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The universe of econometrics is constantly expand-
ing. Econometric methods and practice have advanced
greatly as a result, but the modern menu of econo-

metric methods can seem confusing, even to an experienced
number cruncher. Luckily, not everything on the menu is
equally valuable or important. Some of the more exotic items
are needlessly complex and may even be harmful. On the
plus side, the core methods of applied econometrics remain
largely unchanged, while the interpretation of basic tools has
become more nuanced and sophisticated. Our Companion is
an empiricist’s guide to the econometric essentials . . . Mostly
Harmless Econometrics.

The most important items in an applied econometrician’s
toolkit are:

1. Regression models designed to control for variables that
may mask the causal effects of interest;

2. Instrumental variables methods for the analysis of real and
natural experiments;

3. Differences-in-differences-type strategies that use repeated
observations to control for unobserved omitted factors.

The productive use of these basic techniques requires a solid
conceptual foundation and a good understanding of the
machinery of statistical inference. Both aspects of applied
econometrics are covered here.

Our view of what’s important has been shaped by our expe-
rience as empirical researchers, and especially by our work
teaching and advising economics Ph.D. students. This book
was written with these students in mind. At the same
time, we hope the book will find an audience among other
groups of researchers who have an urgent need for practical
answers regarding choice of technique and the interpretation
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of research findings. The concerns of applied econometrics
are not fundamentally different from those of other social sci-
ences or epidemiology. Anyone interested in using data to
shape public policy or to promote public health must digest
and use statistical results. Anyone interested in drawing useful
inferences from data on people can be said to be an applied
econometrician.

Many textbooks provide a guide to research methods, and
there is some overlap between this book and others in wide
use. But our Companion differs from econometrics texts in a
number of important ways. First, we believe that empirical
research is most valuable when it uses data to answer spe-
cific causal questions, as if in a randomized clinical trial. This
view shapes our approach to most research questions. In the
absence of a real experiment, we look for well-controlled com-
parisons and/or natural quasi-experiments. Of course, some
quasi-experimental research designs are more convincing than
others, but the econometric methods used in these studies are
almost always fairly simple. Consequently, our book is shorter
and more focused than textbook treatments of econometric
methods. We emphasize the conceptual issues and simple sta-
tistical techniques that turn up in the applied research we read
and do, and illustrate these ideas and techniques with many
empirical examples.

A second distinction we claim is a certain lack of gravitas.
Most econometrics texts appear to take econometric models
very seriously. Typically these books pay a lot of attention
to the putative failures of classical modeling assumptions,
such as linearity and homoskedasticity. Warnings are some-
times issued. We take a more forgiving and less literal-minded
approach. A principle that guides our discussion is that the
estimators in common use almost always have a simple inter-
pretation that is not heavily model dependent. If the estimates
you get are not the estimates you want, the fault lies in the
econometrician and not the econometrics! A leading example
is linear regression, which provides useful information about
the conditional mean function regardless of the shape of this
function. Likewise, instrumental variables methods estimate
an average causal effect for a well-defined population even
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if the instrument does not affect everyone. The conceptual
robustness of basic econometric tools is grasped intuitively by
many applied researchers, but the theory behind this robust-
ness does not feature in most texts. Our Companion also
differs from most econometrics texts in that, on the inference
side, we are not much concerned with asymptotic efficiency.
Rather, our discussion of inference is devoted mostly to the
finite-sample bugaboos that should bother practitioners.

The main prerequisite for understanding the material here
is basic training in probability and statistics. We especially
hope that readers are comfortable with the elementary tools
of statistical inference, such as t-statistics and standard errors.
Familiarity with fundamental probability concepts such as
mathematical expectation is also helpful, but extraordinary
mathematical sophistication is not required. Although impor-
tant proofs are presented, the technical arguments are not very
long or complicated. Unlike many upper-level econometrics
texts, we go easy on the linear algebra. For this reason and oth-
ers, our Companion should be an easier read than competing
books. Finally, in the spirit of Douglas Adams’s lighthearted
serial (The Hitchhiker’s Guide to the Galaxy and Mostly
Harmless, among others) from which we draw continued
inspiration, our Companion may have occasional inaccura-
cies, but it is quite a bit cheaper than the many versions
of the Encyclopedia Galactica Econometrica that dominate
today’s market. Grateful thanks to Princeton University Press
for agreeing to distribute our Companion on these terms.
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W e begin with two introductory chapters. The first
describes the type of research agenda for which the
material in subsequent chapters is most likely to be

useful. The second discusses the sense in which random-
ized trials of the sort used in medical research provide an
ideal benchmark for the questions we find most interest-
ing. After this introduction, the three chapters of part II
present core material on regression, instrumental variables,
and differences-in-differences. These chapters emphasize both
the universal properties of estimators (e.g., regression always
approximates the conditional mean function) and the assump-
tions necessary for a causal interpretation of results (the
conditional independence assumption; instruments as good
as randomly assigned; parallel worlds). We then turn to
important extensions in part III. Chapter 6 covers regression
discontinuity designs, which can be seen as either a varia-
tion on regression-control strategies or a type of instrumental
variables strategy. In chapter 7, we discuss the use of quan-
tile regression for estimating effects on distributions. The last
chapter covers important inference problems that are missed
by the textbook asymptotic approach. Some chapters include
more technical or specialized sections that can be skimmed or
skipped without missing out on the main ideas; these sections
are indicated with a star. A glossary of acronyms and abbre-
viations and an index to empirical examples can be found at
the back of the book.
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Chapter 1

Questions about Questions
■ ◆ ■||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

“I checked it very thoroughly,” said the computer, “and that
quite definitely is the answer. I think the problem, to be quite
honest with you, is that you’ve never actually known what
the question is.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

This chapter briefly discusses the basis for a successful
research project. Like the biblical story of Exodus, a
research agenda can be organized around four questions.

We call these frequently asked questions (FAQs), because they
should be. The FAQs ask about the relationship of interest, the
ideal experiment, the identification strategy, and the mode of
inference.

In the beginning, we should ask, What is the causal rela-
tionship of interest? Although purely descriptive research has
an important role to play, we believe that the most interesting
research in social science is about questions of cause and effect,
such as the effect of class size on children’s test scores, dis-
cussed in chapters 2 and 6. A causal relationship is useful for
making predictions about the consequences of changing cir-
cumstances or policies; it tells us what would happen in alter-
native (or “counterfactual”) worlds. For example, as part of
a research agenda investigating human productive capacity—
what labor economists call human capital—we have both
investigated the causal effect of schooling on wages (Card,
1999, surveys research in this area). The causal effect of
schooling on wages is the increment to wages an individual
would receive if he or she got more schooling. A range of
studies suggest the causal effect of a college degree is about 40
percent higher wages on average, quite a payoff. The causal
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effect of schooling on wages is useful for predicting the earn-
ings consequences of, say, changing the costs of attending
college, or strengthening compulsory attendance laws. This
relation is also of theoretical interest since it can be derived
from an economic model.

As labor economists, we’re most likely to study causal
effects in samples of workers, but the unit of observation in
causal research need not be an individual human being. Causal
questions can be asked about firms or, for that matter, coun-
tries. Take, for example, Acemoglu, Johnson, and Robinson’s
(2001) research on the effect of colonial institutions on eco-
nomic growth. This study is concerned with whether countries
that inherited more democratic institutions from their colonial
rulers later enjoyed higher economic growth as a consequence.
The answer to this question has implications for our under-
standing of history and for the consequences of contemporary
development policy. Today, we might wonder whether newly
forming democratic institutions are important for economic
development in Iraq and Afghanistan. The case for democ-
racy is far from clear-cut; at the moment, China is enjoying
robust economic growth without the benefit of complete polit-
ical freedom, while much of Latin America has democratized
without a big growth payoff.

The second research FAQ is concerned with the experi-
ment that could ideally be used to capture the causal effect
of interest. In the case of schooling and wages, for example,
we can imagine offering potential dropouts a reward for fin-
ishing school, and then studying the consequences. In fact,
Angrist and Lavy (2008) have run just such an experiment.
Although their study looked at short-term effects such as col-
lege enrollment, a longer-term follow-up might well look at
wages. In the case of political institutions, we might like to
go back in time and randomly assign different government
structures in former colonies on their independence day (an
experiment that is more likely to be made into a movie than
to get funded by the National Science Foundation).

Ideal experiments are most often hypothetical. Still, hypo-
thetical experiments are worth contemplating because they
help us pick fruitful research topics. We’ll support this claim by
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asking you to picture yourself as a researcher with no budget
constraint and no Human Subjects Committee policing your
inquiry for social correctness: something like a well-funded
Stanley Milgram, the psychologist who did pathbreaking work
on the response to authority in the 1960s using highly contro-
versial experimental designs that would likely cost him his job
today.

Seeking to understand the response to authority, Milgram
(1963) showed he could convince experimental subjects to
administer painful electric shocks to pitifully protesting victims
(the shocks were fake and the victims were actors). This turned
out to be controversial as well as clever: some psychologists
claimed that the subjects who administered shocks were psy-
chologically harmed by the experiment. Still, Milgram’s study
illustrates the point that there are many experiments we can
think about, even if some are better left on the drawing board.1

If you can’t devise an experiment that answers your question
in a world where anything goes, then the odds of generat-
ing useful results with a modest budget and nonexperimental
survey data seem pretty slim. The description of an ideal exper-
iment also helps you formulate causal questions precisely. The
mechanics of an ideal experiment highlight the forces you’d
like to manipulate and the factors you’d like to hold constant.

Research questions that cannot be answered by any exper-
iment are FUQs: fundamentally unidentified questions. What
exactly does a FUQ look like? At first blush, questions about
the causal effect of race or gender seem good candidates
because these things are hard to manipulate in isolation
(“imagine your chromosomes were switched at birth”). On
the other hand, the issue economists care most about in the
realm of race and sex, labor market discrimination, turns on
whether someone treats you differently because they believe
you to be black or white, male or female. The notion of a
counterfactual world where men are perceived as women or
vice versa has a long history and does not require Douglas
Adams-style outlandishness to entertain (Rosalind disguised

1Milgram was later played by the actor William Shatner in a TV special,
an honor that no economist has yet received, though Angrist is still hopeful.
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as Ganymede fools everyone in Shakespeare’s As You Like
It). The idea of changing race is similarly near-fetched: in The
Human Stain, Philip Roth imagines the world of Coleman
Silk, a black literature professor who passes as white in pro-
fessional life. Labor economists imagine this sort of thing all
the time. Sometimes we even construct such scenarios for the
advancement of science, as in audit studies involving fake job
applicants and résumés.2

A little imagination goes a long way when it comes to
research design, but imagination cannot solve every problem.
Suppose that we are interested in whether children do bet-
ter in school by virtue of having started school a little older.
Maybe the 7-year-old brain is better prepared for learning than
the 6-year-old brain. This question has a policy angle com-
ing from the fact that, in an effort to boost test scores, some
school districts are now imposing older start ages (Deming and
Dynarski, 2008). To assess the effects of delayed school entry
on learning, we could randomly select some kids to start first
grade at age 7, while others start at age 6, as is still typical.
We are interested in whether those held back learn more in
school, as evidenced by their elementary school test scores. To
be concrete, let’s look at test scores in first grade.

The problem with this question—the effects of start age on
first grade test scores—is that the group that started school at
age 7 is . . . older. And older kids tend to do better on tests, a
pure maturation effect. Now, it might seem we can fix this by
holding age constant instead of grade. Suppose we wait to test
those who started at age 6 until second grade and test those
who started at age 7 in first grade, so that everybody is tested
at age 7. But the first group has spent more time in school, a
fact that raises achievement if school is worth anything. There
is no way to disentangle the effect of start age on learning
from maturation and time-in-school effects as long as kids are
still in school. The problem here is that for students, start age

2A recent example is Bertrand and Mullainathan (2004), who compared
employers’ reponses to résumés with blacker-sounding and whiter-sounding
first names, such as Lakisha and Emily (though Fryer and Levitt, 2004, note
that names may carry information about socioeconomic status as well as race.)
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equals current age minus time in school. This deterministic
link disappears in a sample of adults, so we can investigate
pure start-age effects on adult outcomes, such as earnings or
highest grade completed (as in Black, Devereux, and Salvanes,
2008). But the effect of start age on elementary school test
scores is impossible to interpret even in a randomized trial,
and therefore, in a word, FUQed.

The third and fourth research FAQs are concerned with
the nuts-and-bolts elements that produce a specific study.
Question number 3 asks, What is your identification strat-
egy? Angrist and Krueger (1999) used the term identification
strategy to describe the manner in which a researcher uses
observational data (i.e., data not generated by a random-
ized trial) to approximate a real experiment. Returning to
the schooling example, Angrist and Krueger (1991) used the
interaction between compulsory attendance laws in American
states and students’ season of birth as a natural experiment to
estimate the causal effects of finishing high school on wages
(season of birth affects the degree to which high school stu-
dents are constrained by laws allowing them to drop out after
their 16th birthday). Chapters 3–6 are primarily concerned
with conceptual frameworks for identification strategies.

Although a focus on credible identification strategies is
emblematic of modern empirical work, the juxtaposition of
ideal and natural experiments has a long history in economet-
rics. Here is our econometrics forefather, Trygve Haavelmo
(1944, p. 14), appealing for more explicit discussion of both
kinds of experimental designs:

A design of experiments (a prescription of what the physi-
cists call a “crucial experiment”) is an essential appendix
to any quantitative theory. And we usually have some such
experiment in mind when we construct the theories, although—
unfortunately—most economists do not describe their design
of experiments explicitly. If they did, they would see that the
experiments they have in mind may be grouped into two dif-
ferent classes, namely, (1) experiments that we should like to
make to see if certain real economic phenomena—when arti-
ficially isolated from “other influences”—would verify certain
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hypotheses, and (2) the stream of experiments that Nature is
steadily turning out from her own enormous laboratory, and
which we merely watch as passive observers. In both cases
the aim of the theory is the same, to become master of the
happenings of real life.

The fourth research FAQ borrows language from Rubin
(1991): What is your mode of statistical inference? The answer
to this question describes the population to be studied, the
sample to be used, and the assumptions made when construct-
ing standard errors. Sometimes inference is straightforward, as
when you use census microdata samples to study the American
population. Often inference is more complex, however, espe-
cially with data that are clustered or grouped. The last chapter
covers practical problems that arise once you’ve answered
question number 4. Although inference issues are rarely very
exciting, and often quite technical, the ultimate success of even
a well-conceived and conceptually exciting project turns on the
details of statistical inference. This sometimes dispiriting fact
inspired the following econometrics haiku, penned by Keisuke
Hirano after completing his thesis:

T-stat looks too good
Try clustered standard errors—
Significance gone

As should be clear from the above discussion, the four
research FAQs are part of a process of project development.
The following chapters are concerned mostly with the econo-
metric questions that come up after you’ve answered the
research FAQs—in other words, issues that arise once your
research agenda has been set. Before turning to the nuts and
bolts of empirical work, however, we begin with a more
detailed explanation of why randomized trials give us our
benchmark.
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Chapter 2

The Experimental Ideal
■ ◆ ■||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

It is an important and popular fact that things are not always
what they seem. For instance, on the planet Earth, man had
always assumed that he was more intelligent than dolphins
because he had achieved so much—the wheel, New York,
wars and so on—while all the dolphins had ever done was
muck about in the water having a good time. But conversely,
the dolphins had always believed that they were far more
intelligent than man—for precisely the same reasons. In fact
there was only one species on the planet more intelligent than
dolphins, and they spent a lot of their time in behavioral
research laboratories running round inside wheels and
conducting frighteningly elegant and subtle experiments on
man. The fact that once again man completely misinterpreted
this relationship was entirely according to these creatures’
plans.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

The most credible and influential research designs use ran-
dom assignment. A case in point is the Perry preschool
project, a 1962 randomized experiment designed to

assess the effects of an early intervention program involv-
ing 123 black preschoolers in Ypsilanti, Michigan. The Perry
treatment group was randomly assigned to an intensive inter-
vention that included preschool education and home visits. It’s
hard to exaggerate the impact of the small but well-designed
Perry experiment, which generated follow-up data through
1993 on the participants at age 27. Dozens of academic stud-
ies cite or use the Perry findings (see, e.g., Barnett, 1992). Most
important, the Perry project provided the intellectual basis for
the massive Head Start preschool program, begun in 1964,
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which ultimately served (and continues to serve) millions of
American children.1

2.1 The Selection Problem

We take a brief time-out for a more formal discussion of the
role experiments play in uncovering causal effects. Suppose
you are interested in a causal if-then question. To be con-
crete, let us consider a simple example: Do hospitals make
people healthier? For our purposes, this question is allegori-
cal, but it is surprisingly close to the sort of causal question
health economists care about. To make this question more
realistic, let’s imagine we’re studying a poor elderly population
that uses hospital emergency rooms for primary care. Some of
these patients are admitted to the hospital. This sort of care is
expensive, crowds hospital facilities, and is, perhaps, not very
effective (see, e.g., Grumbach, Keane, and Bindman, 1993). In
fact, exposure to other sick patients by those who are them-
selves vulnerable might have a net negative impact on their
health.

Since those admitted to the hospital get many valuable ser-
vices, the answer to the hospital effectiveness question still
seems likely to be yes. But will the data back this up? The
natural approach for an empirically minded person is to com-
pare the health status of those who have been to the hospital
with the health of those who have not. The National Health
Interview Survey (NHIS) contains the information needed to
make this comparison. Specifically, it includes a question,
“During the past 12 months, was the respondent a patient
in a hospital overnight?” which we can use to identify recent
hospital visitors. The NHIS also asks, “Would you say your
health in general is excellent, very good, good, fair, poor?”

1The Perry data continue to get attention, particularly as policy interest
has returned to early education. A recent reanalysis by Michael Anderson
(2008) confirmed many of the findings from the original Perry study, though
Anderson also shows that the overall positive effects of the Perry project are
driven entirely by the impact on girls. The Perry intervention seems to have
done nothing for boys.
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The following table displays the mean health status (assigning
a 1 to poor health and a 5 to excellent health) among those
who have been hospitalized and those who have not (tabulated
from the 2005 NHIS):

Group Sample Size Mean Health Status Std. Error

Hospital 7,774 3.21 0.014
No hospital 90,049 3.93 0.003

The difference in means is 0.72, a large and highly significant
contrast in favor of the nonhospitalized, with a t-statistic of
58.9.

Taken at face value, this result suggests that going to the
hospital makes people sicker. It’s not impossible this is the
right answer since hospitals are full of other sick people who
might infect us and dangerous machines and chemicals that
might hurt us. Still, it’s easy to see why this comparison should
not be taken at face value: people who go to the hospital are
probably less healthy to begin with. Moreover, even after hos-
pitalization people who have sought medical care are not as
healthy, on average, as those who were never hospitalized in
the first place, though they may well be better off than they
otherwise would have been.

To describe this problem more precisely, we can think about
hospital treatment as described by a binary random variable,
di = {0, 1}. The outcome of interest, a measure of health sta-
tus, is denoted by yi. The question is whether yi is affected
by hospital care. To address this question, we assume we can
imagine what might have happened to someone who went to
the hospital if that person had not gone, and vice versa. Hence,
for any individual there are two potential health variables:

Potential outcome =
{

y1i if di = 1
y0i if di = 0

.

In other words, y0i is the health status of an individual had he
not gone to the hospital, irrespective of whether he actually
went, while y1i is the individual’s health status if he goes. We
would like to know the difference between y1i and y0i, which
can be said to be the causal effect of going to the hospital for
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individual i. This is what we would measure if we could go
back in time and change a person’s treatment status.2

The observed outcome, yi, can be written in terms of
potential outcomes as

yi =
{

y1i if di = 1
y0i if di = 0

= y0i + (y1i −y0i)di. (2.1.1)

This notation is useful because y1i −y0i is the causal effect
of hospitalization for an individual. In general, there is likely
to be a distribution of both y1i and y0i in the population, so
the treatment effect can be different for different people. But
because we never see both potential outcomes for any one
person, we must learn about the effects of hospitalization by
comparing the average health of those who were and were not
hospitalized.

A naive comparison of averages by hospitalization status
tells us something about potential outcomes, though not nec-
essarily what we want to know. The comparison of average
health conditional on hospitalization status is formally linked
to the average causal effect by the equation:

E[yi|di = 1] − E[yi|di = 0]︸ ︷︷ ︸
Observed difference in average health

= E[y1i|di = 1] − E[y0i|di = 1]︸ ︷︷ ︸
Average treatment effect on the treated

+ E[y0i|di = 1] − E[y0i|di = 0]︸ ︷︷ ︸
Selection bias

.

The term

E[y1i|di = 1] − E[y0i|di = 1] = E[y1i −y0i|di = 1]
is the average causal effect of hospitalization on those who
were hospitalized. This term captures the averages difference
between the health of the hospitalized, E[y1i|di = 1], and what
would have happened to them had they not been hospitalized,

2The potential outcomes idea is a fundamental building block in modern
research on causal effects. Important references developing this idea are Rubin
(1974, 1977) and Holland (1986), who refers to a causal framework involving
potential outcomes as the Rubin causal model.
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E[y0i|di = 1]. The observed difference in health status, how-
ever, adds to this causal effect a term called selection bias.
This term is the difference in average y0i between those who
were and those who were not hospitalized. Because the sick
are more likely than the healthy to seek treatment, those who
were hospitalized have worse values of y0i, making selection
bias negative in this example. The selection bias may be so
large (in absolute value) that it completely masks a positive
treatment effect. The goal of most empirical economic research
is to overcome selection bias, and therefore to say something
about the causal effect of a variable like di.3

2.2 Random Assignment Solves the Selection Problem

Random assignment of di solves the selection problem because
random assignment makes di independent of potential out-
comes. To see this, note that

E[yi|di = 1] − E[yi|di = 0] = E[y1i|di = 1] − E[y0i|di = 0]
= E[y1i|di = 1] − E[y0i|di = 1],

where the independence of y0i and di allows us to swap
E[y0i|di = 1] for E[y0i|di = 0] in the second line. In fact, given
random assignment, this simplifies further to

E[y1i|di = 1] − E[y0i|di = 1] = E[y1i −y0i|di = 1]
= E[y1i −y0i].

The effect of randomly assigned hospitalization on the hos-
pitalized is the same as the effect of hospitalization on a
randomly chosen patient. The main thing, however, is that
random assignment of di eliminates selection bias. This does
not mean that randomized trials are problem-free, but in prin-
ciple they solve the most important problem that arises in
empirical research.

3This section marks our first use of the conditional expectation operator
(e.g., E[yi|di = 1] and E[yi|di = 0]). We use this to denote the population
(or infinitely large sample) average of one random variable with the value
of another held fixed. A more formal and detailed definition appears in
Chapter 3.
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How relevant is our hospitalization allegory? Experiments
often reveal things that are not what they seem on the basis of
naive comparisons alone. A recent example from medicine is
the evaluation of hormone replacement therapy (HRT). This
is a medical intervention that was recommended for middle-
aged women to reduce menopause symptoms. Evidence from
the Nurses Health Study, a large and influential nonexperi-
mental survey of nurses, showed better health among HRT
users. In contrast, the results of a recently completed random-
ized trial showed few benefits of HRT. Worse, the randomized
trial revealed serious side effects that were not apparent in the
nonexperimental data (see, e.g., Women’s Health Initiative
[WHI], Hsia et al., 2006).

An iconic example from our own field of labor economics is
the evaluation of government-subsidized training programs.
These are programs that provide a combination of class-
room instruction and on-the-job training for groups of dis-
advantaged workers such as the long-term unemployed, drug
addicts, and ex-offenders. The idea is to increase employment
and earnings. Paradoxically, studies based on nonexperimen-
tal comparisons of participants and nonparticipants often
show that after training, the trainees earn less than plausible
comparison groups (see, e.g., Ashenfelter, 1978; Ashenfelter
and Card, 1985; Lalonde 1995). Here, too, selection bias is a
natural concern, since subsidized training programs are meant
to serve men and women with low earnings potential. Not
surprisingly, therefore, simple comparisons of program par-
ticipants with nonparticipants often show lower earnings for
the participants. In contrast, evidence from randomized eval-
uations of training programs generate mostly positive effects
(see, e.g., Lalonde, 1986; Orr et al., 1996).

Randomized trials are not yet as common in social science
as in medicine, but they are becoming more prevalent. One
area where the importance of random assignment is growing
rapidly is education research (Angrist, 2004). The 2002 Edu-
cation Sciences Reform Act passed by the U.S. Congress man-
dates the use of rigorous experimental or quasi-experimental
research designs for all federally funded education studies. We
can therefore expect to see many more randomized trials in
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education research in the years to come. A pioneering ran-
domized study from the field of education is the Tennessee
STAR experiment, designed to estimate the effects of smaller
classes in primary school.

Labor economists and others have a long tradition of try-
ing to establish causal links between features of the classroom
environment and children’s learning, an area of investigation
that we call “education production.” This terminology reflects
the fact that we think of features of the school environment as
inputs that cost money, while the output that schools produce
is student learning. A key question in research on education
production is which inputs produce the most learning given
their costs. One of the most expensive inputs is class size, since
smaller classes can only be achieved by hiring more teachers. It
is therefore important to know whether the expense of smaller
classes has a payoff in terms of higher student achievement.
The STAR experiment was meant to answer this question.

Many studies of education production using nonexperimen-
tal data suggest there is little or no link between class size and
student learning. So perhaps school systems can save money
by hiring fewer teachers, with no consequent reduction in
achievement. The observed relation between class size and
student achievement should not be taken at face value, how-
ever, since weaker students are often deliberately grouped into
smaller classes. A randomized trial overcomes this problem by
ensuring that we are comparing apples to apples, that is, that
the students assigned to classes of different sizes are otherwise
comparable. Results from the Tennessee STAR experiment
point to a strong and lasting payoff to smaller classes (see
Finn and Achilles, 1990, for the original study, and Krueger,
1999, for an econometric analysis of the STAR data).

The STAR experiment was unusually ambitious and influ-
ential, and therefore worth describing in some detail. It cost
about $12 million and was implemented for a cohort of kinder-
gartners in 1985–86. The study ran for four years, until the
original cohort of kindergartners was in third grade, and
involved about 11,600 children. The average class size in
regular Tennessee classes in 1985–86 was about 22.3. The
experiment assigned students to one of three treatments: small
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classes with 13–17 children, regular classes with 22–25 chil-
dren and a part-time teacher’s aide (the usual arrangement),
or regular classes with a full-time teacher’s aide. Schools with
at least three classes in each grade could choose to participate
in the experiment.

The first question to ask about a randomized experiment
is whether the randomization successfully balanced subjects’
characteristics across the different treatment groups. To assess
this, it’s common to compare pretreatment outcomes or other
covariates across groups. Unfortunately, the STAR data fail
to include any pretreatment test scores, though it is possi-
ble to look at characteristics of children such as race and
age. Table 2.2.1, reproduced from Krueger (1999), compares
the means of these variables. The student characteristics in the
table are a free lunch variable, student race, and student age.
Free lunch status is a good measure of family income, since
only poor children qualify for a free school lunch. Differences
in these characteristics across the three class types are small,
and none is significantly different from zero, as indicated
by the p-values in the last column. This suggests the random
assignment worked as intended.

Table 2.2.1 also presents information on average class size,
the attrition rate, and test scores, measured here on a per-
centile scale. The attrition rate (proportion of students lost to
follow-up) was lower in small kindergarten classrooms. This is
potentially a problem, at least in principle.4 Class sizes are sig-
nificantly lower in the assigned-to-be-small classrooms, which
means that the experiment succeeded in creating the desired
variation. If many of the parents of children assigned to regu-
lar classes had successfully lobbied teachers and principals to
get their children assigned to small classes, the gap in class size
across groups would be much smaller.

Because randomization eliminates selection bias, the differ-
ence in outcomes across treatment groups captures the average

4Krueger (1999) devotes considerable attention to the attrition problem.
Differences in attrition rates across groups may result in a sample of stu-
dents in higher grades that is not randomly distributed across class types. The
kindergarten results, which were unaffected by attrition, are therefore the
most reliable.
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Table 2.2.1
Comparison of treatment and control characteristics in the Tennessee

STAR experiment

Class Size

Variable Small Regular Regular/Aide
P-value for equality

across groups

Free lunch .47 .48 .50 .09

White/Asian .68 .67 .66 .26

Age in 1985 5.44 5.43 5.42 .32

Attrition rate .49 .52 .53 .02

Class size in 15.10 22.40 22.80 .00
kindergarten

Percentile score in 54.70 48.90 50.00 .00
kindergarten

Notes: Adapted from Krueger (1999), table I. The table shows means of variables
by treatment status for the sample of students who entered STAR in kindergarten.
The P-value in the last column is for the F-test of equality of variable means across
all three groups. The free lunch variable is the fraction receiving a free lunch.
The percentile score is the average percentile score on three Stanford Achievement
Tests. The attrition rate is the proportion lost to follow-up before completing third
grade.

causal effect of class size (relative to regular classes with a
part-time aide). In practice, the difference in means between
treatment and control groups can be obtained from a regres-
sion of test scores on dummies for each treatment group, a
point we expand on below. Regression estimates of treatment-
control differences for kindergartners, reported in table 2.2.2
(derived from Krueger, 1999, table V), show a small-class
effect of about five percentile points (other rows in the table
show coefficients on control variables in the regressions). The
effect size is about .2σ , where σ is the standard deviation of
the percentile score in kindergarten. The small-class effect is
significantly different from zero, while the regular/aide effect
is small and insignificant.

The STAR study, an exemplary randomized trial in the
annals of social science, also highlights the logistical difficulty,
long duration, and potentially high cost of randomized trials.
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Table 2.2.2
Experimental estimates of the effect of class size on test scores

Explanatory Variable (1) (2) (3) (4)

Small class 4.82 5.37 5.36 5.37
(2.19) (1.26) (1.21) (1.19)

Regular/aide class .12 .29 .53 .31
(2.23) (1.13) (1.09) (1.07)

White/Asian — — 8.35 8.44
(1.35) (1.36)

Girl — — 4.48 4.39
(.63) (.63)

Free lunch — — −13.15 −13.07
(.77) (.77)

White teacher — — — −.57
(2.10)

Teacher experience — — — .26
(.10)

Teacher Master’s degree — — — −0.51
(1.06)

School fixed effects No Yes Yes Yes

R2 .01 .25 .31 .31

Notes: Adapted from Krueger (1999), table V. The dependent variable is the
Stanford Achievement Test percentile score. Robust standard errors allowing
for correlated residuals within classes are shown in parentheses. The sample
size is 5,681.

In many cases, such trials are impractical.5 In other cases,
we would like an answer sooner rather than later. Much of

5Randomized trials are never perfect, and STAR is no exception. Pupils
who repeated or skipped a grade left the experiment. Students who entered
an experimental school one grade later were added to the experiment and
randomly assigned to one of the classes. One unfortunate aspect of the exper-
iment is that students in the regular and regular/aide classes were reassigned
after the kindergarten year, possibly because of protests by the parents with
children in the regular classrooms. There was also some switching of children
after the kindergarten year. But Krueger’s (1999) analysis suggests that none
of these implementation problems affected the main conclusions of the study.
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the research we do, therefore, attempts to exploit cheaper
and more readily available sources of variation. We hope to
find natural or quasi-experiments that mimic a randomized
trial by changing the variable of interest while other factors
are kept balanced. Can we always find a convincing natural
experiment? Of course not. Nevertheless, we take the position
that a notional randomized trial is our benchmark. Not all
researchers share this view, but many do. We heard it first from
our teacher and thesis advisor, Orley Ashenfelter, a pioneer-
ing proponent of experiments and quasi-experimental research
designs in social science. Here is Ashenfelter (1991) assessing
the credibility of the observational studies linking schooling
and income:

How convincing is the evidence linking education and income?
Here is my answer: Pretty convincing. If I had to bet on what
an ideal experiment would indicate, I bet that it would show
that better educated workers earn more.

The quasi-experimental study of class size by Angrist and
Lavy (1999) illustrates the manner in which nonexperimental
data can be analyzed in an experimental spirit. The Angrist and
Lavy study relied on the fact that in Israel, class size is capped
at 40. Therefore, a child in a fifth grade cohort of 40 students
ends up in a class of 40 while a child in a fifth grade cohort
of 41 students ends up in a class only half as large because the
cohort is split. Since students in cohorts of size 40 and 41 are
likely to be similar on other dimensions, such as ability and
family background, we can think of the difference between
40 and 41 students enrolled as being “as good as randomly
assigned.”

The Angrist-Lavy study compared students in grades with
enrollments above and below bureaucratic class size cutoffs
to construct well-controlled estimates of the effects of a sharp
change in class size without the benefit of a real experiment.
As in the Tennessee STAR study, the Angrist and Lavy (1999)
results pointed to a strong link between class size and achieve-
ment. This was in marked contrast to naive analyses, also
reported by Angrist and Lavy, based on simple comparisons
between those enrolled in larger and smaller classes. These
comparisons showed students in smaller classes doing worse



22 Chapter 2

on standardized tests. The hospital allegory of selection bias
would therefore seem to apply to the class size question as
well.6

2.3 Regression Analysis of Experiments

Regression is a useful tool for the study of causal questions,
including the analysis of data from experiments. Suppose (for
now) that the treatment effect is the same for everyone, say
y1i −y0i = ρ, a constant. With constant treatment effects, we
can rewrite (2.1.1) in the form

yi = α + ρ di + ηi,
� � �

E(y0i) (y1i −y0i) y0i − E(y0i),
(2.3.1)

where ηi is the random part of y0i. Evaluating the conditional
expectation of this equation with treatment status switched off
and on gives

E[yi|di = 1] = α + ρ + E[ηi|di = 1]
E[yi|di = 0] = α + E[ηi|di = 0],

so that

E[yi|di = 1] − E[yi|di = 0] = ρ︸︷︷︸
Treatment effect

+ E[ηi|di = 1] − E[ηi|di = 0]︸ ︷︷ ︸
Selection bias

.

Thus, selection bias amounts to correlation between the
regression error term, ηi, and the regressor, di. Since

E[ηi|di = 1] − E[ηi|di = 0] = E[y0i|di = 1] − E[y0i|di = 0],
this correlation reflects the difference in (no-treatment) poten-
tial outcomes between those who get treated and those who

6The Angrist-Lavy (1999) results turn up again in chapter 6, as an illustra-
tion of the quasi-experimental regression-discontinuity research design.
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don’t. In the hospital allegory, those who were treated had
poorer health outcomes in the no-treatment state, while in
the Angrist and Lavy (1999) study, students in smaller classes
tended to have intrinsically lower test scores.

In the STAR experiment, where di is randomly assigned,
the selection bias term disappears, and a regression of yi on di

estimates the causal effect of interest, ρ. Table 2.2.2 shows
different regression specifications, some of which include
covariates other than the random assignment indicator, di.
Covariates play two roles in regression analyses of experimen-
tal data. First, the STAR experimental design used conditional
random assignment. In particular, assignment to classes of dif-
ferent sizes was random within schools but not across schools.
Students attending schools of different types (say, urban versus
rural) were a bit more or less likely to be assigned to a small
class. The comparison in column 1 of table 2.2.2, which makes
no adjustment for this, might therefore be contaminated by dif-
ferences in achievement in schools of different types. To adjust
for this, some of Krueger’s regression models include school
fixed effects, that is, a separate intercept for each school in
the STAR data. In practice, the consequences of adjusting for
school fixed effects is rather minor, but we wouldn’t know this
without taking a look. We have more to say about regression
models with fixed effects in chapter 5.

The other controls in Krueger’s table describe student char-
acteristics such as race, age, and free lunch status. We saw
before that these individual characteristics are balanced across
class types, that is, they are not systematically related to the
class size assignment of the student. If these controls, call them
Xi, are uncorrelated with the treatment di, then they will not
affect the estimate of ρ. In other words, estimates of ρ in the
long regression,

yi = α + ρdi + X′
iγ + ηi, (2.3.2)

will be close to estimates of ρ in the short regression, (2.3.1).
This is a point we expand on in chapter 3.

Inclusion of the variables Xi, although not necessary in this
case, may generate more precise estimates of the causal effect
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of interest. Notice that the standard error of the estimated
treatment effects in column 3 is smaller than the correspond-
ing standard error in column 2. Although the control variables,
Xi, are uncorrelated with di, they have substantial explana-
tory power for yi. Including these control variables therefore
reduces the residual variance, which in turn lowers the stan-
dard error of the regression estimates. Similarly, the standard
errors of the estimates of ρ are reduced by the inclusion of
school fixed effects because these too explain an important
part of the variance in student performance. The last column
adds teacher characteristics. Because teachers were randomly
assigned to classes, and teacher characteristics have little to
do with student achievement in these data, both the estimated
effect of small classes and its standard error are unchanged by
the addition of teacher variables.

Regression plays an exceptionally important role in empiri-
cal economic research. As we’ve seen in this chapter, regression
is well-suited to the analysis of experimental data. In some
cases, regression can also be used to approximate experiments
in the absence of random assignment. But before we get into
the important question of when a regression is likely to have
a causal interpretation, it is useful to review a number of
fundamental regression facts and properties. These facts and
properties are reliably true for any regression, regardless of the
motivation for running it.
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Chapter 3

Making Regression Make Sense
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“Let us think the unthinkable, let us do the undoable.
Let us prepare to grapple with the ineffable itself,
and see if we may not eff it after all.”

Douglas Adams, Dirk Gently’s Holistic Detective Agency

Angrist recounts:

I ran my first regression in the summer of 1979 between my
freshman and sophomore years as a student at Oberlin College.
I was working as a research assistant for Allan Meltzer and
Scott Richard, faculty members at Carnegie-Mellon University,
near my house in Pittsburgh. I was still mostly interested in a
career in special education, and had planned to go back to
work as an orderly in a state mental hospital, my previous
summer job. But Econ 101 had got me thinking, and I could
also see that at the same wage rate, a research assistant’s hours
and working conditions were better than those of a hospital
orderly. My research assistant duties included data collection
and regression analysis, though I did not understand regression
or even statistics at the time.

The paper I was working on that summer (Meltzer and
Richard, 1983) is an attempt to link the size of governments
in democracies, measured as government expenditure over
GDP, to income inequality. Most income distributions have
a long right tail, which means that average income tends to be
way above the median. When inequality grows, more voters
find themselves with below-average incomes. Annoyed by this,
those with incomes between the median and the average may
join those with incomes below the median in voting for fiscal
policies that take from the rich and give to the poor. The size
of government consequently increases.
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I absorbed the basic theory behind the Meltzer and Richard
project, though I didn’t find it all that plausible, since voter
turnout is low for the poor. I also remember arguing with
my bosses over whether government expenditure on education
should be classified as a public good (something that bene-
fits everyone in society as well as those directly affected) or a
private good publicly supplied, and therefore a form of redis-
tribution like welfare. You might say this project marked the
beginning of my interest in the social returns to education, a
topic I went back to with more enthusiasm and understanding
in Acemoglu and Angrist (2000).

Today, I understand the Meltzer and Richard study as an
attempt to use regression to uncover and quantify an interesting
causal relation. At the time, however, I was purely a regression
mechanic. Sometimes I found the RA work depressing. Days
would go by when I didn’t talk to anybody but my bosses and
the occasional Carnegie-Mellon Ph.D. student, most of whom
spoke little English anyway. The best part of the job was lunch
with Allan Meltzer, a distinguished scholar and a patient and
good-natured supervisor, who was happy to chat while we ate
the contents of our brown bags (this did not take long, as Allan
ate little and I ate fast). Once I asked Allan whether he found it
satisfying to spend his days perusing regression output, which
then came on reams of double-wide green-bar paper. Meltzer
laughed and said there was nothing he would rather be doing.

Now we too spend our days happily perusing regression
output, in the manner of our teachers and advisers in college
and graduate school. This chapter explains why.

3.1 Regression Fundamentals

The end of the previous chapter introduced regression models
as a computational device for the estimation of treatment-
control differences in an experiment, with and without covari-
ates. Because the regressor of interest in the class size study
discussed in section 2.3 was randomly assigned, the result-
ing estimates have a causal interpretation. In most studies,
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however, regression is used with observational data. Without
the benefit of random assignment, regression estimates may
or may not have a causal interpretation. We return to the cen-
tral question of what makes a regression causal later in this
chapter.

Setting aside the relatively abstract causality problem for the
moment, we start with the mechanical properties of regres-
sion estimates. These are universal features of the population
regression vector and its sample analog that have nothing to do
with a researcher’s interpretation of his output. These prop-
erties include the intimate connection between the population
regression function and the conditional expectation function
and the sampling distribution of regression estimates.

3.1.1 Economic Relationships and
the Conditional Expectation Function

Empirical economic research in our field of labor economics is
typically concerned with the statistical analysis of individual
economic circumstances, and especially differences between
people that might account for differences in their economic
fortunes. Differences in economic fortune are notoriously hard
to explain; they are, in a word, random. As applied econome-
tricians, however, we believe we can summarize and interpret
randomness in a useful way. An example of “systematic ran-
domness” mentioned in the introduction is the connection
between education and earnings. On average, people with
more schooling earn more than people with less schooling.
The connection between schooling and earnings has consid-
erable predictive power, in spite of the enormous variation
in individual circumstances that sometimes clouds this fact.
Of course, the fact that more educated people tend to earn
more than less educated people does not mean that school-
ing causes earnings to increase. The question of whether
the earnings-schooling relationship is causal is of enormous
importance, and we come back to it many times. Even with-
out resolving the difficult question of causality, however, it’s
clear that education predicts earnings in a narrow statistical



30 Chapter 3

sense. This predictive power is compellingly summarized by
the conditional expectation function (CEF).

The CEF for a dependent variable yi, given a k × 1 vec-
tor of covariates Xi (with elements xki), is the expectation, or
population average, of yi, with Xi held fixed. The population
average can be thought of as the mean in an infinitely large
sample, or the average in a completely enumerated finite pop-
ulation. The CEF is written E[yi|Xi] and is a function of Xi.
Because Xi is random, the CEF is random, though sometimes
we work with a particular value of the CEF, say E[yi|Xi = 42],
assuming 42 is a possible value for Xi. In chapter 2, we briefly
considered the CEF E[yi|di], where di is a zero-one variable.
This CEF takes on two values, E[yi|di = 1] and E[yi|di = 0].
Although this special case is important, we are most often
interested in CEFs that are functions of many variables, con-
veniently subsumed in the vector Xi. For a specific value of
Xi, say Xi = x, we write E[yi|Xi = x]. For continuous yi with
conditional density fy(t|Xi = x) at yi = t, the CEF is

E[yi|Xi = x] =
∫

tfy(t|Xi = x)dt.

If yi is discrete, E[yi|Xi = x] equals the sum
∑

t tP(yi = t|Xi =
x), where P(yi = t|Xi = x) is the conditional probability mass
function for yi given Xi = x.

Expectation is a population concept. In practice, data usu-
ally come in the form of samples and rarely consist of an
entire population. We therefore use samples to make infer-
ences about the population. For example, the sample CEF
is used to learn about the population CEF. This is necessary
and important, but we postpone a discussion of the formal
inference step taking us from sample to population until sec-
tion 3.1.3. Our “population-first” approach to econometrics
is motivated by the fact that we must define the objects of
interest before we can use data to study them.1

1Examples of pedagogical writing using the “population-first” approach to
econometrics include Chamberlain (1984), Goldberger (1991), and Manski
(1991).
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Figure 3.1.1 Raw data and the CEF of average log weekly wages
given schooling. The sample includes white men aged 40–49 in the
1980 IPUMS 5 percent file.

Figure 3.1.1 plots the CEF of log weekly wages given school-
ing for a sample of middle-aged white men from the 1980
census. The distribution of earnings is also plotted for a few
key values: 4, 8, 12, and 16 years of schooling. The CEF in
the figure captures the fact that, notwithstanding the enormous
variation individual circumstances, people with more school-
ing generally earn more. The average earnings gain associated
with a year of schooling is typically about 10 percent.

An important complement to the CEF is the law of iterated
expectations. This law says that an unconditional expectation
can be written as the unconditional average of the CEF. In
other words,

E[yi] = E{E[yi|Xi]}, (3.1.1)

where the outer expectation uses the distribution of Xi. Here
is a proof of the law of iterated expectations for continuously
distributed (Xi, yi) with joint density fxy(u, t), where fy(t|Xi =
u) is the conditional distribution of yi given Xi = u and gy(t)
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and gx(u) are the marginal densities:

E{E[yi|Xi]} =
∫

E[yi|Xi = u]gx(u)du

=
∫ [∫

tf y(t|Xi = u)dt
]

gx(u)du

=
∫ ∫

tf y(t|Xi = u)gx(u)dudt

=
∫

t
[∫

fy(t|Xi = u)gx(u)du
]

dt

=
∫

t
[∫

fxy(u, t)du
]

dt

=
∫

tgy(t)dt = E[yi].

The integrals in this derivation run over the possible values
of Xi and yi (indexed by u and t). We’ve laid out these steps
because the CEF and its properties are central to the rest of
this chapter.2

The power of the law of iterated expectations comes from
the way it breaks a random variable into two pieces, the CEF
and a residual with special properties.

Theorem 3.1.1 The CEF Decomposition Property.

yi = E[yi|Xi] + εi,

where (i) εi is mean independent of Xi, that is, E[εi|Xi] = 0,
and therefore (ii) εi is uncorrelated with any function of Xi.

Proof. (i) E[εi|Xi] = E[yi − E[yi|Xi]|Xi] = E[yi|Xi] − E[yi|
Xi] = 0. (ii) Let h(Xi) be any function of Xi. By the law of
iterated expectations, E[h(Xi)εi] = E{h(Xi)E[εi|Xi]}, and by
mean independence, E[εi|Xi] = 0.

2A simple example illustrates how the law of iterated expectations works:
Average earnings in a population of men and women is the average for men
times the proportion male in the population plus the average for women times
the proportion female in the population.
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This theorem says that any random variable yi can be
decomposed into a piece that is “explained by Xi”—that is,
the CEF—and a piece left over that is orthogonal to (i.e.,
uncorrelated with) any function of Xi.

