A decision procedure for linear “big O” equations®

Jeremy Avigad and Kevin Donnelly
August 16, 2006

Abstract

Let F' be the set of functions from an infinite set, S, to an ordered
ring R. For f, g, and h in F, the assertion f = g + O(h) means that
for some constant C, |f(z) — g(z)| < C|h(z)| for every = in S. Let L
be the first-order language with variables ranging over such functions,
symbols for 0,4, —, min, max, and absolute value, and a ternary relation
f =g+ O(h). We show that the set of quantifier-free formulas in this
language that are valid in the intended class of interpretations is decidable,
and does not depend on the underlying set, S, or the ordered ring, R. If
R is a subfield of the real numbers, we can add a constant 1 function, and,
in fact, any sequence of functions with strictly increasing rates of growth,
as well as multiplication by constants from any computable subfield.

1 Introduction

Let F be the set of functions functions from any infinite set S to any ordered
ring R, and let f,g,h,... range over elements of F. The assertion f = O(g),
read “f is big O of ¢g,” means that there is a constant C' such that for every
z, |f(z)] < Clg(z)|. More generally, the assertion f = g + O(h) means that
f — g = O(h); in other words, there is a constant C such that for every z,

[f(x) = g(x)] < Clh(x)].

Read this as saying that f and g have the same rate of growth up to that of h.
The notion is used widely in mathematics and computer science as a means of
characterizing functions and their behaviors.

Determining the validity of entailments between big O equations involving
even only linear expressions can be tricky. For example, the entailments

f+g=h+0O(k)

g+l:h+0(k)}:>f_l+0(k)

*This is a DRAFT.

and
f+g=h+0(k)
g=0() = f=h+0()
kE=0()

follow from the definitions above. Proofs in analysis often involve long sequences
of such calculations based on facts like these. This is the case in analytic number
theory; infrastructure for big O calculations was needed to support the formal
verification of an elementary proof of the prime number theorem [2, 3] using the
proof assistant Isabelle [11]. See also Graham et al. [5] for a helpful overview of
O notation and its properties.

Let L be the first-order language with variables f,g,h,..., symbols for
0,4, —, min, max, and absolute value, and a ternary relation f = g + O(h).
We show that the set of quantifier-free formulas in this language that are valid
in the intended class of interpretations is decidable, and does not depend on
the underlying set, .S, or the ordered ring, R. When S itself has an ordering,
f =g+ O(h) is sometimes read as the assertion that f and g eventually have
the same rate of growth, that is, that for some C and d, |f(z) — g(x)| < C|h(x)]
for all x > d. We show that this reading of big O equations does not change the
set of valid formulas.

If R is a subfield of the real numbers, we can add a constant 1 function,
as well as multiplication by constants from any computable subfield. In fact,
let (G,) be any sequence of functions indexed by a computable ordering, such
that o < @ implies G, = O(Gg) but Gg # O(G,). We show that we still have
decidability even if we add symbols denoting these functions to L.

The following example will help make the results concrete. Suppose we are
interested in functions from positive integers to the real numbers. Consider the
set of terms built up from variables and symbols for arbitrary products of the
fixed functions ‘

1,...,1+(1ogm)q,...,xq,...eq'”y,...,
where ¢ and r range of rational numbers, using rational linear combinations,
min, max, and absolute value (but neither multiplication nor composition).
Consider the set of Boolean combinations of big O expressions involving these
terms that are valid in the desired interpretation. This set is decidable, and we
present a decision procedure below.

In practice, big O reasoning is often used when the terms involve sums
of functions that take only nonnegative values. Handling this case is somewhat
easier than the more general one. Our strategy is therefore to deal with that case
first, and then reduce the general case to the more restricted one. In both cases,
big O relations are transitive: if r = s + O(t) and t = O(u), then r = s + O(u).
In the more restricted case, two equations r1 = s; + O(t1) and ro = s + O(t2)
entail their sum, r1 +ro = 51 + 52 + O(t1 + t2), and f1 +...+ fr = O(t) entails
fi = O(t) for each i. Also, a variable need only appear once inside the O; for
example, O(f + f) is the same as O(f). Below, we will show, roughly, that all
valid entailments are obtained in this way. Thus, our decision procedure works
by using these principles to derive consequences from a set of hypotheses until

a saturation point is reached; an equation r = s + O(t) then follows from the
hypotheses if and only if » = s is a linear combination of the equations that
have been determined to hold up to O(t).

Our algorithm can be used to support formal verification with a mechanized
proof assistant, such as Coq [10], Isabelle [11], or PVS [12]. We view the ques-
tions addressed here as an example the kinds of interesting theoretical issues
that can emerge from such efforts, and the resulting algorithm as an example
of the kinds of domain-specific support that can be useful.

2 An axiomatization of positive big O equations

The simplest version of our decision procedure acts on expressions in the fol-
lowing language, L, for first-order logic with equality: terms are built up from
variables f1, fa2,... and a constant symbol, 0, using a binary function symbol,
+, and there is one ternary relation in the language, written r = s + O(t).

In the intended class of interpretations, the variables range over functions
f1, f2,... from a set S to an ordered semiring, that is, the nonnegative part of
an ordered ring R. We assume that the ring is nontrivial, so zero is not equal
to one. The symbol + denotes pointwise addition, 0 denotes the constant zero
function, and f = g + O(h) denotes the assertion that there is a C' in the ring
such that |f(z) — g(x)| < C|h(x)]| for all z in S.

Below we provide a list of axioms, whose universal closures are true for set
F of functions in the intended interpretation. Here, we are only concerned with
the quantifier-free consequences of these axioms. By Herbrand’s theorem, a
quantifier-free formula is provable from universal axioms using first-order logic
with equality if and only if there is a propositional proof of that formula from
finitely many instances of the axioms, together with instances of equality ax-
ioms. So, instead of a first-order proof system, we can just as well consider the
quantifier-free proof system whose nonlogical axioms consist of all the instances
of the formulas below.

