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What this talk is about
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Motivation

b
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Style for writing proofs

Declarative proof style:
* Lots of intermediate statements.
* Relying heavily on powerful automation.
e Script are human readable.

* Robustness guaranteed by appropriate choice of intermediate
statements and automation.

Imperative proof style:
¢ Minimal amount of intermediate statements.
e Limited automation needed.
e Script contains orders you give to the system.

¢ Robustness guaranteed by the determinism in obeying orders.
= Most likely to happen with small scale orders.



Example: double limit theorem
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Justification:

11=gl)ll < ll=h0a)ll + [[h0a) — fla, x2)[| + [If [, %2) — gL
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Analysis Libraries
In CoQ

e C-CoRN
e CoqQstandard library + CoQUELICOT
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Analysis Libraries
In CoQ

e C-CoRN — Constructive analysis
e CoqQ standard library + COQUELICOT — Constructive + R axioms
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Analysis Libraries

In CoQ
e C-CoRN — Constructive analysis
e CoqQ standard library + COQUELICOT — Constructive + R axioms

Classical analysis in
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e |SABELLE/HOL
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Analysis Libraries

In CoQ
e C-CoRN — Constructive analysis
e CoqQ standard library + CoQUELICOT — Constructive + R axioms

Classical analysis in
e HOL LIGHT
e |SABELLE/HOL
e LEAN

Disclaimer: the proofs | am going to show have clearly not been
reworked to their best shape.
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ISABELLE/HOL proof

lemma swap_uniform_limit:

assumes f: "vg n in F. (fn —— g n) (at x within §)"

assumes g: "(g — 1) F"

assumes uc: "uniforn limit S f h F*

assumes "-trivial linit F"

shows "(h — 1) (at x within 5)"

proof (rule tendstol)

fix e :: real

define e* where e’ = e/3"

assume "0 < e”

then have "0 < &'" by (simp add: e'_def)

rom uniform_LimitD[OF uc <0 < e'+]

have "v n in F. vxeS. dist (hx) (fnx) <e
by (simp add: dist_conmute)

moreover

from f

have "V n in F. Vg x in at x within S. dist (g n) (f nx) <e'"
by eventually_elim (auto dest!: tendstoD[OF _ <0 < e'»] simp: dist_commute)

moreover

from tendstoD[OF g <0 < e'>] have "¢ x in F. dist 1 (g x) < e'"
by (simp add: dist commute)

ultimately

have "vr _ in F. vp x in at x within 5. dist (h x) 1 <e"

proof eventually elin

case (elin n)

note fh = elim(1)

note gl = elin(3)

have "vg x in at x within S. x ¢ S"
by (auto sip: eventually at_filter)

with elim(2)

shou 7case

proof eventually_elin
case (elim x)
from fhirule_format, OF <« = 5] elin(1)
have “dist (h x) (gn) <e' + e’

by (rule dist_triangle Lt[0F add_strict monol)

fron dist_triangle Lt[OF add strict mono, OF this gl]
show 7case by (simp add: e'_def)

qed

qed
thus “¥e x in at x within §. dist (h x) 1<e"
using eventually_happens by (metis < trivial limit F»)
qed
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CoQUELICOT’s proof (our benchmark)

Lemma filterlim_switch_1 {U :

UniformSpace}

F1 (FF1 : ProperFilter F1) F2 (FF2 : Filter F2) (f : T1 —> T2 — U) g h (1 : U)
filterlim f F1 (locally g) —>
(forall x, filterlim (f x) F2 (locally (h x))) —
filterlim h F1 (locally 1) — filterlim g F2 (locally 1).
Proof.
intros Hfg Hfh Hh1l P.
case: FF1 => HF1 FF1.
apply filterlim_locally.
move => eps.
have FF := (filter_prod_filter _ _ F1 F2 FF1 FF2).
assert (filter_prod F1 F2 (fun x => ball (g (snd x)) (eps / 2 / 2) (f (fst x) (snd x)
).
apply Filter_prod with (fun x : T1 => ball g (eps / 2 / 2) (f x)) (fun _ => True).

move: (projl (@filterlim_locally _ _ F1 FF1 f g) Hfg (pos_div_2 (pos_div_2 eps)))
=> {Hfg} /= Hfg.
by [1.
by apply FF2.
simpl ; dntros.
apply H.
move: H => {Hfg} Hfg.

Tl % T2 => ball 1 (eps / 2) (h (fst x)))).
Tl => ball 1 (eps / 2) (h x)) (fun _ => True).
F1 FF1 h 1) Hhl (pos_div_2 eps)) => {Hhl} /=

assert (filter_prod F1 F2 (fun x :

apply Filter_prod with (fun x :

move: (projl (@filterlim_locally _ _
Hhl.