The CEF is a good summary of the relationship between yi

and Xi, for a number of reasons. First, we are used to thinking
of averages as providing a representative value for a random
variable. More formally, the CEF is the best predictor of yi

given Xi in the sense that it solves a minimum mean squared
error (MMSE) prediction problem. This CEF prediction prop-
erty is a consequence of the CEF decomposition property:

Theorem 3.1.2 The CEF Prediction Property.
Let m(Xi) be any function of Xi. The CEF solves

E[yi|Xi] = arg min
m(Xi)

E[(yi − m(Xi))2],

so it is the MMSE predictor of yi given Xi.

Proof. Write

(yi − m(Xi))2 = ((yi − E[yi|Xi]) + (E[yi|Xi] − m(Xi)))2

= (yi − E[yi|Xi])2 + 2(E[yi|Xi] − m(Xi))

× (yi − E[yi|Xi]) + (E[yi|Xi] − m(Xi))2.

The first term doesn’t matter because it doesn’t involve m(Xi).
The second term can be written h(Xi)εi, where h(Xi) ≡
2(E[yi|Xi] − m(Xi)), and therefore has expectation zero by the
CEF decomposition property. The last term is minimized at
zero when m(Xi) is the CEF.

A final property of the CEF, closely related to both the
decomposition and prediction properties, is the analysis of
variance (ANOVA) theorem:

Theorem 3.1.3 The ANOVA Theorem.

V(yi) = V(E[yi|Xi]) + E[V(yi|Xi)],
where V( · ) denotes variance and V(yi|Xi) is the conditional
variance of yi given Xi.
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Proof. The CEF decomposition property implies the variance
of yi is the variance of the CEF plus the variance of the residual,
εi ≡ yi − E[yi|Xi], since εi and E[yi|Xi] are uncorrelated. The
variance of εi is

E[ε2
i ] = E[E[ε2

i |Xi]] = E[V[yi|Xi]],

where E[ε2
i |Xi] = V[yi|Xi] because εi ≡ yi − E[yi|Xi].

The two CEF properties and the ANOVA theorem may
have a familiar ring. You might be used to seeing an ANOVA
table in your regression output, for example. ANOVA is also
important in research on inequality, where labor economists
decompose changes in the income distribution into parts that
can be accounted for by changes in worker characteristics and
changes in what’s left over after accounting for these factors
(see, e.g., Autor, Katz, and Kearney, 2005). What may be
unfamiliar is the fact that the CEF properties and ANOVA
variance decomposition work in the population as well as in
samples, and do not turn on the assumption of a linear CEF.
In fact, the validity of linear regression as an empirical tool
does not turn on linearity either.

3.1.2 Linear Regression and the CEF

So what’s the regression you want to run? In our world, this
question or one like it is heard almost every day. Regression
estimates provide a valuable baseline for almost all empirical
research because regression is tightly linked to the CEF, and the
CEF provides a natural summary of empirical relationships.
The link between regression functions—that is, the best-fitting
line generated by minimizing expected squared errors—and
the CEF can be explained in at least three ways. To lay out
these explanations precisely, it helps to be precise about the
regression function we have in mind. This section is con-
cerned with the vector of population regression coefficients,
defined as the solution to a population least squares problem.
At this point we are not worried about causality. Rather,
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we let the k × 1 regression coefficient vector β be defined by
solving

β = arg min
b

E[(yi − X′
ib)2]. (3.1.2)

Using the first-order condition,

E[Xi(yi − X′
ib)] = 0,

the solution can be written β = E[XiX′
i]−1E[Xiyi]. Note that

by construction, E[Xi(yi − X′
iβ)] = 0. In other words, the

population residual, which we define as yi − X′
iβ = ei, is

uncorrelated with the regressors, Xi. It bears emphasizing that
this error term does not have a life of its own. It owes its exis-
tence and meaning to β. We return to this important point in
the discussion of causal regression in section 3.2.

In the simple bivariate case where the regression vector
includes only the single regressor, xi, and a constant, the
slope coefficient is β1 = Cov(yi ,xi)

V(xi)
, and the intercept is α = E[yi]

− β1E[Xi]. In the multivariate case, with more than one non-
constant regressor, the slope coefficient for the kth regressor
is given below:

REGRESSION ANATOMY

βk = Cov(yi, x̃ki)
V(x̃ki)

, (3.1.3)

where x̃ki is the residual from a regression of xki on all the
other covariates.

In other words, E[XiX′
i]−1E[Xiyi] is the k × 1 vector with

kth element Cov(yi ,x̃ki)
V(x̃ki)

. This important formula is said to
describe the anatomy of a multivariate regression coefficient
because it reveals much more than the matrix formula β =
E[XiX′

i]−1E[Xiyi]. It shows us that each coefficient in a multi-
variate regression is the bivariate slope coefficient for the corre-
sponding regressor after partialing out all the other covariates.
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To verify the regression anatomy formula, substitute

yi = α + β1x1i + · · · + βkxki + · · · + βkxki + ei

in the numerator of (3.1.3). Since x̃ki is a linear combination
of the regressors, it is uncorrelated with ei. Also, since x̃ki is
a residual from a regression on all the other covariates in the
model, it must be uncorrelated with these covariates. Finally,
for the same reason, the covariance of x̃ki with xki is just the
variance of x̃ki. We therefore have Cov(yi, x̃ki) = βkV(x̃ki).3

The regression anatomy formula is probably familiar to you
from a regression or statistics course, perhaps with one twist:
the regression coefficients defined in this section are not esti-
mators; rather, they are nonstochastic features of the joint
distribution of dependent and independent variables. This
joint distribution is what you would observe if you had a
complete enumeration of the population of interest (or knew
the stochastic process generating the data). You probably
don’t have such information. Still, it’s good empirical prac-
tice to think about what population parameters mean before
worrying about how to estimate them.

Below we discuss three reasons why the vector of popula-
tion regression coefficients might be of interest. These reasons
can be summarized by saying that you should be interested in
regression parameters if you are interested in the CEF.

3The regression anatomy formula is usually attributed to Frisch and Waugh
(1933). You can also do regression anatomy this way:

βk = Cov(ỹki, x̃ki)
V(x̃ki)

,

where ỹki is the residual from a regression of yi on every covariate except xki.
This works because the fitted values removed from ỹki are uncorrelated with
x̃ki. Often it’s useful to plot ỹki against x̃ki; the slope of the least squares fit in
this scatterplot is the multivariate βk, even though the plot is two-dimensional.
Note, however, that it’s not enough to partial the other covariates out of yi

only. That is,

Cov(ỹki, xki)
V(xki)

=
[

Cov(ỹki, x̃ki)
V(x̃ki)

] [
V(x̃ki)
V(xki)

]
�= βk,

unless xki is uncorrelated with the other covariates.
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Theorem 3.1.4 The Linear CEF Theorem (Regression Justifi-
cation I).

Suppose the CEF is linear. Then the population regression
function is it.

Proof. Suppose E[yi|Xi] = X′
iβ

∗ for a k × 1 vector of coef-
ficients, β∗. Recall that E[Xi(yi − E[yi|Xi])] = 0 by the CEF
decomposition property. Substitute using E[yi|Xi] = X′

iβ
∗ to

find that β∗ = E[XiX′
i]−1E[Xiyi] = β.

The linear CEF theorem raises the question of what makes
a CEF linear. The classic scenario is joint normality, that is,
the vector (yi, X′

i)
′ has a multivariate normal distribution. This

is the scenario considered by Galton (1886), father of regres-
sion, who was interested in the intergenerational link between
normally distributed traits such as height and intelligence.
The normal case is clearly of limited empirical relevance since
regressors and dependent variables are often discrete, while
normal distributions are continuous. Another linearity sce-
nario arises when regression models are saturated. As reviewed
in section 3.1.4, a saturated regression model has a separate
parameter for every possible combination of values that the set
of regressors can take on. For example a saturated regression
model with two dummy covariates includes both covariates
(with coefficients known as the main effects) and their prod-
uct (known as an interaction term). Such models are inherently
linear, a point we also discuss in section 3.1.4.

The following two reasons for focusing on regression are
relevant when the linear CEF theorem does not apply.

Theorem 3.1.5 The Best Linear Predictor Theorem (Regres-
sion Justification II).

The function X′
iβ is the best linear predictor of yi given Xi

in a MMSE sense.

Proof. β = E[XiX′
i]−1E[Xiyi] solves the population least

squares problem, (3.1.2).

In other words, just as the CEF, E[yi|Xi], is the best (i.e.,
MMSE) predictor of yi given Xi in the class of all functions of
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Xi, the population regression function is the best we can do in
the class of linear functions.

Theorem 3.1.6 The Regression CEF Theorem (Regression
Justification III).

The function X′
iβ provides the MMSE linear approximation

to E[yi|Xi], that is,

β = arg min
b

E{(E[yi|Xi] − X′
ib)2}. (3.1.4)

Proof. Start by observing that β solves (3.1.2). Write

(yi − X′
ib)2 = {(yi − E[yi|Xi]) + (E[yi|Xi] − X′

ib)}2

= (yi − E[yi|Xi])2 + (E[yi|Xi] − X′
ib)2

+ 2(yi − E[yi|Xi])(E[yi|Xi] − X′
ib).

The first term doesn’t involve b and the last term has expec-
tation zero by the CEF decomposition property (ii). The CEF
approximation problem, (3.1.4), is therefore the same as the
population least squares problem, (3.1.2).

These two theorems give us two more ways to view regres-
sion. Regression provides the best linear predictor for the
dependent variable in the same way that the CEF is the best
unrestricted predictor of the dependent variable. On the other
hand, if we prefer to think about approximating E[yi|Xi], as
opposed to predicting yi, the regression CEF theorem tells us
that even if the CEF is nonlinear, regression provides the best
linear approximation to it.

The regression CEF theorem is our favorite way to motivate
regression. The statement that regression approximates the
CEF lines up with our view of empirical work as an effort to
describe the essential features of statistical relationships with-
out necessarily trying to pin them down exactly. The linear
CEF theorem is for special cases only. The best linear pre-
dictor theorem is satisfyingly general, but seems to encourage
an overly clinical view of empirical research. We’re not really
interested in predicting individual yi; it’s the distribution of yi

that we care about.
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Figure 3.1.2 Regression threads the CEF of average weekly wages
given schooling (dots = CEF; dashes = regression line).

Figure 3.1.2 illustrates the CEF approximation property for
the same schooling CEF plotted in figure 3.1.1. The regression
line fits the somewhat bumpy and nonlinear CEF as if we were
estimating a model for E[yi|Xi] instead of a model for yi. In
fact, that is exactly what’s going on. An implication of the
regression CEF theorem is that regression coefficients can be
obtained by using E[yi|Xi] as a dependent variable instead of
yi itself. To see this, suppose that Xi is a discrete random
variable with probability mass function gx(u). Then

E{(E[yi|Xi] − X′
ib)2} =

∑
u

(E[yi|Xi = u] − u′b)2gx(u).

This means that β can be constructed from the weighted least
squares (WLS) regression of E[yi|Xi = u] on u, where u runs
over the values taken on by Xi. The weights are given by the
distribution of Xi, that is, gx(u). An even simpler way to see
this is to iterate expectations in the formula for β:

β = E[XiX′
i]−1E[Xiyi] = E[XiX′

i]−1E[XiE(yi|Xi)]. (3.1.5)
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The CEF or grouped data version of the regression formula
is of practical use when working on a project that precludes
the analysis of microdata. For example, Angrist (1998) used
grouped data to study the effect of voluntary military service
on earnings later in life. One of the estimation strategies used in
this project regresses civilian earnings on a dummy for veteran
status, along with personal characteristics and the variables
used by the military to screen soldiers. The earnings data
come from the U.S. Social Security system, but Social Secu-
rity earnings records cannot be released to the public. Instead
of individual earnings, Angrist worked with average earnings
conditional on race, sex, test scores, education, and veteran
status.

To illustrate the grouped data approach to regression, we
estimated the schooling coefficient in a wage equation using 21
conditional means, the sample CEF of earnings given school-
ing. As the Stata output reproduced in Figure 3.1.3 shows, a
grouped data regression, weighted by the number of individu-
als at each schooling level in the sample, produces coefficients
identical to those generated using the underlying microdata
sample with hundreds of thousands of observations. Note,
however, that the standard errors from the grouped regres-
sion do not measure the asymptotic sampling variance of the
slope estimate in repeated micro-data samples; for that you
need an estimate of the variance of yi − X′

iβ. This variance
depends on the microdata, in particular the second moments
of Wi ≡ [yi X′

i]
′, a point we elaborate on in the next section.

3.1.3 Asymptotic OLS Inference

In practice, we don’t usually know what the CEF or the
population regression vector is. We therefore draw statistical
inferences about these quantities using samples. Statistical
inference is what much of traditional econometrics is about.
Although this material is covered in any econometrics text, we
don’t want to skip the inference step completely. A review of
basic asymptotic theory allows us to highlight the important
fact that the process of statistical inference is distinct from the
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A - Individual-level data

. regress earnings school, robust

      Source |       SS       df       MS        Number of obs =  409435

-------------+------------------------------     F(  1,409433) =49118.25

       Model | 22631.4793      1  22631.4793     Prob > F      =  0.0000

    Residual |  188648.31 409433  .460755019     R-squared     =  0.1071

-------------+------------------------------     Adj R-squared =  0.1071

       Total | 211279.789 409434   .51602893     Root MSE      =  .67879

-------------+----------------------------------------------------------
             |               Robust                  Old Fashioned      

    earnings |      Coef.   Std. Err.      t           Std. Err.       t 
-------------+----------------------------------------------------------
      school |   .0674387   .0003447   195.63          .0003043   221.63

      const. |   5.835761   .0045507  1282.39          .0040043  1457.38
------------------------------------------------------------------------

B - Means by years of schooling

. regress average_earnings school [aweight=count], robust
(sum of wgt is   4.0944e+05)

      Source |       SS       df       MS        Number of obs =      21

-------------+------------------------------     F(  1,    19) =  540.31

       Model |  1.16077332     1  1.16077332     Prob > F      =  0.0000

    Residual |  .040818796    19  .002148358     R-squared     =  0.9660

-------------+------------------------------     Adj R-squared =  0.9642

       Total |  1.20159212    20  .060079606     Root MSE      =  .04635

-------------+----------------------------------------------------------
     average |               Robust                  Old Fashioned      

   _earnings |      Coef.   Std. Err.      t           Std. Err.       t 
-------------+----------------------------------------------------------
      school |   .0674387   .0040352    16.71         .0029013     23.24

      const. |   5.835761   .0399452   146.09         .0381792    152.85
------------------------------------------------------------------------

Figure 3.1.3 Microdata and grouped data estimates of the returns
to schooling, from Stata regression output. Source: 1980
Census—IPUMS, 5 percent sample. The sample includes white men,
age 40–49. Robust standard errors are heteroskedasticity consistent.
Panel A uses individual-level microdata. Panel B uses earnings
averaged by years of schooling.

question of how a particular set of regression estimates should
be interpreted. Whatever a regression coefficient may mean, it
has a sampling distribution that is easy to describe and use for
statistical inference.4

4The discussion of asymptotic OLS inference in this section is largely a con-
densation of material in Chamberlain (1984). Important pitfalls and problems
with asymptotic theory are covered in the last chapter.
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We are interested in the distribution of the sample analog of

β = E[XiX′
i]−1E[Xiyi]

in repeated samples. Suppose the vector Wi ≡ [yi X′
i]

′ is inde-
pendently and identically distributed in a sample of size N.
A natural estimator of the first population moment, E[Wi], is
the sum, 1

N

∑N
i=1 Wi. By the law of large numbers, this vector

of sample moments gets arbitrarily close to the corresponding
vector of population moments as the sample size grows. We
might similarly consider higher-order moments of the elements
of Wi, for example the matrix of second moments, E[WiW ′

i ],
with sample analog 1

N

∑N
i=1 WiW ′

i . Following this principle,
the method of moments estimator of β replaces each expecta-
tion by a sum. This logic leads to the ordinary least squares
(OLS) estimator

β̂ =
[∑

i

XiX′
i

]−1 ∑
i

Xiyi.

Although we derived β̂ as a method of moments estimator, it
is called the OLS estimator of β because it solves the sample
analog of the least squares problem described at the beginning
of section 3.1.2.5

The asymptotic sampling distribution of β̂ depends solely on
the definition of the estimand (i.e., the nature of the thing we’re
trying to estimate, β) and the assumption that the data con-
stitute a random sample. Before deriving this distribution, it
helps to summarize the general asymptotic distribution theory
that covers our needs. This basic theory can be stated mostly
in words. For the purposes of these statements, we assume the
reader is familiar with the core terms and concepts of statisti-
cal theory—moments, mathematical expectation, probability

5Econometricians like to use matrices because the notation is so compact.
Sometimes (not very often) we do too. Suppose X is the matrix whose rows
are given by X′

i and y is the vector with elements yi, for i = 1, . . . , N. The
sample moment matrix 1

N

∑
XiX′

i is X′X/N and the sample moment vector
1
N

∑
Xiyi is X′y/N. Then we can write β̂ = (X′X)−1X′y, a widely used matrix

formula.
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limits, and asymptotic distributions. For definitions of these
terms and a formal mathematical statement of the theoretical
propositions given below, see Knight (2000).

THE LAW OF LARGE NUMBERS Sample moments converge in
probability to the corresponding population moments. In
other words, the probability that the sample mean is close
to the population mean can be made as high as you like by
taking a large enough sample.

THE CENTRAL LIMIT THEOREM Sample moments are asymp-
totically normally distributed (after subtracting the corre-
sponding population moment and multiplying by the square
root of the sample size). The asymptotic covariance matrix is
given by the variance of the underlying random variable. In
other words, in large enough samples, appropriately normal-
ized sample moments are approximately normally distributed.

SLUTSKY’S THEOREM

1. Consider the sum of two random variables, one of which
converges in distribution (in other words, has an asymp-
totic distribution) and the other converges in probability to
a constant: the asymptotic distribution of this sum is unaf-
fected by replacing the one that converges to a constant by
this constant. Formally, let aN be a statistic with an asymp-
totic distribution and let bN be a statistic with probability
limit b. Then aN + bN and aN + b have the same asymptotic
distribution.

2. Consider the product of two random variables, one of which
converges in distribution and the other converges in prob-
ability to a constant: the asymptotic distribution of this
product is unaffected by replacing the one that converges
to a constant by this constant. Formally, let aN be a statis-
tic with an asymptotic distribution and let bN be a statistic
with probability limit b. Then aNbN and aNb have the same
asymptotic distribution.

THE CONTINUOUS MAPPING THEOREM Probability limits pass
through continuous functions. For example, the probability
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limit of any continuous function of a sample moment is the
function evaluated at the corresponding population moment.
Formally, the probability limit of h(bN) is h(b), where plim
bN = b and h( · ) is continuous at b.

THE DELTA METHOD Consider a vector-valued random vari-
able that is asymptotically normally distributed. Continuously
differentiable scalar functions of this random variable are also
asymptotically normally distributed, with covariance matrix
given by a quadratic form with the covariance matrix of the
random variable on the inside and the gradient of the function
evaluated at the probability limit of the random variable on
the outside.6 Formally, the asymptotic distribution of h(bN)
is normal with covariance matrix ∇h(b)′�∇h(b), where plim
bN = b, h( · ) is continuously differentiable at b with gradient
∇h(b), and bN has asymptotic covariance matrix �.7

We can use these results to derive the asymptotic distribu-
tion of β̂ in two ways. A conceptually straightforward but
somewhat inelegant approach is to use the delta method: β̂

is a function of sample moments, and is therefore asymp-
totically normally distributed. It remains only to find the
covariance matrix of the asymptotic distribution from the
gradient of this function. (Note that consistency of β̂ comes
immediately from the continuous mapping theorem).8 An eas-
ier and more instructive derivation uses the Slutsky and central
limit theorems. Note first that we can write

yi = X′
iβ + [yi − X′

iβ] ≡ X′
iβ + ei, (3.1.6)

where the residual ei is defined as the difference between the
dependent variable and the population regression function, as

6A quadratic form is a matrix-weighted sum of squares. Suppose v is an
N × 1 vector and M is an N × N matrix. A quadratic form in v is v′Mv. If M is
an N × N diagonal matrix with diagonal elements mi, then v′Mv = ∑

i miv2
i .

7For a derivation of the delta method formula using the Slutsky and
continuous mapping theorems, see Knight (2000, pp. 120–121). We say
“the asymptotic distribution of h(bN ),” but we really mean the asymptotic
distribution of

√
N(h(bN ) − h(b)).

8An estimator is said to be consistent when it converges in probability to
the target parameter.
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before. In other words, E[Xiei] = 0 is a consequence of β =
E[Xi X′

i]−1E[Xiyi] and ei = yi − X′
iβ, and not an assumption

about an underlying economic relation.9

Substituting the identity (3.1.6) for yi in the formula for β̂,
we have

β̂ = β +
[∑

XiX′
i

]−1 ∑
Xiei.

The asymptotic distribution of β̂ is the asymptotic distri-
bution of

√
N(β̂ − β) = N[∑XiX′

i]−1 1√
N

∑
Xiei. By the Slut-

sky theorem, this has the same asymptotic distribution as
E[XiX′

i]−1 1√
N

∑
Xiei. Since E[Xiei] = 0, 1√

N

∑
Xiei is a root-

N normalized and centered sample moment. By the central
limit theorem, this is asymptotically normally distributed with
mean zero and covariance matrix E[XiX′

ie
2
i ], since this matrix

of fourth moments is the covariance matrix of Xiei. Therefore,
β̂ has an asymptotic normal distribution with probability limit
β and covariance matrix

E[XiX′
i]−1E[XiX′

ie
2
i ]E[XiX′

i]−1. (3.1.7)

The theoretical standard errors used to construct t-statistics
are the square roots of the diagonal elements of (3.1.7).
In practice these standard errors are estimated by substitut-
ing sums for expectations and using the estimated residuals,
êi = yi − X′

iβ̂ to form the empirical fourth moment matrix,∑[XiXi ê2
i ]/N.

Asymptotic standard errors computed in this way are
known as heteroskedasticity-consistent standard errors, White
(1980a) standard errors, or Eicker-White standard errors, in
recognition of Eicker’s (1967) derivation. They are also known
as “robust” standard errors (e.g., in Stata). These standard
errors are said to be robust because, in large enough samples,
they provide accurate hypothesis tests and confidence inter-
vals given minimal assumptions about the data and model. In
particular, our derivation of the limiting distribution makes

9Residuals defined in this way are not necessarily mean independent of Xi;
for mean independence, we need a linear CEF.
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no assumptions other than those needed to ensure that basic
statistical results like the central limit theorem go through.
Robust standard errors are not, however, the standard errors
that you get by default from packaged software. Default
standard errors are derived under a homoskedasticity assump-
tion, specifically, that E[e2

i |Xi] = σ 2, a constant. Given this
assumption, we have

E[XiX′
ie

2
i ] = E(XiX′

iE[e2
i |Xi]) = σ 2E[XiX′

i],
by iterating expectations. The asymptotic covariance matrix
of β̂ then simplifies to

E[XiX′
i]−1E[XiX′

ie
2
i ]E[XiX′

i]−1

= E[XiX′
i]−1σ 2E[XiX′

i]E[XiXi]−1

= σ 2E[XiX′
i]−1. (3.1.8)

The diagonal elements of (3.1.8) are what SAS or Stata report
unless you request otherwise.

Our view of regression as an approximation to the CEF
makes heteroskedasticity seem natural. If the CEF is nonlinear
and you use a linear model to approximate it, then the quality
of fit between the regression line and the CEF will vary with Xi.
Hence, the residuals will be larger, on average, at values of Xi

where the fit is poorer. Even if you are prepared to assume
that the conditional variance of yi given Xi is constant, the
fact that the CEF is nonlinear means that E[(yi − X′

iβ)2|Xi]
will vary with Xi. To see this, note that

E[(yi − X′
iβ)2|Xi]

= E{[(yi − E[yi|Xi]) + (E[yi|Xi] − X′
iβ)]2|Xi}

= V[yi|Xi] + (E[yi|Xi] − X′
iβ)2. (3.1.9)

Therefore, even if V[yi|Xi] is constant, the residual variance
increases with the square of the gap between the regression
line and the CEF, a fact noted in White (1980b).10

10The cross-product term resulting from an expansion of the squared term
in the middle of (3.1.9) is zero because yi − E[yi|Xi] is mean independent
of Xi.
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In the same spirit, it’s also worth noting that while a linear
CEF makes homoskedasticity possible, this is not a sufficient
condition for homoskedasticity. Our favorite example in this
context is the linear probability model (LPM). A linear prob-
ability model is any regression where the dependent variable
is zero-one, that is, a dummy variable such as an indicator
for labor force participation. Suppose the regression model is
saturated, so the CEF given regressors is linear. Because the
CEF is linear, the residual variance is also the conditional vari-
ance, V[yi|Xi]. But the dependent variable is a Bernoulli trial
with conditional variance P[yi = 1|Xi](1 − P[yi = 1|Xi]). We
conclude that LPM residuals are necessarily heteroskedastic
unless the only regressor is a constant.

These points of principle notwithstanding, as an empirical
matter, heteroskedasticity may matter little. In the microdata
schooling regression depicted in figure 3.1.3, the robust stan-
dard error is .0003447, while the old-fashioned standard error
is .0003043, not much smaller. The standard errors from the
grouped data regression, which are necessarily heteroskedas-
tic if group sizes differ, change somewhat more; compare the
.004 robust standard to the .0029 conventional standard error.
Based on our experience, these differences are typical. If het-
eroskedasticity matters a lot, say, more than a 30 percent
increase or any marked decrease in standard errors, you should
worry about possible programming errors or other problems.
For example, robust standard errors below conventional may
be a sign of finite-sample bias in the robust calculation.

Finally, a brief note on the textbook approach to inference
that you might have seen elsewhere. Traditional economet-
ric inference begins with stronger assumptions than those we
have invoked in this section. The traditional set-up, sometimes
called a classical normal regression model, postulates: fixed
(non-stochastic) regressors, a linear CEF, normally distributed
errors, and homoskedasticity (see, e.g., Goldberger, 1991).
These stronger assumptions give us two things: (1) unbiased-
ness of the OLS estimator, (2) a formula for the sampling
variance of the OLS estimator that is valid in small as well as
large samples. Unbiasedness of the OLS estimators means that
E[β̂] = β, a property that holds in a sample of any size and is
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stronger than consistency, which means only that we can
expect β̂ to be close to β in large samples. It’s easy to see when
and why we get unbiasedness. In general,

E[β̂] = β + E
{[∑

XiX′
i

]−1 ∑
Xiei

}
.

If the regressors are nonrandom (fixed in repeated samples) the
expectation passes through and we have unbiasedness because
E[ei] = 0. Otherwise, with random regressors, we can iterate
expectations and get unbiasedness if E[ei|Xi] = 0. This is true
when the CEF is linear, but not in our more general “agnostic
regression” framework.

The variance formula obtained under classical assumptions
is the same as the large-sample formula under homoskedastic-
ity but—provided the strong classical assumptions are valid—
this formula holds in a sample of any size. We’ve chosen to
start with the asymptotic approach to inference because mod-
ern empirical work typically leans heavily on the large-sample
theory that lies behind robust variance formulas. The pay-
off is valid inference under weak assumptions, in particular, a
framework that makes sense for our less-than-literal approach
to regression models. On the other hand, the large-sample
approach is not without its dangers, a point we return to in
the discussion of inference in chapter 8 and in the discussion
of instrumental variables in chapter 4.

3.1.4 Saturated Models, Main Effects,
and Other Regression Talk

We often discuss regression models using terms like saturated
and main effects. These terms originate in an experimentalist
tradition that uses regression to model the effects of discrete
treatment-type variables. This language is now used more
widely in many fields, however, including applied economet-
rics. For readers unfamiliar with these terms, this section
provides a brief review.

Saturated regression models are regression models with
discrete explanatory variables, where the model includes a
separate parameter for all possible values taken on by the
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explanatory variables. For example, when working with a
single explanatory variable indicating whether a worker is a
college graduate, the model is saturated by including a single
dummy for college graduates and a constant. We can also sat-
urate when the regressor takes on many values. Suppose, for
example, that si = 0, 1, 2, . . . , τ . A saturated regression model
for si is

yi = α + β1d1i + β2d2i + · · · + βτ dτ i + εi,

where dji = 1[si = j] is a dummy variable indicating schooling
level j, and βj is said to be the jth-level schooling effect.11 Note
that

βj = E[yi|si = j] − E[yi|si = 0],

while α = E[yi|si = 0]. In practice, you can pick any value of
si for the reference group; a regression model is saturated as
long as it has one parameter for every possible j in E[yi|si =
j]. Saturated regression models fit the CEF perfectly because
the CEF is a linear function of the dummy regressors used to
saturate. This is an important special case of the linear CEF
theorem.

If there are two explanatory variables—say, one dummy
indicating college graduates and one dummy indicating sex—
the model is saturated by including these two dummies, their
product, and a constant. The coefficients on the dummies are
known as main effects, while the product is called an interac-
tion term. This is not the only saturated parameterization; any
set of indicators (dummies) that can be used to identify each
value taken on by all covariates produces a saturated model.
For example, an alternative saturated model includes dummies
for male college graduates, male nongraduates, female college
graduates, and female nongraduates, but no intercept.

Here’s some notation to make this more concrete. Let x1i

indicate college graduates and x2i indicate women. The CEF

11We use the notation 1[si = j] to denote the indicator function, in this case
a function that creates a dummy variable switched on when si = j.
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given x1i and x2i takes on four values:

E[yi|x1i = 0, x2i = 0],
E[yi|x1i = 1, x2i = 0],
E[yi|x1i = 0, x2i = 1],
E[yi|x1i = 1, x2i = 1].

We can label these using the following scheme:

E[yi|x1i = 0, x2i = 0] = α

E[yi|x1i = 1, x2i = 0] = α + β1

E[yi|x1i = 0, x2i = 1] = α + γ

E[yi|x1i = 1, x2i = 1] = α + β1 + γ + δ1.

Since there are four Greek letters and the CEF takes on four
values, this parameterization does not restrict the CEF. It can
be written in terms of Greek letters as

E[yi|x1i, x2i] = α + β1x1i + γ x2i + δ1(x1ix2i),

a parameterization with two main effects and one interaction
term.12 The saturated regression equation becomes

yi = α + β1x1i + γ x2i + δ1(x1ix2i) + εi.

We can combine the multivalued schooling variable with
sex to produce a saturated model that has τ main effects
for schooling, one main effect for sex, and τ sex-schooling
interactions:

yi = α +
τ∑

j=1

βjdji + γ x2i +
τ∑

j=1

δj(djix2i) + εi. (3.1.10)

The coefficients on the interaction terms, δj, tell us how each
of the schooling effects differ by sex. The CEF in this case

12With a third dummy variable in the model, say x3i, a saturated model
includes three main effects, three second-order interaction terms {x1ix2i,
x1ix3i, x2ix3i}, and one third-order term, x1ix2ix3i.
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takes on 2(τ + 1) values, while the regression has this many
parameters.

Note that there is a hierarchy of increasingly restrictive mod-
eling strategies with saturated models at the top. It’s natural
to start with a saturated model because this fits the CEF. On
the other hand, saturated models generate a lot of interac-
tion terms, many of which may be uninteresting or estimated
imprecisely. You might therefore sensibly choose to omit some
or all of these terms. Equation (3.1.10) without interaction
terms approximates the CEF using a purely additive model for
schooling and sex. This is a good approximation if the returns
to college are similar for men and women. In any case, school-
ing coefficients in the additive specification give a (weighted)
average return across both sexes, as discussed in section 3.3.1.
On the other hand, it would be strange to estimate a model
that included interaction terms but omitted the corresponding
main effects. In the case of schooling, this is something like

yi = α + γ x2i +
τ∑

j=1

δj(djix2i) + εi. (3.1.11)

This model allows schooling to shift wages only for women,
something very far from the truth. Consequently, the results
of estimating (3.1.11) are likely to be hard to interpret.

Finally, it’s important to recognize that a saturated model
fits the CEF perfectly regardless of the distribution of yi. For
example, this is true for linear probability models and other
limited dependent variable models (e.g., non-negative yi), a
point we return to at the end of this chapter.

3.2 Regression and Causality

Section 3.1.2 shows how regression gives the best (MMSE) lin-
ear approximation to the CEF. This understanding, however,
does not help us with the deeper question of when regression
has a causal interpretation. When can we think of a regression
coefficient as approximating the causal effect that might be
revealed in an experiment?
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3.2.1 The Conditional Independence Assumption

A regression is causal when the CEF it approximates is causal.
This doesn’t answer the question, of course. It just passes the
buck up one level, since, as we’ve seen, a regression inherits
its legitimacy from a CEF. Causality means different things
to different people, but researchers working in many disci-
plines have found it useful to think of causal relationships in
terms of the potential outcomes notation used in chapter 2 to
describe what would happen to a given individual in a hypo-
thetical comparison of alternative hospitalization scenarios.
Differences in these potential outcomes were said to be the
causal effect of hospitalization. The CEF is causal when it
describes differences in average potential outcomes for a fixed
reference population.

It’s easiest to expand on the somewhat murky notion of a
causal CEF in the context of a particular question, so let’s stick
with the schooling example. The causal connection between
schooling and earnings can be defined as the functional rela-
tionship that describes what a given individual would earn if
he or she obtained different levels of education. In particu-
lar, we might think of schooling decisions as being made in
a series of episodes where the decision maker can realistically
go one way or another, even if certain choices are more likely
than others. For example, in the middle of junior year, restless
and unhappy, Angrist glumly considered his options: drop-
ping out of high school and hopefully getting a job, staying
in school but taking easy classes that would lead to a quick
and dirty high school diploma, or plowing on in an academic
track that would lead to college. Although the consequences
of such choices are usually unknown in advance, the idea of
alternative paths leading to alternative outcomes for a given
individual seems uncontroversial. Philosophers have argued
over whether this personal notion of potential outcomes is pre-
cise enough to be scientifically useful, but individual decision
makers seem to have no trouble thinking about their lives and
choices in this manner (as in Robert Frost’s celebrated “The
Road Not Taken”: the traveler-narrator sees himself looking
back on a moment of choice. He believes that the decision to
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follow the road less traveled “has made all the difference,”
though he also recognizes that counterfactual outcomes are
unknowable).

In empirical work, the causal relationship between school-
ing and earnings tells us what people would earn, on average, if
we could either change their schooling in a perfectly controlled
environment or change their schooling randomly so that those
with different levels of schooling would be otherwise compara-
ble. As we discussed in chapter 2, experiments ensure that the
causal variable of interest is independent of potential outcomes
so that the groups being compared are truly comparable. Here,
we would like to generalize this notion to causal variables
that take on more than two values, and to more complicated
situations where we must hold a variety of control variables
fixed for causal inferences to be valid. This leads to the condi-
tional independence assumption (CIA), a core assumption that
provides the (sometimes implicit) justification for the causal
interpretation of regression estimates. This assumption is also
called selection on observables because the covariates to be
held fixed are assumed to be known and observed (e.g., in
Goldberger, 1972; Barnow, Cain, and Goldberger, 1981). The
big question, therefore, is what these control variables are, or
should be. We’ll say more about that shortly. For now, we
just do the econometric thing and call the covariates Xi. As
far as the schooling problem goes, it seems natural to imagine
that Xi is a vector that includes measures of ability and family
background.

For starters, think of schooling as a binary decision, such as
whether Angrist goes to college. Denote this by a dummy vari-
able, ci. The causal relationship between college attendance
and a future outcome such as earnings can be described using
the same potential outcomes notation we used to describe
experiments in chapter 2. To address this question, we imagine
two potential earnings variables:

Potential outcome =
{

y1i if ci = 1
y0i if ci = 0

.

In this case, y0i is i’s earnings without college, while y1i is
i’s earnings if he goes. We would like to know the difference
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between y1i and y0i, which is the causal effect of college atten-
dance on individual i. This is what we would measure if we
could go back in time and nudge i onto the road not taken.
The observed outcome, yi, can be written in terms of potential
outcomes as

yi = y0i + (y1i −y0i)ci.

We get to see one of y1i or y0i, but never both. We therefore
hope to measure the average of y1i −y0i, or the average for
some group, such as those who went to college. This is E[y1i −
y0i|ci = 1].

In general, comparisons of those who do and don’t go to
college are likely to be a poor measure of the causal effect of
college attendance. Following the logic in chapter 2, we have

E[yi|ci = 1] − E[yi|ci = 0]︸ ︷︷ ︸
Observed difference in earnings

= E[y1i −y0i|ci = 1]︸ ︷︷ ︸
Average treatment effect on the treated

+ E[y0i|ci = 1] − E[y0i|ci = 0]︸ ︷︷ ︸
Selection bias

.

(3.2.1)

It seems likely that those who go to college would have
earned more anyway. If so, selection bias is positive and the
naive comparison, E[yi|ci = 1] − E[yi|ci = 0], exaggerates the
benefits of college attendance.

The CIA asserts that conditional on observed characteristics,
Xi, selection bias disappears. Formally, this means

{y0i,y1i} � ci|Xi, (3.2.2)

where the symbol “�” denotes the independence relation
and random variables to the right of the vertical bar are the
conditioning set. Given the CIA, conditional-on-Xi compar-
isons of average earnings across schooling levels have a causal
interpretation. In other words,

E[yi|Xi, ci = 1] − E[yi|Xi, ci = 0] = E[y1i −y0i|Xi].
Now, we’d like to expand the conditional independence

assumption to causal relations that involve variables that can
take on more than two values, such as years of schooling, si.
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The causal relationship between schooling and earnings is
likely to be different for each person. We therefore use the
individual-specific functional notation,

ysi ≡ fi(s),

to denote the potential earnings that person i would receive
after obtaining s years of education. If s takes on only two
values, 12 and 16, then we are back to the college/no college
example:

y0i = fi(12); y1i = fi(16).

More generally, the function fi(s) tells us what i would earn for
any value of schooling, s. In other words, fi(s) answers causal
“what if” questions. In the context of theoretical models of the
relationship between human capital and earnings, the form of
fi(s) may be determined by aspects of individual behavior, by
market forces, or both.

The CIA in this more general setup becomes

ysi � si|Xi, for all s. (CIA)

In many randomized experiments, the CIA crops up because
si is randomly assigned conditional on Xi (in the Tennessee
STAR experiment, for example, small classes were randomly
assigned within schools). In an observational study, the CIA
means that si can be said to be “as good as randomly
assigned,” conditional on Xi.

Conditional on Xi, the average causal effect of a one-
year increase in schooling is E[fi(s) − fi(s − 1)|Xi], while the
average causal effect of a four-year increase in schooling is
E[fi(s) − E[fi(s − 4)]|Xi]. The data reveal only yi = fi(si), that
is, fi(s) for s = si. But given the CIA, conditional-on-Xi com-
parisons of average earnings across schooling levels have a
causal interpretation. In other words,

E[yi|Xi, si = s] − E[yi|Xi, si = s − 1]
= E[fi(s) − fi(s − 1)|Xi]

for any value of s. For example, we can compare the earnings
of those with 12 and 11 years of schooling to learn about the
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average causal effect of high school graduation:

E[yi|Xi, si = 12] − E[yi|Xi, si = 11]
= E[fi(12)|Xi, si = 12] − E[fi(11)|Xi, si = 11].

This comparison has a causal interpretation because, given the
CIA,

E[fi(12)|Xi, si = 12] − E[fi(11)|Xi, si = 11]
= E[fi(12) − fi(11)|Xi, si = 12].

Here, selection bias comes from differences in the potential
dropout earnings of high school graduates and nongraduates.
Given the CIA, however, high school graduation is indepen-
dent of potential earnings conditional on Xi, so the selection
bias vanishes. Note also that in this case, the causal effect of
graduating from high school on high school graduates is equal
to the average high school graduation effect at Xi:

E[fi(12) − fi(11)|Xi, si = 12] = E[fi(12) − fi(11)|Xi].
This is important, but less important than the elimination of
selection bias.

So far, we have constructed separate causal effects for each
value taken on by the conditioning variables. This leads to as
many causal effects as there are values of Xi, an embarrass-
ment of riches. Empiricists almost always find it useful to boil
a set of estimates down to a single summary measure, such
as the unconditional or overall average causal effect. By the
law of iterated expectations, the unconditional average causal
effect of high school graduation is

E{E[yi|Xi, si = 12] − E[yi|Xi, si = 11]} (3.2.3)

= E{E[fi(12) − fi(11)|Xi]}
= E[fi(12) − fi(11)]. (3.2.4)

In the same spirit, we might be interested in the average causal
effect of high school graduation on high school graduates:

E{E[yi|Xi, si = 12] − E[yi|Xi, si = 11]|si = 12} (3.2.5)

= E{E[fi(12) − fi(11)|Xi]|si = 12}
= E[fi(1 3.2.6)
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This parameter tells us how much high school graduates
gained by virtue of having graduated. Likewise, for the effects
of college graduation there is a distinction between E[fi(16) −
fi(12)|si = 16], the average causal effect on college graduates,
and E[fi(16) − fi(12)], the unconditional average effect.

The unconditional average effect, (3.2.3), can be computed
by averaging all the X-specific effects weighted by the marginal
distribution of Xi, while the average effect on high school or
college graduates averages the X-specific effects weighted by
the distribution of Xi in these groups. In both cases, the empiri-
cal counterpart is a matching estimator: we make comparisons
across schooling groups for individuals with the same covari-
ate values, compute the difference in their average earnings,
and then average these differences in some way.

In practice, there are many details to worry about when
implementing a matching strategy. We fill in some of the tech-
nical details on the mechanics of matching in section 3.3.1.
Here we note that a drawback of the matching approach is
that it is not automatic; rather, it requires two steps, matching
and averaging. Estimating the standard errors of the resulting
estimates may not be straightforward, either. A third con-
sideration is that the two-way contrast at the heart of this
subsection (high school or college completers versus dropouts)
does not do full justice to the problem at hand. Since si takes on
many values, there are separate average causal effects for each
possible increment in si, which also must be summarized in
some way.13 These considerations lead us back to regression.

Regression provides an easy-to-use empirical strategy that
automatically turns the CIA into causal effects. Two routes
can be traced from the CIA to regression. One assumes that
fi(s) is both linear in s and the same for everyone except for
an additive error term, in which case linear regression is a

13For example, we might construct the average effect over s using the dis-
tribution of si. In other words, we estimate E[fi(s) − fi(s − 1)] for each s by
matching, and then compute the average difference∑

E[fi(s) − fi(s − 1)]P(s),

where P(s) is the probability mass function for si. This is a discrete approxi-
mation to the average derivative, E[f ′

i (si)].
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natural tool to estimate the features of fi(s). A more general but
somewhat longer route recognizes that fi(s) almost certainly
differs for different people, and moreover need not be linear
in s. Even so, allowing for random variation in fi(s) across
people and for nonlinearity for a given person, regression can
be thought of as a strategy for the estimation of a weighted
average of the individual-specific difference, fi(s) − fi(s − 1).
In fact, regression can be seen as a particular sort of matching
estimator, capturing an average causal effect, much as (3.2.3)
or (3.2.5) does.

At this point, we want to focus on the conditions required
for regression to have a causal interpretation and not on the
details of the regression-matching analog. We therefore start
with the first route, a linear constant effects causal model.
Suppose that

fi(s) = α + ρs + ηi. (3.2.7)

In addition to being linear, this equation says that the func-
tional relationship of interest is the same for everyone. Again,
s is written without an i subscript, because equation (3.2.7)
tells us what person i would earn for any value of s, and not
just the realized value, si. In this case, however, the only
individual-specific and random part of fi(s) is a mean-zero
error component, ηi, which captures unobserved factors that
determine potential earnings.

Substituting the observed value si for s in equation (3.2.7),
we have

yi = α + ρsi + ηi. (3.2.8)

Equation (3.2.8) looks like a bivariate regression model,
except that equation (3.2.7) explicitly associates the coef-
ficients in (3.2.8) with a causal relationship. Importantly,
because equation (3.2.7) is a causal model, si may be correlated
with potential outcomes, fi(s), or, in this case, the residual term
in (3.2.8), ηi.

Suppose now that the CIA holds given a vector of observed
covariates, Xi. In addition to the functional form assumption
for potential outcomes embodied in (3.2.8), we decompose the
random part of potential earnings, ηi, into a linear function of
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observable characteristics, Xi, and an error term, vi:

ηi = X′
iγ + vi,

where γ is a vector of population regression coefficients that
is assumed to satisfy E[ηi|Xi] = X′

iγ . Since γ is defined by the
regression of ηi on Xi, the residual vi and Xi are uncorrelated
by construction. Moreover, by virtue of the CIA, we have

E[fi(s)|Xi, si] = E[fi(s)|Xi] = α + ρs + E[ηi|X]
= α + ρs + X′

iγ .

The residual in the linear causal model

yi = α + ρsi + X′
iγ + vi (3.2.9)

is therefore uncorrelated with the regressors, si and Xi, and
the regression coefficient ρ is the causal effect of interest.

It bears emphasizing once again that the key assumption
here is that the observable characteristics, Xi, are the only
reason why ηi and si (equivalently, fi(s) and si) are correlated.
This is the selection-on-observables assumption for regression
models discussed over a quarter century ago by Barnow, Cain,
and Goldberger (1981). It remains the basis of most empirical
work in economics.

3.2.2 The Omitted Variables Bias Formula

In addition to the variable of interest, si, we have now intro-
duced a set of control variables, Xi, into our regression. The
omitted variables bias (OVB) formula describes the relation-
ship between regression estimates in models with different sets
of control variables. This important formula is often motivated
by the notion that a longer regression—one with controls,
such as (3.2.9)—has a causal interpretation, while a shorter
regression does not. The coefficients on the variables included
in the shorter regression are therefore said to be biased. In
fact, the OVB formula is a mechanical link between coefficient
vectors that applies to short and long regressions whether or
not the longer regression is causal. Nevertheless, we follow
convention and refer to the difference between the included
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coefficients in a long regression and a short regression as being
determined by the OVB formula.

To make this discussion concrete, suppose the relevant set
of control variables in the schooling regression can be boiled
down to a combination of family background, intelligence,
and motivation. Let these specific factors be denoted by a vec-
tor, Ai, which we refer to by the shorthand term “ability.” The
regression of wages on schooling, si, controlling for ability can
be written as

yi = α + ρsi + A′
iγ + ei, (3.2.10)

where α, ρ, and γ are population regression coefficients and ei

is a regression residual that is uncorrelated with all regressors
by definition. If the CIA applies given Ai, then ρ can be equated
with the coefficient in the linear causal model, (3.2.7), while
the residual ei is the random part of potential earnings that is
left over after controlling for Ai.