We will write 7 = O(s) instead of r = 0+ O(s). In the second-to-last axiom,
the notation kf abbreviates a sum f + f 4+ ...+ f of £ many f’s. The axioms
are as follows.

L f=g<f=9+0(0)
2. axioms asserting that + is associative and commutative, with identity 0

3. axioms asserting that for fixed h, the relation f = g + O(h) is reflexive,
symmetric, and transitive

4. monotonicity: f = O(f +g)
5. transitivity: f =g+ O(h)Ah=0(k) — f =g+ O(k)
6. linearity:

(a) fi=g +O() A fa=g2+O(h) = fi + fa = g1 + g2+ O(h)

(b) it fo=g+90+O0M0)Afi=g +0(0h)— fa=g2+O(h)
(c) for each positive integer k, the axiom kf = kg+O(h) — f = g+O(h)

The first axiom implies that the equality symbol can be eliminated in favor of
equality “up to O(0).” The transitivity axiom asserts that if » = O(s), then
any equation that holds up to O(r) also holds up to O(s). Thus a relation of
the form r = O(s) induces an inclusion on the set of equations that hold up to
O(r) and O(s), respectively.

Let us consider some consequences of the axioms. First, monotonicity and
transitivity imply

f+9=0(h)— f=0().

Intuitively, this is clear, since we have f < f+g. Also, monotonicity, transitivity,
and the first linearity axiom yield a slightly stronger form of linearity:

fi=g1+O0(h1) A fo=g2+0(h2) = fi + f2 = g1 + g2 + O(h1 + h2).
The third linearity axiom then implies that for any positive integers k1, ..., km,

k1f1+...kmfm:O(f1+...+fm).

Of course, we also have f1 + ...+ fi,, = O(k1f1 + ... kmfm). It is convenient to
express these last two facts by writing O(f1 + ...+ fm) = O(k1f1 + .. - km fm)-
This means that a rate of growth O(t) only depends on the variables that appear
in ¢, and not the number of times that they occur.

If f = O(t), linearity implies s + f = s + O(¢). Thus if s’ denotes the result
of deleting occurrences of f in s, f = O(t) implies s = s’ + O(t). This means
that in an equation r = s+ O(t), all that is relevant are the variables appearing
in ¢, and the parts of r and s that do not involve variables in ¢. For example,

3fi+2f2=5f34+O0(f2 +3fs)

is equivalent to

3fi =5f3+ O(fa + fa).

Moreover, once we know f = O(t), we have O(t) = O(t + f). So deriving
equations of the form f = O(t) can both enlarge the set of equations that are
known to hold up to O(t) by adding any equations that are known to hold up
to O(t + f), and simplify equations are that already known to hold up to O(t)
by making f irrelevant. Note, finally, that we can derive equations of the form
f = O(t) by finding linear combinations of equations that are known to hold up
to O(t) that result in equations of the form f + s = O(t).
It will be convenient below to work with big O equations of the form

a1f1+‘--+amfm20(t) (1)

where ay,...,a, are arbitrary rational coefficients. Negative values can easily
be interpreted away by moving the terms to the other side of the equation; for
example, 3f; — 2fs = O(f3) can be viewed as an abbreviation for 3f; = 2f5 4+

O(f3). Similarly, equations involving fractional coefficients can be understood
in terms of the result of multiplying through by the least common divisor. Of
course, for implementation purposes, one should take these equations at face
value, rather than treating them as metamathematical abbreviations for much
longer expressions.

Now suppose we are given a system of equations

ai,1f1+~--+ai,mfm :O(t) (2)

for fixed t and ¢ = 1,...,n. The linearity axioms imply that any linear combi-
nation of the expressions on the left-hand side is also has rate of growth O(t).
Thus we can use conventional methods of linear algebra to derive new equations
of the form (1).

3 A combinatorial lemma

Let us consider where we stand. With helpful notational abbreviations, we
have focused our attention on formulas of the form (1), where the coefficients
are rational numbers. Without loss of generality, we can assume ¢ is a sum of
distinct variables, and that these variables are disjoint from f1, ..., f;,. Suppose
we start with a set of hypotheses and derive a set of equations of the form (2),
for a fixed ¢, with ¢ = 1,...,n. We can both enlarge and simplify this set
of consequences by deriving new formulas f, = O(t) for v = 1,...,m. We
can do that, in turn, by finding linear combinations of the equations (2) that
yield formulas of the form (1) in which each a; is nonnegative and a,, is strictly
positive for some v.

In this section, we show that it is algorithmically decidable whether such a
linear combination of the equations exists. We will also provide a dual char-
acterization of this condition that will ultimately enable us to show that our
decision procedure for quantifier-free big O expressions is complete. The deci-
sion procedure itself will be presented in the next section.

Suppose we are given a system of n equations of the form (2), where ¢ runs
from 1 to n. A rational linear combination of the expressions on the left-hand-
side is an expression of the form

Z bia;1f1+...+ Z bi @i m fm (3)

1=1...n i=1...n
for some sequence of rational numbers by, . .., b,. We would like to know whether
there is a choice of by, ...,b, that makes all the coefficients nonnegative, and at

least one coefficient strictly positive.

Let A be the nxm matrix of rational numbers (a; ;)i=1...n j=1..m- If we use f
to denote the vector of variables (f1, ..., fa), and we let f* denote its transpose,
then the equations (2) are just the rows of Aft. If b is the vector {by,...,by),
then bAf* is expression (3), and bA is the vector of the m coefficients.