0oq - June 23, 2018
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COQUELICOT’ proof (page 2)

by [].
by apply FF2.
by [].
move: H => {Hhl} Hhl.
case: (@filter_and FF Hhl Hfg) => {Hhl Hfg} /= ; dintros.
move: (fun x => projl (@filterlim_locally _ _ F2 FF2 (f x) (h x)) (Hfh x) (pos_div_2

(pos_div_2 eps))) => {Hfh} /= Hfh.
case: (HF1 Q fO) => x Hx.
move: (@filter_and FF2 (Hfh x) g0) => {Hfh}
apply filter_imp => y Hy.

End of boilerplate, and now, the meaningful part.

rewrite (double_var eps).
apply ball_triangle with (h x).
apply (p x y).
by [1].
by apply Hy.
rewrite (double_var (eps / 2)).
apply ball_triangle with (f x y).
by apply Hy.
apply ball_sym, p.
by [].
by apply Hy.
Qed.
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Achievement of our work

Design techniques to:

1.

Do imperative style small scale proofs

2. Reduce the size of the boilerplate
3.
4. Go straight to the point

Make it robust to change
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Framework
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Context

Constaints:

1. Robotics: kinematic chains as composition of MATHEMATICAL
COMPONENTS matrices

= Mix COQUELICOT and MATHEMATICAL COMPONENTS
2. Undergraduate classic textbook analysis

3. Catch up with IsABELLE/HOL and LEAN

= CoQUELICOT and Hilbert’s epsilon
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Context

Constaints:

1. Robotics: kinematic chains as composition of MATHEMATICAL
COMPONENTS matrices

= Mix COQUELICOT and MATHEMATICAL COMPONENTS
2. Undergraduate classic textbook analysis
3. Catch up with IsABELLE/HOL and LEAN
= CoQUELICOT and Hilbert’s epsilon
Conclusion:

e rewrite COQUELICOT, on top of MATHEMATICAL COMPONENTS
e using stronger axioms:

- Hilbert’s epsilon (constructive_indefinite_description)
- Propositional and functional extensionality
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Hierarchy

[completeNormedModType K]

[completeType] [normedModType K]<— -- -[absR'i ngType]
Lo
lun'i formType] |1modType Kl [numDoma'i nType]

topologicalType — inheritance by definition
filteredType U --» proved inheritance
pointedType [Translated COQUELICOT structures]

choiceType MATHEMATICAL COMPONENTS ANALYSIS structures

[MATH EMATICAL COMPONENTS structures]

Figure: MATHEMATICAL COMPONENTS ANALYSIS hierarchy
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Filters
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A one-slide introduction to filters
Definition (same as COQUELICOT in CoQ)

TeF, VYVAABEFANBeF and VABACB=AcF=BEF.

Filter of neighborhoods:

locally(x) :={A | 3¢ > 0. ball.(x) C A}.
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A one-slide introduction to filters

Definition (same as COQUELICOT in CoQ)
TeF, VYVAABEFANBeF and VABACB=AcF=BEF.
Filter of neighborhoods:
locally(x) :={A | 3¢ > 0. ball.(x) C A}.
Filter application:
faF = {X|f'(X)eF}.

Limit:
fQF — G := G C fQF.
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Filter Notations

Definitions/notations:

set A A -> Prop

A ‘<=¢ B setinclusion

[set a | P a] the set of elements a that satisfy P
F-—> G reverse set inclusion for filters F O G
f@F filter f(F)

+00 +00

\forall x \near x_0, P x locally(xg)(P)
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Double Limit Theorem

DEMO!

Lemma flim_switch_1 {U : uniformType}
F1 {FF1 : ProperFilter F1} F2 {FF2 : Filter F2}
(f : TL -T2 —=U) (g : T2 —=U) (h : T1L — U) (1 : V)
f@FlL— g — (forall x1, f x1 @ F2 —> h x1) - h @ F1 — 1
—_>
ge@F2—T1.
Proof.
move=> fg fh hl; apply/flim_ballPpos => e; rewrite near_simpl.
near Fl1 => x1; first near=> x2.

— apply : ( @ball_split _ ( h x1 ) ) ; first by near: x1 .
by apply: (@ball_splitl _ (f x1 x2)); [near: x2| move: (x2);
near: x1].

— by end_near; apply/fh/locally_ball .
— by end_near; [exact/hl/locally_ball|exact/(flim_ball fg)].
Qed.