In practice, ability is hard to measure. For example, the
American Current Population Survey (CPS), a large data set
widely used in applied microeconomics (and the source of
U.S. government data on unemployment rates), tells us noth-
ing about adult respondents’ family background, intelligence,
or motivation. What are the consequences of leaving ability
out of regression (3.2.10)? The resulting “short regression”
coefficient is related to the “long regression” coefficient in
equation (3.2.10) as follows:

OMITTED VARIABLES BIAS FORMULA

Cov(yi, si)
V(si)

= ρ + γ ′δAs, (3.2.11)

where δAs is the vector of coefficients from regressions of the
elements of Ai on si. To paraphrase, the OVB formula says:

Short equals long plus the effect of omitted times the regression
of omitted on included.

This formula is easy to derive: plug the long regression
into the short regression formula, Cov(yi ,si)

V(si)
. Not surprisingly,

the OVB formula is closely related to the regression anatomy
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formula, (3.1.3), from section 3.1.2. Both the OVB formula
and the regression anatomy formula tell us that short and long
regression coefficients are the same whenever the omitted and
included variables are uncorrelated.14

We can use the OVB formula to get a sense of the likely con-
sequences of omitting ability for schooling coefficients. Ability
variables have positive effects on wages, and these variables
are also likely to be positively correlated with schooling. The
short regression coefficient may therefore be “too big” relative
to what we want. On the other hand, as a matter of economic
theory, the direction of the correlation between schooling and
ability is not entirely clear. Some omitted variables may be
negatively correlated with schooling, in which case the short
regression coefficient may be too small.15

Table 3.2.1 illustrates these points using data from the
NLSY. The first three entries in the table show that the
schooling coefficient decreases from .132 to .114 when fam-
ily background variables—in this case, parents’ education—as
well as a few basic demographic characteristics (age, race,
census region of residence) are included as controls. Further
control for individual ability, as proxied by the Armed Forces
Qualification Test (AFQT) score, reduces the schooling coef-
ficient to .087 (the AFQT is used by the military to select
soldiers). The OVB formula tells us that these reductions are
a result of the fact that the additional controls are positively
correlated with both wages and schooling.16

14Here is the multivariate generalization of OVB: Let βs
1 denote the coeffi-

cient vector on a k1 × 1 vector of variables, X1i in a (short) regression that has
no other variables, and let β l

1 denote the coefficient vector on these variables
in a (long) regression that includes a k2 × 1 vector of additional variables, X2i,
with coefficient vector β l

2. Then βs
1 = β l

1 + E[X1iX′
1i]−1E[X1iX′

2i]β l
2.

15As highly educated people, we like to think that ability and schooling are
positively correlated. This is not a foregone conclusion, however: Mick Jagger
dropped out of the London School of Economics and Bill Gates dropped out
of Harvard, perhaps because the opportunity cost of schooling for these high-
ability guys was high (of course, they may also be a couple of very lucky
college dropouts).

16A large empirical literature investigates the consequences of omitting abil-
ity variables from schooling equations. Key early references include Griliches
and Mason (1972), Taubman (1976), Griliches (1977), and Chamberlain
(1978).
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Table 3.2.1
Estimates of the returns to education for men in the NLSY

(1) (2) (3) (4) (5)
Col. (2) and Col. (4), with

Age Additional Col. (3) and Occupation
Controls: None Dummies Controls∗ AFQT Score Dummies

.132 .131 .114 .087 .066
(.007) (.007) (.007) (.009) (.010)

Notes: Data are from the National Longitudinal Survey of Youth (1979 cohort, 2002
survey). The table reports the coefficient on years of schooling in a regression of log
wages on years of schooling and the indicated controls. Standard errors are shown in
parentheses. The sample is restricted to men and weighted by NLSY sampling weights.
The sample size is 2,434.
∗Additional controls are mother’s and father’s years of schooling, and dummy variables
for race and census region.

Although simple, the OVB formula is one of the most impor-
tant things to know about regression. The importance of the
OVB formula stems from the fact that if you claim an absence
of omitted variables bias, then typically you’re also saying
that the regression you’ve got is the one you want. And the
regression you want usually has a causal interpretation. In
other words, you’re prepared to lean on the CIA for a causal
interpretation of the long regression estimates.

At this point, it’s worth considering when the CIA is most
likely to give a plausible basis for empirical work. The best-
case scenario is random assignment of si, conditional on Xi,
in some sort of (possibly natural) experiment. An example is
the study of a mandatory retraining program for unemployed
workers by Black et al. (2003). The authors of this study
were interested in whether the retraining program succeeded
in raising earnings later on. They exploited the fact that eli-
gibility for the training program they studied was determined
on the basis of personal characteristics and past unemploy-
ment and job histories. Workers were divided into groups
on the basis of these characteristics. While some of these
groups of workers were ineligible for training, workers in other
groups were required to take training if they did not take a
job. When some of the mandatory training groups contained
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more workers than training slots, training opportunities were
distributed by lottery. Hence, training requirements were ran-
domly assigned conditional on the covariates used to assign
workers to groups. A regression on a dummy for training
plus the personal characteristics, past unemployment vari-
ables, and job history variables used to classify workers seems
very likely to provide reliable estimates of the causal effect of
training.17

In the schooling context, there is usually no lottery that
directly determines whether someone will go to college or
finish high school.18 Still, we might imagine subjecting individ-
uals of similar ability and from similar family backgrounds to
an experiment that encourages school attendance. The Educa-
tion Maintenance Allowance, which pays British high school
students in certain areas to attend school, is one such policy
experiment (Dearden et al. 2003).

A second scenario that favors the CIA leans on detailed insti-
tutional knowledge regarding the process that determines si.
An example is the Angrist (1998) study of the effect of vol-
untary military service on the later earnings of soldiers. This
research asks whether men who volunteered for service in the
U.S. armed forces were economically better off in the long
run. Since voluntary military service is not randomly assigned,
we can never know for sure. Angrist therefore used matching
and regression techniques to control for observed differences
between veterans and nonveterans who applied to the all-
volunteer forces between 1979 and 1982. The motivation
for a control strategy in this case is the fact that the military
screens soldier applicants primarily on the basis of observable
covariates like age, schooling, and test scores.

The CIA in Angrist (1998) amounts to the claim that after
conditioning on all these observed characteristics, veterans and
nonveterans are comparable. This assumption seems worth
entertaining since, conditional on Xi, variation in veteran
status in the Angrist (1998) study comes solely from the fact

17This program appears to raise earnings, primarily because workers
offered training went back to work more quickly.

18Lotteries have been used to distribute private school tuition subsidies; see
Angrist et al. (2002).
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that some qualified applicants fail to enlist at the last minute.
Of course, the considerations that lead a qualified applicant
to “drop out” of the enlistment process could be related to
earnings potential, so the CIA is clearly not guaranteed even
in this case.

3.2.3 Bad Control

We’ve made the point that control for covariates can increase
the likelihood that regression estimates have a causal interpre-
tation. But more control is not always better. Some variables
are bad controls and should not be included in a regression
model even when their inclusion might be expected to change
the short regression coefficients. Bad controls are variables that
are themselves outcome variables in the notional experiment
at hand. That is, bad controls might just as well be dependent
variables too. Good controls are variables that we can think
of as having been fixed at the time the regressor of interest was
determined.

The essence of the bad control problem is a version of selec-
tion bias, albeit somewhat more subtle than the selection bias
discussed in chapter 2 and section 3.2.1. To illustrate, suppose
we are interested in the effects of a college degree on earnings
and that people can work in one of two occupations, white
collar and blue collar. A college degree clearly opens the door
to higher-paying white collar jobs. Should occupation there-
fore be seen as an omitted variable in a regression of wages
on schooling? After all, occupation is highly correlated with
both education and pay. Perhaps it’s best to look at the effect
of college on wages for those within an occupation, say white
collar only. The problem with this argument is that once we
acknowledge the fact that college affects occupation, compar-
isons of wages by college degree status within an occupation
are no longer apples-to-apples comparisons, even if college
degree completion is randomly assigned.

Here is a formal illustration of the bad control problem in
the college/occupation example.19 Let wi be a dummy variable
that denotes white collar workers and let yi denote earnings.

19The same problem arises in conditional-on-positive comparisons, dis-
cussed in detail in section 3.4.2.



Making Regression Make Sense 65

The realization of these variables is determined by college
graduation status and potential outcomes that are indexed
against ci. We have

yi = ciy1i + (1 − ci)y0i

wi = ciw1i + (1 − ci)w0i,

where ci = 1 for college graduates and is zero otherwise,
{y1i, y0i} denotes potential earnings, and {w1i, w0i} denotes
potential white collar status. We assume that ci is randomly
assigned, so it is independent of all potential outcomes. We
have no trouble estimating the causal effect of ci on either yi

or wi since independence gives us

E[yi|ci = 1] − E[yi|ci = 0] = E[y1i −y0i],
E[wi|ci = 1] − E[wi|ci = 0] = E[w1i −w0i].

In practice, we can estimate these average treatment effects by
regressing yi and wi on ci.

Bad control means that a comparison of earnings condi-
tional on wi does not have a causal interpretation. Consider
the difference in mean earnings between college graduates and
others, conditional on working at a white collar job. We can
compute this in a regression model that includes wi or by
regressing yi on ci in the sample where wi = 1. The estimand
in the latter case is the difference in means with ci switched
off and on, conditional on wi = 1:

E[yi|wi = 1, ci = 1] − E[yi|wi = 1, ci = 0]
= E[y1i|w1i = 1, ci = 1] − E[y0i|w0i = 1, ci = 0].

(3.2.12)

By the joint independence of {y1i,w1i,y0i,w0i} and ci, we have

E[y1i|w1i = 1, ci = 1] − E[y0i|w0i = 1, ci = 0]
= E[y1i|w1i = 1] − E[y0i|w0i = 1].

This expression illustrates the apples-to-oranges nature of the
bad control problem:

E[y1i|w1i = 1] − E[y0i|w0i = 1]
= E[y1i −y0i|w1i = 1]︸ ︷︷ ︸

Causal effect

+ {E[y0i|w1i = 1] − E[y0i|w0i = 1]}.︸ ︷︷ ︸
Selection bias
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In other words, the difference in wages between those with
and those without a college degree conditional on working in
a white collar job equals the causal effect of college on those
with w1i = 1 (people who work at a white collar job when they
have a college degree) and a selection bias term that reflects
the fact that college changes the composition of the pool of
white collar workers.

The selection bias in this context can be positive or nega-
tive, depending on the relation between occupational choice,
college attendance, and potential earnings. The main point is
that even if y1i = y0i, so that there is no causal effect of col-
lege on wages, the conditional comparison in (3.2.12) will not
tell us this (the regression of yi on wi and ci has exactly the
same problem). It is also incorrect to say that the conditional
comparison captures the part of the effect of college that is
“not explained by occupation.” In fact, the conditional com-
parison does not tell us much that is useful without a more
elaborate model of the links between college, occupation, and
earnings.20

As an empirical illustration, we see that the addition of
two-digit occupation dummies indeed reduces the schooling
coefficient in the NLSY models reported in table 3.2.1, in
this case from .087 to .066. However, it’s hard to say what
we should make of this decline. The change in schooling
coefficients when we add occupation dummies may simply
be an artifact of selection bias. So we would do better to
control only for variables that are not themselves caused by
education.

A second version of the bad control scenario involves proxy
control, that is, the inclusion of variables that might partially
control for omitted factors but are themselves affected by the
variable of interest. A simple version of the proxy control story
goes like this: Suppose you are interested in a long regression,

20In this example, selection bias is probably negative, that is, E[y0i|w1i = 1]
< E[y0i|w0i = 1]. It seems reasonable to think that any college graduate can
get a white collar job, so E[y0i|w1i = 1] is not too far from E[y0i]. But someone
who gets a white collar job without benefit of a college degree (i.e., w0i = 1)
is probably special, that is, has a better than average y0i.
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similar to (3.2.10),

yi = α + ρsi + γ ai + ei, (3.2.13)

where for the purposes of this discussion we’ve replaced the
vector of controls Ai with a scalar ability measure ai. Think
of this as an IQ score that measures innate ability in eighth
grade, before any relevant schooling choices are made (assum-
ing everyone completes eighth grade). The error term in this
equation satisfies E[siei] = E[aiei] = 0 by definition. Since ai

is measured before si is determined, it is a good control.
Equation (3.2.13) is the regression of interest, but unfortu-

nately, data on ai are unavailable. However, you have a second
ability measure collected later, after schooling is completed
(say, the score on a test used to screen job applicants). Call
this variable late ability, ali. In general, schooling increases
late ability relative to innate ability. To be specific, suppose

ali = π0 + π1si + π2ai. (3.2.14)

By this, we mean to say that both schooling and innate ability
increase late or measured ability. There is almost certainly
some randomness in measured ability as well, but we can make
our point more simply via the deterministic link, (3.2.14).

You’re worried about OVB in the regression of yi on si

alone, so you propose to regress yi on si and late ability, ali,
since the desired control, ai, is unavailable. Using (3.2.14) to
substitute for ai in (3.2.13), the regression on si and ali is

yi =
(

α − γ
π0

π2

)
+
(

ρ − γ
π1

π2

)
si + γ

π2
ali + ei. (3.2.15)

In this scenario, γ , π1, and π2 are all positive, so ρ − γ
π1
π2

is
too small unless π1 turns out to be zero. In other words, use
of a proxy control that is increased by the variable of inter-
est generates a coefficient below the desired effect. But it is
important to note that π1 can be investigated to some extent:
if the regression of ali on si is zero, you might feel better about
assuming that π1 is zero in (3.2.14).
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There is an interesting ambiguity in the proxy control story
that is not present in the first bad control story. Control for
outcome variables is simply misguided; you do not want to
control for occupation in a schooling regression if the regres-
sion is to have a causal interpretation. In the proxy control
scenario, however, your intentions are good. And while proxy
control does not generate the regression coefficient of interest,
it may be an improvement on no control at all. Recall that the
motivation for proxy control is equation (3.2.13). In terms of
the parameters in this model, the OVB formula tells us that
a regression on si with no controls generates a coefficient of
ρ + γ δas, where δas is the slope coefficient from a regression of
ai on si. The schooling coefficient in (3.2.15) might be closer
to ρ than the coefficient you estimate with no control at all.
Moreover, assuming δas is positive, you can safely say that the
causal effect of interest lies between these two.

One moral of both the bad control and the proxy control
stories is that when thinking about controls, timing mat-
ters. Variables measured before the variable of interest was
determined are generally good controls. In particular, because
these variables were determined before the variable of inter-
est, they cannot themselves be outcomes in the causal nexus.
Often, however, the timing is uncertain or unknown. In such
cases, clear reasoning about causal channels requires explicit
assumptions about what happened first, or the assertion that
none of the control variables are themselves caused by the
regressor of interest.21

3.3 Heterogeneity and Nonlinearity

As we saw in the previous section, a linear causal model in
combination with the CIA leads to a linear CEF with a causal
interpretation. Assuming the CEF is linear, the population

21Griliches and Mason (1972) is a seminal exploration of the use of early
and late ability controls in schooling equations. See also Chamberlain (1977,
1978) for closely related studies. Rosenbaum (1984) offers an alternative dis-
cussion of the proxy control idea using very different notation, outside a
regression framework.
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regression function is it. In practice, however, the assumption
of a linear CEF is not really necessary for a causal interpreta-
tion of regression. For one thing, as discussed in section 3.1.2,
we can think of the regression of yi on Xi and si as providing
the best linear approximation to the underlying CEF, regard-
less of its shape. Therefore, if the CEF is causal, the fact that
regression approximates it gives regression coefficients a causal
flavor. This claim is a little vague, however, and the nature
of the link between regression and the CEF is worth explor-
ing further. This exploration leads us to an understanding of
regression as a computationally attractive matching estimator.

3.3.1 Regression Meets Matching

The past decade or two has seen increasing interest in match-
ing as an empirical tool. Matching as a strategy to control for
covariates is typically motivated by the CIA, as with causal
regression in the previous section. For example, Angrist (1998)
used matching to estimate the effects of voluntary military ser-
vice on the later earnings of soldiers. These matching estimates
have a causal interpretation assuming that, conditional on the
individual characteristics the military uses to select soldiers
(age, schooling, test scores), veteran status is independent
of potential earnings. Matching estimators are appealingly
simple: at bottom, matching amounts to covariate-specific
treatment-control comparisons, weighted together to produce
a single overall average treatment effect.

An attractive feature of matching strategies is that they are
typically accompanied by an explicit statement of the con-
ditional independence assumption required to give matching
estimates a causal interpretation. At the same time, we have
just seen that the causal interpretation of a regression coeffi-
cient is based on exactly the same assumption. In other words,
matching and regression are both control strategies. Since
the core assumption underlying causal inference is the same
for the two strategies, it’s worth asking whether or to what
extent matching really differs from regression. Our view is that
regression can be motivated as a particular sort of weighted
matching estimator, and therefore the differences between
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regression and matching estimates are unlikely to be of major
empirical importance.

To flesh out this idea, it helps to look more deeply into the
mathematical structure of the matching and regressions esti-
mands, that is, the population quantities that these methods
attempt to estimate. For regression, of course, the estimand
is a vector of population regression coefficients. The match-
ing estimand is typically a weighted average of contrasts or
comparisons across cells defined by covariates. This is easi-
est to see in the case of discrete covariates, as in the military
service example, and for a discrete regressor such as veteran
status, which we denote here by the dummy di. Since treat-
ment takes on only two values, we can use the notation y1i

and y0i to denote potential outcomes. A parameter of pri-
mary interest in this context is the average effect of treatment
on the treated, E[y1i −y0i|di = 1]. This tells us the difference
between the average earnings of soldiers, E[y1i|di = 1], an
observable quantity, and the counterfactual average earnings
they would have obtained if they had not served, E[y0i|di = 1].
Simple comparisons of earnings by veteran status give a biased
measure of the effect of treatment on the treated unless di is
independent of y0i. Specifically,

E[yi|di = 1] − E[yi|di = 0]
= E[y1i −y0i|di = 1] + {E[y0i|di = 1] − E[y0i|di = 0]}.

In other words, the observed earnings difference by veteran
status equals the average effect of treatment on the treated
plus selection bias. This parallels the discussion of selection
bias in chapter 2.

The CIA in this context says that

{y0i, y1i} � di|Xi.

Given the CIA, selection bias disappears after conditioning on
Xi, so the effect of treatment on the treated can be constructed
by iterating expectations over Xi:

δTOT ≡ E[y1i −y0i|di = 1]
= E{E[y1i −y0i|Xi, di = 1]|di = 1}
= E{E y1i Xi, di 1 E y0i Xi, di 1 di = 1}.
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Of course, E[y0i|Xi, di = 1] is counterfactual. By virtue of the
CIA, however,

E[y0i|Xi, di = 0] = E[y0i|Xi, di = 1].

Therefore,

δTOT = E{E[y1i|Xi, di = 1] − E[y0i|Xi, di = 0]|di = 1}
= E[δX|di = 1], (3.3.1)

where

δX ≡ E[yi|Xi, di = 1] − E[yi|Xi, di = 0],

is the difference in mean earnings by veteran status at each
value of Xi. At a particular value, say Xi = x, we write δx.

The matching estimator in Angrist (1998) uses the fact that
Xi is discrete to construct the sample analog of the right-hand
side of (3.3.1). In the discrete case, the matching estimand can
be written

E[y1i −y0i|di = 1] =
∑

x

δxP(Xi = x|di = 1), (3.3.2)

where P(Xi = x|di = 1) is the probability mass function for
Xi given di = 1.22 In this case, Xi takes on values deter-
mined by all possible combinations of year of birth, test score
group, year of application to the military, and educational
attainment at the time of application. The test score in this
case is from the AFQT, used by the military to categorize the
mental abilities of applicants (we included this as a control
in the schooling regression discussed in section 3.2.2). The
Angrist (1998) matching estimator replaces δX by the sample
veteran-nonveteran earnings difference for each combination
of covariates and then combines these in a weighted average
using the empirical distribution of covariates among veterans.

22This matching estimator is discussed by Rubin (1977) and used by
Card and Sullivan (1988) to estimate the effect of subsidized training on
employment.
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Note also that we can just as easily construct the uncondi-
tional average treatment effect,

δATE = E{E[y1i|Xi, di = 1] − E[y0i|Xi, di = 0]}
=

∑
x

δxP(Xi = x) = E[y1i −y0i]. (3.3.3)

This is the expectation of δX using the marginal distribution of
Xi instead of the distribution among the treated. δTOT tells us
how much the typical soldier gained or lost as a consequence
of military service, while δATE tells us how much the typical
applicant to the military gained or lost (since the Angrist, 1998,
population consists of applicants.)

The U.S. military tends to be fairly picky about its soldiers,
especially after downsizing at the end of the cold war. For the
most part, the military now takes only high school graduates
with test scores in the upper half of the test score distribution.
Applicant screening therefore generates positive selection bias
in naive comparisons of veteran and nonveteran earnings. This
can be seen in table 3.3.1, which reports differences-in-means,
matching, and regression estimates of the effect of voluntary
military service on the 1988–91 Social Security–taxable earn-
ings of men who applied to join the military between 1979 and
1982. The matching estimates were constructed from the sam-
ple analog of (3.3.2). Although white veterans earned $1,233
more than white nonveterans, this estimated veteran effect
becomes negative once differences in covariates are matched
away. Similarly, while nonwhite veterans earned $2,449 more
than nonwhite nonveterans, controlling for covariates reduces
this difference to $840.

Table 3.3.1 also shows regression estimates of the effect
of voluntary military service, controlling for the same set of
covariates that were used to construct the matching estimates.
These are estimates of δR in the equation

yi =
∑

x

dixαx + δRdi + ei, (3.3.4)

where dix = 1[Xi = x] is a dummy variable that indicates
Xi = x, αx is a regression effect for Xi = x and δR is the
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Table 3.3.1
Uncontrolled, matching, and regression estimates of the effects of voluntary

military service on earnings

Average Differences
Earnings in Means Regression
in 1988– by Veteran Matching Regression Minus

1991 Status Estimates Estimates Matching
Race (1) (2) (3) (4) (5)

Whites 14,537 1,233.4 −197.2 −88.8 108.4
(60.3) (70.5) (62.5) (28.5)

Non- 11,664 2,449.1 839.7 1,074.4 234.7
whites (47.4) (62.7) (50.7) (32.5)

Notes: Adapted from Angrist (1998, tables II and V). Standard errors are reported
in parentheses. The table shows estimates of the effect of voluntary military service on
the 1988–91 Social Security–taxable earnings of men who applied to enter the armed
forces between 1979 and 1982. The matching and regression estimates control for
applicants’ year of birth, education at the time of application, and AFQT score. There
are 128,968 whites and 175,262 nonwhites in the sample.

regression estimand. Note that this regression model allows
a separate parameter for every value taken on by the covari-
ates. This model can therefore be said to be saturated-in-Xi,
since it includes a parameter for every value of Xi. It is not fully
saturated, however, because there is a single additive effect for
di with no di · Xi interactions.

Despite the fact that the matching and regression estimates
control for the same variables, the regression estimates in
table 3.3.1 are somewhat larger for nonwhites and less nega-
tive for whites. In fact, the differences between the matching
and regression results are statistically significant. At the same
time, the two estimation strategies present a broadly similar
picture of the effects of military service. The reason the regres-
sion and matching estimates are similar is that regression, too,
can be seen as a sort of matching estimator: the regression esti-
mand differs from the matching estimands only in the weights
used to combine the covariate-specific effects, δX, into a single
average effect. In particular, while matching uses the distri-
bution of covariates among the treated to weight covariate-
specific estimates into an estimate of the effect of treatment on
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the treated, regression produces a variance-weighted average
of these effects.

To see this, start by using the regression anatomy formula
to write the coefficient on di in the regression of yi on Xi and
di as

δR = Cov(yi, d̃i)
V(d̃i)

(3.3.5)

= E[(di − E[di|Xi])yi]
E[(di − E[di|Xi])2]

= E{(di − E[di|Xi])E[yi|di, Xi]}
E[(di − E[di|Xi])2] . (3.3.6)

The second equality in this set of expressions uses the fact that
saturating the model in Xi means E[di|Xi] is linear. Hence, d̃i,
which is defined as the residual from a regression of di on Xi,
is the difference between di and E[di|Xi]. The third equality
uses the fact that the regression of yi on di and Xi is the same
as the regression of yi on E[yi|di,Xi] (this we know from the
regression CEF theorem, 3.1.6).

To simplify further, we expand the CEF, E[yi|di,Xi], to get

E[yi|di, Xi] = E[yi|di = 0, Xi] + δXdi,

and then substitute for E[yi|di,Xi] in the numerator of (3.3.6).
This gives

E{(di − E[di|Xi])E[yi|di, Xi]}
= E{(di − E[di|Xi])E[yi|di = 0, Xi]}

+ E{(di − E[di|Xi])diδX}.

The first term on the right-hand side is zero because E[yi|di =
0,Xi] is a function of Xi only and is therefore uncorrelated
with (di − E[di|Xi]). Similarly, the second term simplifies to

E{(di − E[di|Xi])diδX} = E{(di − E[di|Xi])2δX}.
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At this point, we’ve shown

δR = E[(di − E[di|Xi])2δX]
E[(di − E[d i|Xi])2]

= E{E[(di − E[di|Xi])2|Xi]δX}
E{E[(di − E[di|Xi])2|Xi]} = E[σ 2

D(Xi)δX]
E[σ 2

D(Xi)] , (3.3.7)

where

σ 2
D(Xi) ≡ E[(di − E[di|Xi])2|Xi]

is the conditional variance of di given Xi. This establishes that
the regression model, (3.3.4), produces a treatment-variance
weighted average of δX.

Because the regressor of interest, di, is a dummy variable,
one last step can be taken. In this case, σ 2

D(Xi) = P(di =
1|Xi)(1 − P(di = 1|Xi)), so

δR =

∑
x

δx[P(di = 1|Xi = x)(1 − P(di = 1|Xi = x))]P(Xi = x)

∑
x

[P(di = 1|Xi = x)(1 − P(di = 1|Xi = x))]P(Xi = x)
.

This shows that the regression estimand weights each
covariate-specific treatment effect by [P(Xi = x|di = 1)(1 −
P(Xi = x|di = 1))]P(Xi = x). In contrast, the matching esti-
mand for the effect of treatment on the treated can be
written

E[y1i −y0i|di = 1] =
∑

x

δxP(Xi = x|di = 1)

=

∑
x

δxP(di = 1|Xi = x)P(Xi = x)

∑
x

P(di = 1|Xi = x)P(Xi = x)
,

using the fact that

P(Xi = x|di = 1) = P(di = 1|Xi = x) · P(Xi = x)
P(di = 1)

.

So the weights used to construct E[y1i −y0i|di = 1] are pro-
portional to the probability of treatment at each value of the
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covariates. The regression and matching weighting schemes
therefore differ unless treatment is independent of covariates.

An important point coming out of this derivation is that
the treatment-on-the-treated estimand puts the most weight
on covariate cells containing those who are most likely to be
treated. In contrast, regression puts the most weight on covari-
ate cells where the conditional variance of treatment status
is largest. As a rule, treatment variance is maximized when
P(di = 1|Xi = x) = 1

2 , in other words, for cells where there are
equal numbers of treated and control observations. The differ-
ence in weighting schemes is of little importance if δx does not
vary across cells (though weighting still affects the statistical
efficiency of estimators). In this example, however, men who
were most likely to serve in the military appear to benefit least
from their service. This is probably because those most likely
to serve were most qualified and therefore also had the highest
civilian earnings potential. This fact leads matching estimates
of the effect of military service to be smaller than regression
estimates based on the same vector of control variables.23

Also important is the fact that neither the regression nor
the covariate-matching estimands give any weight to covariate
cells that do not contain both treated and control observations.
Consider a value of Xi, say x∗, where either no one is treated
or everyone is treated. Then, δx∗ is undefined, while the regres-
sion weights, [P(di = 1|Xi = x∗)(1 − P(di = 1|Xi = x∗))], are
zero. In the language of the econometric literature on match-
ing, with saturated control for covariates both the regression
and matching estimands impose common support, that is, they
are limited to covariate values where both treated and control
observations are found.24

23It’s no surprise that regression gives the most weight to cells where P(di =
1|Xi = x) = 1

2 since regression is efficient for a homoskedastic constant effects
linear model. We should expect an efficient estimator to give the most weight
to cells where the common treatment effect is estimated most precisely. With
homoskedastic residuals, the most precise treatment effects come from cells
where the probability of treatment equals 1

2 .
24The support of a random variable is the set of realizations that occur

with positive probability. See Heckman, Ichimura, Smith, and Todd (1998)
and Smith and Todd (2001) for a discussion of common support in matching.
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The step from estimand to estimator is a little more com-
plicated. In practice, both regression and matching estimators
are implemented using modeling assumptions that implicitly
involve a certain amount of extrapolation across cells. For
example, matching estimators often combine covariate cells
with few observations. This violates common support if the
cells being combined do not all have both treated and non-
treated observations. Regression models that are not saturated
in Xi may also violate common support, since covariate cells
without both treated and control observations can end up
contributing to the estimates by extrapolation. Here, too,
however, we see a symmetry between the matching and regres-
sion strategies: they are in the same class, in principle, and
require the same sort of compromises in practice.25

Even More on Regression and Matching: Ordered
and Continuous Treatments�

Does the quasi-matching interpretation of regression outlined
above for a binary treatment variable apply to models with
ordered and continuous treatments? The long answer is fairly
technical and may be more than you want to know. The short
answer is, to one degree or another, yes.

As we’ve already discussed, the population OLS slope vector
always provides the MMSE linear approximation to the CEF.
This, of course, works for ordered and continuous regres-
sors as well as for binary. A related property is the fact that
regression coefficients have an “average derivative” interpre-
tation. In multivariate regression models, this interpretation
is unfortunately complicated by the fact that the OLS slope
vector is a matrix-weighted average of the gradient of the

25Matching problems involving finely distributed X-variables are often
solved by aggregating values to make coarser groupings or by pairing observa-
tions that have similar, though not necessarily identical, values. See Cochran
(1965), Rubin (1973), or Rosenbaum (1995, chapter 3) for discussions of this
approach. With continuously distributed covariates, matching estimators are
biased because matches are imperfect. Abadie and Imbens (2008) have recently
shown that a regression-based bias correction can eliminate the (asymptotic)
bias from imperfect matches.
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CEF. Matrix-weighted averages are difficult to interpret except
in special cases (see Chamberlain and Leamer, 1976). An
important special case when the average derivative property
is relatively straightforward is in regression models for an
ordered or continuous treatment with a saturated model for
covariates. To avoid lengthy derivations, we simply explain
the formulas. A derivation is sketched in the appendix to this
chapter. For additional details, see the appendix to Angrist
and Krueger (1999).

For the purposes of this discussion, the treatment intensity,
si, is assumed to be a continuously distributed random vari-
able, not necessarily non-negative. Suppose that the CEF of
interest can be written h(t) ≡ E[yi|si = t] with derivative h′(t).
Then

E[yi(si − E[si])]
E[si(si − E[si])] =

∫
h′(t)µtdt∫

µtdt
, (3.3.8)

where

µt ≡ {E[si|si ≥ t] − E[si|si < t]}{P(si ≥ t)[1 − P(si ≥ t)},
(3.3.9)

and the integrals in (3.3.8) run over the possible values of
si. This formula (derived by Yitzhaki, 1996) weights each
possible value of si in proportion to the difference in the
conditional mean of si above and below that value. More
weight is also given to points close to the median of si, since
P(si ≥ t) · [1 − P(si ≥ t)] is maximized there.

With covariates, Xi, the weights in (3.3.8) become X-
specific. A covariate-averaged version of the same formula
applies to the multivariate regression coefficient of yi on si,
after partialing out Xi. In particular,

E[yi(si − E[si|Xi])]
E[si(si − E[si|Xi])] = E[∫ h′

X(t)µtXdt]
E[∫ µtXdt] , (3.3.10)

where h′
X(t) ≡ ∂E[yi |Xi ,si=t]

∂t and

µtX ≡ {E[si|Xi, si ≥ t] − E[si|Xi, si < t]}
× {P(si ≥ t|Xi)[1 − P(si ≥ t|Xi)]}.
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Equation (3.3.10) reflects two types of averaging: an inte-
gral that averages along the length of a nonlinear CEF at
fixed covariate values, and an expectation that averages across
covariate cells. An important point in this context is that pop-
ulation regression coefficients contain no information about
the effect of si on the CEF for values of Xi where P(si ≥ t|Xi)
equals zero or one. This includes values of Xi where si is
fixed. It’s also worth noting that if si is a dummy variable, we
can extract equation (3.3.7) from the more general formula,
(3.3.10).

Angrist and Krueger (1999) constructed the average weight-
ing function for a schooling regression with state of birth
and year of birth covariates. Although equations (3.3.8) and
(3.3.10) may seem arcane or at least nonobvious, in this exam-
ple the average weights, E[µtX], turn out to be a reasonably
smooth symmetric function of t, centered at the mode of si.

The implications of (3.3.8) or (3.3.10) can be explored fur-
ther given a model for the distribution of regressors. Suppose,
for example, that si is normally distributed. Let zi = si−E(si)

σs
,

where σs is the standard deviation of si, so that zi is standard
normal. Then

E[si|si ≥ t] = E(si) + σsE
[
zi|zi ≥ t − E(si)

σs

]
= E(si) + σsE[zi|zi ≥ t∗].

From truncated normal formulas (see, e.g., Johnson and Kotz,
1970), we know that

E[zi|zi > t∗] = φ(t∗)
[1 − �(t∗)] and E[zi|zi < t∗] = −φ(t∗)

�(t∗)
.

where φ( · ) and �( · ) are the standard normal density and dis-
tribution functions. Substituting in the formula for µt, (3.3.9),
we have

µt = σs

{
φ(t∗)

[1 − �(t∗)] − −φ(t∗)
�(t∗)

}
[1 − �(t∗)]�(t∗) = σsφ(t∗).

We have therefore shown that
Cov(yi, si)

V(si)
= E[h′(si)].
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In other words, when si is normal, the regression of yi on si is
the unconditional average derivative, E[h′(si)]. Of course, this
result is a special case of a special case.26 Still, it seems reason-
able to imagine that normality might not matter very much.
And in our empirical experience, the average derivatives (also
called “marginal effects”) constructed from parametric nonlin-
ear models (e.g., probit or Tobit) are usually indistinguishable
from the corresponding regression coefficients, regardless of
the distribution of regressors. We expand on this point in
section 3.4.2.

3.3.2 Control for Covariates Using
the Propensity Score

The most important result in regression theory is the OVB
formula, which tells us that coefficients on included variables
are unaffected by the omission of variables when the vari-
ables omitted are uncorrelated with the variables included.
The propensity score theorem, due to Rosenbaum and Rubin
(1983), extends this idea to estimation strategies that rely on
matching instead of regression, where the causal variable of
interest is a treatment dummy.27

The propensity score theorem says that if potential out-
comes are independent of treatment status conditional on a
multivariate covariate vector Xi, then potential outcomes are
independent of treatment status conditional on a scalar func-
tion of covariates, the propensity score, defined as p(Xi) ≡
E[di|Xi] = P[di = 1|Xi]. Formally, we have the following
theorem:

Theorem 3.3.1 The Propensity Score Theorem.
Suppose the CIA holds such that {y0i, y1i} � di|Xi. Then

{y0i, y1i} � di|p(Xi).

26Other specialized results in this spirit appear in Yitzhaki (1996) and Ruud
(1986), who considers distribution-free estimation of limited-dependent-
variable models.

27Propensity score methods can be adapted to multivalued treatments,
though this has yet to catch on. See Imbens (2000) for an effort in this
direction.
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Proof. It’s enough to show that P[di = 1|yji, p(Xi)] does not
depend on yji for j = 0, 1:

P[di = 1|yji, p(Xi)] = E[di|yji, p(Xi)]
= E{E[di|yji, p(Xi), Xi]|yji, p(Xi)}
= E{E[di|yji, Xi]|yji, p(Xi)}
= E{E[di|Xi]|yji, p(Xi)}, by the CIA.

But E{E[di|Xi]|yji, p(Xi)} = E{p(Xi)|yji, p(Xi)}, which is clearly
just p(Xi).

Like the OVB formula for regression, the propensity score
theorem says that you need only control for covariates that
affect the probability of treatment. But it also says something
more: the only covariate you really need to control for is the
probability of treatment itself. In practice, the propensity score
theorem is usually used for estimation in two steps: first, p(Xi)
is estimated using some kind of parametric model, say, logit or
probit. Then estimates of the effect of treatment are computed
either by matching on the estimated score from this first step or
using a weighting scheme described below (see Imbens, 2004,
for an overview).

Direct propensity score matching works in the same way as
covariate matching except that we match on the score instead
of the covariates directly. By the propensity score theorem and
the CIA,

E[y1i −y0i|di = 1]
= E{E[yi|p(Xi), di = 1] − E[yi|p(Xi), di = 0]|di = 1}.

Estimates of the effect of treatment on the treated can therefore
be obtained by stratifying on an estimate of p(Xi) and sub-
stituting conditional sample averages for expectations or by
matching each treated observation to controls with similar val-
ues of the propensity score (both of these approaches were used
by Dehejia and Wahba, 1999). Alternatively, a model-based
or nonparametric estimate of E[yi|p(Xi),di] can be substituted
for these conditional mean functions and the outer expectation
replaced with a sum (as in Heckman, Ichimura, and Todd,
1998).
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The somewhat niftier weighting approach to propensity
score estimation skips the cumbersome matching step by
exploiting the fact that the CIA implies E

[ yidi
p(Xi)

] = E[y1i] and

E
[ yi(1−di)

(1−p(Xi))

] = E[y0i].28 Therefore, given a scheme for estimat-
ing p(Xi), we can construct estimates of the average treatment
effect from the sample analog of

E[y1i −y0i] = E
[

yidi

p(Xi)
− yi(1 − di)

1 − p(Xi)

]

= E
[

(di − p(Xi))yi

p(Xi)(1 − p(Xi))

]
. (3.3.11)

This last expression is an estimand of the form suggested by
Newey (1990) and Robins, Mark, and Newey (1992). We can
similarly calculate the effect of treatment on the treated from
the sample analog of:

E[y1i −y0i|di = 1] = E
[

(di − p(Xi))yi

(1 − p(Xi))P(di = 1)

]
. (3.3.12)

The idea that you can correct for nonrandom sampling via
weighting by the reciprocal of the probability of selection dates
back to Horvitz and Thompson (1952). Of course, to make
this approach feasible, and for the resulting estimates to be
consistent, we need a consistent estimator of p(Xi).

The Horvitz-Thompson version of the propensity score
approach is appealing, since the estimator is essentially auto-
mated, with no cumbersome matching required. The Horvitz-
Thompson approach also highlights the close link between
propensity score matching and regression, much as discussed
for covariate matching in section 3.3.1. Consider again the
regression estimand, δR, for the population regression of yi

on di, controlling for a saturated model for covariates. This
estimand can be written

δR = E[(di − p(Xi))yi]
E[p(Xi)(1 − p(Xi))] . (3.3.13)

28To see this, iterate over Xi: E
[ yidi

p(Xi )

] = E
{
E
[ yidi

p(Xi )
|Xi

]}
; E

[ yidi
p(Xi )

|Xi
] =

E[yi |di=1,Xi ]p(Xi )
p(Xi )

= E[y1i|di = 1, Xi] = E[y1i|Xi].
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The two Horvitz-Thompson matching estimands, (3.3.11) and
(3.3.12), and the regression estimand are all in the class of
weighted average estimands considered by Hirano, Imbens,
and Ridder (2003):

E
{

g(Xi)
[

yidi

p(Xi)
− yi(1 − di)

(1 − p(Xi))

]}
, (3.3.14)

where g(Xi) is a known weighting function. (To go from esti-
mand to estimator, replace p(Xi) with a consistent estimator
and replace expectations with sums.) For the average treat-
ment effect, set g(Xi) = 1; for the effect on the treated, set
g(Xi) = p(Xi)

P(di=1) ; and for regression, set

g(Xi) = p(Xi)(1 − p(Xi))
E[p(Xi)(1 − p(Xi))] .

This similarity highlights once again the fact that regression
and matching—including propensity score matching—are not
really different animals, at least not until we specify a model
for the propensity score.

A big question here is how best to model and estimate
p(Xi), or how much smoothing or stratification to use when
estimating E[yi|p(Xi), di], especially if the covariates are con-
tinuous. The regression analog of this question is how to
parameterize the control variables (e.g., polynomials or main
effects and interaction terms if the covariates are coded as dis-
crete). The answer to this is inherently application-specific. A
growing empirical literature suggests that a logit model for
the propensity score with a few polynomial terms in contin-
uous covariates works well in practice, though this cannot
be a theorem, and inevitably, some experimentation will be
required (see, e.g., Dehejia and Wahba, 1999).29

A developing theoretical literature has produced some
thought-provoking theorems on the efficient use of the propen-
sity score. First, from the point of view of asymptotic effi-
ciency, there is usually a cost to matching on the propensity

29Andrea Ichino and Sascha Becker have posted Stata programs that imple-
ment various matching estimators; see Becker and Ichino (2002).
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score instead of full covariate matching. We can get lower
asymptotic standard errors by matching on any covariate that
explains outcomes, whether or not it turns up in the propen-
sity score. This we know from Hahn’s (1998) investigation of
the maximal precision of estimates of treatment effects under
the CIA, with and without knowledge of the propensity score.
For example, in Angrist (1998), there is an efficiency gain from
matching on year of birth, even if the probability of serving
in the military is unrelated to birth year, because earnings are
related to birth year. A regression analog for this point is the
result that even in a scenario with no OVB, the long regres-
sion generates more precise estimates of the coefficients on the
variables included in a short regression whenever the omit-
ted variables have some predictive power for outcomes (see
section 3.1.3).

Hahn’s (1998) results raise the question of why we should
ever bother with estimators that use the propensity score. A
philosophical argument is that the propensity score rightly
focuses researcher attention on models for treatment assign-
ment, something about which we may have reasonably good
information, instead of the typically more complex and mys-
terious process determining outcomes. This view seems espe-
cially compelling when treatment assignment is the product
of human institutions or government regulations, while the
process determining outcomes is more anonymous (e.g., a mar-
ket). For example, in a time series evaluation of the causal
effects of monetary policy, Angrist and Kuersteiner (2004)
argue that we know more about how the Federal Reserve sets
interest rates than about the process determining GDP. In the
same spirit, it may also be easier to validate a model for treat-
ment assignment than to validate a model for outcomes (see
Rosenbaum and Rubin, 1985, for a version of this argument).

A more precise though purely statistical argument for using
the propensity score is laid out in Angrist and Hahn (2004).
This paper shows that even though there is no asymptotic
efficiency gain from the use of estimators based on the propen-
sity score, there will often be a gain in precision in finite
samples. Since all real data sets are finite, this result is empir-
ically relevant. Intuitively, if the covariates omitted from the
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propensity score explain little of the variation in outcomes (in
a purely statistical sense), it may be better to ignore them than
to bear the statistical burden imposed by the need to estimate
their effects. This is easy to see in studies using data sets such as
the NLSY, where there are hundreds of covariates that might
predict outcomes. In practice, we focus on a small subset of
all possible covariates. This subset is usually chosen with an
eye to what predicts treatment.

Finally, Hirano, Imbens, and Ridder (2003) provide an
alternative asymptotic resolution of the “propensity score
paradox” generated by Hahn’s (1998) theorems. They show
that even though estimates of treatment effects based on a
known propensity score are inefficient, for models with con-
tinuous covariates, a Horvitz-Thompson-type weighting esti-
mator is efficient when the weighting scheme uses a nonpara-
metric estimate of the score. The facts that the propensity score
is estimated and that it is estimated nonparametrically are both
key for the Hirano, Imbens, and Ridder conclusions.

Do the Hirano, Imbens, and Ridder (2003) results resolve
the propensity score paradox? For the moment, we prefer the
finite-sample resolution given by Angrist and Hahn (2004).
The latter result highlights the fact that it is the researchers’
willingness to impose restrictions on the score that gives
propensity score-based inference its conceptual and statistical
power. In Angrist (1998), for example, an application with
high-dimensional though discrete covariates, the unrestricted
nonparametric estimator of the score is just the empirical
probability of treatment in each covariate cell. With this non-
parametric estimator plugged in for p(Xi), it is straightforward
to show that the sample analogs of (3.3.11) and (3.3.12) are
algebraically equivalent to the corresponding full-covariate
matching estimators. Hence, it’s no surprise that score-based
estimation comes out efficient, since full-covariate matching is
the asymptotically efficient benchmark. An essential element
of propensity score methods is the use of prior knowledge for
dimension reduction. The statistical payoff is an improvement
in finite-sample behavior. If you’re not prepared to smooth,
restrict, or otherwise reduce the dimensionality of the match-
ing problem in a manner that has real empirical consequences,
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then you might as well go for full covariate matching or
saturated regression control.

3.3.3 Propensity Score Methods versus Regression

Propensity score methods shift attention from the estima-
tion of E[yi|Xi,di] to the estimation of the propensity score,
p(Xi) ≡ E[di|Xi]. This is attractive in applications where the
latter is easier to model or motivate. For example, Ashenfelter
(1978) showed that participants in government-funded train-
ing programs often have suffered a marked preprogram dip in
earnings, a pattern found in many later studies. If this dip is the
only thing that makes trainees special, then we can estimate
the causal effect of training on earnings by controlling for past
earnings dynamics. In practice, however, it’s hard to match on
earnings dynamics since earnings histories are both continu-
ous and multidimensional. Dehejia and Wahba (1999) argue
in this context that the causal effects of training programs are
better estimated by conditioning on the propensity score than
by conditioning on the earnings histories themselves.