Lemma 3.1 Let A be an n X m matriz of rational numbers, and let v be any
inder, 1 < v < m. Then the question as to whether there is any vector b =
(b1,...,bn) such that bA is nonnegative and the vth element is strictly positive
is decidable.

Proof. This is a system of m inequalities in n unknowns, and is easily solved,
say, by the Fourier-Motzkin procedure [1]. O

The Fourier-Motzkin procedure is, in principle, doubly-exponential in the
number of variables. The procedure can be optimized by first eliminating
“pivot” variables that occur in only a small number of inequalities. This works
remarkably well on problems that come up in practice, where most of the vari-
ables have this property. More efficient procedures are available, based on “test
point” methods; see [7, 9].

In Section 4, We will use the following dual characterization of the problem.

Lemma 3.2 Let A be an n X m matriz of rational numbers, and let v be any
index, 1 < v <m. Then the following two conditions are equivalent:

1. There is a vector b = (by,...,b,) such that bA is nonnegative, and the vth
component of bA is strictly positive.

2. There is no nonnegative vector f = (f1,..., fm) of rational numbers sat-
isfying Aft =0 and f, > 0.

Proof. To see that 1 implies 2, suppose 2 is false. Then there is a nonnegative vec-
tor f = (f1,..., fm) of rational numbers with Af* = 0 and f, > 0. Then bAf! =
0 for every b, that is, the expression » ., biai1fi+...+> 1 ., biimfm
is equal to 0. If, on the other hand, 1 holds, there is a b such that each term of
this expression is nonnegative and the vth summand is strictly positive, making
the expression strictly positive. Thus if 2 is false, 1 is false as well.

The fact that 2 implies 1, and, in fact, the full equivalence, is a direct conse-
quence of the duality theorem for linear programming. Consider the following
two problems:

1. Find a vector b maximizing the constant function 0, subject to the con-
straints bA > (0,0,...,0,1,0,...,0), where the 1 occurs in the vth posi-
tion.

2. Find a vector f minimizing — f,, subject to the constraints f > 0 and

Aft = 0.

By the duality theorem ([8, Theorem 3.1] or [6, Theorem 8.3.1]), the first prob-
lem has a solution if and only if the second one does.

Now suppose there is a b such that each component of bA is nonnegative,
and the vth component is strictly positive. Scaling b by the reciprocal of the
vth component, we get a vector b’ such that b’A is nonnegative and the vth
component is greater than or equal to 1. Thus the first problem has a solution
if and only if condition 1 of the lemma holds.

On the other hand, Af* = 0 has at least one solution, namely, when f is the
constant 0 vector. Suppose f is a nonnegative vector such that Af* = 0 and
fv is strictly positive. Then any multiple of f also has this property, and the
multiples of — f,, are unbounded. Thus the second problem has a solution if and
only if for every f satisfying Aft =0 and f > 0, we have f, = 0; that is, if and
only if condition 2 of the lemma holds. So the two conditions are equivalent, as
claimed. O

The following fact will also be useful in proving completeness.

Lemma 3.3 Let A be an n X m matrix of rational numbers, and suppose for
every v from 1 to m there is a nonnegative vector f such that Aft = 0 and
the vth component of f is strictly positive. Then there is a vector f such that
Aft =0, and every component of f is strictly positive.

Proof. For each v, choose a vector f satisfying the hypothesis. Then the sum of
these vectors satisfies the conclusion. O

4 A decision procedure

Let L be the language described in Section 2. Let S be any set, let R be any
ordered ring, and let F' be the set of functions from S to the nonnegative part
of R. Say that if quantifier-free formula in L is valid in F if its universal closure
holds in F', that is, if the formula is true for all instances of the variables under
the intended interpretation.

Before considering arbitrary quantifier-free formulas, we first consider Horn
clauses. These are formulas of the form

1A Ao =Y
where each ¢; and 1 is an atomic formula. We will prove:

Theorem 4.1 Let L and F be as above. The set of Horn clauses that are valid
in F is decidable, and do not depend on the choice of S or R.

In particular, the valid Horn clauses are exactly the ones that hold of the set of
functions mapping a single element to the natural numbers.

Now consider any quantifier-free formula in L. Classically, this formula is
equivalent to one in conjunctive normal form, that is, a conjunction of disjunc-
tions of literals (i.e. atomic formulas and their negations). A conjunction of
formulas is valid in F' if and only if each conjunct is valid in F', so to provide
a decision procedure for arbitrary quantifier-free formulas, it suffices to provide
a decision procedure for disjunctions of literals. But any such disjunction is
equivalent to a formula of the form

<p1/\.../\g0k—>¢1\/~-~\/¢l7 (4)

where each ¢; and 1; is an atomic formula, this is, a big O equation. If any of
the implications
(pl/\.../\<pk—>¢j (5)

is valid in some F (and so, by Theorem 4.1, in all F’s), then clearly (4) is valid
in all F’s. On the other hand, if there is a counterexample to each equation (5),
then by Theorem 4.1 there is a counterexample consisting of a functions from
a singleton to the natural numbers. We can combine these ! counterexamples
into a single counterexample consisting of functions from {1,...,l} to N, where
each variable f is interpreted as the function that takes the value of the jth
counterexample on input j. This provides a counterexample to (4). Since there
is no structure on the set .S, all that matters is its cardinality; so we have that
the formula (4) is valid for all F’s for which S is sufficiently large if and only
if each Horn clause (5) is valid in every F. So Theorem 4.1 has the following
consequence.

Theorem 4.2 Let F be the set of functions from any infinite set S to the
nonnegative part of any ordered ring R. Then the set of quantifier-free formulas
that are valid in F is decidable, and does not depend on S or R.