. &zu(a, Affeldt, Cohen, Rouhling - Asymptotic reasoning in Coq - June 23, 2018




Double limit, comparison with CoQuUELICOT

Lemma flim_switch_1 {U : uniformType} F1 {FFl : ProperFilter F1} F2 {FF2 : Filter F2}
(f: T1 -T2 —=U) (g:T2—=>U) (h:T1—=U) (1 :U):

f@FlL—g —> (forall x, fx@F2 —=hx) >h@Fl—1-—>g@F2—1.

Proof.
(% %) Proof. )
(x25 lines of boilerplate, thensx) move=> fg fh hl; apply/flim_ballPpos => e; rewrite !
’ near_simpl.

near F1 => x1; first near=> x2.

rewrite (double_var eps). . .

apply ball_triangle with (h x). (* 2 lines of boilerplate, then x)

SPPI[B]/ (pxy). — apply: (@ball_split _ (h x1)); first by near: xI.
by a '1 H by apply: (@ball_splitl _ (f x1 x2)); [near: x2|
y appty hy. move: (x2); near: x1]

rewrite (double_var (eps / 2)).

apply ball_triangle with (f x y). (* Two lines of boilerplate: x)

gy ?pptilqyé i — by end_near; apply/fh/locally_ball.

bPP [>]’ -Sym, p. — by end_near; [exact/hl/locally_ball|exact/(
y - flim_ball fg)].

by apply Hy. Qed

Qed. )
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Filter tactics

The lemmas that make it all work

Lemma filterP T (F : set (set T)) {FF : Filter F} (P : set T) :
(exists2 Q : set T, FQ & forall x : T, Q x —> P x) <—> F P.

Lemma filter_ex T (F : set (set T)) ‘{ProperFilter F} :
forall (Q : set T), FQ — exists x : T, Q x.
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Filter tactics

The lemmas that make it all work

Lemma filterP T (F : set (set T)) {FF : Filter F} (P : set T) :
(exists2 Q : set T, FQ & forall x : T, Q x —> P x) <—> F P.

Lemma filter_ex T (F : set (set T)) ‘{ProperFilter F} :
forall (Q : set T), FQ — exists x : T, Q x.

Tactics

near=> x applies filterp with metavariable Q

near F => x takes x from filter_ex with metavariable Q
near: x given a goal (R x), accumulates R;in Q
end_near leaves accumulated (F R;) to be proven
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Cauchy completeness

Definition cauchy_ex {T : uniformType} (F : set (set T)) :=
forall eps : R, 0 < eps —> exists x, F (ball x eps).

or

Definition cauchy {T : uniformType} (F : set (set T)) :=
forall e, e > 0 —> \forall x & y \near F, ball x e y.

equivalently

Definition cauchy_entourage T (F : set (set T)) :=
(F, F) —> entourages.
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Function space is complete

Lemma fun_complete (F : set (set (T — U))) {FF: ProperFilter F}
cauchy F — cvg F.
Proof.
move=> Fc; have /(_ _) /complete_cauchy Ft_cvg : cauchy (@*~_ @ F).
by move=> t e ?; rewrite near_simpl; apply: filterS (Fc _ _).
apply/cvg_ex; exists (fun t => lim (@*~t @ F)).
apply/flim_ballPpos => e; near=> f => [t]].
near F => g => /=,
by apply: (@ball_splitl _ (g t)); last move: (t); near: g.
by end_near; [exact/Ft_cvg/locally_ball|near: f].
by end_near; apply: nearP_dep; apply: filterS (Fc _ _).
Qed.
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little-o and big-O
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Definition

Context {T : Type} {K : absRingType} {V W : normedModType K}.

Definition littleo (F : set (set T)) (f : T —>V) (e : T — W) :=
forall eps : R, 0 < eps —>
\forall x \near F, ‘|[f x]| <= eps x*

¢

[[e x1].

Definition bigd0 (F : set (set T)) (f : T —V) (e : T — W) :=
\forall k \near +oo, \forall x \near F, ‘|[f x]| <= k = ‘|[e x]]|.
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Definition

Context {T : Type} {K : absRingType} {V W : normedModType K}.

Definition littleo (F : set (set T)) (f : T —>V) (e : T — W) :=
forall eps : R, 0 < eps —>
\forall x \near F, ‘|[f x]| <= eps =x

¢

[[e x1].

Definition bigd0 (F : set (set T)) (f : T —V) (e : T — W) :=
\forall k \near +oo, \forall x \near F, ‘|[f x]| <= k = ‘|[e x]]|.