The propensity score estimates reported by Dehejia and
Wahba are remarkably close to the estimates from the ran-
domized trial that constitute their benchmark. Nevertheless,
we believe regression should be the starting point for most
empirical projects. This is not a theorem; undoubtedly, there
are circumstances in which propensity score matching pro-
vides more reliable estimates of average causal effects. The
first reason we don’t find ourselves on the propensity score
bandwagon is practical: there are many details to be filled
in when implementing propensity score matching, such as
how to model the score and how to do inference; these
details are not yet standardized. Different researchers might
therefore reach very different conclusions, even when using
the same data and covariates. Moreover, as we’ve seen
with the Horvitz-Thompson estimands, there isn’t very much
theoretical daylight between regression and propensity score
weighting. If the regression model for covariates is fairly flexi-
ble, say, close to saturated, regression can be seen as a type of
propensity score weighting, so the difference is mostly in the
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implementation. In practice you may be far from saturation,
but with the right covariates this shouldn’t matter.

The face-off between regression and propensity score match-
ing is illustrated here using the same National Supported Work
(NSW) sample featured in Dehejia and Wahba (1999).30 The
NSW is a mid-1970s program that provided work experience
to recipients with weak labor force attachment. Somewhat
unusually for its time, the NSW was evaluated in a randomized
trial. Lalonde’s (1986) pathbreaking analysis compared the
results from the NSW randomized study to econometric results
using nonexperimental control groups drawn from the PSID
and the CPS. He came away pessimistic because plausible non-
experimental methods generated a wide range of results, many
of which were far from the experimental estimates. More-
over, Lalonde argued, an objective investigator, not knowing
the results of the randomized trial, would be unlikely to pick
the best econometric specifications and observational control
groups.

In a striking second take on the Lalonde (1986) findings,
Dehejia and Wahba (1999) found they could come close to
the NSW experimental results by matching the NSW treat-
ment group to observational control groups selected using the
propensity score. They demonstrated this using various com-
parison groups. Following Dehejia and Wahba (1999), we
look again at two of the CPS comparison groups, first, a largely
unselected sample (CPS-1), and then a narrower comparison
group selected from the recently unemployed (CPS-3).

Table 3.3.2 (columns 1–4 of which are a replication of
table 1 in Dehejia and Wahba, 1999) reports descriptive statis-
tics for the NSW treatment group, the randomly selected NSW
control group, and our two observational control groups.
The NSW treatment group and the randomly selected NSW
control groups are younger, less educated, more likely to be
nonwhite, and have much lower earnings than the general pop-
ulation represented by the CPS-1 sample. The CPS-3 sample
matches the NSW treatment group more closely but still shows

30A more extended propensity-score face-off appears in the exchange
between Smith and Todd (2005) and Dehejia (2005).
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Table 3.3.2
Covariate means in the NSW and observational control samples

Full Comparison P-Score Screened
NSW Samples Comparison Samples

Treated Control CPS-1 CPS-3 CPS-1 CPS-3
Variable (1) (2) (3) (4) (5) (6)

Age 25.82 25.05 33.23 28.03 25.63 25.97

Years of schooling 10.35 10.09 12.03 10.24 10.49 10.42

Black .84 .83 .07 .20 .96 .52

Hispanic .06 .11 .07 .14 .03 .20

Dropout .71 .83 .30 .60 .60 .63

Married .19 .15 .71 .51 .26 .29

1974 earnings 2,096 2,107 14,017 5,619 2,821 2,969

1975 earnings 1,532 1,267 13,651 2,466 1,950 1,859

Number of obs. 185 260 15,992 429 352 157

Notes: Adapted from Dehejia and Wahba (1999), table 1. The samples in the first
four columns are as described in Dehejia and Wahba (1999). The samples in the last
two columns are limited to comparison group observations with a propensity score
between .1 and .9. Propensity score estimates use all the covariates listed in the table.

some differences, particularly in terms of race and preprogram
earnings.

Table 3.3.3 reports estimates of the NSW treatment effect.
The dependent variable is annual earnings in 1978, a year or
two after treatment. Rows of the table show results with alter-
native sets of controls: none; all the demographic variables in
table 3.3.2; lagged (1975) earnings; demographics plus lagged
earnings; demographics and two lags of earnings. All estimates
are from regressions of 1978 earnings on a treatment dummy
plus controls (the raw treatment-control difference appears in
the first row).

Estimates using the experimental control group, reported in
column 1, are on the order of $1,600–1,800. Not surprisingly,
these estimates vary little across specifications. In contrast, the
raw earnings gap between NSW participants and the CPS-1
sample, reported in column 2, is roughly −$8,500, suggest-
ing this comparison is heavily contaminated by selection bias.
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Table 3.3.3
Regression estimates of NSW training effects

using alternative controls

Full Comparison P-Score Screened
Samples Comparison Samples

NSW CPS-1 CPS-3 CPS-1 CPS-3
Specification (1) (2) (3) (4) (5)

Raw difference 1,794 −8,498 −635
(633) (712) (657)

Demographic 1,670 −3,437 771 −3,361 890
controls (639) (710) (837) (811) (884)

[139/497] [154/154]

1975 earnings 1,750 −78 −91 No 166
(632) (537) (641) obs. (644)

[0/0] [183/427]

Demographics, 1,636 623 1,010 1,201 1,050
1975 earnings (638) (558) (822) (722) (861)

[149/357] [157/162]

Demographics, 1,676 794 1,369 1,362 649
1974 and 1975 (639) (548) (809) (708) (853)
earnings [151/352] [147/157]

Notes: The table reports regression estimates of training effects using the
Dehejia-Wahba (1999) data with alternative sets of controls. The demo-
graphic controls are age, years of schooling, and dummies for black, Hispanic,
high school dropout, and married. Standard errors are reported in parenthe-
ses. Observation counts are reported in brackets [treated/control]. There are
no observations with an estimated propersity score in the interval [.1, .9]
using only 1975 earnings as a covariate with CPS-1 data.

The addition of demographic controls and lagged earnings
narrows the gap considerably; the estimated treatment effect
reaches (positive) $800 in the last row. The results are even
better in column 3, which uses the narrower CPS-3 compar-
ison group. The characteristics of this group are much closer
to those of NSW participants; consistent with this, the raw
earnings difference is only −$635. The fully controlled esti-
mate, reported in the last row, is close to $1,400, not far from
the experimental treatment effect.
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A drawback of the process taking us from CPS-1 to CPS-3
is the ad hoc nature of the rules used to construct the smaller
and more carefully selected CPS-3 comparison group. The
CPS-3 selection criteria can be motivated by the NSW pro-
gram rules, which favor individuals with low earnings and
weak labor-force attachment, but in practice, there are many
ways to implement this. We’d therefore like a more systematic
approach to prescreening. In a recent paper, Crump, Hotz,
Imbens, and Mitnik (2009) suggest that the propensity score
be used for systematic sample selection as a precursor to regres-
sion estimation. This contrasts with our earlier discussion of
the propensity score as the basis for an estimator.

We implemented the Crump et al. (2009) suggestion by first
estimating the propensity score on a pooled NSW-treatment
and observational-comparison sample, and then picking only
those observations with 0.1 < p(Xi) < 0.9. In other words, the
estimation sample is limited to observations with a predicted
probability of treatment equal to at least 10 percent but no
more than 90 percent. This ensures that regressions are esti-
mated in a sample including only covariate cells where there
are at least a few treated and control observations. Estimation
using screened samples therefore requires no extrapolation
to cells without “common support”—in other words, to
cells where there is no overlap in the covariate distribution
between treatment and controls. Descriptive statistics for sam-
ples screened on the score (estimated using the full set of
covariates listed in the table) appear in the last two columns
of table 3.3.2. The covariate means in the screened CPS-1 and
CPS-3 samples are much closer to the NSW means in column
1 than are the covariate means from unscreened samples.

We explored the common support screener further using
alternative sets of covariates, but with the same covariates used
for both screening and the estimation of treatment effects at
each iteration. The resulting estimates are displayed in the final
two columns of table 3.3.3. Controlling for demographic vari-
ables or lagged earnings alone, these results differ little from
those in columns 2 and 3. With both demographic variables
and a single lag of earnings as controls, however, the screened
CPS-1 estimates are quite a bit closer to the experimental
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estimates than are the unscreened results. Screened CPS-1
estimates with two lags of earnings are also close to the exper-
imental benchmark. On the other hand, the common support
screener improves the CPS-3 results only slightly with a single
lag of earnings and seems to be a step backward with two.

This investigation boosts our (already strong) faith in regres-
sion. Regression control for the right covariates does a reason-
ably good job of eliminating selection bias in the CPS-1 sample
despite a huge baseline gap. Restricting the sample using our
knowledge of program admissions criteria yields even better
regression estimates with CPS-3, about as good as Dehejia and
Wahba’s (1999) propensity score matching results with two
lags of earnings. Systematic prescreening to enforce common
support seems like a useful adjunct to regression estimation
with CPS-1, a large and coarsely selected initial sample. The
estimates in screened CPS-1 are as good as unscreened CPS-3.
We note, however, that the standard errors for estimates using
propensity score–screened samples have not been adjusted to
reflect the sampling variance in our estimates of the score.
An advantage of prescreening using prior information, as in
the step from CPS-1 to CPS-3, is that no such adjustment is
necessary.

3.4 Regression Details

3.4.1 Weighting Regression

Few things are as confusing to applied researchers as the role
of sample weights. Even now, 20 years post-Ph.D., we read the
section of the Stata manual on weighting with some dismay.
Weights can be used in a number of ways, and how they are
used may well matter for your results. Regrettably, however,
the case for or against weighting is often less than clear-cut, as
are the specifics of how the weights should be programmed. A
detailed discussion of weighting pros and cons is beyond the
scope of this book. See Pfefferman (1993) and Deaton (1997)
for two perspectives. In this brief subsection, we provide a few
guidelines and a rationale for our approach to weighting.
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A simple rule of thumb for weighting regression is to use
weights when they make it more likely that the regression
you are estimating is close to the population target you are
trying to estimate. If, for example, the target (or estimand)
is the population regression function, and the sample to be
used for estimation is nonrandom with sampling weights, wi,
equal to the inverse probability of sampling observation i,
then it makes sense to use weighted least squares, weight-
ing by wi (for this you can use Stata pweights or a SAS
weight statement). Weighting by the inverse sampling proba-
bility generates estimates that are consistent for the population
regression function even if the sample you have to work with
is not a simple random sample.

A related weighting scenario involves grouped data. Sup-
pose you would like to regress yi on Xi in a random sample,
presumably because you want to learn about the population
regression vector β = E[XiX′

i]−1E[Xi yi]. Instead of a random
sample, however, you have data grouped at the level of Xi.
That is, you have estimates of E[ yi|Xi = x] for each x, esti-
mated using data from a random sample. Let this average be
denoted ȳx, and suppose you also know nx, where nx/N is
the relative frequency of the value x in the underlying ran-
dom sample. As we saw in section 3.1.2, the regression of
ȳx on x, weighted by nx is the same as the random sample
microdata regression. Therefore, if your goal is to get back to
the microdata regression, it makes sense to weight by group
size. We note, however, that macroeconomists, accustomed to
working with published averages (like per capita income) and
ignoring the underlying microdata, might disagree, or perhaps
take the point in principle but remain disinclined to buck tra-
dition in their discipline, which favors the unweighted analysis
of aggregate variables.

On the other hand, if the sole rationale for weighting is het-
eroskedasticity, as in many textbook discussions of weighting,
we are even less sympathetic to weighting than the macroe-
conomists. The argument for weighting under heteroskedas-
ticity goes roughly like this: suppose you are interested in
a linear CEF, E[yi|Xi] = X′

iβ. The error term, defined as
ei ≡ yi − X′

iβ, may be heteroskedastic. That is, the conditional
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variance function E[e2
i |Xi] need not be constant. In this case,

while the population regression function is still equal to
E[XiX′

i]−1E[Xiyi], the sample analog is inefficient. A more
precise estimator of the linear CEF is WLS—that is, the esti-
mator that minimizes the sum of squared errors weighted by
an estimate of E[e2

i |Xi]−1.
As noted in section 3.1.3, an inherently heteroskedastic sce-

nario is the LPM, where yi is a dummy variable. Assuming the
CEF is in fact linear, as it will be if the model is saturated,
then P[yi = 1|Xi] = X′

iβ and therefore E[e2
i |Xi] = X′

iβ(1 −
X′

iβ), which is obviously a function of Xi. This is an example of
model-based heteroskedasticity where estimates of the condi-
tional variance function are easily constructed from estimates
of the underlying regression function. The efficient WLS esti-
mator for the LPM—a special case of generalized least squares
(GLS)—is to weight by [X′

iβ(1 − X′
iβ)]−1. Because the CEF has

been assumed to be linear, these weights can be estimated in
a first pass by OLS.

There are two reason why we prefer not to weight in this case
(though we would use heteroskedasticity-consistent standard
errors). First, in practice, the estimates of E[e2

i |Xi] may not be
very good. If the conditional variance model is a poor approx-
imation or if the estimates of it are very noisy, WLS estimates
may have worse finite-sample properties than unweighted
estimates. The inferences you draw based on asymptotic the-
ory may therefore be misleading, and the hoped-for efficiency
gain may not materialize.31 Second, if the CEF is not linear,
the WLS estimator is no more likely to estimate it than is the
unweighted estimator. On the other hand, the unweighted esti-
mator still estimates something easy to interpret: the MMSE
linear approximation to the population CEF.

WLS estimators also provide some sort of approximation,
but the nature of this approximation depends on the weights.
At a minimum, this makes it harder to compare your results
to estimates reported by other researchers, and opens up addi-
tional avenues for specification searches when results depend

31Altonji and Segal (1996) discuss this point in a generalized method-of-
moments context.
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on weighting. Finally, an old caution comes to mind: if it
ain’t broke, don’t fix it. The interpretation of the population
regression vector is unaffected by heteroskedasticity, so why
worry about it? Any efficiency gain from weighting is likely to
be modest, and incorrect or poorly estimated weights can do
more harm than good.

3.4.2 Limited Dependent Variables
and Marginal Effects

Many empirical studies involve dependent variables that take
on only a limited number of values. An example is the Angrist
and Evans (1998) investigation of the effect of childbearing on
female labor supply, also discussed in the chapter on instru-
mental variables. This study is concerned with the causal
effects of childbearing on parents’ work and earnings. Because
childbearing is likely to be correlated with potential earnings,
Angrist and Evans report instrumental variables estimates
based on sibling-sex composition and multiple births, as well
as OLS estimates. Almost every outcome in this study is either
binary (e.g., employment status) or non-negative (e.g., hours
worked, weeks worked, and earnings). Should the fact that a
dependent variable is limited affect empirical practice? Many
econometrics textbooks argue that, while OLS is fine for con-
tinuous dependent variables, when the outcome of interest is a
limited dependent variable (LDV), linear regression models are
inappropriate and nonlinear models such as probit and Tobit
are preferred. In contrast, our view of regression as inheriting
its legitimacy from the CEF makes LDVness less central.

As always, a useful benchmark is a randomized experiment,
where regression generates a simple treatment-control differ-
ence. Consider, for example, regressions of various outcome
variables on a randomly assigned regressor that indicates one
of the treatment groups in the RAND Health Insurance Exper-
iment (HIE; Manning et al. 1987). In this ambitious experi-
ment, probably the most expensive in American social science,
the RAND Corporation set up a small health insurance com-
pany that charged no premium. Nearly 6,000 participants in
the study were randomly assigned to health insurance plans
with different features.
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One of the most important features of any insurance plan
is the portion of health care costs the insured individual is
expected to pay. The HIE randomly assigned individuals to
many different plans. One plan provided entirely free care,
while the others included various combinations of copay-
ments, expenditure caps, and deductibles, so that enrollees
paid for some of their health care costs out-of-pocket. The
main purpose of the experiment was to learn whether the use
of medical care is sensitive to cost and, if so, whether this
affects health. The HIE results showed that those offered free
or low-cost medical care used more of it but were not, for
the most part, any healthier as a result. These findings helped
pave the way for cost-sensitive health insurance plans and
managed care.

Most of the outcomes in the HIE are LDVs. These include
dummies indicating whether an experimental subject incurred
any medical expenditures or was hospitalized in a given year,
and non-negative outcomes such as the number of face-to-face
doctor visits and gross annual medical expenses (whether paid
by patient or insurer). The expenditure variable is zero for
about 20 percent of the sample. Results for two of the HIE
treatment groups are reproduced in table 3.4.1, derived from
the estimates reported in table 2 of Manning et al. (1987).
Table 3.4.1 shows average outcomes in the free care and indi-
vidual deductible groups. The latter group faced a deductible
of $150 per person or $450 per family per year for outpatient
care, after which all costs were covered (there was no charge
for inpatient care). The overall sample size in these two groups
was a little over 3,000.

To simplify the LDV discussion, suppose that the com-
parison between free care and deductible plans is the only
comparison of interest and that treatment was determined by
simple random assignment.32 Let di = 1 denote assignment
to the deductible group. By virtue of random assignment, the

32The HIE was considerably more complicated than described here. There
were 14 different treatments, including assignment to a prepaid HMO-like
service. The experimental design did not use simple random assignment but
rather a more complicated stratified assignment scheme meant to ensure
covariate balance across groups.
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Table 3.4.1
Average outcomes in two of the HIE treatment groups

Outpatient Admis- Prob. Any Prob. Any Total
Face-to- Expenses sions Medical Inpatient Expenses

Plan Face Visits (1984 $) (%) (%) (%) (1984 $)

Free 4.55 340 12.8 86.8 10.3 749
(.17) (10.9) (.7) (.8) (.5) (39)

Deductible 3.02 235 11.5 72.3 9.6 608
(.17) (11.9) (.8) (1.5) (.6) (46)

Deductible −1.53 −105 −1.3 −14.5 −0.7 −141
minus free (.24) (16.1) (1.0) (1.7) (.7) (60)

Notes: Adapted from Manning et al. (1987), table 2. All standard errors (shown in
parentheses) are corrected for intertemporal and intrafamily correlations. Amounts are
in June 1984 dollars. Visits are face-to-face contacts with health providers; visits solely
for radiology, anesthesiology, or pathology services are excluded. Visits and expenses
exclude dental care and outpatient psychotherapy.

difference in means between those with di = 1 and di = 0
gives the unconditional average treatment effect. As in our
earlier discussion of experiments (chapter 2):

E[yi|di = 1] − E[yi|di = 0] (3.4.1)

= E[y1i|di = 1] − E[y0i|di = 1]
= E[y1i −y0i]

because di is independent of potential outcomes. Also, as
before, E[yi|di = 1] − E[yi|di = 0] is the slope coefficient in
a regression of yi on di.

Equation (3.4.1) suggests that the estimation of causal
effects in experiments presents no special challenges whether yi

is binary, non-negative, or continuously distributed. Although
the interpretation of the right-hand side changes for different
sorts of dependent variables, you do not need to do anything
special to get the average causal effect. For example, one of the
HIE outcomes is a dummy denoting any medical expenditure.
Since the outcome here is a Bernoulli trial, we have

E[y1i −y0i] = E[y1i] − E[y0i]
= P[y1i = 1] − P[y0i = 1]. (3.4.2)
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This might affect the language we use to describe results, but
not the underlying calculation. In the HIE, for example, com-
parisons across experimental groups, as on the left-hand side
of (3.4.1), show that 87 percent of those assigned to the free-
care group used at least some care in a given year, while only
72 percent of those assigned to the deductible plan used care.
The relatively modest $150 deductible therefore had a marked
effect on use of care. The difference between these two rates,
−.15 is an estimate of E[y1i −y0i], where yi is a dummy indi-
cating any medical expenditure. Because the outcome here is
a dummy variable, the average causal effect is also a causal
effect on usage rates or probabilities.

Recognizing that the medical usage outcome variable is a
probability, suppose instead that you use probit to fit the CEF
in this case. No harm in trying! The probit model is usually
motivated by the assumption that participation is determined
by a latent variable, y∗

i , that satisfies

y∗
i = β∗

0 + β∗
1di − νi, (3.4.3)

where νi is distributed N(0, σ 2
ν ). Note that this latent variable

cannot be actual medical expenditure since expenditure is non-
negative and therefore non-normal, while normally distributed
random variables are continuously distributed on the real line
and can therefore be negative. Given the latent index model,

yi = 1[y∗
i > 0],

so the CEF for yi can be written

E[yi|di] = �

[
β∗

0 + β∗
1di

σν

]
,

where �[·] is the normal CDF. Therefore

E[yi|di] = �

[
β∗

0

σν

]
+
{
�

[
β∗

0 + β∗
1

σν

]
− �

[
β∗

0

σν

]}
di.

This is a linear function of the regressor, di, so the slope coef-
ficient in the linear regression, of yi on di is just the difference
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in probit fitted values, �
[ β∗

0+β∗
1

σν

]− �
[ β∗

0
σν

]
. But the probit coef-

ficients,
β∗

0
σν

and
β∗

1
σν

do not give us the size of the effect of di

on participation until we feed them back into the normal CDF
(though they do have the right sign). Regression, in contrast,
gives us what we need with or without the probit distributional
assumptions.

One of the most important outcomes in the HIE is gross
medical expenditure, in other words, health care costs. Did
subjects who faced a deductible use less care, as measured by
the cost? In the HIE, the average difference in expenditures
between the deductible and free-care groups was −141 dol-
lars, about 19 percent of the expenditure level in the free-care
group. This calculation suggests that making patients pay a
portion of costs reduces expenditures quite a bit, though the
estimate is not very precise.

Because expenditure outcomes are non-negative random
variables, and sometimes equal to zero, their expectation can
be written

E[yi|di] = E[yi|yi > 0, di]P[yi > 0|di].
The difference in expenditure outcomes across treatment
groups is

E[yi|di = 1] − E[yi|di = 0] (3.4.4)

= E[yi|yi > 0, di = 1]P[yi > 0|di = 1]
− E[yi|yi > 0, di = 0]P[yi > 0|di = 0]

= {P[yi > 0|di = 1] − P[yi > 0|di = 0]}︸ ︷︷ ︸
Participation effect

E[yi|yi > 0, di = 1]

+ {E[yi|yi > 0, di = 1] − E[yi|yi > 0, di = 0]}︸ ︷︷ ︸
COP effect

× P[yi > 0|di = 0].
So, the overall difference in average expenditure can be bro-
ken up into two parts: the difference in the probability that
expenditures are positive (often called a participation effect)
and the difference in means conditional on participation, a
conditional-on-positive (COP) effect. Again, however, this has
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no special implications for the estimation of causal effects;
equation (3.4.1) remains true: the regression of yi on di gives
the unconditional average treatment effect for expenditures.

Good COP, Bad COP: Conditional-on-Positive Effects

Because causal effects on a non-negative random variable such
as expenditure have two parts, some applied researchers feel
they should look at these parts separately. In fact, many use
a two-part model, in which the first part is an evaluation of
the effect on participation and the second part looks at COP
effects (see, e.g., Duan et al., 1983 and 1984, for such models
applied to the HIE). The first part of (3.4.4) raises no special
issues, because, as noted above, the fact that yi is a dummy
means only that average treatment effects are also differences
in probabilities. The problem with the two-part model is that
the COP effects do not have a causal interpretation, even in
a randomized trial. This complication can be understood as
the same selection problem described in section 3.2.3, on bad
control.

To analyze the COP effect further, write

E[yi|yi > 0, di = 1] − E[yi|yi > 0, di = 0] (3.4.5)

= E[y1i|y1i > 0] − E[y0i|y0i > 0]
= E[y1i −y0i|y1i > 0]︸ ︷︷ ︸

Causal effect

+ {E[y0i|y1i > 0] − E[y0i|y0i > 0]}︸ ︷︷ ︸
Selection bias

,

where the second line uses the random assignment of di. This
decomposition shows that the COP effect is composed of two
terms: a causal effect for the subpopulation that uses medical
care with a deductible and the difference in y0i between those
who use medical care when they have to pay something and
when it is free. This second term is a form of selection bias,
though it is more subtle than the selection bias in chapter 2.

Here selection bias arises because the experiment changes
the composition of the group with positive expenditures. The
y0i > 0 population probably includes some low-cost users who
would opt out of care if they had to pay a deductible. In other
words, this group is larger and probably has lower costs on
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average than the y1i > 0 group. The selection bias term is
therefore positive, with the result that COP effects are closer
to zero than the presumably negative causal effect, E[y1i −
y0i|y1i > 0]. This is a version of the bad control problem from
section 3.2.3: in a causal effects setting, yi > 0 is an outcome
variable and therefore unkosher for conditioning unless the
treatment has no effect on the likelihood that yi is positive.

One resolution of the noncausality of COP effects relies on
censored regression models like Tobit. These models postu-
late a latent expenditure outcome for nonparticipants (e.g.,
Hay and Olsen, 1984). A traditional Tobit formulation for
the expenditure problem stipulates that the observed yi is
generated by

yi = 1[y∗
i > 0]y∗

i ,

where y∗
i is a normally distributed latent expenditure variable

that can take on negative values. Because y∗
i is not an LDV,

Tobit proponents feel comfortable linking this to di using a
traditional linear model, say, equation (3.4.3). In this case,
β∗

1 is the causal effect of di on latent expenditure, y∗
i . This

equation is defined for everyone, whether yi is positive or not.
There is no COP-style selection problem if we are happy to
study effects on y∗

i .
But we are not happy with effects on y∗

i . The first problem is
that “latent health care expenditure” is a puzzling construct.
Health care expenditure really is zero for some people; this is
not a statistical artifact or due to some kind of censoring. So the
notion of latent and potentially negative y∗

i is hard to grasp.
There are no data on y∗

i and there never will be. A second
problem is that the link between the parameter β∗

1 in the latent
model and causal effects on the observed outcome, yi, turns on
distributional assumptions about the latent variable. To estab-
lish this link we evaluate the expectation of yi given di to find

E[yi|di] = �

[
β∗

0 + β∗
1di

σν

]
[β∗

0 + β∗
1di]

+ σνφ

[
β∗

0 + β∗
1 di

σν

]
, (3.4.6)
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(see, e.g., McDonald and Moffitt, 1980). This expression is
derived using the normality and homoskedasticity of νi and
the assumption that yi can be represented as 1[y∗

i > 0]y∗
i .

The Tobit CEF provides us with an expression for the
average treatment effect on observed expenditure. Specifically,

E[yi|di = 1] − E[yi|di = 0]
=
{
�

[
β∗

0 + β∗
1

σν

]
[β∗

0 + β∗
1] + σφ

[
β∗

0 + β∗
1

σν

]}

−
{
�

[
β0

σν

]
[β∗

0] + σνφ

[
β∗

0

σν

]}
(3.4.7)

a rather daunting formula. But since the only regressor is a
dummy variable, di, none of this is necessary for the estimation
of E[yi|di = 1] − E[yi|di = 0]. The slope coefficient from an
OLS regression of yi on di recovers the CEF difference on the
left-hand side of (3.4.7) whether or not you adopt a Tobit
model to explain the underlying structure.33

COP effects are sometimes motivated by a researcher’s sense
that when the outcome distribution has a mass point—that is,
when it piles up on a particular value, such as zero—or has a
heavily skewed distribution, or both, then an analysis of effects
on averages misses something. Analyses of effects on averages
indeed miss some things, such as changes in the probability of
specific values or a shift in quantiles away from the median.
But why not look at these distribution effects directly? Dis-
tribution outcomes include the likelihood that annual medical
expenditures exceed zero, 100 dollars, 200 dollars, and so on.
In other words, put 1[yi > c] for different choices of c on the
left-hand side of the regression of interest. Econometrically,
these outcomes are all in the category of (3.4.2). The idea of
looking directly at distribution effects with linear probabil-
ity models is illustrated by Angrist (2001), in an analysis of
the effects of childbearing on hours worked. Alternatively, if

33A generalization of Tobit is the sample selection model, where the latent
variable determining participation differs from the latent expenditure variable.
See, for example, Maddala (1983). The same conceptual problems related to
the interpretation of effects on latent variables arise in the sample selection
model as with Tobit.
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quantiles provide a focal point, we can use quantile regression
to model them. Chapter 7 discusses this idea in detail.

Do Tobit-type latent variable models ever make sense? Yes,
if the data you are working with are truly censored. True cen-
soring means the latent variable has an empirical counterpart
that is the outcome of primary interest. A leading example
from labor economics is CPS earnings data, which topcodes
(censors) very high values of earnings to protect respondent
confidentiality. Typically, we’re interested in the causal effect
of schooling on earnings as it appears on respondents’ tax
returns, not their CPS-topcoded earnings. Chamberlain (1994)
shows that in some years, CPS topcoding reduces the measured
returns to schooling considerably, and proposes an adjustment
for censoring based on a Tobit-style adaptation of quantile
regression. The use of quantile regression to model censored
data is also discussed in chapter 7.34

Covariates Lead to Nonlinearity

True censoring as with the CPS topcode is rare, a fact that
leaves limited scope for constructive applications of Tobit-
type models in applied work. At this point, however, we
have to hedge a bit. Part of the neatness in the discussion
of experiments comes from the fact that E[yi|di] is necessar-
ily a linear function of di, so that regression and the CEF are
one and the same. In fact, this CEF is linear for any func-
tion of yi, including the distribution indicators, 1[yi > c]. In
practice, of course, the explanatory variable of interest isn’t
always a dummy, and there are usually additional covariates
in the CEF, in which case E[yi|Xi,di] for LDVs is almost cer-
tainly nonlinear. Intuitively, as predicted means get close to
the dependent variable boundaries, the derivatives of the CEF

34We should note that our favorite regression example, a regression of log
wages on schooling, may have a COP problem since the sample of log wages
naturally omits those with zero earnings. This leads to COP-style selection
bias if education affects the probability of working. In practice, therefore,
we focus on samples of prime-age males, whose participation rates are high
and reasonably stable across schooling groups (e.g., white men aged 40–49 in
figure 3.1.1).
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for LDVs get smaller (think, for example, of how the normal
CDF flattens at extreme values).

The upshot is that in LDV models with covariates, regres-
sion need not fit the CEF perfectly. It remains true, however,
that the underlying CEF has a causal interpretation if the
CIA holds. And if the CEF has a causal interpretation, it
seems fair to say that regression has a causal interpretation
as well, because it still provides the MMSE approximation to
the CEF. Moreover, if the model for covariates is saturated,
then regression also estimates a weighted average treatment
effect similar to (3.3.1) and (3.3.3). Likewise, if the regressor
of interest is multivalued or continuous, we get a weighted
average derivative, as described by the formulas at the end of
subsection 3.3.1.

And yet, we may not have enough data for the saturated-
covariate regression specification to be very attractive. Regres-
sion will therefore miss some features of the CEF. For one
thing, it may generate fitted values outside the LDV bound-
aries. This fact bothers some researchers and has generated a
lot of bad press for the linear probability model. One attrac-
tive feature of nonlinear models like probit and Tobit is that
they produce CEFs that respect LDV boundaries. In partic-
ular, probit fitted values are always between zero and one,
while Tobit fitted values are positive (this is not obvious from
equation (3.4.6)). We might therefore prefer nonlinear models
on simple curve-fitting grounds.

Point conceded. It’s important to emphasize, however, that
the output from nonlinear models must be converted into
marginal effects to be useful. Marginal effects are the (aver-
age) changes in CEF implied by a nonlinear model. Without
marginal effects, it’s hard to talk about the impact on observed
dependent variables. If we continue to assume the regressor of
interest is the dummy variable, di, marginal effects can be
constructed either by differencing

E{E[yi|Xi, di = 1] − E[yi|Xi, di = 0]},
or, by differentiation, E

{
∂E[yi |Xi ,di]

∂di

}
. Most people use deriva-

tives when dealing with continuous or multivalued regressors.
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How close do OLS regression estimates come to the
marginal effects induced by a nonlinear model like probit or
Tobit? We first derive the marginal effects, and then show
an empirical example. The probit CEF for a model with
covariates is

E[yi|Xi, di] = �

[
X′

iβ
∗
0 + β∗

1di

σν

]
.

The average finite difference is therefore

E
{
�

[
X′

iβ
∗
0 + β∗

1

σν

]
− �

[
X′

iβ
∗
0

σν

]}
. (3.4.8)

In practice, this can be approximated by the average derivative,

E
{
φ

[
X′

iβ
∗
0 + β∗

1di

σν

]}
·
(

β∗
1

σν

)

(Stata computes marginal effects both ways but defaults to
(3.4.8) for dummy regressors).

Similarly, generalizing equation (3.4.6) to a model with
covariates, we have

E[yi|Xi, di] = �

[
X′

iβ
∗
0 + β∗

1di

σν

]
[X′

iβ
∗
0 + β∗

1di]

+ σνφ

[
X′

iβ
∗
0 + β∗

1di

σν

]
for a non-negative LDV. Tobit marginal effects are almost
always cast in terms of the average derivative, which can be
shown to be the surprisingly simple expression

E
{
�

[
X′

iβ
∗
0 + β∗

1di

σν

]}
· β∗

1 (3.4.9)

(see, e.g., Wooldridge, 2006). One immediate implication
of (3.4.9) is that the Tobit coefficient, β∗

1, is always too big
relative to the effect of di on yi. Intuitively, this is because,
given the linear model for latent y∗

i , the latent outcome always
changes when di switches on or off. But real yi need not
change: for many people, it’s zero either way.
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Table 3.4.2 compares OLS estimates and nonlinear marginal
effects for regressions of female employment and hours of
work, both LDVs, on measures of fertility. These estimates
were constructed using one of the 1980 census samples used
by Angrist and Evans (1998). This sample includes married
women aged 21–35 with at least two children. The childbear-
ing variables consist of a dummy indicating women with more
than two children or the total number of births. The covari-
ates include linear terms in mother’s age, age at first birth,
race dummies (black and Hispanic), and mother’s education
(dummies for high school graduates, some college, and college
graduates). The covariate model is not saturated; rather, there
are additive terms and no interactions, though the underlying
CEF in this example is surely nonlinear.

Probit marginal effects for the impact of a dummy vari-
able indicating more than two children are indistinguishable
from OLS estimates of the same relation. This can be seen in
columns 2, 3, and 4 of table 3.4.2, the first row of which com-
pares the estimates from different methods for the full 1980
sample. The OLS estimate of the effect of a third child is −.162,
while the corresponding probit marginal effects are −.163
and −.162. These were estimated using (3.4.8) in the first
case and

E
{
�

[
X′

iβ
∗
0 + β∗

1

σν

]
− �

[
X′

iβ
∗
0

σν

]∣∣∣∣di = 1
}

in the second (hence, a marginal effect on the treated).
Tobit marginal effects for the relation between fertility and

hours worked are quite close to the corresponding OLS esti-
mates, though not indistinguishable. This can be seen in
columns 5 and 6. Compare, for example, the Tobit estimates
of −6.56 and −5.87 with the OLS estimate of −5.92 in column
2. Although one Tobit estimate is 10 percent larger in abso-
lute value, this seems unlikely to be of substantive importance.
The remaining columns of the table compare OLS estimates to
marginal effects for an ordinal childbearing variable instead
of a dummy. These calculations all use derivatives to com-
pute marginal effects (labeled MFX). Here, too, the OLS and



Table 3.4.2
Comparison of alternative estimates of the effect of childbearing on LDVs

Right-Hand-Side Variable

More than Two Children Number of Children

Probit Tobit Probit MFX Tobit MFX

Avg. Avg.
Effect, Avg. Effect, Avg. Avg. Effect, Avg. Avg.
Full Effect on Full Effect on Full Effect, Full Effect on

Mean OLS Sample Treated Sample Treated OLS Sample Sample Treated
Dependent Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

A. Full sample
Employment .528 −.162 −.163 −.162 — — −.113 −.114 — —

(.499) (.002) (.002) (.002) (.001) (.001)
Hours worked 16.7 −5.92 — — −6.56 −5.87 −4.07 — −4.66 −4.23

(18.3) (.074) (.081) (.073) (.047) (.054) (.049)

B. Nonwhite college attenders over age 30, first birth before age 20
Employment .832 −.061 −.064 −.070 — — −.054 −.048 — —

(.374) (.028) (.028) (.031) (.016) (.013)
Hours worked 30.8 −4.69 — — −4.97 −4.90 −2.83 — −3.20 −3.15

(16.0) (1.18) (1.33) (1.31) (.645) (.670) (.659)

Notes: The table reports OLS estimates, average treatment effects, and marginal effects (MFX) for the effect of childbearing on mothers’
labor supply. The sample in panel A includes 254,654 observations and is the same as the 1980 census sample of married women used
by Angrist and Evans (1998). Covariates include age, age at first birth, and dummies for boys at first and second birth. The sample in
panel B includes 746 nonwhite women with at least some college aged over 30 whose first birth was before age 20. Standard deviations
are reported in parentheses in column 1. Standard errors are shown in parentheses in other columns. The sample used to estimate average
effects on the treated in columns 4, 6, and 10 includes women with more than two children.
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nonlinear marginal effects estimates are similar for both probit
and Tobit.

It is sometimes said that probit models can be expected to
generate marginal effects close to OLS when the predicted
probabilities are close to .5 because the underlying nonlinear
CEF is roughly linear in the middle. With predictions close to
zero or one, however, we might expect a larger gap. We there-
fore replicated the comparison of OLS and marginal effects
in a subsample with relatively high average employment rates,
nonwhite women over age 30 who attended college and whose
first birth was before age 20. Although the average employ-
ment rate is 83 percent in this group, the OLS estimates and
marginal effects are again similar.

The upshot of this discussion is that while a nonlinear model
may fit the CEF for LDVs more closely than a linear model,
when it comes to marginal effects, this probably matters little.
This optimistic conclusion is not a theorem, but, as in the
empirical example here, it seems to be fairly robustly true.

Why, then, should we bother with nonlinear models and
marginal effects? One answer is that the marginal effects are
easy enough to compute now that they are automated in pack-
ages like Stata. But there are a number of decisions to make
along the way (e.g., the weighting scheme, derivatives versus
finite differences), while OLS is standardized. Nonlinear life
also gets considerably more complicated when we work with
instrumental variables and panel data. Finally, extra com-
plexity comes into the inference step as well, since we need
standard errors for marginal effects. The principle of Occam’s
razor advises, “Entities should not be multiplied unnecessar-
ily.” In this spirit, we quote our former teacher, Angus Deaton
(1997), pondering the nonlinear regression function generated
by Tobit-type models:

Absent knowledge of F [the distribution of the errors], this
regression function does not even identify the β’s [Tobit
coefficients]—see Powell (1989)—but more fundamentally, we
should ask how it has come about that we have to deal with
such an awkward, difficult, and non-robust object.
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3.4.3 Why Is Regression Called Regression, and
What Does Regression to the Mean Mean?

The term regression originates with Francis Galton’s (1886)
study of height. Galton, who is pictured visiting his tailor
on page 26, worked with samples of roughly normally dis-
tributed data on parents and children. He noted that the CEF
of a child’s height conditional on his parents’ height is linear,
with parameters given by the bivariate regression slope and
intercept. Since height is stationary (its distribution does not
change much over time), the bivariate regression slope is also
the correlation coefficient, that is, between zero and one.

The single regressor in Galton’s setup, xi, is average par-
ent height and the dependent variable, yi, is the height of
adult children. The regression slope coefficient, as always, is
β1 = Cov(yi ,xi)

V(xi)
, and the intercept is α = E[yi] − β1E[Xi]. But

because height is not changing across generations, the mean
and variance of yi and xi are the same. Therefore,

β1 = Cov(yi, xi)
V(xi)

= Cov(yi, xi)√
V(xi)

√
V(yi)

= ρxy

α = E[yi] − β1E[Xi] = µ(1 − β1) = µ(1 − ρxy),

where ρxy is the intergenerational correlation coefficient in
height and µ = E[yi] = E[Xi] is the population average height.
From this we get the linear CEF

E[yi|xi] = µ(1 − ρxy) + ρxyxi,

so the height of a child given his parents’ height is a weighted
average of his parents’ height and the population average
height. The child of tall parents will therefore not be as tall
as they are, on average. Likewise, for the short. To be spe-
cific, Pischke, who is six feet three inches tall, can expect his
children to be tall, though not as tall as he is. Thankfully,
however, Angrist, who is five feet six inches tall, can expect
his children to be taller than he is. Galton called this property
“regression toward mediocrity in hereditary stature.” Today
we call it regression to the mean.



Making Regression Make Sense 109

Galton, who was Charles Darwin’s cousin, is also remem-
bered for having founded the Eugenics Society, dedicated
to breeding better people. Indeed, his interest in regression
came largely from this quest. We conclude from this that the
value of scientific ideas should not be judged by their author’s
politics.

Galton does not seem to have shown much interest in
multiple regression, our chief concern in this chapter. The
regressions in Galton’s work are mechanical features of distri-
butions of stationary random variables; they work just as well
for the regression of parents’ height on childrens’ height and
are certainly not causal. Galton would have said so himself,
because he objected to the Lamarckian idea (later promoted
in Stalin’s Russia) that acquired traits can be inherited.

The idea that regression can be used for statistical control
in pursuit of causality satisfyingly originates in an inquiry into
the determinants of poverty rates by George Udny Yule (1899).
Yule, a statistician and student of Karl Pearson (Pearson was
Galton’s protégé), realized that Galton’s regression coefficient
could be extended to multiple variables by solving the least
squares normal equations that had been derived long before by
Legendre and Gauss. Yule’s (1899) paper appears to be the first
publication containing multivariate regression estimates. His
model links changes in poverty rates in an area to changes in
the local administration of the English Poor Laws, while con-
trolling for population growth and the age distribution in the
area. He was particularly interested in whether out-relief, the
practice of providing income support for poor people without
requiring them to move to the poorhouse, did not itself con-
tribute to higher poverty rates. This is a well-defined causal
question of a sort that still occupies us today.35

Finally, we note that the history of regression is beauti-
fully detailed in the book by Steven Stigler (1986). Stigler is a
famous statistician at the University of Chicago, but not quite

35Yule’s first applied paper on the poor laws was published in 1895 in the
Economic Journal, where Pischke is proud to serve as co-editor. The theory
of multiple regression that goes along with this appears in Yule (1897).
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as famous as his father, the economist and Nobel laureate,
George Stigler.

3.5 Appendix: Derivation of the Average Derivative
Weighting Function

Begin with the regression of yi on si:

Cov(yi, si)
V(si)

= E[h(si)(si − E[si])]
E[si(si − E[si])] .

Let κ−∞ = lim
t→−∞ h(t), which we assume exists. By the funda-

mental theorem of calculus, we have:

h(si) = κ−∞ +
∫ si

−∞
h′(t)dt.

Substituting for h(si), the numerator becomes

E[h(si)(si − E[si])] =
∫ +∞

−∞

∫ u

−∞
h′(t)(u − E[si])g(u)dtdu,

where g(u) is the density of si at u. Reversing the order of
integration, we have

E[h(si)(si − E[si])] =
∫ +∞

−∞
h′(t)

∫ +∞

t
(u − E[si])g(u)dudt.

The inner integral is equal to µt ≡ {E[si|si ≥ t] − E[si|si < t]}
{P(si ≥ t)[1 − P(si ≥ t)}, the weighting function in (3.3.9),
which is clearly non-negative. Setting si = yi, the denominator
can similarly be shown to be the integral of these weights. We
therefore have a weighted average derivative representation of
the bivariate regression coefficient, Cov(yi ,si)

V(si)
. A similar formula

for a regression with covariates is derived in the appendix to
Angrist and Krueger (1999).
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Chapter 4

Instrumental Variables in Action:
Sometimes You Get What You Need

■ ◆ ■||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Anything that happens, happens.
Anything that, in happening, causes something else to happen,
causes something else to happen.
Anything that, in happening,
causes itself to happen again, happens again.
It doesn’t necessarily do it in chronological order, though.

Douglas Adams, Mostly Harmless

Two things distinguish the discipline of econometrics from
the older sister field of statistics. One is a lack of shy-
ness about causality. Causal inference has always been

the name of the game in applied econometrics. Statistician
Paul Holland (1986) cautions that there can be “no causa-
tion without manipulation,” a maxim that would seem to rule
out causal inference from nonexperimental data. Less thought-
ful observers fall back on the truism that “correlation is not
causality.” Like most people who work with data for a living,
we believe that correlation can sometimes provide pretty good
evidence of a causal relation, even when the variable of interest
has not been manipulated by a researcher or experimenter.1

The second thing that distinguishes us from most
statisticians—and indeed from most other social scientists—
is an arsenal of statistical tools that grew out of early

1Recent years have seen an increased willingness by statisticians to discuss
statistical models for observational data in an explicitly causal framework;
see, for example, Freedman’s (2005) review.
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econometric research on the problem of how to estimate the
parameters in a system of linear simultaneous equations. The
most powerful weapon in this arsenal is the method of instru-
mental variables (IV), the subject of this chapter. As it turns
out, the IV method does more than allow us to consistently
estimate the parameters in a system of simultaneous equations,
though it allows us to do that as well.

Studying agricultural markets in the 1920s, the father-and-
son research team of Phillip and Sewall Wright were interested
in a challenging problem of causal inference: how to estimate
the slope of supply and demand curves when observed data
on prices and quantities are determined by the intersection
of these two curves. In other words, equilibrium prices and
quantities—the only ones we get to observe—solve these two
stochastic equations at the same time. On which curve, there-
fore, does the observed scatterplot of prices and quantities lie?
The fact that population regression coefficients do not capture
the slope of any one equation in a set of simultaneous equa-
tions had been understood by Phillip Wright for some time.
The IV method, first laid out in Wright (1928), solves the
statistical simultaneous equations problem by using variables
that appear in one equation to shift this equation and trace
out the other. The variables that do the shifting came to be
known as instrumental variables (Reiersol, 1941).

In a separate line of inquiry, IV methods were pioneered to
solve the problem of bias from measurement error in regression
models.2 One of the most important results in the statistical
theory of linear models is that a regression coefficient is biased
toward zero when the regressor of interest is measured with
random errors (to see why, imagine the regressor contains only
random error; then it will be uncorrelated with the dependent
variable, and hence the regression of yi on this variable will be
zero). Instrumental variables methods can be used to eliminate
this sort of bias.