If S is an ordered set with no greatest element, one sometimes finds alterna-
tive readings of = s + O(t) to the effect that the rate of growth is bounded
eventually, that is, for all suitably large x. (If S has a greatest element, the
notion degenerates, depending on whether one uses > or > to express “suitably
large.”) Once again, a decision procedure for arbitrary quantifier-free formu-
las reduces to a decision procedure for Horn clauses. It is not hard to verify
that if a Horn clause is valid under the original reading, it is valid under the
“eventually” reading. Conversely, it is not hard to turn a counterexample to
the original reading where the domain S is is a singleton into a counterexample
to the “eventually” reading for any ordered S using the corresponding constant
functions. So we have:

Theorem 4.3 The set of quantifier-free formulas of L that are valid for every
set of functions from an ordered set with no greatest element to the nonnegative
part of an ordered ring on the “eventually” reading coincides with the set of
formulas named in Theorem 4.2.

Proof of Theorem 4.1. We will describe an algorithm for determining whether
a Horn clause is valid, and show that the algorithm behaves as advertised.
Suppose we are given a Horn clause with variables among f1,..., f,,. Without
loss of generality we can assume that the hypotheses are all of the form ¢ = O(r),
where ¢ is a rational linear combination of fi, ..., f;,, and r is a sum of distinct
variables from among fi,..., f,n. We can also assume that the conclusion,
s = O(t), is of this same form. Our task is to decide whether the conclusion is
entailed by the hypotheses.

For any subset A of {f1,..., fm}, it will be convenient to write t4 for the
sum Yy fieA fi of the variables in A. Also, if g is a rational linear combination
of fi,..., fm, it will be convenient to write q[A] for the result of setting the

coefficient of f; to zero for each f; in A. We saw in the previous section that
for any s and ¢, if A is the set of variables occurring in ¢, then s = O(t) is
equivalent to s[A] = O(ta). Also, if the indices of the variables of r are all in
A, then ¢ = O(r) entails ¢ = O(t4), which is equivalent to ¢[A] = O(t4).

The algorithm is as follows:

Set A equal to the set of variables occurring in t.

Repeat:

Let @ be the set of terms ¢[S] where ¢ = O(r) is a hy-
pothesis and the variables of r are all in A.

For each f, € {f1,..., fm} — A:

If there is a rational linear combination of ele-
ments of () with nonnegative coefficients and pos-
itive vth coefficient, add f, to A.

until no new indices are added to A.

Let @ be the set of terms ¢[S] where ¢ = O(r) is a hypothesis and
the variables of r are all in A.

)

If s[A] is a linear combination of elements of @, return “true,” else

return “false.”

We start by setting A to equal to the set of variables occurring in ¢, so
O(t) = O(ta). At each pass through the outer loop, we try to augment A while
maintaining O(t) = O(t4). Suppose we have a hypothesis ¢ = O(r), where the
variables of r are all in A. Then r = O(t4). By transitivity, we have ¢ = O(t4),
which is equivalent to g[A] = O(t4). Thus we let @ be the set of terms g[A]
corresponding to such r. Then any linear combination of elements of Q) also
has order of growth O(t4). If some such linear combination has nonnegative
coefficients, and the coefficient of f, is strictly positive for some v, then we know
the f, = O(ta). This implies O(t) = O(ta) = O(ta + f») = O(taugy,y), and
we add f, to A. The outer loop terminates when we can no longer derive new
expressions of the form f, = O(t4).

Once we have left the outer loop, we will have O(t) = O(t4), and we once
again let @ be the set of terms g[A] such that we have r = O(ta). If s is
a linear combination of terms in @, then s = O(t4) = O(¢). Thus we have
shown that s = O(t) is a consequence of the hypothesis in any of the intended
interpretations, and we return “true.” Otherwise, we return “false.”

All we have left to do is to show that if the algorithm returns “false,” there
is a counterexample in the set of functions F' from any set S to the nonnegative
part of any ordered ring, R. In fact, we will construct a counterexample where
S = {x} is a singleton and R is the integers. Thus our counterexample amounts
to assigning a nonnegative integer to each variable f;. In that case, an expression
of the form s = O(t) comes out true if and only if ¢ is nonnegative, or ¢t = 0 and
s = 0. Conversely, s = O(t) comes out false if and only if ¢ = 0 and s is strictly

positive. Since every ordered ring contains a copy of the natural numbers and
one can take the corresponding constant functions for any set S, this provides
counterexamples for every S and R, simultaneously.

We now describe the assignment of nonnegative integers to the variables f;.
Let A be the set of variables at the termination of the outer loop. For each f;
in A, set f; =0.

We still have to assign values to the variables f; that are not in A. Let @ be
the set of expressions ¢[A] such that ¢ = O(r) is one of the hypotheses and the
variables of r are in A. Since the outer loop terminates with that value of A,
by Lemma 3.3 we know that there is an assignment of strictly positive rational
values ¢; to each variable f; not in A making each ¢[A] equal to 0. Scaling
these, we can assume that each ¢; is a strictly positive integer. Also, since s[A]
is not a linear combination of the expressions in @), by linear algebra there is an
assignment of rational values d; to variables f; not in A making each ¢[A] equal
to zero and s[A] nonzero. Scaling again, we can assume that the values of d;
are integers.

Suppose the value of s[A] under the assignment of the ¢;’s is z and the value
of s[A] under the assignment of the d;’s is y. Since the ¢;’s are strictly positive
and y is nonzero, we have that for sufficiently large integer e, assigning ec; + d;
to f; will make f; strictly positive. In that case, each g[A] gets the value 0, and
s[A] gets the value ex 4+ y. Because y is not zero, we can choose e such that in
addition ex +y is not equal to 0. So we choose such an e and assign each f; the
value ec; + d;.