But these are not predicates in the mathematical practice!
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Use cases

We want to write:

f=o0(e) and f=0(e)
f(x)=o0(e(x)) and f(x)=0O(e(x))

f=g+o(e) and f=g+0O(e)
fx) =glx) +o(elx)) and f(x)=g(x)+ O (e(x))
¢ Do arithmetic on little-o and big-O:
—o(e)=o(e), o(e)to(e)=o(e), o(e)+O(e)=0(e),

o Substitute! (these are equalities)
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Use cases

We want to write:

f=o0(e) and f=0(e)
f(x)=o0(e(x)) and f(x)=0O(e(x))

f=g+o(e) and f=g+O(e)
fx) =glx) +o(elx)) and f(x)=g(x)+ O (e(x))
¢ Do arithmetic on little-o and big-O:
—o(e)=o(e), o(e)J+o(e)=o0(e), o(e)+O(e) =0 (e),
o Substitute! (these are equalities)

DEMO!
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The trick

Definition (little-o with explicit witness):

h, if h isalittle-oof e
o(e)[hl = .
0, otherwise

Parsing:
f=g+o(e) isparsed f=g+o(e)lf—dg]
Change of witness:

f=g+ol(e)lf—gl & 3 f=g+ol(e)lnl
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The trick
Definition (little-o with explicit witness):
o) [h] = {h, if h ‘isa little-oof e
0, otherwise
Parsing:
f=g+o(e) isparsed f=g+o(e)lf—dg]
Change of witness:
f=g+o(e)lf—gl& 3hf=g+ol(e)lh
Display:
f=g+o(e)lh isdisplayed f=g+o(e)
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Applications

Equivalence:

Notation "f ~_x g" := (f = g +o_x g)

Differential:

Definition diff (F : filter_on V) (f : V —> W) :=
(get (fun (df : {linear V — W}) =>
continuous (’d_F f) /\ forall x,
fx=oFf (lim F) + df (x — 1im F) +o_(x \near F) (x — 1lim F))).

Lemma diff_locallyxP (x : V) (f : V —> W)

differentiable x f <—> continuous (’d_x f) /\
forall h, f (h + x) = f x + ’d_x f h +o_(h \near 0) h.
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A short proof of the chain rule

Fact dcomp (U V W : normedModType R)
(f:U->V) (g:V~->W x:
differentiable x f -> differentiable (f x) g —>

forall h, g (f (h + x)) =
g (f x) + (*d_(f x) g \o ’d_x f) h +o_(h \near 0) h.

Proof.

move=> df dg; apply: eqaddoEx => y.

rewrite diff_locallyx// -addrA diff_locallyxC// linearD.
rewrite addrA -addrA; congr (_ + _ + _).

rewrite diff_eq0 // [’d_x f : _ -> _]diff_eq0 //.

by rewrite {2}eqoO0 addOx compOo_eqox compoO_eqox addox.
Qed.
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Conclusion and future work
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Conclusion

e Toolset to give high-level orders, preserving determinism.

e Tested in the library
http://github.com/math-comp/analysis

What I did not show:
¢ Tool for manifest positivity

* Lightweight automatic differentiation (Damien Rouhling, CPP
2018)
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http://github.com/math-comp/analysis

Incoming improvements

Improve the workflow of near tactics

Go from this

move=> fg fh hl; apply/flim_ballPpos => e; rewrite near_simpl.
near F1 => x1; first near=> x2.
— apply : (@ball_split _ (h x1)); first by near: x1.
by apply: (@ball_splitl _ (f x1 x2)); [near: x2|move: (x2); near: x1]
— by end_near; apply/fh/locally_ball.
— by end_near; [exact/hl/locally_ball|exact/(flim_ball fg)].
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Incoming improvements

Improve the workflow of near tactics
Go from this

move=> fg fh hl; apply/flim_ballPpos => e; rewrite near_simpl.
near F1 => x1; first near=> x2.
— apply : (@ball_split _ (h x1)); first by near: x1.
by apply: (@ball_splitl _ (f x1 x2)); [near: x2|move: (x2); near: x1]
— by end_near; apply/fh/locally_ball.
— by end_near; [exact/hl/locally_ball|exact/(flim_ball fg)].

to this

move=> fg fh hl; apply/flim_ballPpos => e ; rewrite near_simpl; near F1 => x1 x2.
apply: (@ball_split _ (h x1)); first by near: x1; apply/fh/locally_ball.

apply: (@ball_splitl _ (f x1 x2)); first by near: x2; apply/hl/locally_ball.

by near: x1 (x2); apply/(flim_ball fg).
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Other possible improvements

o Manuel Eberl’s multiseries for automated limits, little-o, etc

¢ Semi-automated bounding tools
(ingredients: same as big-O and manifest positivity)

¢ add Lebesgue integration and power series

« find limits, derivatives, differentials, integrals and converging
sums in a semi-automated automated way.
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Thank you for your attention.
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