Simultaneous equations models (SEMs) have been enor-
mously important in the history of econometric thought. At

2Key historical references here are Wald (1940) and Durbin (1954), both
discussed later in this chapter.
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the same time, few of today’s most influential applied papers
rely on an orthodox SEM framework, though the technical
language used to discuss IV methods still comes from this
framework. Today, we are more likely to find IV methods
used to address measurement error problems than to estimate
the parameters of an SEM. Undoubtedly, however, the most
important contemporary use of IV methods is to solve the
problem of omitted variables bias (OVB). IV methods solve the
problem of missing or unknown control variables, much as a
randomized trial obviates extensive controls in a regression.3

4.1 IV and Causality

We like to tell the IV story in two iterations, first in a
restricted model with constant effects, then in a framework
with unrestricted heterogeneous potential outcomes, in which
case causal effects must also be heterogeneous. The introduc-
tion of heterogeneous effects enriches the interpretation of IV
estimands without changing the mechanics of the core statis-
tical methods we are most likely to use in practice (typically,
two-stage least squares, or 2SLS). An initial focus on con-
stant effects allows us to explain the mechanics of IV with a
minimum of fuss.

To motivate the constant effects setup as a framework for
the causal link between schooling and wages, suppose, as
before, that potential outcomes can be written

ysi ≡ fi(s),

and that
fi(s) = α + ρs + ηi, (4.1.1)

as in the discussion of regression and causality in section 3.2.
Also, as in the earlier discussion, we imagine that there is a

3See Angrist and Krueger (2001) for a brief exposition of the history and
uses of IV, Stock and Trebbi (2003) for a detailed account of the birth of IV,
and Morgan (1990) for an extended history of econometric ideas, including
the simultaneous equations model.
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vector of control variables, Ai, called “ability,” that gives a
selection-on-observables story:

ηi = A′
iγ + vi,

where γ is again a vector of population regression coefficients,
so that vi and Ai are uncorrelated by construction. For now,
the variables Ai, are assumed to be the only reason why ηi and
si are correlated, so that

E[sivi] = 0.

In other words, if Ai were observed, we would be happy to
include it in the regression of wages on schooling; thereby
producing a long regression that can be written

yi = α + ρsi + A′
iγ + vi. (4.1.2)

Equation (4.1.2) is a version of the linear causal
model (3.2.9). The error term in this equation is the random
part of potential outcomes, vi, left over after controlling for
Ai. This error term is uncorrelated with schooling by assump-
tion. If this assumption turns out to be correct, the population
regression of yi on si and Ai produces the coefficients in (4.1.2).

The problem we initially want to tackle is how to esti-
mate the long regression coefficient, ρ, when Ai is unobserved.
Instrumental variables methods can be used to accomplish this
when the researcher has access to a variable (the instrument,
which we’ll call zi), that is correlated with the causal variable
of interest, si, but uncorrelated with any other determinants of
the dependent variable. Here, the phrase “uncorrelated with
any other determinants of the dependent variables” is like say-
ing Cov(ηi,zi) = 0, or, equivalently, zi is uncorrelated with
both Ai and vi. This statement is called an exclusion restric-
tion, since zi can be said to be excluded from the causal model
of interest.

Given the exclusion restriction, it follows from (4.1.2) that

ρ = Cov(yi, zi)
Cov(si, zi)

= Cov(yi, zi)/V(zi)
Cov(si, zi)/V(zi)

. (4.1.3)

The second equality in (4.1.3) is useful because it’s usually
easier to think in terms of regression coefficients than in terms
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of covariances. The coefficient of interest, ρ, is the ratio of the
population regression of yi on zi (called the reduced form) to
the population regression of si on zi (called the first stage). The
IV estimator is the sample analog of expression (4.1.3). Note
that the IV estimand is predicated on the notion that the first
stage is not zero, but this is something you can check in the
data. As a rule, if the first stage is only marginally significantly
different from zero, the resulting IV estimates are unlikely to
be informative, a point we return to later.

It’s worth recapping the assumptions needed for the ratio
of covariances in (4.1.3) to equal the casual effect, ρ. First,
the instrument must have a clear effect on si. This is the first
stage. Second, the only reason for the relationship between yi

and zi is the first stage. For the moment, we’re calling this
second assumption the exclusion restriction, though as we’ll
see in the discussion of models with heterogeneous effects, this
assumption really has two parts: the first is the statement that
the instrument is as good as randomly assigned (i.e., indepen-
dent of potential outcomes, conditional on covariates, like the
CIA in chapter 3), and the second is that the instrument has no
effect on outcomes other than through the first-stage channel.

So, where can you find an instrumental variable? Good
instruments come from a combination of institutional knowl-
edge and ideas about the processes determining the variable
of interest. For example, the economic model of education
suggests that schooling decisions are based on the costs and
benefits of alternative choices. Thus, one possible source of
instruments for schooling is differences in costs due to loan
policies or other subsidies that vary independently of ability
or earnings potential. A second source of variation in school-
ing is institutional constraints. A set of institutional constraints
relevant for schooling is compulsory schooling laws. Angrist
and Krueger (1991) exploit the variation induced by com-
pulsory schooling in a paper that typifies the use of “natural
experiments” to try to eliminate OVB.

The starting point for the Angrist and Krueger (1991)
quarter-of-birth strategy is the observation that most states
require students to enter school in the calendar year in which
they turn 6. School start age is therefore a function of date
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of birth. Specifically, those born late in the year are young
for their grade. In states with a December 31 birthday cutoff,
children born in the fourth quarter enter school shortly before
they turn 6, while those born in the first quarter enter school at
around age 6 1

2 . Furthermore, because compulsory schooling
laws typically require students to remain in school only until
their 16th birthday, these groups of students will be in dif-
ferent grades, or through a given grade to a different degree,
when they reach the legal dropout age. The combination of
school start-age policies and compulsory schooling laws cre-
ates a natural experiment in which children are compelled to
attend school for different lengths of time, depending on their
birthdays.

Angrist and Krueger looked at the relationship between
educational attainment and quarter of birth using U.S. cen-
sus data. Panel A of figure 4.1.1 (adapted from Angrist and
Krueger, 1991) displays the education quarter-of-birth pattern
for men in the 1980 census who were born in the 1930s. The
figure clearly shows that men born earlier in the calendar year
tended to have lower average schooling levels. Panel A of fig-
ure 4.1.1 is a graphical depiction of the first stage. The first
stage in a general IV framework is the regression of the causal
variable of interest on covariates and instruments. The plot
summarizes this regression because average schooling by year
and quarter of birth is what you get for fitted values from a
regression of schooling on a full set of year-of-birth dummies
(covariates) and quarter-of-birth dummies (instruments).

Panel B of figure 4.1.1 displays average earnings by quar-
ter of birth for the same sample used to construct panel A.
This panel illustrates the reduced-form relationship between
the instruments and the dependent variable. The reduced form
is the regression of the dependent variable on any covari-
ates in the model and the instruments. Panel B shows that
older cohorts tend to have higher earnings, because earnings
rise with work experience. The figure also shows that men
born in early quarters almost always earned less, on average,
than those born later in the year, even after adjusting for
year of birth, a covariate in the Angrist and Krueger (1991)
setup. Importantly, this reduced-form relation parallels the
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Figure 4.1.1 Graphical depiction of the first stage and reduced
form for IV estimates of the economic return to schooling using
quarter-of-birth instruments (from Angrist and Krueger, 1991).

quarter-of-birth pattern in schooling, suggesting the two pat-
terns are closely related. Because an individual’s date of birth
is probably unrelated to his or her innate ability, motivation,
or family connections, it seems credible to assert that the only
reason for the up-and-down quarter-of-birth pattern in earn-
ings is the up-and-down quarter-of-birth pattern in schooling.
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This is the critical assumption that drives the quarter-of-birth
IV story.4

A mathematical representation of the story told by fig-
ure 4.1.1 comes from the first-stage and reduced-form regres-
sion equations, spelled out below:

si = X′
iπ10 + π11zi + ξ1i (4.1.4a)

yi = X′
iπ20 + π21zi + ξ2i. (4.1.4b)

The parameter π11 in equation (4.1.4a) captures the first-stage
effect of zi on si, adjusting for covariates, Xi. The parame-
ter π21 in equation (4.1.4b) captures the reduced-form effect
of zi on yi, adjusting for these same covariates. In Angrist
and Krueger (1991), the instrument zi is quarter of birth (or
a dummy indicating quarter of birth) and the covariates are
dummies for year of birth and state of birth. In the language
of the SEM, the dependent variables in these two equations are
said to be the endogenous variables (determined jointly within
the system), while the variables on the right-hand side are said
to be the exogenous variables (determined outside the system).
The instruments zi are a subset of the exogenous variables.
The exogenous variables that are not instruments are said to
be exogenous covariates. Although we’re not estimating a tra-
ditional supply-and-demand system in this case, these SEM
variable labels are still widely used in empirical practice.

The covariate-adjusted IV estimator is the sample analog of
the ratio π21

π11
. To see this, note that the denominators of the

reduced-form and first-stage coefficients are the same. Hence,
their ratio is

ρ = π21

π11
= Cov(yi, z̃i)

Cov(si, z̃i)
, (4.1.5)

4Other explanations are possible, the most likely being some sort of family
background effect associated with season of birth (see, e.g., Bound, Jaeger, and
Baker, 1995). Weighing against the possibility of omitted family background
effects is the fact that the quarter-of-birth pattern in average schooling is most
pronounced at the schooling levels most affected by compulsory attendance
laws.
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where z̃i is the residual from a regression of zi on the exoge-
nous covariates, Xi. The right-hand side of (4.1.5) therefore
swaps z̃i for zi in the IV formula, (4.1.3). Econometricians call
the sample analog of equation (4.1.5) an indirect least squares
(ILS) estimator of ρ in the causal model with covariates,

yi = α′Xi + ρsi + ηi, (4.1.6)

where ηi is the compound error term, A′
iγ + vi. It’s easy to

use equation (4.1.6) to confirm directly that Cov(yi, z̃i) =
ρCov(si, z̃i), since z̃i is uncorrelated with Xi by construction
and with ηi by assumption.

4.1.1 Two-Stage Least Squares

The reduced-form equation, (4.1.4b), can be derived by substi-
tuting the first-stage equation, (4.1.4a), into the causal relation
of interest, (4.1.6), which is also called a “structural equation”
in simultaneous equations language. We have:

yi = α′Xi + ρ[X′
iπ10 + π11zi + ξ1i] + ηi (4.1.7)

= X′
i[α + ρπ10] + ρπ11zi + [ρξ1i + ηi]

= X′
iπ20 + π21zi + ξ2i,

where π20 ≡ α + ρπ10, π21 ≡ ρπ11, and ξ2i ≡ ρξ1i + ηi in equa-
tion (4.1.4b). Equation (4.1.7) again shows why ρ = π21

π11
. Note

also that a slight rearrangement of (4.1.7) gives

yi = α′Xi + ρ[X′
iπ10 + π11zi] + ξ2i, (4.1.8)

where [X′
iπ10 + π11zi] is the population fitted value from the

first-stage regression of si on Xi and zi. Because zi and Xi are
uncorrelated with the reduced-form error, ξ2i, the coefficient
on [X′

iπ10 + π11zi] in the population regression of yi on Xi and
[X′

iπ10 + π11zi] equals ρ.
In practice, of course, we almost always work with data

from samples. Given a random sample, the first-stage fitted
values are consistently estimated by

ŝi = X′
iπ̂10 + π̂11zi,
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where π̂10 and π̂11 are OLS estimates from equation (4.1.4a).
The coefficient on ŝi in the regression of yi on Xi and ŝi is called
the two-stage least squares (2SLS) estimator of ρ. In other
words, 2SLS estimates can be constructed by OLS estimation
of the “second-stage equation,”

yi = α′Xi + ρ ŝi + [ηi + ρ(si − ŝi)], (4.1.9)

This is called 2SLS because it can be done in two steps, the
first estimating ŝi using equation (4.1.4a) and the second esti-
mating equation (4.1.9). The resulting estimator is consistent
for ρ because the covariates and first-stage fitted values are
uncorrelated with both ηi and (si − ŝi).

The 2SLS name notwithstanding, we don’t usually construct
2SLS estimates in two steps. For one thing, the resulting stan-
dard errors are wrong, as we discuss later. Typically, we let
specialized software routines (such as are available in SAS or
Stata) do the calculation for us. This gets the standard errors
right and helps to avoid other mistakes (see section 4.6.1).
Still, the fact that the 2SLS estimator can be computed by
a sequence of OLS regressions is one way to remember why
it works. Intuitively, conditional on covariates, 2SLS retains
only the variation in si that is generated by quasi-experimental
variation—that is, generated by the instrument zi.

2SLS is a many-splendored thing. For one, it is an IV esti-
mator: the 2SLS estimate of ρ in (4.1.9) is the sample analog

of
Cov(yi ,ŝ

∗
i )

Cov(si ,ŝ
∗
i ) , where ŝ∗

i is the residual from a regression of ŝi

on Xi. This follows from the multivariate regression anatomy
formula and the fact that Cov(si, ŝ∗

i ) = V(ŝ∗
i ). It is also easy

to show that, in a model with a single endogenous variable
and a single instrument, the 2SLS estimator is the same as the
corresponding ILS estimator.5

5Note that ŝ∗
i = z̃iπ̂11, where z̃i is the residual from a regression of zi on

Xi, so that the 2SLS estimator is the sample analog of
[Cov(yi ,z̃i )

V(z̃i )

]
(π̂11)−1. But

the sample analog of the numerator, Cov(yi ,z̃i )
V(z̃i )

, is the OLS estimate of π21

in the reduced form, (4.1.4b), while π̂11 is the OLS estimate of the first-stage
effect, π11, in (4.1.4a). Hence, 2SLS with a single instrument is ILS, that is, the
ratio of the reduced-form effect of the instrument to the corresponding first-
stage effect where both the first-stage and reduced-form equations include
covariates.
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The link between 2SLS and IV warrants a bit more elabora-
tion in the multi-instrument case. Assuming each instrument
captures the same causal effect (a strong assumption that is
relaxed below), we might want to combine these alternative
IV estimates into a single more precise estimate. In models
with multiple instruments, 2SLS accomplishes this by com-
bining multiple instruments into a single instrument. Suppose,
for example, we have three instrumental variables, z1i, z2i,
and z3i. In the Angrist and Krueger (1991) application, these
are dummies for first-, second-, and third-quarter births. The
first-stage equation then becomes

si = X′
iπ10 + π11z1i + π12z2i + π13z3i + ξ1i, (4.1.10a)

while the 2SLS second stage is the same as (4.1.9), except that
the fitted values are from (4.1.10a) instead of (4.1.4a). The
IV interpretation of this 2SLS estimator is the same as before:
the instrument is the residual from a regression of first-stage
fitted values on exogenous covariates. The exclusion restric-
tion in this case is the claim that the quarter-of-birth dummies
in (4.1.10a) are uncorrelated with ηi in equation (4.1.6).

The results of 2SLS estimation of the economic returns to
schooling using quarter-of-birth dummies as instruments are
shown in table 4.1.1, which reports OLS and 2SLS estimates
of models similar to those estimated by Angrist and Krueger
(1991). Each column in the table contains OLS and 2SLS
estimates of ρ from an equation like (4.1.6), estimated with
different combinations of instruments and control variables.
The OLS estimate in column 1 is from a regression of log wages
with no control variables, while the OLS estimates in column 2
are from a model adding dummies for year of birth and state of
birth as control variables. In both cases, the estimated return
to schooling is around .075.

The first pair of IV estimates, reported in columns 3 and
4, are from models without exogenous covariates. The instru-
ment used to construct the estimate in column 3 is a single
dummy for first-quarter births, while the instruments used to
construct the estimate in column 4 are three dummies indicat-
ing first-, second-, and third-quarter births. These estimates
range from .10 to .11. The results from models including year-
of-birth and state-of-birth dummies as exogenous covariates



Table 4.1.1
2SLS estimates of the economic returns to schooling

OLS 2SLS

(1) (2) (3) (4) (5) (6) (7) (8)

Years of education .071 .067 .102 .13 .104 .108 .087 .057
(.0004) (.0004) (.024) (.020) (.026) (.020) (.016) (.029)

Exogenous Covariates
Age (in quarters) �
Age (in quarters) squared �
9 year-of-birth dummies � � � � �
50 state-of-birth dummies � � � � �

Instruments
dummy for QOB = 1 � � � � � �
dummy for QOB = 2 � � � �
dummy for QOB = 3 � � � �
QOB dummies interacted with � �
year-of-birth dummies
(30 instruments total)

Notes: The table reports OLS and 2SLS estimates of the returns to schooling using the Angrist and Krueger (1991)
1980 census sample. This sample includes native-born men, born 1930–39, with positive earnings and nonallocated
values for key variables. The sample size is 329,509. Robust standard errors are reported in parentheses. QOB denotes
quarter of birth.
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(reported in columns 5 and 6) are similar, not surprisingly,
since quarter of birth is not closely related to either of these
controls. Overall, the 2SLS estimates are mostly a bit larger
than the corresponding OLS estimates. This suggests that
the observed association between schooling and earnings is
not driven by omitted variables such as ability and family
background.

Column 7 in table 4.1.1 shows the results of adding inter-
action terms to the instrument list. In particular, this speci-
fication adds three quarter-of-birth dummies interacted with
nine dummies for year of birth (the sample includes cohorts
born in 1930–39), for a total of 30 excluded instruments. The
first-stage equation becomes

si = X′
iπ10 + π11z1i + π12z2i + π13z3i (4.1.10b)

+
∑

j

(bijz1i)κ1j +
∑

j

(bijz2i)κ2j +
∑

j

(bijz3i)κ3j + ξ1i,

where bij is a dummy equal to one if individual i was born
in year j for j equal to 1931–39. The coefficients κ1j, κ2j, κ3j

are the corresponding quarter and year interaction terms. The
rationale for adding these interaction terms is an increase in
precision that comes from increasing the first-stage R2, which
goes up because the quarter-of-birth pattern in schooling dif-
fers across cohorts. In this example, the addition of interaction
terms to the instrument list leads to a modest gain in precision;
the standard error declines from .019 to .016 as we move from
column 6 to column 7.6 (The first-stage and reduced-form
effects plotted in figure 4.1.1 are from this fully interacted
specification.)

The last 2SLS model reported in table 4.1.1 adds controls
for linear and quadratic terms in age in quarters to the list
of exogenous covariates. In other words, someone who was
born in the first quarter of 1930 is recorded as being 50 years
old on census day (April 1), 1980, while someone born in
the fourth quarter is recorded as being 49.25 years old. This

6This gain may not be without cost, as the use of many additional instrum-
ents opens up the possibility of increased bias, an issue discussed in sec-
tion 4.6.4.
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finely coded age variable provides a partial control for the
fact that small differences in age may be an omitted variable
that confounds the quarter-of-birth identification strategy. As
long as the effects of age are reasonably smooth, the quadratic
age-in-quarters model will pick them up.

Columns 7 and 8 in table 4.1.1 illustrate the interplay
between identification and estimation. (In traditional SEM the-
ory, a parameter is said to be identified if we can figure it out
from the reduced form.) For the 2SLS procedure to work, there
must be some variation in the first-stage fitted values condi-
tional on whatever exogenous covariates are included in the
model. If the first-stage fitted values are a linear combination
of the included covariates, then the 2SLS estimate simply does
not exist. In equation (4.1.9) this would be manifest by perfect
multicollinearity (i.e., linear dependence between Xi and ŝi).
2SLS estimates with quadratic age controls exist, but the vari-
ability “left over” in the first-stage fitted values is reduced
when the covariates include variables such as age in quar-
ters that are closely related to the instruments (quarter-of-birth
dummies). Because this variability is the primary determinant
of 2SLS standard errors, the estimate in column 8 is markedly
less precise than that in column 7, though it is still close to the
corresponding OLS estimate.

Recap of IV and 2SLS Lingo

As we’ve seen, the endogenous variables are the dependent
variable and the independent variable(s) to be instrumented;
in a simultaneous equations model, endogenous variables are
determined by solving a system of stochastic linear equa-
tions. To treat an independent variable as endogenous is to
instrument it, in other words, to replace it with fitted values
in the second stage of a 2SLS procedure. The independent
endogenous variable in the Angrist and Krueger (1991) study
is schooling. The exogenous variables include the exoge-
nous covariates that are not instrumented and the instruments
themselves. In a simultaneous equations model, exogenous
variables are determined outside the system. The exogenous



Instrumental Variables in Action 127

covariates in the Angrist and Krueger (1991) study are dum-
mies for year of birth and state of birth. We think of exogenous
covariates as controls. 2SLS aficionados live in a world of
mutually exclusive labels: in any empirical study involving IV,
the random variables to be studied are either dependent
variables, independent endogenous variables, instrumental
variables, or exogenous covariates. Sometimes we shorten this
to dependent and endogenous variables, instruments, and
covariates (fudging the fact that the dependent variable is also
endogenous in a traditional SEM).

4.1.2 The Wald Estimator

The simplest IV estimator uses a single dummy instrument
to estimate a model with one endogenous regressor and no
covariates. Without covariates, the causal regression model is

yi = α + ρsi + ηi, (4.1.11)

where ηi and si may be correlated. Given the further sim-
plification that zi is a dummy variable that equals one with
probability p, we can easily show that

Cov(yi, zi) = {E[yi|zi = 1] − E[yi|zi = 0]}p(1 − p),

with an analogous formula for Cov(si, zi). It therefore follows
that

ρ = E[yi|zi = 1] − E[yi|zi = 0]
E[si|zi = 1] − E[si|zi = 0] . (4.1.12)

A direct route to this result uses (4.1.11) and the fact that
E[ηi|zi] = 0, so we have

E[yi|zi] = α + ρE[si|zi]. (4.1.13)

Solving this equation for ρ produces (4.1.12).
Equation (4.1.12) is the population analog of the landmark

Wald estimator for a bivariate regression with mismeasured
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regressors.7 In our context, the Wald formula provides an
appealingly transparent implementation of the IV strategy for
the elimination of OVB. The principal claim that motivates IV
estimation of causal effects is that the only reason for any rela-
tion between the dependent variable and the instrument is the
effect of the instrument on the causal variable of interest. In
the context of a dummy instrument, it therefore seems natural
to divide—or rescale—the reduced-form difference in means
by the corresponding first-stage difference in means.

The Angrist and Krueger (1991) study using quarter of
birth to estimate the economic returns to schooling shows the
Wald estimator in action. Table 4.1.2 displays the ingredients
behind a Wald estimate constructed using the 1980 census.
The difference in earnings between men born in the first and
fourth quarters of the year is −.0135, while the corresponding
difference in schooling is −.151. The ratio of these two differ-
ences is a Wald estimate of the economic value of schooling in
per-year terms. This comes out to be .089. Not surprisingly,
this estimate is not too different from the 2SLS estimates in
table 4.1.1. The reason we should expect the Wald and 2SLS
estimates to be similar is that both are constructed from the
same information: differences in earnings by season of birth.

The Angrist (1990) study of the effects of Vietnam-era mil-
itary service on the earnings of veterans also shows the Wald
estimator in action. In the 1960s and early 1970s, young
American men were at risk of being drafted for military service.
Concerns about the fairness of the U.S. conscription policy led
to the institution of a draft lottery in 1970 that was used to
determine priority for conscription. A promising instrument
for Vietnam veteran status is therefore draft eligibility, since
this was determined by a lottery over birthdays. Specifically,

7As noted in the introduction to this chapter, measurement error in regres-
sors tends to shrink regression coefficients toward zero. To eliminate this bias,
Wald (1940) suggested that the data be divided in a manner independent of
the measurement error, and the coefficient of interest estimated as a ratio
of differences in means, as in (4.1.12). Durbin (1954) showed that Wald’s
method of fitting straight lines is an IV estimator where the instrument is a
dummy marking Wald’s division of the data. Hausman (2001) provides an
overview of econometric strategies for dealing with measurement error.
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Table 4.1.2
Wald estimates of the returns to schooling using

quarter-of-birth instruments

(1) (2) (3)
Born in Born in Difference

1st Quarter 4th Quarter (Std. Error)
of Year of Year (1) − (2)

ln (weekly wage) 5.892 5.905 −.0135
(.0034)

Years of education 12.688 12.839 −.151
(.016)

Wald estimate of .089
return to education (.021)

OLS estimate of .070
return to education (.0005)

Notes: From Angrist and Imbens (1995). The sample includes native-
born men with positive earnings from the 1930–39 birth cohorts in the
1980 census 5 percent file. The sample size is 162,515.

in each year from 1970 to 1972, random sequence numbers
(RSNs) were randomly assigned to each birth date in cohorts
of 19-year-olds. Men with lottery numbers below a cutoff were
eligible for the draft, while men with numbers above the cutoff
could not be drafted. In practice, many draft-eligible men were
still exempted from service for health or other reasons, while
many men who were draft-exempt nevertheless volunteered
for service. So veteran status was not completely determined
by randomized draft eligibility, but draft eligibility provides a
dummy instrument highly correlated with Vietnam-era veteran
status.

Among white men who were at risk of being drafted in
the 1970 draft lottery, draft eligibility is clearly associated
with lower earnings in the years after the lottery. This is
documented in table 4.1.3, which reports the effect of random-
ized draft eligibility status on Social Security–taxable earnings
in column 2. Column 1 shows average annual earnings for
purposes of comparison. For men born in 1950, there are
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Table 4.1.3
Wald estimates of the effects of military service on the earnings of white

men born in 1950

Earnings Veteran Status

Eligibility Eligibility Wald Estimate
Earnings Mean Effect Mean Effect of Veteran Effect

Year (1) (2) (3) (4) (5)

1981 16,461 −435.8 .267 .159 −2,741
(210.5) (.040) (1,324)

1971 3,338 −325.9 −2,050
(46.6) (293)

1969 2,299 −2.0
(34.5)

Notes: Adapted from Angrist (1990), tables 2 and 3. Standard errors are shown in
parentheses. Earnings data are from Social Security administrative records. Figures
are in nominal dollars. Veteran status data are from the Survey of Income and
Program Participation. There are about 13,500 individuals in the sample.

significant negative effects of eligibility status on earnings in
1971, when these men were mostly just beginning their mil-
itary service, and, perhaps more surprisingly, in 1981, ten
years later. In contrast, there is no evidence of an association
between draft eligibility status and earnings in 1969, the year
the lottery drawing for men born in 1950 was held but before
anyone born in 1950 was actually drafted.

Because eligibility status was randomly assigned, the claim
that the estimates in column 2 represent the casual effect of
draft eligibility on earnings seems uncontroversial. The infor-
mation required to go from draft eligibility effects to veteran
status effects is the denominator of the Wald estimator, which
is the effect of draft eligibility on the probability of serving
in the military. This information is reported in column 4 of
table 4.1.3, which shows that draft-eligible men were almost
16 percentage points more likely to have served in the Vietnam
era. The Wald estimate of the effect of military service on 1981
earnings, reported in column 4, amounts to about 15 percent
of the mean. Effects were even larger in 1971 (in percentage
terms), when affected soldiers were still in the army.
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An important feature of the Wald/IV estimator is that the
identifying assumptions are easy to assess and interpret. Let di

denote Vietnam-era veteran status and zi indicate draft eligibil-
ity. The fundamental claim justifying our interpretation of the
Wald estimator as capturing the causal effect of di is that the
only reason why E[yi|zi] changes as zi changes is the variation
in E[di|zi]. A simple check on this is to look for an associa-
tion between zi and personal characteristics that should not be
affected by di, for example race, sex, or any other character-
istic that was determined before di was determined. Another
useful check is to look for an association between the instru-
ment and outcomes in samples where there is no relationship
between di and zi. If the only reason for draft eligibility effects
on earnings is veteran status, then draft eligibility effects on
earnings should be zero in samples where draft eligibility status
is unrelated to veteran status.

This idea is illustrated in Angrist’s (1990) study of the draft
lottery by looking at 1969 earnings, an estimate repeated in the
last row of table 4.1.3. It’s comforting that the draft eligibility
treatment effect on 1969 earnings is zero, since 1969 earnings
predate the 1970 draft lottery. A second variation on this idea
looks at the cohort of men born in 1953. Although there was a
lottery drawing that assigned RSNs to the 1953 birth cohort in
February 1972, no one born in 1953 was actually drafted (the
draft officially ended in July 1973). The first-stage relation-
ship between draft eligibility and veteran status for men born
in 1953 (defined using the 1952 lottery cutoff of 95) there-
fore shows only a small difference in the probability of serving
by eligibility status. There is also no significant relationship
between earnings and draft eligibility status for men born in
1953, a result that supports the claim that the only reason for
draft eligibility effects is military service.

We conclude the discussion of Wald estimators with a set of
IV estimates of the effect of family size on mothers’ employ-
ment and work. Like the schooling and military service studies,
these estimates are used for illustration elsewhere in the book.
The relationship between fertility and labor supply has long
been of interest to labor economists, while the case for omitted
variables bias in this context is clear: mothers with weak labor
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force attachment or low earnings potential may be more likely
to have children than mothers with strong labor force attach-
ment or high earnings potential. This makes the observed
association between family size and employment hard to inter-
pret, since mothers who have big families probably would have
worked less anyway. Angrist and Evans (1998) solve this omit-
ted variables problem using two instrumental variables, both
of which lend themselves to Wald-type estimation strategies.

The first Wald estimator uses multiple births, an identifica-
tion strategy for the effects of family size pioneered by Rosen-
zweig and Wolpin (1980). The twins instrument in Angrist
and Evans (1998) is a dummy for a multiple second birth in a
sample of mothers with at least two children. The twins first-
stage is .625, an estimate reported in column 3 of table 4.1.4.
This means that 37.5 percent of mothers with two or more
children would have had a third birth anyway; a multiple
third birth increases this proportion to 1. The twins instru-
ment rests on the idea that the occurrence of a multiple birth is
essentially random, unrelated to potential outcomes or family
background.

The second Wald estimator in table 4.1.4 uses sibling sex
composition, an instrument motivated by the fact that Amer-
ican parents with two children are much more likely to have
a third child if the first two are of the same sex than if the
sex composition is mixed. This is illustrated in column 5 of
table 4.1.4, which shows that parents of same-sex sibling birth
are 6.7 percentage points more likely to have a third birth (the
probability of a third birth among parents with a mixed-sex
sibship is .38). The same-sex instrument is based on the claim
that sibling sex composition is essentially random and affects
family labor supply solely by increasing fertility.

Twins and sex composition instruments both suggest that
the birth of a third child has a large effect on employment rates
and on weeks and hours worked. Wald estimates using twins
instruments show a precisely estimated employment reduction
of about .08, while weeks worked fall by 3.8 and hours per
week fall by 3.4. These results, which appear in column 4
of table 4.1.4, are smaller in absolute value than the corre-
sponding OLS estimates reported in column 2. This suggests
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Table 4.1.4
Wald estimates of the effects of family size on labor supply

IV Estimates Using

Twins Sex Composition

First Wald First Wald
Dependent Mean OLS Stage Estimates Stage Estimates
Variable (1) (2) (3) (4) (5) (6)

Employment .528 −.167 .625 −.083 .067 −.135
(.002) (.011) (.017) (.002) (.029)

Weeks worked 19.0 −8.05 −3.83 −6.23
(.09) (.76) (1.29)

Hours/week 16.7 −6.02 −3.39 −5.54
(.08) (.64) (1.08)

Note: The table reports OLS and Wald estimates of the effects of a third birth on labor
supply using twins and sex composition instruments. Data are from the Angrist and
Evans (1998) extract including married women aged 21–35 with at least two children
in the 1980 census. OLS models include controls for mother’s age, age at first birth,
dummies for the sex of first and second births, and dummies for race. The first stage is
the same for all dependent variables.

the latter are exaggerated by selection bias. Interestingly, the
Wald estimates constructed using a same-sex dummy, reported
in column 6, are larger than the twins estimates (showing an
employment reduction of .135, for example). The juxtaposi-
tion of twins and sex composition instruments in table 4.1.4
suggests that different instruments need not generate similar
estimates of causal effects even if both are valid. We expand
on this important point in section 4.4. For now, however, we
stick with a constant effects framework.

4.1.3 Grouped Data and 2SLS

The Wald estimator is the mother of all IV estimators because
more complicated 2SLS estimators can typically be constructed
from an underlying set of Wald estimators. The link between
Wald and 2SLS is grouped data: 2SLS using dummy instru-
ments is the same thing as GLS on a set of group means. GLS
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in turn can be understood as a linear combination of all the
Wald estimators that can be constructed from pairs of means.
The generality of this link might appear to be limited by the
presumption that the instruments at hand are dummies. Not
all instrumental variables are dummies, or even discrete, but
this is not really important. For one thing, many instruments
can be thought of as defining categories, such as quarter of
birth. Moreover, instrumental variables that appear more con-
tinuous (such as draft lottery numbers, which range from 1 to
365) can usually be grouped without much loss of information
(e.g., a single dummy for draft eligibility status, or dummies
for groups of 25 lottery numbers).8

To explain the Wald-grouping-2SLS nexus more fully, we
stick with the draft lottery study. Earlier we noted that draft
eligibility is a promising instrument for Vietnam-era veteran
status. The draft eligibility ceilings were RSN 195 for men
born in 1950, RSN 125 for men born in 1951, and RSN
95 for men born in 1952. In practice, however, there is a
richer link between draft lottery numbers (which we’ll call ri,
short for RSN) and veteran status (di) than draft eligibility
status alone. Although men with numbers above the eligibility
ceiling were not drafted, the ceiling was unknown in advance.
Some men therefore volunteered in the hope of serving under
better terms and gaining some control over the timing of their
service. The pressure to become a draft-induced volunteer was
high for men with low lottery numbers but low for men with
high numbers. As a result, there is variation in P[di = 1|ri]
even for values strictly above or below the draft eligibility cut-
off. For example, men born in 1950 with lottery numbers
200–225 were more likely to serve than those with lottery
numbers 226–250, though ultimately no one in either group
was drafted.

The Wald estimator using draft eligibility as an instrument
for men born in 1950 compares the earnings of men with ri

< 195 to the earnings of men with ri > 195. But the previous

8An exception is the classical measurement error model, where both the
variable to be instrumented and the instrument are assumed to be continuous.
Here, we have in mind IV scenarios involving OVB.
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discussion suggests the possibility of many more comparisons,
for example men with ri ≤ 25 versus men with ri ∈ [26 − 50],
men with ri ∈ [51 − 75] versus men with ri ∈ [76 − 100], and
so on, until these 25-number intervals are exhausted. We
might also make the intervals finer, comparing, say, men in
five-number or single-number intervals instead of 25-number
intervals. The result of this expansion in the set of compar-
isons is a set of Wald estimators. These sets are complete in
that the intervals partition the support of the underlying instru-
ment, while the individual estimators are linearly independent
in the sense that their numerators are linearly independent.
Finally, each of these Wald estimators consistently estimates
the same causal effect, assumed here to be constant, as long
as ri is independent of potential outcomes and correlated
with veteran status (i.e., the Wald denominators are not
zero).

The possibility of constructing multiple Wald estimators for
the same causal effect naturally raises the question of what
to do with all of them. We would like to come up with a
single estimate that somehow combines the information in the
individual Wald estimates efficiently. As it turns out, the most
efficient linear combination of a full set of linearly independent
Wald estimates is produced by fitting a line through the group
means used to construct these estimates.

The grouped data estimator can be motivated directly as
follows. As in (4.1.11), we work with a bivariate constant
effects model, which in this case can be written

yi = α + ρdi + ηi, (4.1.14)

where ρ = y1i −y0i is the causal effect of interest and y0i =
α + ηi. Because ri was randomly assigned and lottery numbers
are assumed to have no effect on earnings other than through
veteran status, E[ηi|ri] = 0. It therefore follows that

E[yi|ri] = α + ρP[di = 1|ri], (4.1.15)

since P[di = 1|ri] = E[di|ri]. In other words, the slope of the
line connecting average earnings given lottery number with
the average probability of service by lottery number is equal
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to the effect of military service, ρ. This is in spite of the fact that
the regression yi on di—in this case, the difference in means
by veteran status—almost certainly differs from ρ, since y0i

and di are likely to be correlated.
Equation (4.1.15) suggests we estimate e by fitting a line to

the sample analog of E[yi|ri] and P[di = 1|ri]. Suppose that
ri takes on values j = 1, . . . , j. In principle, j might run from 1
to 365, but in Angrist (1990), lottery number information was
aggregated to 69 five-number intervals, plus a 70th interval for
numbers 346–365. We can therefore think of ri as running
from 1 to 70. Let ȳj and p̂j denote estimates of E[yi|ri = j]
and P[di = 1|ri = j], while η̄j denotes the average error
in (4.1.14). Because sample moments converge to population
moments, it follows that OLS estimates of ρ in the grouped
equation

ȳj = α + ρp̂j + η̄j (4.1.16)

are consistent. In practice, however, generalized least squares
(GLS) may be preferable, since a grouped equation is het-
eroskedastic with a known variance structure. The efficient
GLS estimator for grouped data in a constant effects linear
model is WLS, weighted by the variance of η̄j (see, e.g., Prais
and Aitchison, 1954, or Wooldridge, 2006). Assuming the
microdata residual is homoskedastic with variance σ 2

η , this

variance is
σ2
η

nj
, where nj is the group size. Therefore, we should

weight by the group size, as discussed in a different context in
section 3.4.1.

The GLS (or WLS) estimator of ρ in equation (4.1.16) is
especially important for two reasons. First, the GLS slope
estimate constructed from j grouped observations is an asymp-
totically efficient linear combination of any full set of j − 1
linearly independent Wald estimators (Angrist, 1991). This
can be seen without any mathematics: GLS and any linear com-
bination of Wald estimators are both linear combinations of
the grouped dependent variable. Moreover, GLS is the asymp-
totically efficient linear estimator for grouped data. Therefore
we can conclude that there is no better (i.e., asymptotically
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more efficient) linear combination of Wald estimators than
GLS (again, a maintained assumption here is that ρ is con-
stant). The formula for constructing the GLS estimator from
a full set of linearly independent Wald estimators appears in
Angrist (1988).

Second, just as each Wald estimator is also an IV estimator,
the GLS estimator of equation (4.1.16) is 2SLS. The instru-
ments in this case are a full set of dummies to indicate each
lottery number cell. To see why, define the set of dummy
instruments Zi ≡ {rji = 1[ri = j]; j = 1, . . . J − 1}, where 1[·]
denotes the indicator function used to construct dummy vari-
ables. Now, consider the first-stage regression of di on Zi

plus a constant. Since this first stage is saturated, the fitted
values will be the sample conditional means, p̂j, repeated nj

times for each j. The second-stage slope estimate is therefore
the same as the slope from WLS estimation of the grouped
equation, (4.1.16), weighted by the cell size, nj.

The connection between grouped data and 2SLS is of both
conceptual and practical importance. On the conceptual side,
any 2SLS estimator using a set of dummy instruments can be
understood as a linear combination of all the Wald estimators
generated by using these instruments one at a time. The Wald
estimator in turn provides a simple framework used later in
this chapter to interpret IV estimates in the more realistic world
of heterogeneous potential outcomes.

Although not all instruments are inherently discrete and
therefore immediately amenable to a Wald or grouped data
interpretation, many are. Examples include the draft lottery
number, quarter of birth, twins, and sibling sex composi-
tion instruments we’ve already discussed. (See also the recent
studies by Bennedsen et al., 2007, and Ananat and Michaels,
2008, both of which use dummies for male first births as
instruments.) Moreover, instruments that have a continuous
flavor can often be fruitfully turned into discrete variables. For
example, Angrist, Graddy, and Imbens (2000) recode contin-
uous weather-based instruments into three dummy variables,
stormy, mixed, and clear, which they then use to estimate
the demand for fish. This dummy variable parameterization
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seems to capture the main features of the relationship between
weather conditions and the price of fish.9

On the practical side, the grouped data equivalent of 2SLS
gives us a simple tool that can be used to explain and evaluate
any IV strategy. In the case of the draft lottery, for example,
the grouped model embodies the assumption that the only rea-
son average earnings vary with lottery numbers is the variation
in probability of military service across lottery number groups.
If the underlying causal relation is linear with constant effects,
then equation (4.1.16) should fit the group means well, some-
thing we can assess by inspection and, as discussed in the next
section, with the machinery of formal statistical inference.

Sometimes labor economists refer to grouped data plots for
discrete instruments as visual instrumental variables (VIV).10

An example appears in Angrist (1990), reproduced here as fig-
ure 4.1.2. This figure shows the relationship between average
earnings in five-number RSN cells and the probability of ser-
vice in these cells, for the 1981–84 earnings of white men born
in 1950–53. The slope of the line through these points is an
IV estimate of the earnings loss due to military service, in this
case about $2,400, not very different from the Wald estimates
discussed earlier but with a lower standard error (in this case,
about $800).

4.2 Asymptotic 2SLS Inference

4.2.1 The Asymptotic Distribution
of the 2SLS Coefficient Vector

We can derive the limiting distribution of the 2SLS coefficient
vector using an argument similar to that used in section 3.1.3
for OLS. In this case, let Vi ≡ [X′

i ŝi]′ denote the vector of
regressors in the 2SLS second stage, equation (4.1.9). The 2SLS

9Continuous instruments recoded as dummies can be seen as providing
a parsimonious nonparametric model for the underlying first-stage relation,
E[di|zi]. In homoskedastic models with constant coefficients, E[di|zi] is the
asymptotically efficient instrument (Newey, 1990).

10See, for example, the preface to Borjas (2005).
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Figure 4.1.2 The relationship between average earnings and the
probability of military service (from Angrist, 1990). This is a VIV
plot of average 1981–84 earnings by cohort and five-RSN lottery
number group against conditional probabilities of veteran status in
the same cells. The sample includes white men born in 1950–53.
Plotted points consist of average residuals (over four years of
earnings) from regressions on period and cohort effects. The slope
of the least squares regression line drawn through the points is
−2,384, with a standard error of 778.

estimator can then be written

�̂2SLS ≡
[∑

i

ViV ′
i

]−1 ∑
i

Viyi,

where � ≡ [α′ ρ]′ is the corresponding coefficient vector. Note
that

�̂2SLS = � +
[∑

i

ViV ′
i

]−1 ∑
i

Vi[ηi + ρ(si − ŝi)]

= � +
[∑

i

ViV ′
i

]−1 ∑
i

Viηi, (4.2.1)

where the second equality comes from the fact that the first-
stage residuals, si − ŝi, are orthogonal to Vi in the sample. The
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asymptotic distribution of the 2SLS coefficient vector is there-
fore the asymptotic distribution of

[∑
i ViV ′

i

]−1 ∑
i Viηi. This

quantity is a little harder to work with than the correspond-
ing OLS quantity, because the regressors in this case involve
estimated fitted values, ŝi. A Slutsky-type argument shows,
however, that we get the same limiting distribution replacing
estimated fitted values with the corresponding population fit-
ted values (i.e., replacing ŝi with [X′

iπ10 + π11zi]). It therefore
follows that �̂2SLS has an asymptotically normal distribution,
with probability limit �, and a covariance matrix estimated
consistently by

[∑
i ViV ′

i

]−1[∑
i ViV ′

iη
2
i

][∑
i ViV ′

i

]−1. This is a
sandwich formula like the one for OLS standard errors (White,
1982). Much as with OLS, if ηi is conditionally homoskedas-
tic given covariates and instruments, the consistent covariance
matrix estimator simplifies to

[∑
i ViV ′

i

]−1
σ 2

η .
There is little new here, but there is one tricky point. It seems

natural to construct 2SLS estimates manually by estimating
the first stage (4.1.4a) and then plugging the fitted values into
equation (4.1.9) and estimating this by OLS. That’s fine as far
as the coefficient estimates go, but the resulting standard errors
are wrong. Conventional regression software does not know
that you are trying to construct a 2SLS estimate. When con-
structing standard errors, the software computes the residual
variance of the equation you estimate by OLS in the manual
second stage:

yi − [α′Xi + ρ ŝi] = [ηi + ρ(si − ŝi)],
replacing the coefficients α and ρ with the corresponding
second-stage estimates. The correct residual variance esti-
mator, however, uses the original endogenous regressor to
construct residuals and not the first-stage fitted values, ŝi.
In other words, the residual you want is the estimated yi −
[α′Xi + ρsi] = ηi, so as to consistently estimate σ 2

η , and not
the variance of ηi + ρ(si − ŝi). Although this problem is easy to
fix (you can construct the appropriate residual variance esti-
mator in a separate calculation), software designed for 2SLS
gets this right automatically, and may help you avoid other
common 2SLS mistakes.
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4.2.2 Overidentification and the 2SLS Minimand�

Constant effects models with more instruments than endoge-
nous variables are said to be overidentified. (Models with the
same number of instruments and endogenous variables are
said to be just-identified.) With more instruments than needed
to identify the parameters of interest, overidentified models
impose a set of restrictions that can be evaluated as part of
a process of specification testing. This process amounts to
asking whether the line plotted in a VIV-type picture fits the
relevant conditional means tightly enough, given the precision
with which these means are estimated. The details behind this
useful idea are easiest to spell out using matrix notation.

Let Zi ≡ [X′
i z1i · · · zqi]′ denote the vector formed by con-

catenating the exogenous covariates and q instrumental vari-
ables, and let Wi ≡ [X′

i si]′ denote the vector formed by con-
catenating the covariates and the single endogenous variable of
interest. In the quarter-of-birth study, for example, the covari-
ates are year-of-birth and state-of-birth dummies, the instru-
ments are quarter-of-birth dummies, and the endogenous
variable is schooling. The coefficient vector is still � ≡ [α′ ρ]′,
as in the previous subsection. The residuals for the causal
(second-stage) model can be defined as a function of � using

ηi(�) ≡ yi − �′Wi = yi − [α′Xi + ρsi].
This residual is assumed to be uncorrelated with the instru-
ment vector, Zi. In other words, ηi satisfies the orthogonality
condition,

E[Ziηi(�)] = 0. (4.2.2)

In any sample, however, this equation will not hold exactly
because there are more moment conditions than there are
elements of �.11 The sample analog of (4.2.2) is the sum over i,

1
N

∑
Ziηi(�) ≡ mN(�). (4.2.3)

11With a single endogenous variable and more than one instrument, � is
[k + 1] × 1, while Zi is [k + q] × 1 for q > 1. Hence the resulting linear system
cannot be solved exactly unless there is a linear dependency that makes some
of the instruments (moment equations) redundant.
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2SLS can be understood as a generalized method of moments
(GMM) estimator that chooses a value for � by making (4.2.3)
as close to zero as possible.