We need to show that with the assignment of values to the f;’s that we have
just described, each hypothesis ¢ = O(r) comes out true, while s = O(t) comes
out false. First, note that if any variable of r is not in A, then r is strictly
positive, and ¢ = O(r) is true. Thus we only have to worry about hypotheses
g = O(r) where ¢[A] is one of the expressions in Q. In that case, our assignment
of values to f;’s not in A ensures that g[A] has value 0, and since we have
assigned zero to the other f;’s, we have ¢ = q[A]. Thus each such ¢ has value 0,
and since 0 = O(0), the hypotheses are satisfied.

On the other hand, since the variables of ¢ are all in A, ¢ has a value of 0
under the assignment. We have also ensured that the value of s[A], and hence
the value of s, is strictly positive. Thus, under the assignment, s = O(t) is false,
as required. O

We have implemented, in ML, a prototype version of the algorithm just
described, and confirmed that it does well on natural examples. On a Pentium
M 1.6 GHz processor, our implementation decides examples with on the order
of five or six variables, like the ones in the introduction, in under 20 ms (which
is about the limit of our timer’s precision).

Note that if R is an ordered group instead of an ordered ring, there is still an
action of Z on R, taking kx to be a sum x + ...+ z of £k many 2’s. O notation
even makes sense in this setting, if one interprets the constant C' as an element
of Z. The axioms of Section 2 are still valid, and the decision procedure above

10

still works. When R is a subfield of the real numbers, the two interpretations
coincide.

In the other direction, when R is a field, it makes sense to include mul-
tiplication by arbitrary rational constants in the language. Since the duality
principle from linear programming holds for any subfield R of the real numbers,
the procedure also works for such R when we allow multiplication by constants
from any computable subfield, that is, function symbols ¢,(f) = af, for each
such a.

It is not hard to see that the axioms described in Section 2 are sufficient to
prove any entailment that our procedure sanctions as valid. This yields:

Theorem 4.4 The set of quantifier-free formulas of L wvalid in the intended
class of interpretations is equal to the set of quantifier-free consequences of the
axioms in Section 2.

If we add multiplication by constants, it suffices to add the obvious identities,
like co(f 4+ g) = ca(f) + ca(g), and so on.

5 Handling negative values

The absolute value function is defined on any ordered ring by setting |z| = x if
xz >0, and |z| = —z otherwise. This can be lifted to functions from a set to an
ordered group by defining |f| to be the function mapping z to |f(z)| for every
x.

Let us now extend the language L of Section 2 to a language L’ where we add
subtraction and absolute value, and now take the function variables to range
over functions from a set S to an arbitrary. The functions min and max can
then be defined by the following equations:

min(f,g) = (f+g—I[f—gl)/2
max(f,g) = (f+g+I|f—g])/2

Since |f] is always a nonnegative function and any nonnegative function can
be expressed in this way, the decision procedure in the previous section can be
viewed as working with the fragment of the language with only addition, and
where variables are replaced by expressions of the form |f|. Our goal now is to
show that the procedure extends to the full language.

Theorem 5.1 Let F be the set of functions from any infinite set S to any
ordered ring R. Then the set of quantifier-free formulas of L' that are valid in
F' is decidable, and does not depend on the choice of F.

As before, if R is a subfield of the reals, we can extend the language with
multiplication by constants in any computable subfield.

When functions can take on positive and negative values, the task of de-
termining what is valid becomes more subtle. The expressions f; = O(g) and
f2 = O(g) still entail f1+ fo = O(g), but it is no longer necessarily the case that

11

f=0(g1) and f = O(g2) entail f = O(g1 + g2), or even that g1 = O(g1 + g2)
generally holds: consider the fact that g, might be —¢g;. But if f is any function,
we can subdivide the domain S into a set Sy where the value of f is nonnegative
and a set S7 where the value of f is nonpositive. In fact, we can do this for all
terms appearing in an expression, creating a partition of S such that on each
element of the partition the signs of the terms do not change. A big O equation
will hold if and if it holds on each segment of the partition, and we can use this
observation to reduce the problem to that which we solved in Section 4.

In order to spell out the details, we will rely on the following lemma. We
will use variables «a, 3,7, ... to range over nonnegative functions, which can be
thought of as expressions of the form |a|, |b],|c|, ..., where a, b, ¢, ... are ordinary
variables of L’. From now on we assume we are dealing with functions from an
infinite set S to an ordered ring R.

Lemma 5.2 Let o(f) be any quantifier-free formula in the language of L.
Then ¢(f) is valid if and only if () and p(—a) are both valid, where « is
a new variable ranging over nonnegative functions.

Proof. Clearly if ¢(f) is valid then it holds whenever f is nonnegative or non-
positive, so p(a) and ¢(—«) are both valid. To verify the converse, as in the
previous section, we only need to consider Horn clauses

N\ ai=0(r;) = s =0().

So, suppose for some assignment of variables, including the expression above is
false. Then each g; = O(r;) is true for this assignment, but s = O(¢) is false. Let
Sp be the elements of S where f is nonnegative, and let S7 be S—Sy. Then each
hypothesis ¢; = O(r;) remains true when the functions are restricted to Sy and
Sy, respectively. Since s = O(t) is false, it must be false of the restrictions of
the functions to either Sy or S7. As in the previous section, this counterexample
on an S; can be turned into a counterexample with domain S just by picking
an element x in S; and setting f(y) = f(x) for y in S — S;. But now f is
either nonnegative or nonpositive, providing a counterexample to either ¢(a) or

p(—a). O

We now describe a procedure for transforming a formula ¢ involving variables
fi,-+-, fm into a formula ¢’ involving only variables «j, ..., ag, such that the
absolute value function does not occur in ¢’, and such that ¢ is valid if and only
if ¢’ is. In an expression s = O(t) in ¢/, s may be a rational linear combination of
variables, but that can be understood according the the conventions of Section 2;
t will always be a variable, a. Thus the decision procedure in Section 4 applies
to ¢'.

