below ωα

guarantees that this procedure will terminate. The details follow.
Given H(g,~h), we need to describe an algorithm to compute G(~h). Say

a partial computation sequence of H at g,~h is a proper initial segment of a
computation sequence, i.e. a sequence satisfying the definition above except that
the norm of the last state is less than the norm of the previous one. States of
G will be pairs of the form 〈σ, 〈s0, . . . , sm〉〉, where σ is a finite partial function
and 〈s0, . . . , sm〉 is a partial computation sequence for H(σ̂,~h). The starting
state will be 〈∅, startH〉, and the starting ordinal will be ωα.

If q is the state 〈σ, 〈s0, . . . , sm〉〉, assign a norm to q as follows. For each i
such that 0 ≤ i ≤ m, let

δi =
{

2 if queryH(si) is not in the domain of σ
0 otherwise.

Then define norm(q) to be

ωnorm(s0) · δ0 + . . . + ωnorm(sm−1) · δm−1 + ωnorm(sm) · (δm + 1).

Finally, in state q, determine the next state, next(q), as follows. First, compute
sm+1 = nextH(sm, σ̂(queryH,1(sm)), g1(queryH,2(sm)), . . . , gl(queryH,l(sm))). The
value of next(q) is defined by cases, as follows:

1. If normH(sm+1) ≺ normH(sm), the computation of H(σ̂,~h) is not fin-
ished. Set next(q) = 〈σ, 〈s0, . . . , sm, sm+1〉〉. Note that the norm of this
state is

ωnorm(s0) · δ0 + . . . + ωnorm(sm) · δm + ωnorm(sm+1) · (δm+1 + 1),

which is less than norm(q).

2. Otherwise, normH(sm+1) 6≺ normH(sm), and the computation of H(σ̂,~h)
is complete. Let w = resultH(sm+1), and let σ′ = σ ⊕ w. Check to see if
〈s0, . . . , sm+1〉 is also a correct computation sequence of H at σ̂′,~h.

10



(a) If it is not, then w must be of the form 〈u, v〉, where for some i,
queryH,1(si) = u. Since H is an update procedure and the value of
σ̂(u) is different from the value of σ̂′(u), we know that u is not in
the domain of σ. Let i be the least value such that queryH,1(si) = u,
and let next(q) be 〈σ′, 〈s0, . . . , si〉〉. Note that δi has dropped from 2
to 0, and so the norm of this state is

ωnorm(s0) · δ0 + . . . + ωnorm(si−1) · δi−1 + ωnorm(si) · 1

which is less than norm(q).

(b) Otherwise, σ′ ⊕ w = σ′ ⊕ H(σ̂′,~h). In that case, σ′ is the desired
fixed point and we are done. Let next(q) code this fact, and let
result(next(q)) return σ′.

It is not hard to verify that at each intermediate state 〈σ, 〈s0, . . . , sm〉〉 of the
computation, 〈s0, . . . , sm〉 is a partial computation sequence for H at σ̂, ~g. The
procedure terminates only when one has a value of σ and a computation sequence
for H(σ̂, ~g) such that σ = σ ⊕H(σ̂, ~g). �

The following theorem is the constructive analogue of Theorem 2.2. The idea
behind the proof is essentially the same, but here we have to be careful about
the wording, to ensure that the proof can be carried out in PRA. We will use
the fact that in proving Lemma 4.3, one can find a primitive recursive function
that computes (the code for) G uniformly from (the code for) H.

Theorem 4.4 Suppose every ≺ε0-recursive function is total. Then every sys-
tem of nested elementary update procedures has a finite fixed point.

Proof. By recursion from n down to 1, let Gn(f1, . . . , fn−1) return fixed points of
the functionals fn 7→ Fn(f1, . . . , fn) as in Lemma 4.3; let Gn−1(f1, . . . , fn−2) re-
turn fixed points of the functionals fn−1 7→ Fn−1(f1, . . . , fn−1, Gn(f1, . . . , fn−1)),
and so on. In the end, consider the sequence

G1, G2(Ĝ1), G3(Ĝ1, Ĝ2(Ĝ1)), . . . , Gn(Ĝ1, Ĝ2(Ĝ1), . . . , ̂Gn−1(. . .)).

Since every ≺ε0-recursive function is total, all these values are defined,1 and
provide the desired fixed point. �

References

[1] Wilhelm Ackermann. Zur Widerspruchsfreiheit der Zahlentheorie. Mathe-
matische Annalen, 93:1–36, 1940.

1To be more precise: using the methods of [3] we can combine these values into a single
≺ε0-recursive value K, such that if K is defined then all these other values are defined as well.

11



[2] Toshiyasu Arai. Epsilon substitution method for theories of jump hierar-
chies. Preprint.

[3] Jeremy Avigad. Ordinal analysis without proofs. To appear in Reflections:
A collection honoring Solomon Feferman on his 70th birthday, ASL Lecture
Notes in Logic, AK Peters.

[4] Jeremy Avigad. An ordinal analysis of admissible set theory using recursion
on ordinal notations. Submitted.

[5] Samuel Buss. The witness function method and provably recursive func-
tions of Peano arithmetic. In D. Westerst̊ahl D. Prawitz, B. Skyrms, editor,
Proceedings of the Ninth International Congress on Logic, Methodology, and
Philosophy of Science, pages 29–68. Elsevier North-Holland, 1994.

[6] Matt Fairtlough and Stanley Wainer. Hierarchies of provably recursive
functions. In Samuel Buss, editor, The Handbook of Proof Theory, North-
Holland, 1998, pages 149–207.

[7] Harvey Friedman and Michael Sheard. Elementary descent recersion and
proof theory. Annals of Pure and Applied Logic, 71:1–45, 1995.

[8] Harvey Friedman. Finite functions and the necessary use of large cardinals.
Annals of Mathematics, 148:803–893, 1998.

[9] Harvey Friedman. Boolean relation theory. Posting to the Foundations of
Mathematics forum, http://www.math.psu.edu/simpson/fom, March 10,
2000.

[10] Petr Hájek and Pavel Pudlák. Metamathematics of first-order arithmetic.
Springer, Berlin, 1993.

[11] Grigori Mints. Gentzen-type systems and Hilbert’s epsilon subsitution
method I. In D. Prawitz, B. Skyrms, and D. Westerst̊ahl, editors, Logic,
Methodology, and Philosophy of Science IX, pages 91–122. Elsevier Science,
1994.

[12] Grigori Mints. Strong termination for the epsilon substitution method.
Journal of Symbolic Logic, 61:1193–1205, 1996.

[13] Grigori Mints and Sergei Tupailo. Epsilon subsitution method for the ram-
ified language and ∆1

1-comprehension rule. In Andrea Cantini et al., editor,
Logic and Foundations of Mathematics, pages 107–130. Kluwer, 1999.

[14] H. E. Rose. Subrecursion: Functions and Hierarchies. Clarendon Press,
1984.

[15] Richard Sommer. Trasnfinite Induction and Hierarchies Generated by
Transfinite Recursion within Peano Arithmetic. PhD thesis, University
of California, Berkeley, 1990.

12



[16] William Tait. Functionals defined by transfinite recursion. Journal of
Symbolic Logic, 30:155–174, 1965.

[17] William Tait. The substitution method. Journal of Symbolic Logic, 30:175–
192, 1965.

13