By the central limit theorem, the sample moment vec-
tor

√
NmN(�) has an asymptotic covariance matrix equal

to E[ZiZ′
iηi(�)2], a matrix we’ll call �. Although somewhat

intimidating at first blush, this is just a matrix of fourth
moments, as in the sandwich formula used to construct robust
standard errors, (3.1.7). As shown by Hansen (1982), the opti-
mal GMM estimator based on (4.2.2) minimizes a quadratic
form in the sample moment vector, mN(ĝ), where ĝ is a can-
didate estimator of �. The optimal weighting matrix in the
middle of the GMM quadratic form is �−1. In practice, of
course, � is unknown and must be estimated. A feasible ver-
sion of the GMM procedure uses a consistent estimator of
� in the weighting matrix. Since the estimators using known
and estimated � have the same asymptotic distribution, we’ll
ignore this distinction for now. The quadratic form to be
minimized can therefore be written,

JN(ĝ) ≡ NmN(ĝ)′�−1mN(ĝ), (4.2.4)

where the N-term out front comes from
√

N normalization
of the sample moments. As shown immediately below, when
the residuals are conditionally homoskedastic, the minimizer
of JN(ĝ) is the 2SLS estimator. Without homoskedasticity, the
GMM estimator that minimizes (4.2.4) is White’s (1982) two-
stage IV (a generalization of 2SLS), so it makes sense to call
JN(ĝ) the 2SLS minimand.

Here are some of the details behind the GMM interpretation
of 2SLS.12 Conditional homoskedasticity means that

� = E[ZiZ′
iηi(�)2] = E[ZiZ′

i]σ 2
η .

Substituting for �−1 and using y, Z, and W to denote sample
data vectors and matrices, the quadratic form to be minimized

12More detail can be found in Newey (1985), Newey and West (1987), the
advanced text by Amemiya (1985), and the original Hansen (1982) GMM
paper.
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becomes

JN(ĝ) = 1
Nσ 2

η

(y − Wĝ)′ZE[ZiZ′
i]−1Z′(y − Wĝ). (4.2.5)

Finally, substituting the sample cross-product matrix [Z′Z
N ] for

E[ZiZ′
i], we have

ĴN(ĝ) = 1
σ 2

η

(y − Wĝ)′PZ(y − Wĝ),

where PZ = Z(Z′Z)−1Z. From here, we get the solution

ĝ = �̂2SLS = [W ′PZW]−1W ′PZy.

Since the projection operator, PZ, produces fitted values (i.e.,
PZW gives the fitted values from a regression of W on Z), and
PZ is an idempotent matrix, this can be seen to be the OLS esti-
mator of the second-stage equation, (4.1.9), written in matrix
notation. More generally, even without homoskedasticity we
can obtain a feasible efficient 2SLS-type estimator by minimiz-
ing (4.2.4) and using a consistent estimator of E[ZiZ′

iηi(�)2] to
form ĴN(ĝ). Typically, we’d use the empirical fourth moments,∑

ZiZ′
iη̂

2
i , where η̂i is the regular 2SLS residual computed

without worrying about heteroskedasticity (see White, 1982,
for distribution theory and other details).

The overidentification test statistic is given by the minimized
2SLS minimand. Intuitively, this statistic tells us whether the
sample moment vector, mN(ĝ), is close enough to zero for
the assumption that E[Ziηi] = 0 to be plausible. In particular,
under the null hypothesis that the residuals and instruments
are indeed uncorrelated, the minimized JN(ĝ) has a χ2(q − 1)
distribution. We can therefore compare the empirical value of
the 2SLS minimand with chi-square tables in a formal test for
H0 : E[Ziηi] = 0.

We’re especially interested in the 2SLS minimand when the
instruments are a full set of mutually exclusive dummy vari-
ables, as for the Wald estimators and grouped data estimation
strategies discussed above. In this important special case, 2SLS
becomes WLS estimation of a grouped equation like (4.1.16),
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while the 2SLS minimand is the weighted sum of squares being
minimized. To see this, note that regression on a full set of
mutually exclusive dummy variables for an instrument that
takes on j values produces an N × 1 vector of fitted values
equal to the j conditional means at each value of the instru-
ment (included covariates are counted as instruments), each
one of these nj times, where nj is the group size and

∑
nj = N.

The cross-product matrix [Z′Z] in this case is a j×j diagonal
matrix with elements nj. Simplifying, we then have

ĴN(ĝ) = 1
σ 2

η

∑
j

nj(ȳj − ĝ′W̄j)2, (4.2.6)

where W̄j is the sample mean of the rows of matrix W in
group j. Thus, ĴN(ĝ) is the GLS minimand for estimation of the
regression of ȳj on W̄j. With a little more work (here we skip
the details), we can similarly show that the efficient two-step
IV procedure without homoskedasticity minimizes

ĴN(ĝ) =
∑

j

(
nj

σ 2
j

)
(ȳj − ĝ′W̄j)2, (4.2.7)

where σ 2
j is the variance of ηi in group j. Estimation

using (4.2.7) is feasible because we can estimate σ 2
j in a first

step, using an inefficient but still consistent 2SLS estimator that
ignores heteroskedasticity. Efficient two-step IV estimators are
constructed in Angrist (1990, 1991).

The GLS structure of the 2SLS minimand allows us to inter-
pret the overidentification test statistic for dummy instruments
as a measure of the goodness of fit of the line connecting ȳj

and W̄j. In other words, this is the chi-square goodness-of-fit
statistic for the regression line in a VIV plot like that shown
in figure 4.1.2. The chi-square degrees of freedom parameter
is given by the difference between the number of instruments
(groups) and the number of parameters being estimated.13

13If, for example, the instrument takes on three values, one of which is
assigned to the constant, and the model includes a constant and a single
endogenous variable only, the test statistic has 1 degree of freedom.
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As with the 2SLS estimator, there are many roads to the
test statistic, (4.2.7). Here are two further paths that are
worth knowing. First, the test statistic based on the GMM
minimand for IV, whether the instruments are group dum-
mies or not, is the same as the overidentification test statistic
discussed in widely used econometric references on simultane-
ous equations models. For example, this statistic features in
Hausman’s (1983) chapter on simultaneous equations in the
Handbook of Econometrics. Hausman also proposes a simple
computational procedure: in homoskedastic models, the min-
imized 2SLS minimand is the sample size times the R2 from a
regression of the 2SLS residuals on the instruments (and the
exogenous covariates). The formula for this is N[ η̂′PZ η̂

η̂′η̂ ], where

η̂ = y − W�̂2SLS is the vector of 2SLS residuals.
Second, it’s worth emphasizing that the overidentification

idea can be said to be “more than one way to skin the same
econometric cat.” In other words, given more than one instru-
ment for the same causal relation, we might construct just-
identified IV estimators one at a time and compare them.
This comparison checks overidentification directly: if each
just-identified estimator is consistent, the differences between
them should be small relative to sampling variance, and should
shrink as the sample size and hence the precision of these esti-
mates increases. In fact, a formal test of the equality of all
possible just-identified estimators is said to generate a Wald
test of this null hypothesis, while the test statistic based on the
2SLS minimand is said to be a Lagrange multiplier (LM) test
because it can be related to the score vector in a maximum
likelihood version of the IV setup.14

In the grouped data version of IV, the Wald test amounts to a
test for equality of the set of all possible linearly independent
Wald estimators. If, for example, draft lottery numbers are
divided into four groups based on various cohorts’ eligibility
cutoffs (RSN 1–95, 96–125, 126–195, and the rest), then

14The Wald estimator and Wald test are named after the same man, Abra-
ham Wald, but the latter reference is Wald (1943). Wald, who died tragically
in a plane crash at the age of 48, was a giant of econometrics as well as
mathematical statistics.
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three linearly independent Wald estimators can be constructed.
Alternatively, the efficient grouped data estimator can be con-
structed by running GLS on these four conditional means. Four
groups means there are three possible Wald estimators and
two nonredundant equality restrictions on these three; hence,
the relevant Wald statistic has 2 degrees of freedom. On the
other hand, four groups means three instruments and a con-
stant are available to estimate a model with two parameters
(the constant and the causal effect of military service). So the
2SLS minimand generates an overidentification test statistic
with 4 − 2 = 2 degrees of freedom. And, provided you use the
same method of estimating the weighting matrix in the rel-
evant quadratic forms, these two test statistics not only test
the same thing, they are numerically equivalent. This makes
sense, since 2SLS is the efficient linear combination of Wald
estimators.15

Finally, a caveat regarding overidentification tests in prac-
tice. Because JN(ĝ) measures variance-normalized goodness of
fit, the overidentification test statistic tends to be low when the
underlying estimates are imprecise. Since IV estimates are very
often imprecise, we cannot take much satisfaction from the
fact that one estimate is within sampling variance of another,
even if the individual estimates appear precise enough to be
informative. On the other hand, in cases where the underlying
IV estimates are quite precise, the fact that the overidentifi-
cation test statistic rejects need not point to an identification
failure. Rather, this may be evidence of treatment effect het-
erogeneity, a possibility we discuss further below. On the
conceptual side, however, an understanding of the anatomy of
the 2SLS minimand is invaluable, for it once again highlights

15The fact that Wald and LM testing procedures for the same null are equiv-
alent in linear models was established by Newey and West (1987). Angrist
(1991) gives a more formal statement of the argument in this paragraph. An
interesting econometric question in this context, first raised by Deaton (1985),
is how many groups are optimal when this can be varied. The analogy between
grouping and IV means that more groups equals more instruments, and hence
greater asymptotic efficiency at the cost of more bias (see chapter 8). Devereux
(2007) proposes a simple bias-corrected IV estimator for grouped data with
many groups.
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the important link between grouped data and IV. This link
takes the mystery out of estimation and testing with instrumen-
tal variables and focuses our attention on the raw moments
that provide the foundation for causal inference.

4.3 Two-Sample IV and Split-Sample IV�

The GMM interpretation of 2SLS highlights the fact that IV
estimates can be constructed from sample moments alone,
with no microdata. Returning to the sample moment condi-
tion, (4.2.3), and rearranging slightly produces a regression-
like equation involving second moments:

Z′y
N

= Z′W
N

� + Z′η
N

(4.3.1)

GLS estimates of � in (4.3.1) are consistent because E[Z′y
N ] =

E[Z′W
N ]�.

The 2SLS minimand can be thought of as GLS applied
to (4.3.1), after multiplying by

√
N to keep the residual from

disappearing as the sample size gets large. In other words,
2SLS minimizes a quadratic form in the residuals from (4.3.1)
with a (possibly nondiagonal) weighting matrix. An impor-
tant insight that comes from writing the 2SLS problem in this
way is that we do not need individual observations to esti-
mate (4.3.1). Just as with the OLS coefficient vector, which
can be constructed from the sample conditional mean function,
IV estimates can also be constructed from sample moments.
The necessary moments are Z′y

N and Z′W
N . The dependent vari-

able, Z′y
N , is a vector of dimension [k + q] × 1. The regressor

matrix, Z′W
N , is of dimension [k + q] × [k + 1]. The IV second-

moment equation cannot be solved exactly unless q = 1, so it
makes sense to make the fit as close as possible by minimizing
a quadratic form in the residuals. The most efficient weighting
matrix for this purpose is the asymptotic covariance matrix of
Z′η√

N
. This again produces the 2SLS minimand, ĴN(ĝ).

A related insight is the fact that the moment matrices on the
left- and right-hand side of the equals sign in equation (4.3.1)
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need not come from the same data sets, provided these data
sets are drawn from the same population. This observation
leads to the two-sample instrumental variables (TSIV) esti-
mator used by Angrist (1990) and developed formally in
Angrist and Krueger (1992).16 Briefly, let Z1 and y1 denote the
instrument/covariate matrix and dependent variable vectors in
data set 1 of size N1 and let Z2 and W2 denote the instrument/
covariate matrix and endogenous variable/covariate matrix in

data set 2 of size N2. Assuming plim(
Z′

2W2
N2

) = plim(
Z′

1W1
N1

), GLS
estimates of the two-sample moment equation

Z′
1y1

N1
= Z′

2W2

N2
� +

{[
Z′

1W1

N1
− Z′

2W2

N2

]
� + Z′

1η1

N1

}

are consistent for �. The asymptotic distribution of this estima-
tor is obtained by normalizing by

√
N1 and assuming plim( N2

N1
)

is a constant.
The utility of TSIV comes from the fact that it widens the

scope for IV estimation to situations where observations on
dependent variables, instruments, and the endogenous vari-
able of interest are hard to find in a single sample. It may
be easier to find one data set that has information on out-
comes and instruments, with which the reduced form can
be estimated, and another data set that has information on
endogenous variables and instruments, with which the first
stage can be estimated. For example, in Angrist (1990), admin-
istrative records from the Social Security Administration (SSA)
provide information on the dependent variable (annual earn-
ings) and the instruments (draft lottery numbers coded from
dates of birth, as well as covariates for race and year of birth).
The SSA does not, however, track participants’ veteran status.
This information was taken from military records, which also
contain dates of birth that can used to code lottery numbers.

16Applications of TSIV include Bjorklund and Jantti (1997), Jappelli,
Pischke, and Souleles (1998), Currie and Yelowitz (2000), and Dee and Evans
(2003). In a recent paper, Inoue and Solon (2009) compare the asymptotic dis-
tributions of alternative TSIV estimators and introduce a maximum likelihood
(LIML-type) version of TSIV. They also correct a mistake in the distribution
theory in Angrist and Krueger (1995), discussed later in this section.
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Angrist (1990) used these military records to construct
Z′

2W2
N2

,
the first-stage correlation between lottery numbers and vet-
eran status conditional on race and year of birth, while the

SSA data were used to construct
Z′

1y1
N1

.
Two further simplifications make TSIV especially easy to

use. First, as noted previously, when the instruments consist of
a full set of mutually exclusive dummy variables, as in Angrist
(1990) and Angrist and Krueger (1992), the second moment
equation, (4.3.1), simplifies to a model for conditional means.
In particular, the 2SLS minimand for the two-sample problem
becomes

ĴN(ĝ) =
∑

j

ωj(ȳ1j − ĝ′W̄2j)2, (4.3.2)

where ȳ1j is the mean of the dependent variable at instrument/
covariate value j in one sample, W̄2j is the mean of endoge-
nous variables and covariates at instrument/covariate value
j in a second sample, and ωj is an appropriate weight. This
amounts to WLS estimation of the VIV equation, except that
the dependent and independent variables do not come from the
same sample. Again, Angrist (1990) and Angrist and Krueger
(1992) provide illustrations. The optimal weights for asymp-
totically efficient TSIV are given by the variance of ȳ1j − ĝ′W̄2j.
This variance is easy to compute if the two samples used for
TSIV are independent.

Second, Angrist and Krueger (1995) introduced a computa-
tionally attractive TSIV-type estimator that requires no matrix
manipulation and can be implemented with ordinary regres-
sion software. This estimator, called split-sample IV (SSIV),
works as follows.17 The first-stage estimates in data set 2 are
(Z′

2Z2)−1Z′
2W2. These are carried over to data set 1 by con-

structing cross-sample fitted values, Ŵ12 ≡ Z1(Z′
2Z2)−1Z′

2W2.

17Angrist and Krueger called this estimator SSIV because they were con-
cerned with a scenario where a single data set is deliberately split in two.
As discussed in section 4.6.4, the resulting estimator may have less bias than
conventional 2SLS. Inoue and Solon (2009) refer to the estimator Angrist and
Krueger (1995) called SSIV as two-sample 2SLS, or TS2SLS.
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The SSIV second stage is a regression of y1 on Ŵ12. The cor-
rect asymptotic distribution for this estimator is derived in
Inoue and Solon (2009), who show that the distribution pre-
sented in Angrist and Krueger (1992) requires the assumption
that Z′

1Z1 = Z′
2Z2 (as would be true if the marginal distri-

bution of the instruments and covariates is fixed in repeated
samples). It’s worth noting, however, that the limiting distri-
butions of SSIV and 2SLS are the same when the coefficient
on the endogenous variable is zero. The standard errors for
this special case are simple to construct and probably provide
a reasonably good approximation to the general case.18

4.4 IV with Heterogeneous Potential Outcomes

The discussion of IV up to this point postulates a constant
causal effect. In the case of a dummy variable such as veteran
status, this means y1i −y0i = ρ for all i, while with a multival-
ued treatment such as schooling, this means Ysi − Ys−1,i = ρ

for all s and all i. Both are highly stylized views of the world,
especially the multivalued case, which imposes linearity as
well as homogeneity. To focus on one thing at a time in a
heterogeneous effects model, we start with a zero-one causal
variable, like a treatment dummy. In this context, we’d like
to allow for treatment effect heterogeneity, in other words, a
distribution of causal effects across individuals.

18This shortcut formula uses the standard errors from the manual SSIV
second stage. The correct asymptotic covariance matrix formula, from Inoue
and Solon (2005), is

{B′[(σ11 + κ�′�22�)A]−1B}−1,

where B = plim
(Z′

2W2
N2

) = plim
(Z′

1W1
N1

)
, A = plim

(Z′
1Z1
N1

) = plim
(Z2Z2

N2

)
,

plim
(N2

N1

) = κ, σ11 is the variance of the reduced-form residual in data set 1,
and �22 is the variance of the first-stage residual in data set 2. In principle,
these pieces are easy enough to calculate. Other approaches to SSIV inference
include those of Dee and Evans (2003), who calculate standard errors for
just-identified models using the delta method, and Bjorklund and Jantti
(1997), who use a bootstrap.
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Why is treatment effect heterogeneity important? The
answer lies in the distinction between the two types of vali-
dity that characterize a research design. Internal validity is
the question of whether a given design successfully uncovers
causal effects for the population being studied. A randomized
clinical trial, or for that matter a good IV study, has a strong
claim to internal validity. External validity is the predictive
value of the study’s findings in a different context. For exam-
ple, if the study population in a randomized trial is especially
likely to benefit from treatment, the resulting estimates may
have little external validity. Likewise, draft lottery estimates
of the effects of conscription for service in the Vietnam era
need not be a good measure of the consequences of voluntary
military service. An econometric framework with heteroge-
neous treatment effects helps us to assess both the internal
and external validity of IV estimates.19

4.4.1 Local Average Treatment Effects

In an IV framework, the engine that drives causal inference is
the instrument zi, but the variable of interest is still di. This
feature of the IV setup leads us to adopt a generalized poten-
tial outcomes concept, indexed against both instruments and
treatment status. Let yi(d, z) denote the potential outcome of
individual i were this person to have treatment status di = d
and instrument value zi = z. This tells us, for example, what
the earnings of i would be given alternative combinations of
veteran status and draft eligibility status. The causal effect
of veteran status given i’s realized draft eligibility status is
yi(1, zi) −yi(0, zi), while the causal effect of draft eligibility
status given i’s veteran status is yi(di, 1) −yi(di, 0).

We can think of instrumental variables as initiating a causal
chain where the instrument zi affects the variable of interest,
di, which in turn affects outcomes, yi. To make this precise,
we introduce notation to express the idea that the instrument

19The distinction between internal and external validity has a long history
in social science. See, for example, the chapter-length discussion in Shadish,
Cook, and Campbell (2002), the successor to a classic text on research
methods by Campbell and Stanley (1963).
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has a causal effect on di. Let d1i be i’s treatment status when
zi = 1, while d0i is i’s treatment status when zi = 0. Observed
treatment status is therefore

di = d0i + (d1i − d0i)zi = π0 + π1izi + ξi. (4.4.1)

In random coefficients notation, π0 ≡ E[d0i] and π1i ≡ (d1i −
d0i), so π1i is the heterogeneous causal effect of the instrument
on di. As with potential outcomes, only one of the potential
treatment assignments, d1i and d0i, is ever observed for any
one person. In the draft lottery example, d0i tells us whether i
would serve in the military if he drew a high (draft-ineligible)
lottery number, while d1i tells us whether i would serve if he
drew a low (draft-eligible) lottery number. We get to see one
or the other of these potential assignments depending on zi.
The average causal effect of zi on di is E[π1i].

The first assumption in the heterogeneous effects framework
is that the instrument is as good as randomly assigned: it is
independent of the vector of potential outcomes and potential
treatment assignments. Formally, this can be written as

[{yi(d, z); ∀ d, z}, d1i, d0i] � zi. (4.4.2)

This independence assumption is sufficient for a causal inter-
pretation of the reduced form, that is, the regression of yi

on zi. Specifically,

E[yi|zi = 1] − E[yi|zi = 0]
= E[yi(d1i, 1)|zi = 1] − E[yi(d0i, 0)|zi = 0]
= E[yi(d1i, 1) −yi(d0i, 0)],

the causal effect of the instrument on yi. Independence also
means that

E[di|zi = 1] − E[di|zi = 0] = E[d1i|zi = 1] − E[d0i|zi = 0]
= E[d1i − d0i].

In other words, the first stage from our earlier discussion of
2SLS captures the causal effect of zi on di.

The second key assumption in the heterogeneous effects
framework is the presumption that yi(d, z) is a function only
of d. To be specific, while draft eligibility clearly affects vet-
eran status, an individual’s potential earnings as a veteran or
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nonveteran are assumed to be unchanged by draft eligibil-
ity status. In general, the claim that an instrument operates
through a single known causal channel is called an exclusion
restriction. Formally, the exclusion restriction says that

yi(d, 0) = yi(d, 1) for d = 0, 1.

In a linear model with constant effects, the exclusion restric-
tion is expressed by the omission of instruments from the
causal equation of interest and by saying that E[ziηi] = 0 in
an equation like (4.1.14) in section 4.1. It’s worth noting
however, that the traditional error term notation used for
simultaneous equations models doesn’t lend itself to a clear
distinction between independence and exclusion. We need zi

and ηi to be uncorrelated, but the reasoning that lies behind
this assumption is unclear until we consider the independence
and exclusion restrictions as distinct propositions.

The exclusion restriction fails for draft lottery instruments
if men with low draft lottery numbers were affected in some
way other than through an increased likelihood of military
service. For example, Angrist and Krueger (1992) looked for
an association between draft lottery numbers and schooling.
Their idea was that educational draft deferments could have
led men with low lottery numbers to stay in college longer than
they would have otherwise desired. If so, draft lottery num-
bers are correlated with earnings for at least two reasons: an
increased likelihood of military service and an increased like-
lihood of college attendance. The fact that the lottery number
is randomly assigned (and therefore satisfies the independence
assumption) does not make this possibility less likely. The
exclusion restriction is distinct from the claim that the instru-
ment is (as good as) randomly assigned. Rather, it is a claim
about a unique channel for causal effects of the instrument.20

20As it turns out, there is not much of a relationship between schooling and
lottery numbers in the Angrist and Krueger (1992) data, probably because
educational deferments were phased out during the lottery period. On the
other hand, in a recent paper, Angrist and Chen (2007) argue that Vietnam
veterans end up with more schooling because of veterans benefits (known
as the GI Bill). Extra schooling via the GI Bill does not violate the exclu-
sion restriction because veterans’ benefits are a downstream consequence of
military service.
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Using the exclusion restriction, we can define potential out-
comes indexed solely against treatment status using the single
index (y1i, y0i) notation we have been using all along. In
particular,

y1i ≡ yi(1, 1) = yi(1, 0);

y0i ≡ yi(0, 1) = yi(0, 0). (4.4.3)

The observed outcome, yi, can therefore be written in terms
of potential outcomes as:

yi = yi(0, zi) + [yi(1, zi) −yi(0, zi)]di (4.4.4)

= y0i + (y1i −y0i)di.

Random coefficients notation for this is

yi = α0 + ρidi + ηi,

a compact version of (4.4.4) with α0 ≡ E[y0i] and ρi ≡
y1i −y0i.

A final assumption needed for heterogeneous IV models is
that either π1i ≥ 0 for all i or π1i ≤ 0 for all i. This monotonic-
ity assumption, introduced by Imbens and Angrist (1994),
means that while the instrument may have no effect on some
people, all those who are affected are affected in the same way.
In other words, either d1i ≥ d0i or d1i ≤ d0i for all i. In what
follows, we assume monotonicity holds with d1i ≥ d0i. In the
draft lottery example, this means that although draft eligibility
may have had no effect on the probability of military service
for some men, there is no one who was actually kept out of
the military by being draft eligible. Without monotonicity, IV
estimators are not guaranteed to estimate a weighted average
of the underlying individual causal effects, y1i −y0i.

Given the exclusion restriction, the independence of instru-
ments and potential outcomes, the existence of a first stage,
and monotonicity, the Wald estimand can be interpreted as
the effect of veteran status on those whose treatment status
can be changed by the instrument. This parameter is called
the local average treatment effect (LATE; Imbens and Angrist,
1994). Here is a formal statement:
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Theorem 4.4.1 The LATE Theorem. Suppose
(A1, Independence) {yi(d1i, 1), yi(d0i, 0), d1i, d0i} � zi;
(A2, Exclusion) yi(d, 0) = yi(d, 1) ≡ ydi for d = 0, 1;
(A3, First stage) E[d1i − d0i] �= 0;
(A4, Monotonicity) d1i − d0i ≥ 0 ∀i, or vice versa;

Then

E[yi|zi = 1] − E[yi|zi = 0]
E[di|zi = 1] − E[di|zi = 0] = E[y1i −y0i|d1i > d0i]

= E[ρi|π1i > 0].

Proof. Use the exclusion restriction to write E[yi|zi =
1] = E[y0i + (y1i −y0i)di|zi = 1], which equals E[y0i + (y1i −
y0i)d1i] by independence.21 Likewise E[yi|zi = 0] = E[y0i +
(y1i −y0i)d0i], so the numerator of the Wald estimator is
E[(y1i −y0i)(d1i − d0i)]. Monotonicity means d1i − d0i equals
one or zero, so

E[(y1i −y0i)(d1i − d0i)] = E[y1i −y0i|d1i > d0i]P[d1i > d0i].
A similar argument shows

E[di|zi = 1] − E[di|zi = 0] = E[d1i − d0i] = P[d1i > d0i].
This theorem says that an instrument that is as good as ran-

domly assigned, affects the outcome through a single known
channel, has a first stage, and affects the causal channel of
interest only in one direction can be used to estimate the aver-
age causal effect on the affected group. Thus, IV estimates
of effects of military service using the draft lottery capture the
effect of military service on men who served because they were
draft eligible but who would not otherwise have served. This
excludes volunteers and men who were exempted from mili-
tary service for medical reasons, but it includes men for whom
draft policy was binding.

How useful is LATE? No theorem answers this question, but
it’s always worth discussing. Part of the interest in the effects of

21Note that the statement of independence in A1 has been simplified from
(4.4.2) to cover only those values of yi(d, z) that we might see, specifically,
yi(dzi , zi).
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Vietnam-era service has to do with the question of whether vet-
erans (especially conscripts) were adequately compensated for
their service. Internally valid draft lottery estimates answer this
question. Draft lottery estimates of the effects of Vietnam-era
conscription may also be relevant for discussions of any future
conscription policy. On the other hand, while draft lottery
instruments produce internally valid estimates of the causal
effect of Vietnam-era conscription, the external validity—that
is, the predictive value of these estimates for military service
in other times and places—is not directly addressed by the
IV framework. There is nothing in IV formulas to explain
why Vietnam-era service affects earnings; for that, you need
a theory.22

You might wonder why we need monotonicity for the LATE
theorem, an assumption that plays no role in the traditional
simultaneous equations framework with constant effects. A
failure of monotonicity means the instrument pushes some
people into treatment while pushing others out. Angrist,
Imbens, and Rubin (1996) call the latter group defiers. Defiers
complicate the link between LATE and the reduced form. To
see why, go back to the step in the proof of the LATE theorem
that shows the reduced form is

E[yi|zi = 1] − E[yi|zi = 0] = E[(y1i −y0i)(d1i − d0i)].
Without monotonicity, this is equal to

E[y1i −y0i|d1i > d0i]P[d1i > d0i]
− E[y1i −y0i|d1i < d0i]P[d1i < d0i].

We might therefore have a scenario where treatment effects
are positive for everyone yet the reduced form is zero because
effects on compliers are canceled out by effects on defiers.
This doesn’t come up in a constant effects model because
the reduced form is always the constant effect times the first

22Angrist (1990) interprets draft lottery estimates as the penalty for lost
labor market experience. This suggests draft lottery estimates should have
external validity for the effects of conscription in other periods, a conjecture
born out by the results for World War II draftees in Angrist and Krueger
(1994).
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stage, regardless of whether the first stage includes defiant
behavior.23

A deeper understanding of LATE can be had by linking it to
a workhorse of contemporary econometrics, the latent index
model for dummy endogenous variables such as assignment
to treatment. Latent index models describe individual choices
as being determined by a comparison of partly observed and
partly unknown (“latent”) utilities and costs (see, e.g., Heck-
man, 1978). Typically, these unobservables are thought of as
being related to outcomes, in which case the treatment variable
is said to be endogenous (though it is not really endogenous in
a simultaneous equations sense). For example, we can model
veteran status as

di =
{

1 if γ0 + γ1zi > vi

0 otherwise

where vi is a random factor involving unobserved costs and
benefits of military service assumed to be independent of zi.
This latent index model characterizes potential treatment
assignments as

d0i = 1[γ0 > vi] and d1i = 1[γ0 + γ1 > vi].
Note that in this model, monotonicity is automatically satisfied
since γ1 is a constant. Assuming γ1 > 0, LATE can be written

E[y1i −y0i|d1i > d0i] = E[y1i −y0i|γ0 + γ1 > vi > γ0],
which is a function of the latent first-stage parameters, γ0

and γ1, as well as the joint distribution of y1i −y0i and vi.
This is not, in general, the same as the unconditional aver-
age treatment effect, E[y1i −y0i], or the effect on the treated,

23With a constant effect, ρ,

E[y1i −y0i|d1i > d0i]P[d1i > d0i] − E[y1i −y0i|d1i < d0i]P[d1i < d0i]
= ρ{P[d1i > d0i] − P[d1i < d0i]}
= ρ{E[d1i − d0i]}.

So a zero reduced-form effect means either the first stage is zero or ρ = 0.
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E[y1i −y0i|di = 1]. We explore the distinction between differ-
ent average causal effects in the next section.

4.4.2 The Compliant Subpopulation

The LATE framework partitions any population with an
instrument into a set of three instrument-dependent sub-
groups, defined by the manner in which members of the
population react to the instrument:

Definition 4.4.1 Compliers. The subpopulation with d1i = 1
and d0i = 0.

Always-takers. The subpopulation with d1i = d0i = 1.
Never-takers. The subpopulation with d1i = d0i = 0.

LATE is the effect of treatment on the population of com-
pliers. The term “compliers” comes from an analogy with
randomized trials where some experimental subjects comply
with the randomly assigned treatment protocol (e.g., take
their medicine) but some do not, while some control subjects
obtain access to the experimental treatment even though they
are not supposed to. Those who don’t take their medicine
when randomly assigned to do so are never-takers, while
those who take the medicine even when put into the control
group are always-takers. Without adding further assumptions
(e.g., constant causal effects), LATE is not informative about
effects on never-takers and always-takers because, by defini-
tion, treatment status for these two groups is unchanged by the
instrument. The analogy between IV and a randomized trial
with partial compliance is more than allegorical: IV solves the
problem of causal inference in a randomized trial with partial
compliance. This important point merits a separate subsection,
below.

Before turning to this important special case, we make a few
general points. First, the average causal effect on compliers is
not usually the same as the average treatment effect on the
treated. From the simple fact that di = d0i + (d1i − d0i)zi, we
learn that the treated population consists of two nonoverlap-
ping groups. By monotonicity, we cannot have both d0i = 1
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and d1i − d0i = 1, since d0i = 1 implies d1i = 1. The treated
therefore have either d0i = 1 or d1i − d0i = 1 and zi = 1, and
hence di can be written as the sum of two mutually exclu-
sive dummies, di0 and (d1i − d0i)zi. In other words, the
treated consist of either always-takers or of compliers with
the instrument switched on. Since the instrument is as good as
randomly assigned, compliers with the instrument switched
on are representative of all compliers. From here we get

E[y1i −y0i|di = 1]︸ ︷︷ ︸
Effect on the treated

= E[y1i −y0i|d0i = 1]︸ ︷︷ ︸
Effect on always-takers

P[d0i = 1|di = 1]

+ E[y1i −y0i|d1i > d0i]︸ ︷︷ ︸
Effect on compliers

P[d1i > d0i, zi = 1|di = 1].

(4.4.5)

Since P[d0i = 1|di = 1] and P[d1i > d0i, zi = 1|di = 1] add up
to one, this means that the effect of treatment on the treated is
a weighted average of effects on always-takers and compliers.

Likewise, LATE is not the average causal effect of treat-
ment on the nontreated, E[y1i −y0i|di = 0]. In the draft lottery
example, the average effect on the nontreated is the aver-
age causal effect of military service on the population of
nonveterans from Vietnam-era cohorts. The average effect of
treatment on the nontreated is a weighted average of effects
on never-takers and compliers. In particular,

E[y1i −y0i|di = 0]︸ ︷︷ ︸
Effect on the nontreated

= E[y1i −y0i|d1i = 0]︸ ︷︷ ︸
Effect on never-takers

P[d1i = 0|di = 0]

+ E[y1i −y0i|d1i > d0i]︸ ︷︷ ︸
Effect on compliers

P[d1i > d0i, zi = 0|di = 0],

(4.4.6)

where we use the fact that, by monotonicity, those with
d1i = 0 must be never-takers.
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Finally, averaging (4.4.5) and (4.4.6) using

E[y1i −y0i] = E[y1i −y0i|di = 1]P[di = 1]
+ E[y1i −y0i|di = 0]P[di = 0]

shows the unconditional average treatment effect to be a
weighted average of effects on compliers, always-takers, and
never-takers. Of course, this is a conclusion we could have
reached directly given monotonicity and definition (4.4.1).

Because an IV is not directly informative about effects on
always-takers and never-takers, instruments do not usually
capture the average causal effect on all of the treated or on all
of the nontreated. There are important exceptions to this rule,
however: instrumental variables that allow no always-takers
or no never-takers. Although this scenario is not typical, it is
an important special case. One example is the twins instrument
for fertility, used by Rosenzweig and Wolpin (1980), Bronars
and Grogger (1994), Angrist and Evans (1998), and Angrist,
Lavy, and Schlosser (2006). Another is Oreopoulos’s (2006)
recent study using changes in compulsory attendance laws as
instruments for schooling in Britain.

To see how this special case works with twins instruments,
let ti be a dummy variable indicating multiple second births.
Angrist and Evans (1998) used this instrument to estimate
the causal effect of having three children on earnings in the
population of women with at least two children. The third
child is especially interesting because reduced fertility for
American wives in the 1960s and 1970s meant a switch from
three children to two. Multiple second births provide quasi-
experimental variation on this margin. Let y0i denote potential
earnings if a woman has only two children while y1i denotes
her potential earnings if she has three, an event indicated by
di. Assuming that ti is as good as randomly assigned, that
fertility increases by at most one child in response to a mul-
tiple birth, and that multiple births affect outcomes only by
increasing fertility, LATE using the twins instrument ti is also
E[y1i −y0i|di = 0], the average causal effect on women who
are not treated (i.e., have two children only). This is because
all women who have a multiple second birth end up with three
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children, that is, there are no never-takers in response to the
twins instrument.

Oreopoulos (2006) also uses IV to estimate an average
causal effect of treatment on the nontreated. His study esti-
mates the economic returns to schooling using an increase in
the British compulsory attendance age from 14 to 15. Com-
pliance with the Britain’s new compulsory attendance law
was near perfect, though many teens would previously have
dropped out of school at age 14. The causal effect of interest in
this case is the earnings premium for an additional year of high
school. Finishing this year can be thought of as the treatment.
Since everybody in Oreopoulos’s British sample finished an
additional year when compulsory schooling laws were made
stricter, there are no never-takers. Oreopoulos’s IV strategy
therefore captures the average causal effect of obtaining one
more year of high school on all those who leave school at 14.
This turns on the fact that British teens are remarkably law-
abiding people—Oreopoulos’s IV strategy wouldn’t estimate
the effect of treatment on the nontreated in, say, Israel, where
teenagers get more leeway when it comes to compulsory school
attendance. Israeli econometricians using changes in compul-
sory attendance laws as instruments must therefore make do
with LATE.

4.4.3 IV in Randomized Trials

The language of the LATE framework is based on an anal-
ogy between IV and randomized trials. But some instruments
really do come from randomized trials. If the instrument is
a randomly assigned offer of treatment, then LATE is the
effect of treatment on those who comply with the offer but
are not treated otherwise. An especially important case is
when the instrument is generated by a randomized trial with
one-sided noncompliance. In many randomized trials, par-
ticipation is voluntary among those randomly assigned to
receive treatment. On the other hand, no one in the control
group has access to the experimental intervention. Since the
group that receives (i.e., complies with) the assigned treat-
ment is a self-selected subset of those offered treatment, a
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comparison between those actually treated and the control
group is misleading. The selection bias in this case is almost
always positive: those who take their medicine in a random-
ized trial tend to be healthier; those who take advantage of
randomly assigned economic interventions such as training
programs tend to earn more anyway.

IV using randomly assigned treatment intended as an instru-
mental variable for treatment received solves this sort of
compliance problem. Moreover, LATE is the effect of treat-
ment on the treated in this case. Suppose the instrument zi is a
dummy variable indicating random assignment to a treatment
group, while di is a dummy indicating whether treatment was
actually received. In practice, because of noncompliance, di

is not equal to zi. An example is the randomized evaluation
of the JTPA training program, where only 60 percent of those
assigned to be trained received training, while roughly 2 per-
cent of those assigned to the control group received training
anyway (Bloom et al., 1997; see also section 7.2.1). Non-
compliance in the JTPA arose from lack of interest among
participants and the failure of program operators to encour-
age participation. Since the compliance problem in this case
was largely confined to the treatment group, LATE using ran-
dom assignment, zi, as an instrument for treatment received,
di, is the effect of treatment on the treated.

The use of IV to solve compliance problems is illustrated in
table 4.4.1, which presents results from the JTPA experiment.
The outcome variable of primary interest in the JTPA exper-
iment is total earnings in the 30-month period after random
assignment. Columns 1 and 2 of the table show the difference
in earnings between those who were trained and those who
were not (the OLS estimates in column 2 are from a regression
model that adjusts for a number of individual characteristics
measured at the beginning of the experiment). The contrast
reported in columns 1 and 2 is on the order of $4,000 for
men and $2,200 for women, in both cases a large treatment
difference that amounts to about 20 percent of average earn-
ings. But these estimates are misleading because they compare
individuals according to di, the actual treatment received.
Since individuals assigned to the treatment group were free to
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Table 4.4.1
Results from the JTPA experiment: OLS and IV estimates of training impacts

Comparisons by Comparisons by Instrumental Variable
Training Status (OLS) Assignment Status (ITT) Estimates (IV)

Without With Without With Without With
Covariates Covariates Covariates Covariates Covariates Covariates

(1) (2) (3) (4) (5) (6)

A. Men 3,970 3,754 1,117 970 1,825 1,593
(555) (536) (569) (546) (928) (895)

B. Women 2,133 2,215 1,243 1,139 1,942 1,780
(345) (334) (359) (341) (560) (532)

Notes: Authors’ tabulation of JTPA study data. The table reports OLS, ITT, and IV estimates
of the effect of subsidized training on earnings in the JTPA experiment. Columns 1 and 2
show differences in earnings by training status; columns 3 and 4 show differences by random-
assignment status. Columns 5 and 6 report the result of using random-assignment status as an
instrument for training. The covariates used for columns 2, 4, and 6 are high school or GED,
black, Hispanic, married, worked less than 13 weeks in past year, AFDC (for women), plus
indicators for the JTPA service strategy recommended, age group, and second follow-up survey.
Robust standard errors are shown in parentheses. There are 5,102 men and 6,102 women in
the sample.

decline (and 40 percent did so), this comparison throws away
the random assignment unless the decision to comply was itself
independent of potential outcomes. This seems unlikely.

Columns 3 and 4 of table 4.4.1 compare individuals accord-
ing to whether they were offered treatment. In other words,
this comparison is based on randomly assigned zi. In the lan-
guage of clinical trials, the contrast in columns 3 and 4 is
known as an intention-to-treat (ITT) effect. The ITT effects
in the table are on the order of $1,200 (somewhat less with
covariates). Since zi was randomly assigned, ITT effects have
a causal interpretation: they tell us the causal effect of the offer
of treatment, building in the fact that many of those offered
have declined to participate. For this reason, the ITT effect is
too small relative to the average causal effect on those who
were in fact treated. Columns 5 and 6 put the pieces together
and give us the most interesting effect: ITT divided by the
difference in compliance rates between treatment and control
groups as originally assigned (about .6). These figures, roughly
$1,800, measure the effect of treatment on the treated.
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How do we know that ITT divided by compliance is the
effect of treatment on the treated? We can recognize ITT as
the reduced-form effect of the randomly assigned offer of treat-
ment, our instrument in this case. The compliance rate is the
first stage associated with this instrument, and the Wald esti-
mand, as always, is the reduced form divided by the first stage.
In general, this equals LATE, but because we have (almost)
no always-takers, the treated population consists (almost)
entirely of compliers. The IV estimates in columns 5 and 6
of table 4.4.1 are therefore consistent estimates of the effect of
treatment on the treated.

This conclusion is important enough that it warrants an
alternative derivation. To the best of our knowledge, the first
person to point out that the IV formula can be used to estimate
the effect of treatment on the treated in a randomized trial with
one-sided noncompliance was Howard Bloom (1984). Here is
Bloom’s result with a simple direct proof.

Theorem 4.4.2 The Bloom Result. Suppose the assumptions
of the LATE theorem hold, and E[di|zi = 0] = P[di = 1|zi =
0] = 0. Then

E[yi|zi = 1] − E[yi|zi = 0]
P[di = 1|zi = 1] = E[y1i −y0i|di = 1].

Proof. E[yi|zi = 1] = E[y0i|zi = 1] + E[(y1i −y0i)di|zi = 1],
while E[yi|zi = 0] = E[y0i|zi = 0] because zi = 0 implies
di = 0. Therefore

E[yi|zi = 1] − E[yi|zi = 0] = E[(y1i −y0i)di|zi = 1],
since E[y0i|zi = 0] = E[y0i|zi = 1] by independence. But

E[(y1i −y0i)di|zi = 1]
= E[y1i −y0i|di = 1, zi = 1]P[di = 1|zi = 1],

while di = 1 implies zi = 1, since no one with zi = 0 is treated.
Hence, E[y1i −y0i|di = 1, zi = 1] = E[y1i −y0i|di = 1].

In addition to telling us how to analyze randomized tri-
als with noncompliance, the LATE framework opens the
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door to cleverly designed randomized experiments in settings
where it’s impossible or unethical to compel treatment com-
pliance. A creative example from the field of criminology is
the Minneapolis Domestic Violence Experiment (MDVE). The
MDVE was a pioneering effort to determine the best police
response to domestic violence (Sherman and Berk, 1984).
In general, police use a number of strategies in response to
a domestic violence call. These include referral to counsel-
ing, separation orders, and arrest. A vigorous debate swirls
around the question of whether a hard-line response—arrest
and at least temporary incarceration—is productive, especially
in view of the fact that domestic assault charges are frequently
dropped.

As a result of this debate, the city of Minneapolis authorized
a randomized trial where the police response to a domestic
disturbance call was determined in part by random assign-
ment. The research design used randomly shuffled color-coded
report forms telling the responding officers to arrest some
perpetrators while referring others to counseling or merely sep-
arating the parties. In practice, however, the police were free
to overrule the random assignment. For example, an especially
dangerous or drunk offender was arrested no matter what. As
a result, the actual response often deviated from the randomly
assigned response, though the two are highly correlated.

Most published analyses of the MDVE data recognize this
compliance problem and focus on ITT effects, that is, they use
the original random assignment and not the treatment actu-
ally delivered. But the MDVE data can also be used to get
the average causal effect on compliers, in this case those who
were not arrested because they were randomly assigned to be
treated differently but would have been arrested otherwise.
The MDVE is analyzed in this spirit in Angrist (2006). Because
everyone in the MDVE who was assigned to be arrested was
in fact arrested, there are no never-takers. This is an interest-
ing twist and the flip side of the Bloom scenario: here we have
d1i = 1 for everybody. Consequently, LATE is the effect of
treatment on the nontreated, that is,

E[y1i −y0i|d1i > d0i] = E[y1i −y0i|di = 0],
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where di indicates arrest. The IV estimates using MDVE data
show that the average causal effect of arrest is to reduce repeat
offenses sharply, in this case, among the subpopulation not
arrested.24

4.4.4 Counting and Characterizing Compliers

We’ve seen that, except in special cases, each instrumental
variable identifies a unique causal parameter, one specific to
the subpopulation of compliers for that instrument. Differ-
ent valid instruments for the same causal relation therefore
estimate different things, at least in principle (an important
exception being instruments that allow for perfect compliance
on one side or the other). Although different IV estimates are
implicitly weighted up by 2SLS to produce a single average
causal effect, overidentification testing of the sort discussed
in section 4.2.2, where multiple instruments are validated
according to whether or not they estimate the same thing, is
out the window in a fully heterogeneous world.

Differences in compliant subpopulations might explain vari-
ability in treatment effects from one instrument to another.
We would therefore like to learn as much as we can about the
compliers for different instruments. Moreover, if the compli-
ant subpopulation is similar to other populations of interest,
the case for extrapolating estimated causal effects to these
other populations is stronger. In this spirit, Acemoglu and
Angrist (2000) argue that quarter-of-birth instruments and
state compulsory attendance laws (specifically, the minimum
schooling required before leaving school in your state of birth)
affect essentially the same group of people and for the same
reasons. We therefore expect IV estimates of the returns to

24The Krueger (1999) study discussed in chapter 2 also uses IV to ana-
lyze data from a randomized trial. Specifically, this study uses randomly
assigned class size as an instrument for actual class size with data from the Ten-
nessee STAR experiment. For students in first grade and higher, actual class
size differs from randomly assigned class size because parents and teachers
moved students around in years after the experiment began. Krueger (1999)
also illustrates 2SLS applied to a model with variable treatment intensity, as
discussed in section 4.5.3.
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schooling from quarter-of-birth and compulsory schooling
instruments to be similar. We might also expect the quarter-
of-birth estimates to predict the impact of contemporary
proposals to strengthen compulsory attendance laws.