First, in ¢, replace every atomic formula s = O(t) by s = O(]¢t|). Clearly,
this does not change the interpretation of the formula.

Now, iteratively, for each expression || occurring in ¢, introduce a new
variable h, add the hypothesis h = ¢, and replace by ¢ by h in ¢. Do this with

12

the innermost occurrences of ¢ first, so we are left with a formula of the form

Nhi=t:— ¢,

where the absolute value function does not occur in any t;, and occurs only in
the form |h;| in ¢.

The result is a formula involving the original variables f1,..., f, of ¢, and
new variables h1, ..., h,. By Lemma 5.2, this formula is valid if and only if so is
the conjunction obtained by substituting all combinations +aq, ..., a4, for
these variables. Replace | + o] by «;, and call the resulting formula ¢’. Then
¢’ has the requisite form, and we are reduced to Theorem 4.2. O

It is instructive to see how this procedure works on particular examples. For
example, one attempts to verify f = O(f + g) by considering f = O(|f + g|),
and then, in turn, h = f + g — f = O(|h|). This last formula is valid if every
substitution of +«, 403, and +v for f, g, and h, respectively, yields a valid
formula. But if we substitute «, —3, and v, we get v = a — 8 — a = O(y).
This is equivalent to 8 + v = O(7), which is not generally valid.

Because the procedure involves iterating case splits, there may be an expo-
nential increase in complexity. In situations where the signs of subterms are
constant and can be determined, however, such splits can be avoided.

6 Handling constant functions

In this section, we suppose we are dealing with the set F' of functions from a set
S to an ordered ring R where there is at least one function, G, that does not
have constant rate of growth; i.e. such that 1 = O(G,) but G, # O(1), where 1
denotes the constant function returning one. For example, on functions from N
to R we can take G.(z) = 1+ x; in general, we can find such a function as long
as there is a cofinal subset of R that has cardinality at most that of S.

We have not included a symbol for the constant function 1 in the language
of L. We can obtain some of the expressions that are valid in the expanded
language by using a variable g; in place of 1, and then checking the validity of

917 0(0) — ¢, (6)

where ¢ is any quantifier-free formula involving g; and other variables f1,..., fi,.
If this expression is valid, then clearly ¢ is valid when g; is interpreted as 1.
In this section we will show, surprisingly, that the converse holds, i.e. that all
valid entailments arise in this way.

Theorem 6.1 For any quantifier-free formula ¢ in the language L', @ is valid
when gy is interpreted as the constant function 1 if and only if the formula

g1 #0(0) — ¢

is valid.

13

As a result, our decidability results hold for the extend to the expansion of the
language L’ with a symbol to denote the constant one function. (In structures
where f = O(1) holds for every f, a straightforward variation of the decision
procedure works.)

Proof. As before, it suffices to prove the theorem for Horn clauses and the lan-
guage L, where the variables are assumed to range over nonnegative functions.
Suppose ¢ is a Horn clause of the form A ¢; = O(r;) — s = O(t;), involving
variables f1,..., f; and g;. The formula g; # O(0) — ¢ is equivalent to

/\qi =0(r;)) = g1 =0(0) Vs=0(1).
If ¢ is not valid, then our algorithm returns “false” on both

/\qi = O(r;) — g1 = 0(0).

and
N\ ai=0(r;) = s =0().

We will show that from this outcome on both runs, we can construct a coun-
terexample to ¢ where g; is interpreted as 1.

Since the algorithm returns “false” to the first query, we know from Section 4
that there is an assignment of rational values c1,...,¢n, u to f1,..., fin, g1 mak-
ing the hypotheses true, but g; # 0. Scaling, we can assume that © = 1. Let
A be the set of variables that have been accumulated by the end of the main
loop. Then A is the set of variables f such that f = O(0) has been determined
to be a consequence of the hypotheses; that is, the set of symbols f such that
we have f = 0. We have that ¢; # 0 for each f; that is not in A.

Since the algorithm returns “false” to the second query, we know that there
is an assignment of rational values to di,...,dm,,v to fi,..., fm, g1 making the
hypotheses true, and the conclusion s = O(¢) false. In other words, ¢t has a
value of 0, and s has a nonzero value, under the assignment. Let B be the set
of variables f such that f = O(t) has been determined to be a consequence of
the hypotheses by the end of the second algorithm. Note that B includes A: if
f = 0(0) is a consequence of the hypotheses, then so is f = O(t).

Now there are two cases, depending on whether g1 is in the set B at the
end of this second run. If it isn’t, then g1 = O(t) is not entailed by the hy-
potheses. In that case, we can proceed as in Section 4. The value v assigned
to g is strictly positive, so we can scale the assignment so that v = 1. Assign-
ing f1,..., fm, g1 the constant functions that return dy,...,d,v provides the
desired counterexample. In this case, we just discard the values ci,...,cm,u
obtained from the first run of the algorithm.

Otherwise, the value v assigned to g; by the second run of the algorithm
is 0, which is to say, g1 = O(t) is a consequence of the hypotheses. In that
case, we will construct a counterexample by assigning functions that are O(1)
to variables f in A, that is, the ones that are required to have rate of growth
O(t); and we will assign functions that are O(G,) to the rest. Specifically, for

14

each 4, assign the function d;G, + ¢; to the variable f;, and assign the function
1=vGs 4+ uto g;.

Let us show that this works. Consider a hypothesis ¢ = O(r). If r involves
any variable f; not in B, then the value of r is O(G.), and the hypothesis is
automatically satisfied, because all the functions are no worse than O(G..).

Otherwise, every f; occurring in r is in B. Suppose for at least one f;
occurring in r, f; is not in A. Then the value of r is a nonzero constant function.
In that case, the value of the constant terms of the functions assigned to the
variables f; is irrelevant as to whether the equation is satisfied; all that matters
are the coefficients d; of G,. But these were chosen by the second run of the
algorithm so that all these hypotheses are satisfied.

We are left with the case where all the variables occurring in r are in A. In
this case, O(r) = O(0) under the assignment. The value of constant term of ¢
under the final assignment is equal to the value of ¢ under the assignment of
c1,...,Cm,v to the variables, and these values were chosen by the first run of
the algorithm to ensure that this is equal to 0. The value of the coefficient of G,
in ¢ under the final assignment is equal to the value of ¢ under the assignments
of dy,...,dn,v to the variables, and these values were chosen by the second run
of the algorithm to ensure that this is equal to 0. Thus ¢ is equal to 0 under
the final assignment.

Finally, we only need to show that s = O(t) comes out false under the
assignment. But we assigned values to the variables of ¢ is ensure that ¢ has
value at most O(1), while at the same the values of dy,...,d,, guarantee that
s # O(t), and so s # O(t), as required. O

7 Handling an increasing sequence of functions

We now strengthen the result from the previous section. Write f < gif f = O(g)
and g # O(f). Let F be the set of functions from a set S to an ordered ring R,
and suppose (71, ..., G, G, are any functions satisfying

0<G1 <Gy =... <G =G,

Suppose we expand our language with function symbols g1, ..., gi, intended to
denote G, ...,GE. Once again, the obvious strategy for obtaining quantifier-
free formulas that are valid in this interpretation turns out, surprisingly, to be
complete.

Theorem 7.1 For any quantifier-free formula in L' and G4, ..., Gy as above,
p is valid when g1, . .., g are interpreted as Gy, ..., Gy, respectively, if and only
if

0<g1<go<...<gxk— ¢ (7)
if valid.

15

Thus, we can decide big O expressions relative to any sequence of functions with
strictly increasing rate of growth, and the results do not depend on which ones
we use. Now, suppose g, is any set of symbols indexed by a computable linear
ordering I. Since any formula can only use finitely many of them, we have the
following:

Corollary 7.2 Let F be any set of functions from an infinite set S to an ordered
group G. Let {G,} be any set of functions indexed by a computable linear
ordering I, such that G, < Gz whenever a < 3. Consider the language L' with
constants go to denote the functions G,. Then the set of Boolean expressions
valid in the structure (F,...,Gq,...) is decidable, and does not depend on the
structure chosen.

Clearly if formula (7) of Theorem 7.1 is valid, then ¢ is valid when g1,..., gk

are interpreted as G1,...,G. We need to show the converse, i.e. that of for-
mula (7) is false, we can construct a counterexample to ¢ with the same inter-
pretations of g1, ..., gr. The following lemma will facilitate our task.

Lemma 7.3 Let ¢ by any quantifier-free formula in L. Let f and g be any
variables occurring in . Then o is valid if and only if the formula

f=0(@Vvg=0(f) —¢
s valid.

The proof is virtually identical to that of Lemma 5.2: given any interpretations
for f and g, we can divide the domain S into the set Sy on which | f(x)| < |g(z)],
and the complementary set S; = 5 — Sp.

Proof of Theorem 7.1.. As before, we can assume that the functions G; are
nonnegative, and focus on the case where ¢ is a Horn clause in the language L,
of the form

N =0(r;) = s =0(1).

Formula (7) is equivalent to

N gi=0(gir) A \aj = O(r)) —
g1=00)Vg=01)V...Vgr=0(gr—1)Vs=0(t). (8)

On the assumption that this is not valid, we need to construct a counterexample
with the desired interpretations of g1, ..., gr. We can introduce new variables to
name s and ¢, and so assume without loss of generality that s and ¢ are variables
themselves. Using Lemma 7.3, we can assume that for every pair of variables f
and g, either f = O(g) or g = O(f) are among the hypotheses of .

With this useful simplification, the argument now follows a line of reasoning
similar to that used in Section 6. Since formula (8) is not valid, running the
algorithm on each of the k£ + 1 disjuncts returns “false.” From the first k runs
of the algorithm we get sets of variables

Ao C A C ... C Ay,

16

where a variable f isin A if and only if f = 0 is a consequence of the hypotheses,
and for ¢ = 1,...,k — 1 a variable f is in A; if and only if f = O(g;) is a
consequence of the hypotheses. In particular, for i = 1,...,k — 1, g; is in A;
but not A;_;. We also get assignments c°,...,c*~! of rational numbers to the
variables in such a way that for each i:

e the assignment ¢ satisfies all the hypotheses;
e ¢! assigns 0 to variables in A;; and
e ¢ assigns strictly positive values to variables not in A;.

For notational uniformity, we tack one more set onto the end of the sequence:
let A;, be the set of all the variables in ¢, and let ¢* be the assignment that
assigns 0 to every variable.

From the last run of the algorithm we get a set of variables B that includes
t but not s, and an assignment d to the variables such that:

e d satisfies all the hypotheses;
e d assigns a value of 0 to all the variables in B; and
e d assigns a strictly positive values to variables not in B.

Now there are three possibilities. Either B contains 0 but not g1, or for some
i=1,...,k—1, B contains g; but not g;11, or B contains g; for every i. By the
assumption that ¢ fixes an ordering on the rates of growth of the variables, in
the first case, we have B C Aj; in the second case, we have A;_1 C B C A;11;
in the last case, we have Ap_1 C B. In the first case, replace Ay by B and the
assignment ¢® by d; in the second case, replace A; by B and the assignment ¢
by d; in the third case, replace A by B and the assignment c* by d. Then the
sets

Ay C A C...C A

and the assignments c?,c', ..., c* have the following properties:
e 0isin Ag, but not A;.
e Foreachi=1,...,k, g; isin A;, but not A;11.
e For some i < k, t is in A;, and s is not in A;.
e Foreach:=0,...,k:

— ¢ assigns a value of 0 to all variables in A;;
— ¢ assigns a strictly positive values to variables not in A;;

— ¢! satisfies all the hypotheses ¢ = O(r) of ¢; in other words, ¢ =
q[A;] = 0 whenever 7 is 0 under the assignment.