On the other hand, if the compliant subpopulations asso-
ciated with two or more instruments are very different, yet
the IV estimates they generate are similar, we might be pre-
pared to adopt homogeneous effects as a working hypothesis.
This revives the overidentification idea but puts it at the ser-
vice of external validity.25 This reasoning is illustrated in a
study of the effects of family size on children’s education by
Angrist, Lavy, and Schlosser (2006). The Angrist, Lavy, and
Schlosser study was motivated by the observation that chil-
dren from larger families typically end up with less education
than those from smaller families. A longstanding concern in
research on fertility is whether the observed negative corre-
lation between larger families and worse outcomes is causal.
As it turns out, IV estimates of the effect of family size using a
number of different instruments, each with very different com-
pliant subpopulations, all generate results showing no effect
of family size. Angrist, Lavy, and Schlosser (2006) argue that
their results point to a common family size effect of zero for
just about everybody in the Israeli population they studied.26

We have already seen that the size of a complier group is
easy to measure. This is just the Wald first stage, since, given
monotonicity, we have

P[d1i > d0i] = E[d1i − d0i]
= E[d1i] − E[d0i]
= E[di|zi = 1] − E[di|zi = 0].

We can also tell what proportion of the treated are compliers
since, for compliers, treatment status is completely determined

25In fact, maintaining the hypothesis that all instruments in an overidenti-
fied model are valid, the traditional overidentification test statistic becomes a
formal test for treatment effect homogeneity.

26See also Black, Devereux, and Salvones (2005) for similar results from
Norway.
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by zi. Start with the definition of conditional probability:

P[d1i > d0i|di = 1] = P[di = 1|d1i > d0i]P[d1i > d0i]
P[di = 1]

= P[zi = 1](E[di|zi = 1] − E[di|zi = 0])
P[di = 1] . (4.4.7)

The second equality uses the facts that P[di = 1|d1i > d0i] =
P[zi = 1|d1i > d0i] and that P[zi = 1|d1i > d0i] = P[zi = 1]
by independence. In other words, the proportion of the treated
who are compliers is given by the first stage, times the proba-
bility the instrument is switched on, divided by the proportion
treated.

Formula (4.4.7) is illustrated here by calculating the pro-
portion of veterans who are draft lottery compliers. The
ingredients are reported in the first two rows of table 4.4.2. For
example, for white men born in 1950, the first stage is .159, the
probability of draft eligibility is 195

365 , and the marginal proba-
bility of treatment is .267. From these statistics, we compute
that the compliant subpopulation is .32 of the veteran pop-
ulation in this group. The proportion of veterans who were
draft lottery compliers falls to 20 percent for nonwhite men
born in 1950. This is not surprising, since the draft lottery first
stage is considerably weaker for nonwhites. The last column
of the table reports the proportion of nonveterans who would
have served if they had been draft eligible. This ranges from
about 3 percent of nonwhites to 10 percent of whites, reflect-
ing the fact that most nonveterans were deferred, ineligible, or
unqualified for military service.

The effect of compulsory military service is the parameter
of primary interest in the Angrist (1990) study, so the fact
that draft eligibility compliers are a minority of veterans is
not really a limitation of this study. Even in the Vietnam
era, most soldiers were volunteers, a little appreciated fact
about Vietnam-era veterans. The LATE interpretation of IV
estimates using the draft lottery highlights the fact that other
identification strategies are needed to estimate the effects of
military service on volunteers (some of these are implemented
in Angrist, 1998).



Table 4.4.2
Probabilities of compliance in instrumental variables studies

Compliance Probabilities
Endogenous First Stage,

Source Variable (d) Instrument (z) Sample P[d = 1] P[d1 > d0] P[z = 1] P[d1 > d0|d = 1] P[d1 > d0|d = 0]
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Angrist (1990) Veteran status Draft eligibility White men born in
1950

.267 .159 .534 .318 .101

Non-white men born in
1950

.163 .060 .534 .197 .033

Angrist and Evans
(1998)

More than two
children

Twins at second
birth

Married women aged
21–35 with two or
more children in 1980

.381 .603 .008 .013 .966

First two children
are same sex

.381 .060 .506 .080 .048

Angrist and
Krueger (1991)

High school grad-
uate

Third- or fourth-
quarter birth

Men born between
1930 and 1939

.770 .016 .509 .011 .034

Acemoglu and
Angrist (2000)

High school grad-
uate

State requires 11
or more years of
school attendance

White men aged 40–49 .617 .037 .300 .018 .068

Notes: The table computes the absolute and relative size of the complier population for a number of instrumental variables. The first
stage, reported in column 6, gives the absolute size of the complier group. Columns 8 and 9 show the size of the complier population
relative to the treated and untreated populations.



170 Chapter 4

The remaining rows in table 4.4.2 show the size of the com-
pliant subpopulation for the twins and sibling sex composition
instruments used by Angrist and Evans (1998) to estimate
the effects of childbearing and for the quarter-of-birth instru-
ments and compulsory attendance laws used by Angrist and
Krueger (1991) and Acemoglu and Angrist (2000) to estimate
the returns to schooling. In each of these studies, the com-
pliant subpopulation is a small fraction of the treated group.
For example, less than 2 percent of those who graduated from
high school did so because of compulsory attendance laws or
by virtue of having been born in a late quarter.

The question of whether a small compliant subpopulation
is a cause for worry is context-specific. In some cases, it seems
fair to say, “you get what you need.” With many policy inter-
ventions, for example, it is a marginal group that is of primary
interest, a point emphasized in McClellan, McNeil, and New-
house’s (1994) landmark IV study of the effects of surgery
on heart attack patients. They used the relative distance to
cardiac care facilities to construct instruments for whether an
elderly heart attack patient was treated with a surgical inter-
vention. Most patients get the same treatment either way, but
for some, the proper course of action (or at least the received
wisdom as to the proper course of action) is uncertain. In such
cases, health care providers or patients opt for a more inva-
sive strategy only if a well-equipped surgical facility is close
by. McClellan et al. found little benefit from surgical proce-
dures for this marginal group. Similarly, an increase in the
compulsory attendance cut-off to age 18 is clearly irrelevant
for the majority of American high school students, but affects
some who would otherwise drop out. IV estimates suggest
the economic returns to schooling for this marginal group are
substantial.

The last column of table 4.4.2 illustrates the special feature
of twins instruments alluded to at the end of section 4.4.2. As
before, let di = 0 for women with two children in a sample of
women with at least two children and 1 for women who have
more than two. Because there are no never-takers in response
to the event of a multiple birth—all mothers who have twins
at second birth end up with (at least) three children—the
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probability of compliance among those with di = 0 is virtually
one (the table shows an entry of .97). LATE is therefore the
effect on the nontreated, E[y1i −y0i|di = 0], in this case.

Unlike the size of the complier group, information on the
characteristics of compliers seems like a tall order because the
compliers cannot be individually identified. Because we can’t
see both d1i and d0i for each individual, we can’t just list those
with d1i > d0i and then calculate the distribution of charac-
teristics for this group. Nevertheless, in spite of the fact that
compliers cannot be listed or named, it’s easy to describe the
distribution of complier characteristics. To simplify, we focus
here on characteristics, such as race or degree completion, that
can be described by dummy variables. In this case, everything
we need to know can be learned from variation in the first
stage across covariate groups.

Let x1i be a Bernoulli-distributed characteristic, say a
dummy indicating college graduates. Are sex composition
compliers more or less likely to be college graduates than other
women with two children? This question is answered by the
following calculation:

P[x1i = 1|d1i > d0i]
P[x1i = 1] = P[d1i > d0i|x1i = 1]

P[d1i > d0i]
= E[di|zi = 1, x1i = 1] − E[di|zi = 0, x1i = 1]

E[di|zi = 1] − E[di|zi = 0] . (4.4.8)

In other words, the relative likelihood a complier is a col-
lege graduate is given by the ratio of the first stage for college
graduates to the overall first stage.27

27A general method for constructing the mean or other features of the dis-
tribution of covariates for compliers uses Abadie’s (2003) kappa-weighting
scheme. For example,

E[Xi|d1i > d0i] = E[κiXi]
E[κi] ,

where

κi = 1 − di(1 − zi)
1 − P(zi = 1|Xi)

− (1 − di)zi

P(zi = 1|Xi)
.

This works because the weighting function, κi, “finds compliers,” in a sense
discussed in section 4.5.2.
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Table 4.4.3
Complier characteristics ratios for twins and sex composition instruments

Twins at Second Birth First Two Children Are Same Sex

P[x1i = 1| P[x1i = 1|d1i > d0i]/ P[x1i = 1| P[x1i = 1|d1i > d0i]/
P[x1i = 1] d1i > d0i] P[x1i = 1] d1i > d0i] P[x1i = 1]

Variable (1) (2) (3) (4) (5)

Age 30 or .0029 .004 1.39 .0023 .995
older at
first birth

Black or .125 .103 .822 .102 .814
hispanic

High school .822 .861 1.048 .815 .998
graduate

College .132 .151 1.14 .0904 .704
graduate

Notes: The table reports an analysis of complier characteristics for twins and sex compo-
sition instruments. The ratios in columns 3 and 5 give the relative likelihood that compliers
have the characteristic indicated at left. Data are from the 1980 census 5 percent sample,
including married mothers aged 21–35 with at least two children, as in Angrist and Evans
(1998). The sample size is 254,654 for all columns.

This calculation is illustrated in table 4.4.3, which reports
compliers’ characteristics ratios for age at first birth, non-
white race, and degree completion using twins and same-sex
instruments. The table was constructed from the Angrist and
Evans (1998) extract from the 1980 census containing mar-
ried women aged 21–35 with at least two children. Twins
compliers are much more likely to be over 30 than the aver-
age mother in the sample, reflecting the fact that younger
women who had a multiple birth were more likely to go
on to have additional children anyway (though over-30 first
births are rare for all women in the Angrist-Evans sample).
Twins compliers are also more educated than the average
mother, while sex composition compliers are less educated.
This helps to explain the smaller 2SLS estimates generated by
twins instruments (reported here in table 4.1.4), since Angrist
and Evans (1998) show that the labor supply consequences of
childbearing decline with mother’s schooling.
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4.5 Generalizing LATE

The LATE theorem applies to a stripped-down causal model
in which a single dummy instrument is used to estimate the
impact of a dummy treatment with no covariates. We can gen-
eralize this in three important ways: multiple instruments (e.g.,
a set of quarter-of-birth dummies), models with covariates
(e.g., controls for year of birth), and models with variable and
continuous treatment intensity (e.g., years of schooling). In
all three cases, the IV estimand is a weighted average of causal
effects for instrument-specific compliers. The econometric tool
remains 2SLS and the interpretation remains fundamentally
similar to the basic LATE result, with a few bells and whis-
tles. 2SLS with multiple instruments produces a causal effect
that averages IV estimands using the instruments one at a time;
2SLS with covariates produces an average of covariate-specific
LATEs; 2SLS with variable or continuous treatment intensity
produces a weighted average derivative along the length of a
possibly nonlinear causal response function. These results pro-
vide a simple casual interpretation for 2SLS in most empirically
relevant settings.

4.5.1 LATE with Multiple Instruments

The multiple-instruments extension is easy to see. This is essen-
tially the same as a result we discussed in the grouped data
context. Consider a pair of dummy instruments, z1i and z2i.
Without loss of generality, assume these dummies are mutually
exclusive (if not, then we can work with a mutually exclusive
set of three dummies, z1i(1 − z2i), z2i(1 − z1i), and z1iz2i). The
two dummies can be used to construct Wald estimators. Again
without loss of generality, assume monotonicity is satisfied
for each with a positive first stage (if not, we can recode the
dummies so this is true). Both therefore estimate a version of
E[y1i −y0i|d1i > d0i], though the population with d1i > d0i

differs for z1i and z2i.
Instead of Wald estimators, we can use z1i and z2i together

in a 2SLS procedure. Since these two dummies and a constant
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exhaust the information in the instrument set, this 2SLS proce-
dure is the same as grouped data estimation using conditional
means defined given z1i and z2i (whether or not the instru-
ments are correlated). As in Angrist (1991), the resulting
grouped data estimator is a linear combination of the underly-
ing Wald estimators. In other words, it is a linear combination
of the instrument-specific LATEs using the instruments one
at a time (in fact, it is the efficient linear combination in a
traditional homoskedastic linear constant effects model).

This argument is not quite complete, since we haven’t shown
that the linear combination of LATEs produced by 2SLS is also
a weighted average (i.e., the weights are non-negative and sum
to one). The relevant weighting formulas appear in Imbens and
Angrist (1994) and Angrist and Imbens (1995). The general
formulas are a little messy, so here we lay out a simple version
based on the two-instrument example. The example shows
that 2SLS using z1i and z2i together is a weighted average of
IV estimates using z1i and z2i one at a time. Let

ρj = Cov(yi, zji)
Cov(di, zji)

; j = 1, 2

denote the two IV estimands using z1i and z2i.
The (population) first-stage fitted values for 2SLS are d̂i =

π11z1i + π12z2i, where π11 and π12 are positive numbers. By
virtue of the IV interpretation of 2SLS, the 2SLS estimand is

ρ2SLS = Cov(yi, d̂i)
Cov(di, d̂i)

= π11Cov(yi, z1i)
Cov(di, d̂i)

+ π12Cov(yi, z2i)
Cov(di, d̂i)

=
[
π11Cov(di, z1i)

Cov(di, d̂i)

] [
Cov(yi, z1i)
Cov(di, z1i)

]

+
[
π12Cov(di, z2i)

Cov(di, d̂i)

] [
Cov(yi, z2i)
Cov(di, z2i)

]
= ψρ1 + (1 − ψ)ρ2,

where ψ1 is LATE using z1i and ρ2 is LATE using z2i, and

ψ = π11Cov(di, z1i)
π11Cov(di, z1i) + π12Cov(di, z2i)
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is a number between zero and one that depends on the rela-
tive strength of each instrument in the first stage. Thus, we
have shown that 2SLS is a weighted average of causal effects
for instrument-specific compliant subpopulations. Suppose,
for example, that z1i denotes twin births and z2i indicates
(nontwin) same-sex sibships in families with two or more chil-
dren, both instruments for family size, as in Angrist and Evans
(1998). A multiple second birth increases the likelihood of
having a third child by about .6, while a same-sex sibling
pair increases the likelihood of a third birth by about .07.
When these two instruments are used together, the resulting
2SLS estimates are a weighted average of the Wald estimates
produced by using the instruments one at a time.28

4.5.2 Covariates in the Heterogeneous Effects Model

You might be wondering where the covariates have gone. After
all, covariates played a starring role in our earlier discussion
of regression and matching. Yet the LATE theorem does not
involve covariates. This stems from the fact that when we see
instrumental variables as a type of (natural or man-made) ran-
domized trial, covariates take a back seat. If the instrument is
randomly assigned, it is likely to be independent of covari-
ates. Not all instruments have this property, however. As with
covariates in the regression models in the previous chapter,
the main reason why covariates are included in causal analyses
using instrumental variables is that the conditional indepen-
dence and exclusion restrictions underlying IV estimation may
be more likely to be valid after conditioning on covariates.
Even randomly assigned instruments, like draft eligibility sta-
tus, may be valid only after conditioning on covariates. In the
case of draft eligibility, older cohorts were more likely to be
draft eligible because the draft eligibility cutoffs were higher.
Because there are year-of-birth (or age) differences in earnings,

28Using twins instruments alone, the IV estimate of the effect of a third
child on female labor force participation is −.084. The corresponding same-
sex estimate is −.138. Using both instruments produces a 2SLS estimate of
−.098. The 2SLS weight in this case is .74 for twins, .26 for same sex, due to
the much stronger twins first stage.
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draft eligibility is a valid instrument only after conditioning on
year of birth.

More formally, IV estimation with covariates may be
justified by a conditional independence assumption

{y1i, y0i, d1i, d0i} � zi|Xi (4.5.1)

In other words, we think of the instrumental variables as being
“as good as randomly assigned,” conditional on covariates Xi

(here we are implicitly maintaining the exclusion restriction
as well). A second reason for incorporating covariates is that
conditioning on covariates may reduce some of the variability
in the dependent variable. This can lead to more precise 2SLS
estimates.

A benchmark constant effects model with covariates imposes
functional form restrictions as follows:

E[y0i|Xi] = X′
iα

∗ for a k × 1 vector of coefficients, α∗;

y1i −y0i = ρ.

In combination with (4.5.1), this motivates 2SLS estimation
of an equation like (4.1.6), as discussed in section 4.1.

A straightforward generalization of the constant effects
model allows

y1i −y0i = ρ(Xi),

where ρ(Xi) is a deterministic function of Xi. This model can
be estimated by adding interactions between zi and Xi to the
first stage and (the same) interactions between di and Xi to the
second stage. There are now multiple endogenous variables
and hence multiple first-stage equations. These can be written

di = X′
iπ00 + π01zi + ziX′

iπ02 + ξ0i (4.5.2a)

diXi = X′
iπ10 + π11zi + ziX′

iπ12 + ξ1i. (4.5.2b)

Although (4.5.2b) is written as if diXi is a scalar, there should
be a first stage like this for each element of diXi. The second-
stage equation in this case is

yi = α′Xi + ρ0di + diX′
iρ1 + ηi,
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so ρ(Xi) = ρ0 + ρ ′
1Xi. Alternatively, a nonparametric version

of ρ(Xi) can be estimated by 2SLS in subsamples stratified
on Xi.

The heterogeneous effects model underlying the LATE
theorem allows for identification based on conditional inde-
pendence as in (4.5.1), though the interpretation is a little more
complicated than for LATE without covariates. For each value
of Xi, we define covariate-specific LATE,

λ(Xi) ≡ E[y1i −y0i|Xi, d1i > d0i].
The “saturate and weight” approach to estimation with
covariates, which generates a weighted average of λ(Xi), is
spelled out in the following theorem (from Angrist and Imbens,
1995).

Theorem 4.5.1 Saturate and Weight. Suppose the assump-
tions of the LATE theorem hold conditional on Xi. That is,

(CA1, Independence) {yi(d1i, 1), y0i(d0i, 0), d1i, d0i} � zi|Xi;
(CA2, Exclusion) P[yi(d, 0) = yi(d, 1)| Xi] = 1 for d = 0, 1;
(CA3, First Stage) E[d1i − d0i|Xi] �= 0.
We also assume monotonicity (A4) holds as before. Con-

sider the 2SLS estimand based on the first-stage equation

di = πX + π1Xzi + ξ1i (4.5.3)

and the second-stage equation

yi = αX + ρcdi + ηi,

where πX and αX denote saturated models for covariates (a
full set of dummies for all values of Xi) and π1X denotes
a first-stage effect of zi for every value of Xi. Then ρc =
E[ω(Xi)λ(Xi)], where

ω(Xi) = V{E[di|Xi, zi]|Xi}
E[V{E[di|Xi, zi]|Xi}] (4.5.4)

and

V{E[di|Xi, zi]|Xi} = E{E[di|Xi, zi](E[di|Xi, zi] − E[di|Xi])|Xi}.



178 Chapter 4

This theorem says that 2SLS with a fully saturated first stage
and a saturated model for covariates in the second stage pro-
duces a weighted average of covariate-specific LATEs. The
weights are proportional to the average conditional variance
of the population first-stage fitted value, E[di|Xi,zi], at each
value of Xi.29 The theorem comes from the fact that the first
stage coincides with E[di|Xi,zi] when (4.5.3) is saturated (i.e.,
the first-stage regression recovers the CEF).

In practice, we may not want to work with a model with
a first-stage parameter for each value of the covariates. First,
there is the risk of bias, as we discuss at the end of this chapter,
and second, a big pile of individually imprecise first-stage esti-
mates is not pretty to look at. It seems reasonable to imagine
that models with fewer parameters, say a restricted first stage
imposing a constant π1X, nevertheless approximate some kind
of covariate-averaged LATE. This turns out to be true, but the
argument is surprisingly indirect. The vision of 2SLS as provid-
ing a MMSE approximation to an underlying causal relation
was developed by Abadie (2003).

The Abadie approach begins by defining the object of inter-
est to be E[yi|di, Xi, d1i > d0i], the CEF for yi given treatment
status and covariates, for compliers. An important feature of
this CEF is that when the conditions of the LATE theorem
hold conditional on Xi, it has a causal interpretation. In other
words, for compliers, treatment-control contrasts conditional
on Xi are equal to conditional-on-Xi LATEs:

E [yi|di = 1, Xi, d1i > d0i] − E [yi|di = 0, Xi, d1i > d0i]

= E [y1i −y0i|Xi, d1i > d0i]

= λ(Xi).

This follows immediately from the facts that di = zi for com-
pliers and, given (4.5.1), potential outcomes are independent
of zi given Xi and d1i > d0i. The upshot is that a regres-
sion of yi on di and Xi in the complier population also has
a causal interpretation. Although this regression might not

29Note that the variability in E[di|Xi,zi] conditional on Xi comes from zi.
So the weighting formula gives more weight to covariate values where the
instrument creates more variation in fitted values.
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give us the CEF of interest (unless it is linear or the model
is saturated), it will, as always, provide the MMSE approxi-
mation to it. That is, a regression of yi on di and Xi in the
complier population approximates E[yi|di, Xi, d1i > d0i], just
as OLS approximates E[yi|di,Xi]. Alas, we do not know who
the compliers are, so we cannot sample them. Nevertheless,
they can be found, in the following sense.

Theorem 4.5.2 Abadie Kappa. Suppose the assumptions of
the LATE theorem hold conditional on covariates, Xi. Let
g(yi,di,Xi) be any measurable function of (yi,di,Xi) with finite
expectation. Define

κi = 1 − di(1 − zi)
1 − P(zi = 1|Xi)

− (1 − di)zi

P(zi = 1|Xi)
.

Then

E[g(yi, di, Xi)|d1i > d0i] = E[κig(yi, di, Xi)]
E[κi] .

This can be proved by direct calculation using the fact that,
given the assumptions of the LATE theorem, any expectation
is a weighted average of means for always-takers, never-takers,
and compliers. By monotonicity, those with di(1−zi) = 1
are always-takers because they have d0i = 1, while those
with (1−di)zi = 1 are never-takers because they have d1i = 0.
Hence, the compliers are the left-out group.

The Abadie theorem has a number of important implica-
tions; for example, it crops up again in the discussion of
quantile treatment effects. Here, we use it to approximate
E[yi|di, Xi, d1i >d0i] by linear regression. Specifically, let αc

and βc solve

(αc, βc) = arg min
a,b

E{(E[yi|di, Xi, d1i > d0i]

− adi − X′
ib)2|d1i > d0i}.

In other words, αcdi+X′
iβc gives the MMSE approximation

to E[yi|di, Xi, d1i >d0i], or fits it exactly if it’s linear. A
consequence of Abadie’s theorem is that this approximating
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function can be obtained by solving

(αc, βc) = arg min
a,b

E{κi(yi − adi − X′
ib)2}, (4.5.5)

the kappa-weighted least squares minimand.30

Abadie proposes an estimation strategy (and develops dis-
tribution theory) for a procedure that involves first-step esti-
mation of κi using parametric or semiparametric models for
P(zi = 1|Xi). The estimates from the first step are then plugged
into the sample analog of (4.5.5) in the second step. Not
surprisingly, when the only covariate is a constant, Abadie’s
procedure simplifies to the Wald estimator. More surprisingly,
minimization of (4.5.5) produces the traditional 2SLS estima-
tor as long as a linear model is used for P(zi = 1|Xi) in the
construction of κi. In other words, if P(zi = 1|Xi) = X′

iπ is
used when constructing an estimate of κi, the Abadie estimand
is 2SLS. Thus, we can conclude that whenever P(zi = 1|Xi)
can be fit or closely approximated by a linear model, it makes
sense to view 2SLS as an approximation to the complier causal
response function, E[yi|di, Xi, d1i > d0i]. On the other hand,
αa is not, in general, the 2SLS estimand, and βa is not, in
general, the vector of covariate effects produced by 2SLS. Still,
the equivalence to 2SLS for linear P(zi = 1|Xi) leads us to think
that Abadie’s method and 2SLS are likely to produce similar
estimates in most applications.

The Angrist (2001) reanalysis of Angrist and Evans (1998) is
an example where estimates based on (4.5.5) are indistinguish-
able from 2SLS estimates. Using twins instruments to estimate
the effect of a third child on female labor supply generates a
2SLS estimate of −.088, while the corresponding Abadie esti-
mate is −.089. Similarly, 2SLS and Abadie estimates of the
effect on hours worked are identical at −3.55. This is not a
strike against Abadie’s procedure. Rather, it supports

30The class of approximating functions needn’t be linear. Instead of
αcdi + X′

iβc, it might make sense to use a nonlinear function such as an expo-
nential (if the dependent variable is non-negative) or probit (if the dependent
variable is zero-one). We return to this point at the end of this chapter. As
noted in section 4.4.4, the kappa-weighting scheme can be used to charac-
terize covariate distributions for compliers as well as to estimate outcome
distributions.
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the notion that 2SLS approximates the causal relation of
interest.31

4.5.3 Average Causal Response with
Variable Treatment Intensity�

An important difference between the causal effects of a dummy
variable and those of a variable that takes on the values
{0, 1, 2, . . .} is that in the first case, there is only one causal
effect for any one person, while in the latter there are many:
the effect of going from 0 to 1, the effect of going from 1 to
2, and so on. The potential outcomes notation we used for
schooling recognizes this. Here it is again. Let

ysi ≡ fi(s)

denote the potential (or latent) earnings that person i would
receive after obtaining s years of education. Note that the func-
tion fi(s) has an “i” subscript on it but s does not. The function
fi(s) tells us what i would earn for any value of schooling, s,
and not just for the realized value, si. In other words, fi(s)
answers causal “what if” questions for multinomial si.

Suppose that si takes on values in the set {0, 1, . . . , s̄}. Then
there are s̄ unit causal effects, ysi −ys−1,i. A linear causal model
assumes these are the same for all s and for all i, obviously
unrealistic assumptions. But we need not take these assump-
tions literally. Rather, 2SLS provides a computational device
that generates a weighted average of unit causal effects, with
a weighting function we can estimate and study, so as to learn

31The Abadie estimator can be computed by weighting conventional linear
or nonlinear regression software. The trick is to first construct a weighting
scheme with positive weights. This is accomplished by iterating expectations
in (4.5.5), so that κi (which is negative for always-takers and never-takers)
can be replaced by the always-positive average weight,

E[κi|Xi, di, yi] = 1 − di(1 − E[zi|Xi, di, yi])
1 − P(zi = 1|Xi)

− (1 − di)E[zi|Xi, di, yi]
P(zi = 1|Xi)

.

(See also the discussion in section 7.2.1.) Abadie (2003) gives formulas for
standard errors and Alberto Abadie has posted software to compute them, as
well as the corresponding parameter estimates. Standard errors for the Abadie
estimator can also be estimated using a bootstrap.
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where the action is coming from with a particular instrument.
This weighting function tells us how the compliers are dis-
tributed over the range of si. It tells us, for example, that the
returns to schooling estimated using quarter of birth or com-
pulsory schooling laws come from shifts in the distribution of
grades completed in high school. Other instruments, such as
the distance instruments used by Card (1995), act elsewhere
on the schooling distribution and therefore capture a different
sort of return.

To flesh this out, suppose that a single binary instrument, zi,
a dummy for having been born in a state with restrictive com-
pulsory attendance laws, is to be used to estimate the returns
to schooling (as in Acemoglu and Angrist, 2000). Also, let s1i

denote the schooling i would get if zi = 1, and let s0i denote
the schooling i would get if zi = 0. The theorem below, from
Angrist and Imbens (1995), offers an interpretation of the
Wald estimand with variable treatment intensity in this case.
Note that here we combine the independence and exclusion
restrictions by simply stating that potential outcomes indexed
by s are independent of the instruments.

Theorem 4.5.3 Average Causal Response. Suppose
(ACR1, Independence and Exclusion) {y0i, y1i, . . . , ys̄i;

s0i, s1i} � zi;
(ACR2, First Stage) E[s1i − s0i] �= 0;
(ACR3, Monotonicity) s1i − s0i ≥ 0 ∀i, or vice versa; assume

the first.
Then

E[yi|zi = 1] − E[yi|zi = 0]
E[si|zi = 1] − E[si|zi = 0]

=
s̄∑

s=1

ωsE[ysi −ys−1,i|s1i ≥ s > s0i],

where

ωs = P[s1i ≥ s > s0i]∑s̄
j=1 P[s1i ≥ j > s0i]

.

The weights ωs are non-negative and sum to one.
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The average causal response (ACR) theorem says that the
Wald estimator with variable treatment intensity is a weighted
average of the unit causal response along the length of the
potentially nonlinear causal relation described by fi(s). The
unit causal response, E[ysi −ys−1,i|s1i ≥ s > s0i], is the average
difference in potential outcomes for compliers at point s, that
is, individuals driven by the instrument from a treatment inten-
sity less than s to at least s. For example, the quarter-of-birth
instruments used by Angrist and Krueger (1991) push some
people from 11th grade to finishing 12th or higher, and others
from 10th grade to finishing 11th or higher. The Wald esti-
mator using quarter-of-birth instruments combines all these
effects into a single ACR.

The size of the group of compliers at point s is P[s1i ≥ s >

s0i]. By monotonicity, this must be non-negative and is given
by the difference in the CDF of si at point s. To see this, note
that

P[s1i ≥ s > s0i] = P[s1i ≥ s] − P[s0i ≥ s]
= P[s0i < s] − P[s1i < s],

which is non-negative since monotonicity requires s1i ≥ s0i.
Moreover,

P[s0i < s] − P[s1i < s] = P[si < s|zi = 0] − P[si < s|zi = 1]
by independence. Finally, note that because the mean of a non-
negative random variable is the sum (or integral) of one minus
the CDF, we have,

E[si|zi = 1] − E[si|zi = 0]

=
s̄∑

j=1

(P[si < j|zi = 0] − P[si < j|zi = 1])

=
s̄∑

j=1

P[s1i ≥ j > s0i]

Thus, the ACR weighting function can be consistently esti-
mated by comparing the CDFs of the endogenous variable
(treatment intensity) with the instrument switched off and on.
The weighting function is normalized by the first stage.
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The ACR theorem helps us understand what we are learn-
ing from a 2SLS estimate. For example, instrumental variables
derived from compulsory attendance and child labor laws cap-
ture the causal effect of increases in schooling in the 6–12
grade range, but tell us little about the effects of postsec-
ondary schooling. This is illustrated in figure 4.5.1, taken from
Acemoglu and Angrist (2000).

The figure plots differences in the probability that educa-
tional attainment is at or exceeds the grade level on the x-axis
(i.e., one minus the CDF). The differences are between men
exposed to different child labor laws and compulsory school-
ing laws in the sample of white men aged 40–49 drawn from
the 1960, 1970, and 1980 censuses. The instruments are coded
as the number of years of schooling required either to work
(panel A) or to leave school (panel B) in the year the respon-
dent was age 14. Men exposed to the least restrictive laws are
the reference group. Each instrument (e.g., a dummy for seven
years of schooling required before work is allowed) can be
used to construct a Wald estimator by making comparisons
with the reference group.

The top panel of figure 4.5.1 shows that men exposed to
more restrictive child labor laws were one to six percentage
points more likely to complete grades 8–12. The intensity of
the shift depends on whether the laws required seven, eight, or
nine-plus years of schooling before work was allowed. But in
all cases, the CDF differences decline at lower grades, and drop
off sharply after grade 12. The bottom panel shows a similar
pattern for compulsory attendance laws, though the effects
are a little smaller and the action here is at somewhat higher
grades, consistent with the fact that compulsory attendance
laws are typically binding in higher grades than child labor
laws. Interestingly, the child labor and compulsory atten-
dance instruments generate similar 2SLS estimates of about
.08–.10.

Before wrapping up our discussion of LATE generalizations,
it’s worth noting that most of the elements covered here work
in combination. For example, models with multiple instru-
ments and variable treatment intensity generate a weighted
average of the ACR for each instrument. Likewise, the saturate
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Figure 4.5.1 The effect of compulsory schooling instruments on
education (from Acemoglu and Angrist 2000). The figures show the
instrument-induced difference in the probability that schooling is
greater than or equal to the grade level on the x-axis. The reference
group is six or fewer years of required schooling in the top panel
and eight or fewer years in the bottom panel. The top panel shows
the CDF difference by severity of child labor laws. The bottom
panel shows the CDF difference by severity of compulsory
attendance laws.

and weight theorem applies to models with variable treat-
ment intensity (though we do not yet have an extension of
Abadie’s kappa for models with variable treatment inten-
sity). A final important extension covers the scenario where
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the causal variable of interest is continuous and we can
therefore think of the causal response function as having
derivatives.

So Long, and Thanks for All the Fish

Suppose, as with the schooling problem, that counterfactuals
are generated by an underlying functional relation. In this case,
however, the causal variable of interest can take on any non-
negative value and the functional relation is assumed to have
a derivative. An example where this makes sense is a demand
curve, the quantity demanded as a function of price. In par-
ticular, let qi(p) denote the quantity demanded in market i at
hypothetical price p. This is a potential outcome, like fi(s),
except that instead of individuals the unit of observation is a
time or a location or both. For example, Angrist, Graddy, and
Imbens (2000) estimate the elasticity of quantity demanded
at the Fulton wholesale fish market in New York City. The
slope of this demand curve is q′

i(p); if quantity and price are
measured in logs, this is an elasticity.

The instruments in Angrist, Graddy, and Imbens (2000) are
derived from data on weather conditions off the coast of Long
Island, not too far from major commercial fishing grounds.
Stormy weather makes it hard to catch fish, driving up the
price and reducing the quantity demanded. Angrist, Graddy,
and Imbens use dummy variables such as stormyi, a dummy
indicating periods with high wind and waves, to estimate the
demand for fish. The data consist of daily observations on
wholesale purchases of whiting, a cheap fish used for fish cakes
and things like that.

The Wald estimator using the stormyi instrument can be
interpreted using

E[qi|stormyi = 1] − E[qi|stormyi = 0]
E[pi|stormyi = 1] − E[pi|stormyi = 0]

=
∫

E[q′
i(t)| p1i ≥ t > p0i]P[p1i ≥ t > p0i]dt∫

P[p1i ≥ t > p0i]dt
, (4.5.6)
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where pi is the price in market (day) i and p1i and p0i are
potential prices indexed by stormyi. This is a weighted average
derivative with weighting function P[p1i ≥ t > p0i] = P[pi <

t|stormyi = 0] − P[pi < t|stormyi = 1] at price t. In other
words, IV estimation using stormyi produces an average of
the derivative q′

i(t), with weight given to each possible price
(indexed by t) in proportion to the instrument-induced change
in the cumulative distribution function (CDF) of prices at that
point. This is the same sort of averaging as in the ACR theorem
except that now the underlying causal response is a derivative
instead of a one-unit difference.

The continuous ACR formula, (4.5.6), comes from the fact
that

E[qi|stormyi = 1] − E[qi|stormyi = 0] = E
[∫ p1i

p0i

q′
i(t)dt

]
,

(4.5.7)

by the independence assumption and the fundamental theorem
of calculus. Two interesting special cases fall neatly out of
(4.5.7). The first is when the causal response function is linear,
that is, qi(p) = α0i + α1ip, for some random coefficients, α0i

and α1i. Then, we have

E[qi|stormyi = 1] − E[qi|stormyi = 0]
E[pi|stormyi = 1] − E[pi|stormyi = 0] = E[α1i(p1i − p0i)]

E[p1i − p0i] ,

(4.5.8)

a weighted average of the random coefficient, α1i. The weights
are proportional to the price change induced by the weather
in market i.

The second special case is when we can write quantity
demanded as

qi(p) = Q(p) + ηi, (4.5.9)

where Q(p) is a nonstochastic function and ηi is an additive
random error. By this we mean q′

i(p) = Q′(p) every day or in
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every market. In this case, the average causal response function
becomes∫

Q′(t)ω(t)dt, where ω(t) = P[p1i ≥ t > p0i]∫
P[p1i ≥ r > p0i]dr

where r is the integrating variable in the denominator.
These special cases highlight the two types of averaging

wrapped up in the ACR theorem and its continuous corollary,
(4.5.6). First, there is averaging across markets, with weights
proportional to the first-stage impact on prices in each market.
Markets where prices are highly sensitive to the weather con-
tribute the most. Second, there is averaging along the length
of the causal response function in a given market. IV recov-
ers the average derivative over the range of prices where the
instruments shift the CDF of prices most sharply.

4.6 IV Details

4.6.1 2SLS Mistakes

2SLS estimates are easy to compute, especially since software
packages like SAS and Stata will do it for you. Occasionally,
however, you might be tempted to do it yourself just to see if
it really works. Or you may be stranded on the planet Krikkit
with all of your software licenses expired (Krikkit is encased
in a slo-time envelope, so it will take you a long time to get
licenses renewed). Manual 2SLS is for just such emergencies.
In the manual 2SLS procedure, you estimate the first stage
yourself (which in any case you should be looking at) and plug
the fitted values into the second-stage equation, which is then
estimated by OLS. Returning to the system at the beginning of
this chapter, the first and second stages are

si = X′
iπ10 + π ′

11Zi + ξ1i

yi = α′Xi + ρ ŝi + [ηi + ρ(si − ŝi)],
where Xi is a set of covariates, Zi is a set of excluded instru-
ments, and the first-stage fitted values are ŝi = X′

iπ̂10 + π̂ ′
11Zi.
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Manual 2SLS takes some of the mystery out of canned 2SLS
and may be useful in a software crisis, but it opens the door
to mistakes. For one thing, as we discussed earlier, the OLS
standard errors from the manual second stage will not be cor-
rect (the OLS residual variance is the variance of ηi + ρ(si − ŝi),
while for proper 2SLS standard errors you want the variance
of ηi only). There are more subtle risks as well.

Covariate Ambivalence

Suppose the covariate vector contains two sorts of variables,
some (say, X0i) that you are comfortable with, and others
(say, X1i) about which you are ambivalent. Griliches and
Mason (1972) faced this scenario when constructing 2SLS
estimates of a wage equation that treats AFQT scores (an
ability test used by the armed forces) as an endogenous vari-
able to be instrumented. The instruments for AFQT are early
schooling (completed before military service), race, and fam-
ily background variables. They estimated a system that can be
described like this:

si = X′
0iπ10 + π ′

11Zi + ξ1i

yi = α′
0X0i + α′

1X1i + ρ ŝi + [ηi + ρ(si − ŝi)].
This looks a lot like manual 2SLS.

A closer look, however, reveals an important difference
between the equations above and the usual 2SLS procedure:
the covariates in the first and second stages are not the same.
For example, Griliches and Mason included age in the sec-
ond stage but not in the first, a fact noted by Cardell and
Hopkins (1977) in a comment on their paper. This was a mis-
take. Griliches and Mason’s second-stage estimates are not
the same as 2SLS. What’s worse, they are inconsistent where
2SLS might have been fine. To see why, note that the first-stage
residual, si − ŝi, is uncorrelated with X0i by construction, since
OLS residuals are always uncorrelated with included regres-
sors. But because X1i is not included in the first stage it is
likely to be correlated with the first-stage residuals (e.g., age is
probably correlated with the AFQT residual from the Griliches
and Mason (1972) first stage). The inconsistency from this
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correlation spills over to all coefficients in the second stage.
The moral of the story: Put the same exogenous covariates in
your first and second stage. If a covariate is good enough for
the second stage, it’s good enough for the first.

Forbidden Regressions

Forbidden regressions were forbidden by MIT professor Jerry
Hausman in 1975, and while they occasionally resurface in
an undersupervised thesis, they are still technically off-limits.
A forbidden regression crops up when researchers apply 2SLS
reasoning directly to nonlinear models. A common scenario
is a dummy endogenous variable. Suppose, for example, that
the causal model of interest is

yi = α′Xi + ρdi + ηi, (4.6.1)

where di is a dummy variable for veteran status. The usual
2SLS first stage is

di = π ′
10Xi + π ′

11Zi + ξ1i, (4.6.2)

a linear regression of di on covariates and a vector of
instruments, Zi.

Because di is a dummy variable, the CEF associated with
this first stage, E[di|Xi, Zi], is probably nonlinear. So the
usual OLS first stage is an approximation to the underlying
nonlinear CEF. We might, therefore, use a nonlinear first
stage in an attempt to come closer to the CEF. Suppose that
we use probit to model E[di|Xi, Zi]. The probit first stage is
�[π ′

p0Xi + π ′
p1Zi], where πp0 and πp1 are probit coefficients

and the fitted values are d̂pi = �[π̂ ′
p0, Xi + π̂ ′

p1Zi]. The forbid-
den regression in this case is the second-stage equation created
by substituting d̂pi for di:

yi = α′Xi + ρd̂pi + [ηi + ρ(di − d̂pi)]. (4.6.3)

The problem with (4.6.3) is that only OLS estimation of (4.6.2)
is guaranteed to produce first-stage residuals that are uncor-
related with fitted values and covariates. If E[di|Xi, Zi] =
�[X′

iπp0 + π ′
p1Zi], then residuals from the nonlinear model
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will be asymptotically uncorrelated with Xi and d̂pi, but who is
to say that the first-stage CEF is really probit? In contrast, with
garden variety 2SLS, we do not need to worry about whether
the first-stage CEF is really linear.32

A simple alternative to the forbidden second step, (4.6.3),
avoids problems due to an incorrect nonlinear first stage.
Instead of plugging in nonlinear fitted values, we can use the
nonlinear fitted values as instruments. In other words, use d̂pi

as an instrument for di in (4.6.1) in a conventional 2SLS pro-
cedure (as always, the exogenous covariates, Xi, should also
be in the instrument list). Use of fitted values as instruments is
the same as plugging in fitted values when the first stage is
estimated by OLS, but not in general. Using nonlinear fits as
instruments has the further advantage that, if the nonlinear
model gives a better approximation to the first-stage CEF than
the linear model, the resulting 2SLS estimates will be more
efficient than those using a linear first stage (Newey, 1990).

But here, too, there is a drawback. The procedure using
nonlinear fitted values as instruments implicitly uses nonlin-
earities in the first stage as a source of identifying information.
To see this, suppose the causal model of interest includes the
vector of instruments, Zi:

yi = α′Xi + γ ′Zi + ρdi + ηi. (4.6.4)

Now, with the first stage given by (4.6.2), the model is uniden-
tified, and conventional 2SLS estimates of (4.6.4) don’t exist.
In fact, 4.6.4 violates the exclusion restriction. But 2SLS esti-
mates using Xi, Zi, and d̂pi as instruments do exist, because
d̂pi is a nonlinear function of Xi and Zi that is excluded from
the second stage. Should you use this nonlinearity as a source
of identifying information? We usually prefer to avoid this
sort of back-door identification since it’s not clear what the
underlying experiment really is.

32The insight that consistency of 2SLS estimates in a traditional SEM does
not depend on correct specification of the first-stage CEF goes back to Kelejian
(1971). Use of a nonlinear plug-in first stage may not do too much damage
in practice—a probit first stage can be pretty close to linear—but why take a
chance when you don’t have to?



192 Chapter 4

As a rule, naively plugging in first-stage fitted values in
nonlinear models is a bad idea. This includes models with
a nonlinear second stage as well as those where the CEF for
the first stage is nonlinear. Suppose, for example, that you
believe the causal relation between schooling and earnings is
approximately quadratic but otherwise homogeneous (as in
Card’s (1995) structural model). In other words, the model of
interest is

yi = α′Xi + ρ1si + ρ2s2
i + ηi. (4.6.5)

Given two instruments, it’s easy enough to estimate (4.6.5),
treating both si and s2

i as endogenous. In this case, there are
two first-stage equations, one for si and one for s2

i . Although
you need at least two instruments for this to work, it’s natural
to use the original instrument and its square (unless the only
instrument is a dummy, in which case you’ll need a better
idea).

You might be tempted, however, to work with a single first
stage, say equation (4.6.2), and estimate the following second
stage manually:

yi = α′Xi + ρ1ŝi + ρ2ŝ2
i + [ηi + ρ1(si − ŝi) + ρ2(s2

i − ŝ2
i )].

This is a mistake, since ŝi can be correlated with s2
i − ŝ2

i while
ŝ2
i can be correlated with both si − ŝi and s2

i − ŝ2
i . In contrast,

as long as Xi and Zi are uncorrelated with ηi in (4.6.5) and
you have enough instruments in Zi, 2SLS estimation of (4.6.5)
is straightforward.

4.6.2 Peer Effects

A vast literature in social science is concerned with peer effects.
Loosely speaking, this means the causal effect of group charac-
teristics on individual outcomes. Sometimes regression is used
in an attempt to uncover these effects. In practice, the use of
regression models to estimate peer effects is fraught with peril.
Although this is not really an IV issue per se, the language and
algebra of 2SLS help us understand why peer effects are hard
to identify.
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Broadly speaking, there are two types of peer effects. The
first concerns the effect of group characteristics such as the
average schooling in a state or city on individual outcomes as
described by another variable. For example, Acemoglu and
Angrist (2000) ask whether a given individual’s earnings are
affected by the average schooling in his or her state of resi-
dence. The theory of human capital externalities suggests that
living in a state with a more educated workforce may make
everyone in the state more productive, not just those who are
more educated. This kind of spillover is said to be a social
return to schooling: human capital that benefits everyone,
whether or not they are more educated.

A causal model that allows for such externalities can be
written

Yijt = µj + λt + γ Sjt + ρsi + ujt + ηijt, (4.6.6)

where Yijt is the log weekly wage of individual i in state j in year
t, ujt is a state-year error component, and ηijt is an individual
error term. The controls µj and λt are state-of-residence and
year effects. The coefficient ρ is the returns to schooling for
an individual, while the coefficient γ is meant to capture the
effect of average schooling, S̄jt, in state j and year t.

In addition to the usual concerns about si, the most impor-
tant identification problem raised by equation (4.6.6) is omit-
ted variables bias from correlation between average schooling
and other state-year effects embodied in the error component
ujt. For example, public university systems may expand during
cyclical upturns, generating a common trend in state average
schooling levels and state average earnings. Acemoglu and
Angrist (2000) attempt to solve this problem using instru-
mental variables derived from historical compulsory atten-
dance laws that are correlated with Sjt but uncorrelated with
contemporaneous ujt and ηi.