We will assign functions to the variables f1,..., fx,91,--.,gm so that:

17

e foreachi=1,...,gm, g; is assigned the value Gj;
e each variable in Ay is assigned 0;

e for each i = 1,...,k, each variable f in A; but not A;_; is a assigned a
function that is O(G;) but not O(G;_1);

o cach variable not in Ay, is assigned a function that is O(G.) but not O(Gy);
and

e all the hypotheses of ¢ are satisfied.

These conditions imply that for some i, t = O(G;) but s # O(G;), so s # O(t)
under the assignment, as required.

Let Hi,..., Hy be functions from S to R having the same rate of growth as
G4, ...,Gg. For the moment, this is all we assume about Hy,..., Hy; we will
choose particular values for these functions soon. For each assignment c?, let
¢'(f) denote the rational number assigned to the variable f. To each variable
f, we assign the function

C(F)Hy + ¢ (f)Hs + A (f)Hs + ...+ " H(f)Hy, + ¢ (f)Ga.

It has not hard to see that this assignment gives the variables the orders of
growth claimed.

Let us show that the hypotheses of ¢ are satisfied under the assignment. Let
g = O(r) be one of these hypotheses. If r has a function symbol that is not in
Ay, then G, = O(r), and ¢ = O(r) is satisfied immediately. Otherwise, let ¢ be
the largest index such that r has a variable in A;. Then H; = O(r), and all that
matters are the coefficients of H;y1,...,Hy,G, in ¢; in other words, all that
matters are the coefficients of ¢[A;]. But since all of the variables of r are in
A,;, the assignments ¢!, ..., ¢* were chosen to ensure that all the coefficients
of Hiy1,...,Hy, G, in ¢[A;] are 0, as required.

We only need to choose Hy,...,Hy so that gi,...,gx receive the values
G1,...,GE. But because, for each i, g; is in A; but not A;_1, g; is assigned a
value of the form

a; Hy +a;2Has + ... +a; ;: Hj,

where each coefficient is strictly positive. Set each of these values to the cor-
responding G;; now it is not hard to see that we can iteratively solve for H;

in terms of G;, and that each H; will be an expression involving Gy, ...,G; in
which G; has a nonzero coefficient. Thus, for this choice of Hy, ..., Hg, all the
conditions are satisfied, and we have the desired counterexample. O

8 Questions

There are a number of interesting theoretical puzzles, as well interesting prag-
matic challenges, that remain.

18

We have restricted our attention to linear terms. A number of useful big O
identities hold of terms involving multiplication and composition of functions
(see [2, 5]). We do not know, for example, whether the quantifier-free fragment
of the language is decidable in the presence of multiplication. Nor do we know
whether anything useful can be said about composition.

Our handling of constant functions in Section 6 presupposed that the range
of the set of functions is an ordered field. We do not know, for example, whether
the linear theory of big O equations involving from N to Z is decidable when we
include the constant function 1, or even whether the set of validities described
in Section 6 is complete.

We also do not know whether the full first-order theory of the linear fragment
of big O reasoning is decidable. In practice, however, this theory does not seem
to be very useful.

Even in cases where the full theory is undecidable, we suspect that there
are reasonable procedures that capture most of the inferences that come up in
practice, and do so efficiently. We are fortunate that the simple decision pro-
cedure we provide here seems to be pragmatically useful as well. In general,
although clean decidability and undecidability results provide a useful sense of
what can be done in principle, when it comes to formal verification, it is equally
important to find principled approaches to developing imperfect methods that
work well in practice. (See, for example, [4] for a study of heuristic proce-
dures for inequalities between real valued expressions that is motivated by this
philosophy.)

References

[1] Krzysztof Apt. Principles of Constraint Programming. Cambridge Univer-
sity Press, Cambridge, 2003.

[2] Jeremy Avigad and Kevin Donnelly. Formalizing O notation in Is-
abelle/HOL. In David Basin and Michaél Rusinowitch, editors, Automated
Reasoning: second international joint conference, IJCAR 2004, Springer-
Verlag, 2004, 357-371.

[3] Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff. A formally
verified proof of the prime number theorem. To appear in ACM Transac-
tions on Computational Logic.

[4] Jeremy Avigad and Harvey Friedman. Combining decision procedures for
the reals. Submitted.

[5] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete math-
ematics: a foundation for computer science. Addison-Wesley Publishing
Company, Reading, MA, second edition, 1994.

[6] Marshall Hall, Jr. Combinatorial theory. John Wiley & Sons Inc., New
York, second edition, 1986.

19

[7] Riidiger Loos and Volker Weispfenning. Applying linear quantifier elimi-
nation. The Computer Journal, 36:450-461, 1993.

[8] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial optimiza-
tion: algorithms and complezrity. Dover Publications Inc., Mineola, NY,
1998. Corrected reprint of the 1982 original, Prentice-Hall, New Jersey.

[9] Volker Weispfenning. The complexity of linear problems in fields. Journal
of Symbolic Computation, 5:3-27, 1988.

[10] The Coq proof assistant. Developed by the LogiCal project.
http://pauillac.inria.fr/coq/cog-eng.html.

[11] The Isabelle theorem proving environment. Developed by Larry Paulson
at Cambridge University and Tobias Nipkow at TU Munich.
http://www.cl.cam.ac.uk/Research/HVG /Isabelle/index.html.

[12] The PVS specification and verification system. http://pvs.csl.sri.com/.

20