While omitted state-year effects are the primary concern
motivating Acemoglu and Angrist’s (2000) IV estimation, the
fact that one regressor, S̄jt, is the average of another regressor,
si, also complicates the interpretation of OLS estimates of
equation (4.6.6). To see this, consider a simpler version
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of (4.6.6) with a cross-section dimension only. This can be
written

Yij = µ + π0si + π1Sj + νij; (4.6.7)

where Yij is the log weekly wage of individual i in state j and
S̄j is average schooling in the state. The coefficients π0 and
π1 are defined so that the error, νij, is uncorrelated with both
regressors. Now, let ρ0 denote the coefficient from a bivariate
regression of Yij on si only and let ρ1 denote the coefficient
from a bivariate regression of Yij on Sj only. From the discus-
sion of grouping and 2SLS earlier in this chapter, we know that
ρ1 is the 2SLS estimate of the coefficient on si in a bivariate
regression of Yij on si using a full set of state dummies as instru-
ments. The appendix uses this fact to show that the parameters
in equation (4.6.7) can be written in terms of ρ0 and ρ1 as

π0 = ρ1 + φ(ρ0 − ρ1) (4.6.8)

π1 = φ(ρ1 − ρ0),

where φ = 1
1−R2 > 1, and R2 is the first-stage R2 when state

dummies are used as instruments for si.
The upshot of (4.6.8) is that if, for any reason, OLS

estimates of the bivariate regression of wages on individual
schooling differ from 2SLS estimates using state dummy instru-
ments, the coefficient on average schooling in (4.6.7) will be
nonzero. For example, if instrumenting with state dummies
corrects for attenuation bias due to measurement error in
si, we have ρ1 > ρ0 and the spurious appearance of positive
social returns. In contrast, if instrumenting with state dum-
mies eliminates the bias from positive correlation between si

and unobserved earnings potential, we have ρ1 < ρ0, and the
appearance of negative social returns.33 In practice, therefore,
it is very difficult to isolate social effects by OLS estimation of

33The coefficient on average schooling in an equation with individual
schooling can be interpreted as the Hausman (1978) test statistic for the
equality of OLS estimates and 2SLS estimates of private returns to schooling
using state dummies as instruments. Borjas (1992) discusses a similar problem
affecting the estimation of ethnic-background effects.
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an equation like (4.6.6), though more sophisticated IV strate-
gies where both the individual and group averages are treated
as endogenous may work.

A second and even more difficult peer effect to uncover is
the effect of the group average of a variable on the individual
level of this same variable. This is not really an IV problem;
it takes us back to basic regression issues. To see this point,
suppose that S̄j is the high school graduation rate in school j,
and we would like to know whether students are more likely
to graduate from high school when everyone around them is
more likely to graduate from high school. To uncover the peer
effect on high school graduation rates, we might work with a
regression model like:

sij = µ + π2Sj + νij, (4.6.9)

where sij is individual i’s high school graduation status and S̄j

is the average high school graduation rate in school j, which i
attends.

At first blush, equation (4.6.9) seems like a sensible formula-
tion of a well-defined causal question, but in fact it is nonsense.
The regression of sij on S̄j always has a coefficient of 1, a con-
clusion that can be drawn immediately once you recognize S̄j as
the first-stage fitted value from a regression of sij on a full set
of school dummies.34 Thus, an equation like (4.6.9) cannot
possibly be informative about causal effects. A modestly
improved version of this bad peer regression changes (4.6.9) to

sij = µ + π3S(i)j + νij, (4.6.10)

34Here is a direct proof that the regression of sij on Sj is always unity:∑
j

∑
i

sij(S̄j − S̄)

∑
j

nj(S̄j − S̄)2
=

∑
j

(S̄j − S̄)
∑

i

sij

∑
j

nj(S̄j − S̄)2

=

∑
j

(̄Sj − S̄)(njS̄j)

∑
j

nj(S̄j − S̄)2
= 1.



196 Chapter 4

where S(i)j is the mean of sij in school j, excluding student i.
This is a step in the right direction—π3 is no longer auto-
matically equal to 1—but still problematic because sij and
S(i)j are both affected by school-level random shocks that are
implicitly part of νij. The presence of random group effects
in the error term raises important issues for statistical infer-
ence, issues discussed at length in chapter 8. But in an equation
like (4.6.10), group-level random shocks are more than a prob-
lem for standard errors: any shock common to the group
(school) creates spurious peer effects. For example, particu-
larly effective school principals may raise graduation rates for
everyone in the schools at which they work. This looks like
a peer effect, since it induces correlation between sij and S(i)j

even if there is no causal link between peer means and indi-
vidual student achievement. We therefore prefer not to see
regressions like (4.6.10) either.

The best shot at a causal investigation of peer effects focuses
on variation in ex ante peer characteristics, that is, some mea-
sure of peer quality that predates the outcome variable and
is therefore unaffected by common shocks. A recent example
is Ammermueller and Pischke (2006), who studied the link
between classmates’ family background, as measured by the
number of books in their homes, and student achievement in
European primary schools. The Ammermueller and Pischke
regressions are versions of

sij = µ + π4B(i)j + νij,

where B(i)j is the average number of books in the home of stu-
dent i’s peers. This looks like (4.6.10), but with an important
difference. The variable B(i)j is a feature of the home environ-
ment that predates test scores and is therefore unaffected by
school-level random shocks.

Angrist and Lang (2004) provide another example of
an attempt to link student achievement with the ex ante
characteristics of peers. The Angrist and Lang study looked
at the impact of bused-in low-achieving newcomers on high-
achieving residents’ test scores. The regression of interest in
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this case is a version of

sij = µ + π5mj + νij, (4.6.11)

where mj is the number of bused-in low achievers in school j
and sij is resident student i’s test score. Spurious correlation
due to common shocks is not a concern in this context, for two
reasons. First, mj is a feature of the school population deter-
mined by students outside the sample used to estimate (4.6.11).
Second, the number of low achievers is an ex ante variable
biased on information about where the students come from
and not the outcome variable, sij. School-level random effects
that are part of νij remain an important issue for inference,
however, since mj is a group-level variable.

4.6.3 Limited Dependent Variables Reprise

In section 3.4.2, we discussed the consequences of limited
dependent variables for regression models. When the depen-
dent variable is binary or non-negative—say, employment
status or hours worked—the CEF is typically nonlinear. Most
nonlinear LDV models are built around a nonlinear transfor-
mation of a linear latent index. Examples include probit, logit,
and Tobit. These models capture features of the associated
CEFs (e.g., probit fitted values are guaranteed to be between
zero and one, while Tobit fitted values are non-negative). Yet
we saw that the added complexity and extra work required
to interpret the results from latent index models may not be
worth the trouble.

An important consideration in favor of OLS is a conceptual
robustness that structural models often lack. OLS always gives
a MMSE linear approximation to the CEF. In fact, we can
think of OLS as a scheme for computing marginal effects—
a scheme that has the virtue of simplicity, automation, and
comparability across studies. Nonlinear latent index models
are more like GLS: they provide an efficiency gain when taken
literally, but require a commitment to functional form and
distributional assumptions, about which we do not usually feel
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strongly.35 A second consideration is the distinction between
the latent index parameters at the heart of nonlinear models
and the average causal effects that we believe should be the
objects of primary interest in most research projects.

The arguments in favor of conventional OLS with LDVs
apply with equal force to 2SLS and models with endogenous
variables. IV methods capture local average treatment effects
regardless of whether the dependent variable is binary, non-
negative, or continuously distributed. With covariates, we can
think of 2SLS as estimating LATE averaged across covari-
ate cells. In models with variable or continuous treatment
intensity, 2SLS gives us the average causal response or an aver-
age derivative. Although Abadie (2003) has shown that 2SLS
does not, in general, provide the MMSE approximation to
the complier causal response function, in practice, 2SLS esti-
mates come out remarkably close to estimates using the more
rigorously grounded Abadie procedure (and with a saturated
model for covariates, 2SLS and Abadie are the same). More-
over, 2SLS estimates LATE directly; there is no intermediate
step involving the calculation of marginal effects.

2SLS is not the only way to go. An alternative, more elabo-
rate approach tries to build up a causal story by describing the
process generating LDVs in detail. A good example is bivari-
ate probit, which can be applied to the Angrist and Evans
(1998) example like this. Suppose that a woman decides to

35The analogy between nonlinear LDV models and GLS is more than rhetor-

ical. Consider a probit model with nonlinear CEF, E[yi|Xi] = �
[X′

iβ
∗

σ

] ≡ ri.
The first-order conditions for maximum likelihood estimation of this model
are ∑

i

(yi − ri)Xi

ri(1 − ri)
= 0.

Maximum likelihood is asymptotically the same as GLS estimation of the
nonlinear regression model

yi = �

[
X′

iβ
∗

σ

]
+ ξj,

since the conditional variance of yi is ri(1 − ri). The only difference is that
GLS is done in two steps.
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have a third child by comparing costs and benefits using a
net benefit function or latent index that is linear in covariates
and excluded instruments, with a random error term, vi. The
bivariate probit first stage can be written

di = 1[X′
iγ

∗
0 + γ ∗

1 zi > vi], (4.6.12)

where zi is an instrumental variable that increases the benefit
of a third child, conditional on covariates, Xi. For example,
American parents appear to value a third child more when they
have had either two boys or two girls, a sort of portfolio diver-
sification phenomenon that can be understood as increasing
the benefit of a third child in families with same-sex sibships.

An outcome variable of primary interest in this context is
employment status, a Bernoulli random variable with a con-
ditional mean between zero and one. To complete the model,
suppose that employment status, yi, is determined by the latent
index

yi = 1[X′
iβ

∗
0 + β∗

1di > εi], (4.6.13)

where εi is a second random component or error term. This
latent index can be seen as arising from a comparison of the
costs and benefits of working.

The source of omitted variables bias in the bivariate pro-
bit setup is correlation between vi and εi. In other words,
unmeasured random determinants of childbearing are corre-
lated with unmeasured random determinants of employment.
The model is identified by assuming zi is independent of
these components, and that the random components are nor-
mally distributed. Given normality, the parameters in (4.6.12)
and (4.6.13) can be estimated by maximum likelihood. The
log likelihood function is

∑
yi ln �b

(
X′

iβ
∗
0 + β∗

1di

σε

,
X′

iγ
∗
0 + γ ∗

1 zi

σν

; ρεν

)

+ (1 −yi) ln

[
1 − �b

(
X′

iβ
∗
0 + β∗

1di

σε

,
X′

iγ
∗
0 + γ ∗

1 zi

σν

; ρεν

)]
,

(4.6.14)



200 Chapter 4

where �b(·, ·; ρεν) is the bivariate normal distribution func-
tion with correlation coefficient ρεν . Note, however, that we
can multiply the latent index coefficients and error standard
deviations (σε, σν) by a positive constant without changing
the likelihood. The object of estimation is therefore the ratio
of the index coefficients to the error standard deviations
(e.g., β∗

1/σε).
The potential outcomes defined by the bivariate probit

model are

y0i = 1[X′
iβ

∗
0 > εi] and y1i = 1[X′

iβ
∗
0 + β∗

1 > εi],

while potential treatment assignments are

d0i = 1[X′
iγ

∗
0 > vi] and d1i = 1[X′

iγ
∗
0 + γ ∗

1 > vi].

As usual, only one potential outcome and one potential assign-
ment are observed for any one person. It’s also clear from this
representation that correlation between vi and εi is the same
thing as correlation between potential treatment assignments
and potential outcomes.

The latent index coefficients do not themselves tell us any-
thing about the size of the causal effect of childbearing on
employment other than the sign. To see this, note that the
average causal effect of childbearing is

E[y1i −y0i] = E{1[X′
iβ

∗
0 + β∗

1 > εi] − 1[X′
iβ

∗
0 > εi]},

while the average effect on the treated is

E[y1i −y0i|di = 1]
= E{1[X′

iβ
∗
0 + β∗

1 > εi] − 1[X′
iβ

∗
0 > εi]|X′

iγ
∗
0 + γ ∗

1 zi > vi}.

Given alternative distributional assumptions for vi and εi,
these can be anything. (If the error terms are heteroskedastic,
then even the sign of these expressions is indeterminate.)
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By virtue of normality, the average causal effects generated
by the bivariate probit model are easy to evaluate. The average
treatment effect is

E{1[X′
iβ

∗
0 + β∗

1 > εi] − 1[X′
iβ

∗
0 > εi]} (4.6.15)

= E
{
�

[
X′

iβ
∗
0 + β∗

1

σε

]
− �

[
X′

iβ
∗
0

σε

]}
,

where �[·] is the normal CDF. The effect on the treated
is a little more complicated since it involves the bivariate
normal CDF:

E[y1i −y0i|di = 1]

= E

⎧⎪⎨
⎪⎩

�b

(
X′

iβ
∗
0+β∗

1
σε

,
X′

iγ
∗
0 +γ ∗

1 zi
σν

; ρεν

)
− �b

(
X′

iβ
∗
0

σε
,

X′
iγ

∗
0 +γ ∗

1 zi
σν

; ρεν

)
�
(

X′
iγ

∗
0 +γ ∗

1 zi
σν

)
⎫⎪⎬
⎪⎭ .

(4.6.16)

The bivariate normal CDF is a canned function in many
software packages, so this is easy enough to calculate in
practice.

Bivariate probit probably qualifies as harmless in the sense
that it’s not very complicated and easy to get right using pack-
aged software routines. Still, it shares the disadvantages of
nonlinear latent index modeling discussed in section 3.4.2.
First, some researchers become distracted by an effort to
estimate index coefficients instead of average causal effects.
For example, a large literature in econometrics is concerned
with the estimation of index coefficients without the need for
distributional assumptions. Applied researchers interested in
causal effects can safely ignore this work.36

36Suppose the latent error term has an unknown distribution, with CDF
�[·]. The average causal effect in this case is

E{�[X′
iβ

∗
0 + β∗

1 ] − �[X′
iβ

∗
0 ]} = �′[X′

iβ
∗
0 + β̃1]β∗

1 ,

where (by the mean value theorem) β̃1 is a number in [0, β∗
1 ]. This always

depends on the shape of �[·], so it is never enough to know the index
coefficients alone.
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A second vice in this context is also a virtue. Bivariate pro-
bit and other models of this sort can be used to estimate
unconditional average causal effects and/or effects on the
treated. In contrast, 2SLS does not promise you average causal
effects, only local average causal effects. But it should be clear
from (4.6.15) that the assumed normality of the latent index
error terms is essential for this. As always, the best you can
do without a distributional assumption is LATE, the average
causal effect for compliers. For bivariate probit, we can write
LATE as

E[y1i −y0i|d1i > d0i]
= E{1[X′

iβ
∗
0 + β∗

1 > εi]
− 1[X′

iβ
∗
0 > εi]|X′

iγ
∗
0 + γ ∗

1 > vi > X′
iγ

∗
0 },

which, like (4.6.16), can be evaluated using joint normality of
vi and εi. But you needn’t bother using normality to evaluate
E[y1i −y0i|d1i > d0i], since LATE can be estimated by IV for
each Xi and averaged using the histogram of the covariates.
Alternately, do 2SLS and settle for a variance-weighted aver-
age of covariate-specific LATEs, as described by the saturate
and weight theorem in section 4.5.3.

You might be wondering whether LATE is enough. Perhaps
you would like to estimate the unconditional average treat-
ment effect or the effect of treatment on the treated and are
willing to make a few extra assumptions to do so. That’s all
well and good, but in our experience you can’t get blood from
a stone, even with heroic assumptions. Since local informa-
tion is all that’s in the data, in practice, the average causal
effects produced by bivariate probit are likely to be simi-
lar to 2SLS estimates, provided the model for covariates is
sufficiently flexible. This is illustrated in table 4.6.1, which
reports 2SLS and bivariate probit estimates of the effects of
a third child on female labor supply using the Angrist-Evans
(1998) same-sex instruments and the same 1980 census sam-
ple of married women with two or more children used in their
paper. The dependent variable is a dummy for having worked
the previous year; the endogenous variable is a dummy for
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Table 4.6.1
2SLS, Abadie, and bivariate probit estimates of the effects of a third

child on female labor supply

Abadie Estimates Bivariate Probit

2SLS Linear Probit MFX ATE TOT
(1) (2) (3) (4) (5) (6)

A. No Covariates
−.138 −.138 −.137 −.138 −.139 −.139
(.029) (.030) (.030) (.029) (.029) (.029)

B. Some covariates (no age controls)
−.132 −.132 −.131 −.135 −.135 −.135
(.029) (.029) (.028) (.028) (.028) (.028)

C. Some covariates plus age at first birth
−.129 −.129 −.129 −.133 −.133 −.133
(.028) (.028) (.028) (.026) (.026) (.026)

D. Some covariates plus age at first birth and a dummy for age > 30
−.124 −.125 −.125 −.131 −.131 −.131
(.028) (.029) (.029) (.025) (.025) (.025)

E. Some covariates plus age at first birth and age
−.120 −.121 −.121 −.171 −.171 −.171
(.028) (.026) (.026) (.023) (.023) (.023)

Notes: Adapted from Angrist (2001). The table compares 2SLS estimates to
alternative estimates of the effect of childbearing on labor supply using nonlin-
ear models. All models use same-sex instruments. Standard errors for the Abadie
estimates were bootstrapped using 100 replications of subsamples of size 20,000.
MFX denotes marginal effects; ATE is the unconditional average treatment effect;
TOT is the average effect of treatment on the treated.

having a third child. The first-stage effect of a same-sex sib-
ship on the probability of a third birth is about 7 percentage
points.

Panel A of table 4.6.1 reports estimates from a model with
no covariates. The 2SLS estimate of −.138 in column 1 is
numerically identical to the Abadie causal effect estimated
using a linear model in column 2, as it should be in this
case. Without covariates, the 2SLS slope coefficient provides
the best linear approximation to the complier causal response
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function as does Abadie’s kappa-weighting procedure. The
marginal effect changes little if, instead of a linear approx-
imation, we use nonlinear least squares with a probit CEF.
The marginal effect estimated by minimizing

E

{
κi

(
yi − �

[
β∗

0 + β∗
1di

σε

])2
}

is −.137, reported in column 3. This is not surprising, since
the model without covariates imposes no functional form
assumptions.

Perhaps more surprising is the fact that marginal effects
and the average treatment effects calculated using (4.6.15)
and (4.6.16) are also the same as the 2SLS and Abadie
estimates. These results are reported in columns 4–6. The
marginal effect calculated using a derivative to approximate
to the finite difference in (4.6.15) is −.138 (in column 4,
labeled MFX for marginal effects), while both average treat-
ment effects are −.139 in columns 5 and 6. Adding a few
covariates has little effect on the estimates, as can be seen in
panel B. In this case, the covariates are all dummy variables,
three for race (black, Hispanic, other), and two indicating
first- and second-born boys (the excluded instrument is the
interaction of these two). Panels C and D show that adding a
linear term in age at first birth and a dummy for maternal age
also leaves the estimates unchanged.

The invariance to covariates seems desirable: because the
same-sex instrument is essentially independent of covariates,
control for covariates is unnecessary to eliminate bias and
should primarily affect precision. Yet, as panel E shows, the
marginal effects generated by bivariate probit are sensitive to
the list of covariates. Swapping a dummy indicating mothers
over 30 with a linear age term increases the bivariate pro-
bit estimates markedly, to −.171, while leaving 2SLS and
the Abadie estimators unchanged. This probably reflects the
fact that the linear age term induces an extrapolation into
cells where there is little data. Although there is no harm in
reporting the bivariate probit effects in panel E, it’s hard to
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see why the more robust 2SLS and Abadie estimators should
not be preferred.37

4.6.4 The Bias of 2SLS�

It is a fortunate fact that the OLS estimator is not only con-
sistent, it is also unbiased (as we briefly noted at the end
of section 3.1.3). This means that in a sample of any size,
the estimated OLS coefficient vector has a distribution that is
centered on the population coefficient vector.38 The 2SLS esti-
mator, in contrast, is consistent, but biased. This means that
the 2SLS estimator only promises to be close to the causal effect
of interest in large samples. In small samples, 2SLS estimates
can differ systematically from the target parameter.

For many years, applied researchers lived with the knowl-
edge that 2SLS is biased without losing too much sleep. Neither
of us heard much about the bias of 2SLS in our graduate
econometrics classes. A series of papers in the early 1990s
changed this, however. These papers show that 2SLS esti-
mates can be highly misleading in cases relevant for empirical
practice.39

The 2SLS estimator is most biased when the instruments are
“weak,” meaning the correlation with endogenous regressors
is low, and when there are many overidentifying restrictions.
When the instruments are both many and weak, the 2SLS
estimator is biased toward the probability limit of the cor-
responding OLS estimate. In the worst-case scenario, when
the instruments are so weak that there is no first stage in the
population, the 2SLS sampling distribution is centered on the

37Angrist (2001) makes the same point using twins instruments and reports
a similar pattern in a comparison of 2SLS, Abadie, and nonlinear structural
estimates of models for hours worked.

38A more precise statement is that OLS is unbiased when either (1) the CEF
is linear or (2) the regressors are nonstochastic, that is, fixed in repeated sam-
ples. In practice, these qualifications do not seem to matter much. As a rule,
the sampling distribution of β̂ = [∑i XiX′

i]−1 ∑
iXiyi, tends to be centered on

the population analog, β = E[XiX′
i]−1E[Xiyi], in samples of any size, whether

or not the CEF is linear or the regressors are stochastic.
39Key references are Nelson and Startz (1990a,b), Buse (1992), Bekker

(1994), and especially Bound, Jaeger, and Baker (1995).
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probability limit of OLS. The theory behind this result is a lit-
tle technical, but the basic idea is easy to see. The source of the
bias in 2SLS estimates is the randomness in estimates of the
first-stage fitted values. In practice, the first-stage estimates
reflect some of the randomness in the endogenous variable,
since the first-stage coefficients come from a regression of the
endogenous variable on the instruments. If the population first
stage is zero, then all randomness in the first stage is due to the
endogenous variable. This randomness generates finite-sample
correlation between first-stage fitted values and second-stage
errors, since the endogenous variable is correlated with the
second-stage errors (or else you wouldn’t be instrumenting in
the first place).

A more formal derivation of 2SLS bias goes like this. To
streamline the discussion we use matrices and vectors and a
simple constant-effects model (it’s difficult to discuss bias in a
heterogeneous effects world, since the target parameter may
change as the number of instruments changes). Suppose you
are interested in estimating the effect of a single endogenous
regressor, stored in a vector x, on a dependent variable, stored
in the vector y, with no other covariates. The causal model of
interest can then be written

y = βx + η. (4.6.17)

The N×q matrix of instrumental variables is Z, with the
associated first-stage equation

x = Zπ + ξ . (4.6.18)

OLS estimates of (4.6.17) are biased because ηi is corre-
lated with ξi. The instruments Zi are uncorrelated with ξi by
construction and uncorrelated with ηi by assumption.

The 2SLS estimator is

β̂2SLS = (x′PZx)−1x′PZy = β + (x′PZx)−1x′PZη,

where PZ = Z(Z′Z)−1Z′ is the projection matrix that produces
fitted values from a regression of x on Z. Substituting for x in
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x′PZη, we get

β̂2SLS − β = (x′PZx)−1(π ′Z′ + ξ ′)PZη

= (x′PZx)−1π ′Z′η + (x′PZx)−1ξ ′PZη. (4.6.19)

The bias in 2SLS comes from the nonzero expectation of terms
on the right-hand side.

The expectation of (4.6.19) is hard to evaluate because
the expectation operator does not pass through the inverse
(x′PZx)−1, a nonlinear function. It’s possible to show, how-
ever, that the expectation of the ratios on the right-hand
side of (4.6.19) can be closely approximated by the ratio of
expectations. In other words,

E[β̂2SLS − β] ≈ (E[x′PZx])−1E[π ′Z′η] + (E[x′PZx])−1E[ξ ′PZη].
This approximation is much better than the usual asymptotic
approximation invoked in large-sample theory, so we think of
it as giving us a good measure of the finite-sample behavior of
the 2SLS estimator.40 Furthermore, because E[π ′Z′ξ ] = 0 and
E[π ′Z′η] = 0, we have

E[β̂2SLS − β] ≈ [E(π ′Z′Zπ ) + E(ξ ′PZξ )]−1E(ξ ′PZη).
(4.6.20)

The approximate bias of 2SLS therefore comes from the fact
that E(ξ ′PZη) is not zero unless ηi and ξi are uncorrelated. But
correlation between ηi and ξi is what led us to use IV in the
first place.

Further manipulation of (4.6.20) generates an expression
that is especially useful:

E[β̂2SLS − β] ≈ σηξ

σ 2
ξ

[
E(π ′Z′Zπ )/q

σ 2
ξ

+ 1

]−1

40See Bekker (1994) and Angrist and Krueger (1995). This is also called a
group-asymptotic approximation because it can be derived from an an asymp-
totic sequence that lets the number of instruments go to infinity at the same
time as the number of observations goes to infinity, keeping the number of
observations per instrument (group) constant.
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(see the appendix for a derivation). The term (1/σ 2
ξ )E(π ′Z′Zπ)/

q is the F-statistic for the joint significance of all regressors in
the first stage regression.41 Call this statistic F, so that we can
write

E[β̂2SLS − β] ≈ σηξ

σ 2
ξ

1
F + 1

. (4.6.21)

From this we see that as the first stage F-statistic gets small,
the bias of 2SLS approaches σηξ /σ

2
ξ . The bias of the OLS esti-

mator is σηξ /σ
2
x , which also equals σηξ /σ

2
ξ if π = 0. Thus, we

have shown that 2SLS is centered on the same point as OLS
when the first stage is zero. More generally, we can say 2SLS
estimates are “biased toward OLS estimates” when there isn’t
much of a first stage. On the other hand, the bias of 2SLS
vanishes when F gets large, as should happen in large samples
when π �= 0.

When the instruments are weak, the F-statistic varies
inversely with the number of instruments. To see why, con-
sider adding useless instruments to your 2SLS model, that is,
instruments with no effect on the first-stage R2. The model sum
of squares, E(π ′Z′Zπ ), and the residual variance, σ 2

ξ , will both
stay the same while q goes up. The F-statistic becomes smaller
as a result. From this we learn that the addition of many weak
instruments increases bias.

Intuitively, the bias in 2SLS is a consequence of the fact that
the first-stage is estimated. If the first stage coefficients were
known, we could use x̂pop = Zπ for the first-stage fitted val-
ues. These fitted values are uncorrelated with the second-stage
error. In practice, however, we use x̂ = PZx = Zπ + PZξ ,
which differs from x̂pop by the term PZξ . The bias in 2SLS
arises from the fact that PZξ is correlated with η, so some of

41Sort of; the actual F-statistic is (1/σ̂ 2
ξ )π̂ ′Z′Zπ̂/q, where hats denote

estimates. (1/σ 2
ξ )E(π ′Z′Zπ )/q is therefore sometimes called the population

F-statistic since it’s the F-statistic we’d get in an infinitely large sample. In
practice, the distinction between population and sample F matters little in
this context. Some econometricians prefer to multiply the first-stage F by the
number of instruments when summarizing instrument strength. This product
is called the “concentration parameter.”
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the correlation between errors in the first and second stages
seeps into our 2SLS estimates through the sampling variability
in π̂ . Asymptotically, this correlation disappears, but real life
does not play out in asymptopia.

Formula (4.6.21) shows that, other things equal, the bias in
2SLS is an increasing function of the number of instruments,
so bias is least in the just-identified case when the number of
instruments is as low as it can get. In fact, just-identified 2SLS
(say, the simple Wald estimator) is approximately unbiased.
This is hard to show formally because just-identified 2SLS has
no moments (i.e., the sampling distribution has fat tails). Nev-
ertheless, even with weak instruments, just-identified 2SLS is
approximately centered where it should be. We therefore say
that just-identified 2SLS is median-unbiased. This is not to say
that you can happily use weak instruments in just-identified
models. With a weak instrument, just-identified estimates tend
to be too imprecise to be useful.

The limited information maximum likelihood (LIML) esti-
mator is approximately median-unbiased for overidentified
constant effects models, and therefore provides an attractive
alternative to just-identified estimation using one instrument
at a time (see, e.g., Davidson and MacKinnon, 1993, and
Mariano, 2001). LIML has the advantage of having the same
asymptotic distribution as 2SLS (under constant effects) while
providing a finite-sample bias reduction. A number of other
estimators also reduce the bias in overidentified 2SLS mod-
els. But an extensive Monte Carlo study by Flores-Lagunes
(2007) suggests that LIML does at least as well as the alter-
natives in a wide range of circumstances (in terms of bias,
mean absolute error, and the empirical rejection rates for t-
tests). Another advantage of LIML is that many statistical
packages compute it, while other estimators typically require
some programming.42

42LIML is available in SAS and in STATA 10. With weak instruments,
LIML standard errors are not quite right, but Bekker (1994) gives a simple fix
for this. Why is LIML unbiased? Expression (4.6.21) shows that the approx-
imate bias of 2SLS is proportional to the bias of OLS. From this we conclude
that there is a linear combination of OLS and 2SLS that is approximately
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We use a small Monte Carlo experiment to illustrate some
of the theoretical results from the discussion above. The
simulated data are drawn from the following model,

yi = βxi + ηi

xi =
q∑

j=1

πjzij + ξi,

with β = 1, π1 = 0.1, πj = 0 for j = 2, . . . , q; and(
ηi

ξi

) ∣∣∣∣Z ∼ N
((

0
0

)
,
(

1 0.8
0.8 1

))
,

where the zij are independent, normally distributed random
variables with mean zero and unit variance. This simulates
a scenario with one good instrument and q − 1 worthless
instruments. The sample size is 1000.

Figure 4.6.1 shows the Monte Carlo cumulative distribu-
tion functions of four estimators: OLS, just-identified IV (i.e.,
2SLS with q = 1, labeled IV; first-stage F = 11.1), 2SLS with
two instruments (q = 2, labeled 2SLS; first-stage F = 6.0),
and LIML with q = 2. The OLS estimator is biased and
centered around a value of about 1.79. IV is centered around
1, the value of β. 2SLS with one weak and one uninfor-
mative instrument is moderately biased toward OLS (the
median is 1.07). The distribution function for LIML with
q = 2 is indistinguishable from that for just-identified IV,
even though the LIML estimator also uses an uninformative
instrument.

Figure 4.6.2 reports simulation results where we set q = 20.
Thus, in addition to the one informative but weak instrument,

unbiased. LIML turns out to be just such a “combination estimator.” Like
the bias of 2SLS, the approximate unbiasedness of LIML can be shown using
a Bekker-style group-asymptotic sequence that fixes the ratio of instruments
to sample size. It is worth mentioning, however, that LIML is biased in mod-
els with a certain type of heteroskedasticity. See Bekker and van der Ploeg
(2005) and Hausman, et al. (2008) for details. Unlike LIML, the Jackknife
IV Estimator (JIVE: see, e.g., Angrist, Imbens, and Krueger, 1999) is Bekker-
unbiased under heteroskedasticity. Ackerberg and Devereux (2007) recently
introduced an improved version of JIVE with lower variance.
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Figure 4.6.1 Monte Carlo cumulative distribution functions of
OLS, IV (Q = 1), 2SLS (Q = 2), and LIML (Q = 2) estimators.

we added 19 worthless instruments (first-stage F = 1.51). The
figure again shows OLS, 2SLS, and LIML distributions. The
bias in 2SLS is now much worse (the median is 1.53, close
to the OLS median). The sampling distribution of the 2SLS
estimator is also much tighter than in the q = 2 case. LIML
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Figure 4.6.2 Monte Carlo cumulative distribution functions of
OLS, 2SLS, and LIML estimators with Q = 20 instruments.
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Figure 4.6.3 Monte Carlo cumulative distribution functions
of OLS, 2SLS, and LIML estimators with Q = 20 worthless
instruments.

again performs well and is centered around β = 1, with a bit
more dispersion than in the q = 2 case.

Finally, figure 4.6.3 reports simulation results from a model
that is truly unidentified. In this case, we set πj = 0; j =
1, . . . , 20 (first-stage F = 1.0). Not surprisingly, all the sam-
pling distributions are centered around the same value as OLS.
On the other hand, the 2SLS sampling distribution is much
tighter than the LIML distribution. We would say advantage
LIML in this case because the widely dispersed LIML sam-
pling distribution correctly reflects the fact that the data are
uninformative about the parameter of interest.

What does this mean in practice? Besides retaining a vague
sense of worry about your first stage, we recommend the
following:

1. Report the first stage and think about whether it makes
sense. Are the magnitude and sign as you would expect,
or are the estimates too big or wrong-signed? If so, perhaps
your hypothesized first-stage mechanism isn’t really there,
rather, you simply got lucky.
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2. Report the F-statistic on the excluded instruments. The big-
ger this is, the better. Stock, Wright, and Yogo (2002)
suggest that F-statistics above about 10 put you in the safe
zone, though obviously this cannot be a theorem.

3. Pick your single best instrument and report just-identified
estimates using this one only. Just-identified IV is median-
unbiased and therefore unlikely to be subject to a weak
instruments critique.

4. Check overidentified 2SLS estimates with LIML. LIML is
less precise than 2SLS but also less biased. If the results come
out similar, be happy. If not, worry, and try to find stronger
instruments or reduce the degree of overidentification.

5. Look at the coefficients, t-statistics, and F-statistics for
excluded instruments in the reduced-form regression of
dependent variables on instruments. Remember that the
reduced form is proportional to the causal effect of interest.
Moreover, the reduced-form estimates, since they are OLS,
are unbiased. As Angrist and Krueger (2001) note, if you
can’t see the causal relation of interest in the reduced form,
it’s probably not there.43

We illustrate some of this reasoning in a reanalysis of
data from the Angrist and Krueger (1991) quarter-of-birth
study. Bound, Jaeger, and Baker (1995) argued that bias is
a major concern when using quarter of birth as an instrument
for schooling, even though the sample size exceeds 300,000.
(“Small sample” is clearly relative.) Earlier in the chapter, we
saw that the quarter-of-birth pattern in schooling is reflected
in the reduced form, so there would seem to be little cause for
concern. On the other hand, Bound, Jaeger, and Baker (1995)
argue that the most relevant models have additional controls
not included in these reduced forms. Table 4.6.2 reproduces
some of the specifications from Angrist and Krueger (1991) as
well as other specifications in the spirit of Bound, Jaeger, and
Baker (1995).

43A recent paper by Chernozhukov and Hansen (2008) formalizes this
maxim.
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Table 4.6.2
Alternative IV estimates of the economic returns to schooling

(1) (2) (3) (4) (5) (6)

2SLS .105 .435 .089 .076 .093 .091
(.020) (.450) (.016) (.029) (.009) (.011)

LIML .106 .539 .093 .081 .106 .110
(.020) (.627) (.018) (.041) (.012) (.015)

F-statistic 32.27 .42 4.91 1.61 2.58 1.97
(excluded instruments)

Controls
Year of birth � � � � � �
State of birth � �
Age, age squared � � �
Excluded instruments
Quarter-of-birth dummies � �
Quarter of birth*year of birth � � � �
Quarter of birth*state of birth � �
Number of excluded instruments 3 2 30 28 180 178

Notes: The table compares 2SLS and LIML estimates using alternative sets of instru-
ments and controls. The age and age squared variables measure age in quarters. The OLS
estimate corresponding to the models reported in columns 1–4 is .071; the OLS estimate
corresponding to the models reported in columns 5 and 6 is .067. Data are from the Angrist
and Krueger (1991) 1980 census sample. The sample size is 329,509. Standard errors are
reported in parentheses.

The first column in the table reports 2SLS and LIML esti-
mates of a model using three quarter-of-birth dummies as
instruments, with year-of-birth dummies as covariates. The
OLS estimate for this specification is 0.071, while the 2SLS
estimate is a bit higher, at 0.105. The first-stage F-statistic is
over 32, well out of the danger zone. Not surprisingly, the
LIML estimate is almost identical to 2SLS in this case.

Angrist and Krueger (1991) experimented with models that
include age and age squared measured in quarters as additional
controls. These controls are meant to pick up omitted age
effects that might confound the quarter-of-birth instruments.
The addition of age and age squared reduces the number of
instruments to two, since age in quarters, year of birth, and
quarter of birth are linearly dependent. As shown in column 2,
the first-stage F-statistic drops to 0.4 when age and age squared
are included as controls, a sure sign of trouble. But the 2SLS
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standard error is high enough that we would not draw any
substantive conclusions from this estimate. The LIML estimate
is even less precise. This model is effectively unidentified.

Columns 3 and 4 report the results of adding interactions
between quarter-of-birth dummies and year-of-birth dummies
to the instrument list, so that there are 30 instruments, or
28 when the age and age squared variables are included. The
first-stage F-statistics are 4.9 and 1.6 in these two specifica-
tions. The 2SLS estimates are a bit lower than in column 1
and hence closer to OLS. But LIML is not too far away from
2SLS. Although the LIML standard error is pretty big in col-
umn 4, it is not so large that the estimate is uninformative.
On balance, there seems to be little cause for worry about
weak instruments in 30-instrument models, even with the age
quadratic included.

The most worrisome specifications are those reported in
columns 5 and 6. These estimates were constructed by adding
150 interactions between quarter of birth and state of birth to
the 30 interactions between quarter of birth and year of birth.
The rationale for the inclusion of state-of-birth interactions
in the instrument list is to exploit differences in compulsory
schooling laws across states. But this leads to highly overiden-
tified models with 180 (or 178) instruments, many of which
are weak. The first stage F-statistics for these models are only
2.6 and 2.0. On the plus side, the LIML estimates again look
fairly similar to 2SLS. Moreover, the LIML standard errors are
not too far above the 2SLS standard errors in this case. This
suggests that you can’t always determine instrument relevance
using a mechanical rule, such as “F > 10.” In some cases, a
low F may not be fatal.44

Finally, it’s worth noting that in applications with mul-
tiple endogenous variables, the conventional first-stage F is
no longer appropriate. To see why, suppose there are two
instruments for two endogenous variables and that the first
instrument is strong and predicts both endogenous variables

44Cruz and Moreira (2005) similarly conclude that low F-statistics notwith-
standing, there is little bias in the Angrist and Krueger (1991) 180-instrument
specifications.
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well, while the second instrument is weak. The first-stage
F-statistics in each of the two first-stage equations are likely
to be high, but the model is weakly identified, because one
instrument is not enough to capture two causal effects. A sim-
ple modification of the first-stage F for this case is given in the
appendix.

4.7 Appendix

Derivation of Equation (4.6.8)

Rewrite equation (4.6.7) as follows

Yij = µ + π0τi + (π0 + π1)Sj + νij

where τi ≡ si − Sj. Since τi and Sj are uncorrelated by construc-
tion, we have:

ρ1 = π0 + π1.

π0 = Cov(τi, Yij)
V(τi)

.

Expanding the second line,

π0 = Cov[(si − Sj), Yij]
[V(si) − V(Sj)]

=
[

Cov(si, Yij)
V(si)

][
V(si)

V(si) − V(Sj)

]

+
[

Cov(Sj, Yij)

V(Sj)

][
−V(Sj)

V(si) − V(Sj)

]

= ρ0φ + ρ1(1 − φ) = ρ1 + φ(ρ0 − ρ1),

where φ ≡ V(si)
V(si)−V(Sj)

is a positive number. Solving for π1, we

also have
π1 = ρ1 − π0 = φ(ρ1 − ρ0).
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Derivation of the Approximate Bias of 2SLS

Start with (4.6.20):

E[β̂2SLS − β] ≈ [E(π ′Z′Zπ ) + E(ξ ′PZξ )]−1E(ξ ′PZη).

The magic of linear algebra helps us simplify this expression:
the term ξ ′PZη is a scalar and therefore equal to its trace; the
trace function is a linear operator that passes through expecta-
tions and is invariant to cyclic permutations; finally, the trace
of PZ, an idempotent matrix, is equal to its rank, q. Using
these facts, and iterating expectations over Z, we have

E(ξ ′PZη|Z) = E[tr(ξ ′PZη)|Z]
= E[tr(PZηξ ′)|Z]
= tr(PZE[ηξ ′|Z])
= tr(PZσηξ I)

= σηξ tr(PZ)

= σηξq,

where we have assumed that ηi and ξi are homoskedastic. Sim-
ilarly, applying the trace trick to E[ξ ′PZξ ] shows that this term
is equal to σ 2

ξ q. Therefore,

E[β̂2SLS − β] ≈ σηξq[E(π ′Z′Zπ ) + σ 2
ξ q]−1

= σηξ

σ 2
ξ

[
E(π ′Z′Zπ )/q

σ 2
ξ

+ 1

]−1

.

Multivariate First-Stage F-Statistics

Assume any exogenous covariates have been partialed out of
the instrument list and there are two endogenous variables,
x1 and x2, with coefficients δ1 and δ2. We are interested in
the bias of the 2SLS estimator of δ2 when x1 is also treated as
endogenous. The second-stage equation is

y = PZx1δ1 + PZx2δ2 + [η + (x1 − PZx1)δ1 + (x2 − PZx2)δ2],
(4.7.1)
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where PZx1 and PZx2 are the first-stage fitted values from
regressions of x1 and x2 on Z. By the multivariate regression
anatomy formula, δ2 in (4.7.1) is the bivariate regression of
y on the residual from a regression of PZx2 on PZx1. This
residual is

[I − PZx1(x′
1PZx1)−1x′

1PZ]PZx2 = M1zPZx2,

where M1z = [I − PZx1(x′
1PZx1)−1x′

1PZ] is the relevant residual-
maker matrix. Note also that M1zPZx2 = PZ[M1zx2].

From here we conclude that the 2SLS estimator of δ2 is the
OLS regression on PZ[M1zx2], in other words, OLS on the
fitted values from a regression of M1zx2 on Z. This is the same
as 2SLS using Z to instrument M1zx2. So the 2SLS estimator
of δ2 can be written

[x′
2M1zPZM1zx2]−1x′

2M1zPZy

= δ2 + [x′
2M1zPZM1zx2]−1x′

2M1zPZη.

The first-stage sum of squares (numerator of the F-statistic)
that determines the bias of the 2SLS estimator of δ2 is therefore
the expectation of [x′

2M1zPZM1zx2], while 2SLS bias comes
from the fact that the expectation E[ξ ′M1zPZη] is nonzero
when η and ξ are correlated.

Here’s how to compute this F-statistic in practice:
(1) Regress the first-stage fitted values for the regressor of
interest, PZx2, on the other first-stage fitted values and
any exogenous covariates. Save the residuals from this step.
(2) Construct the F-statistic for excluded instruments in a
first-stage regression of the residuals from (1) on the excluded
instruments. Note that you should get the 2SLS coefficient of
interest in a 2SLS procedure where the residuals from (1) are
instrumented using Z, with no other covariates or endogenous
variables. Use this fact to check your calculations.
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Chapter 5

Parallel Worlds: Fixed Effects,
Differences-in-Differences,

and Panel Data
■ ◆ ■||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

The first thing to realize about parallel universes . . . is that
they are not parallel.

Douglas Adams, Mostly Harmless

The key to causal inference in chapter 3 is control for
observed confounding factors. If important confounders
are unobserved, we might try to get at causal effects using

instrumental variables, as discussed in chapter 4. Good instru-
ments are hard to find, however, so we’d like to have other
tools to deal with unobserved confounders. This chapter con-
siders a variation on the control theme: strategies that use data
with a time or cohort dimension to control for unobserved but
fixed omitted variables. These strategies punt on comparisons
in levels while requiring the counterfactual trend behavior of
treatment and control groups to be the same. We also discuss
the idea of controlling for lagged dependent variables, another
strategy that exploits timing.

5.1 Individual Fixed Effects

One of the oldest questions in labor economics is the con-
nection between union membership and wages. Do workers
whose wages are set by collective bargaining earn more
because of this, or would they earn more anyway, perhaps
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because they are more experienced or skilled? To set this ques-
tion up, let yit equal the (log) earnings of worker i at time t,
and let dit denote his union status. The observed yit is either
y0it or y1it, depending on union status. Suppose further that

E[y0it|Ai, Xit, t, dit] = E[y0it|Ai, Xit, t],

where Xit is a vector of observed time-varying covariates and
Ai is a vector of unobserved but fixed confounders that we’ll
call ability.

In other words, union status is as good as randomly assigned
conditional on Ai and observed covariates, such as age,
schooling, and region of residence.

The key to fixed effects estimation is the assumption that
the unobserved Ai appears without a time subscript in a linear
model for E(y0it|Ai, Xit, t):

E[y0it|Ai, Xit, t] = α + λt + A′
iγ + X′

itβ, (5.1.1)

We also assume that the causal effect of union membership is
additive and constant:

E[y1it|Ai, Xit, t] = E[y0it|Ai, Xit, t] + ρ.

Together with (5.1.1), this implies

E[yit|Ai, Xit, t, dit] = α + λt + ρdit + A′
iγ + X′

itβ, (5.1.2)

where ρ is the causal effect of interest. The set of assumptions
leading to (5.1.2) is more restrictive than those we used to
motivate regression in chapter 3; we need the linear, additive
functional form to make headway on the problem of unob-
served confounders using panel data with no instruments.1

1In some cases, we can allow heterogeneous treatment effects so that

E(y1it −y0it |Ai, Xit , t) = ρi.

See, for example, Wooldridge (2005), who discusses estimators for the average
of ρi.
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Equation (5.1.2) implies

yit = αi + λt + ρdit + X′
itβ + εit, (5.1.3)

where εit ≡ y0it − E[y0it|Ai, xit, t] and

αi ≡ α + A′
iγ .

This is a fixed effects model. Given panel data (repeated obser-
vations on individuals), the causal effect of union status on
wages can be estimated by treating αi, the fixed effect, as a
parameter to be estimated. The year effect, λt, is also treated
as a parameter to be estimated. The unobserved individual
effects are coefficients on dummies for each individual, while
the year effects are coefficients on time dummies.2

It might seem that there are a lot of parameters to be esti-
mated in the fixed effects model. For example, the Panel Survey
of Income Dynamics, a widely used panel data set, includes
data on about 5,000 working-age men observed for about
20 years. So there are roughly 5,000 fixed effects. In practice,
however, this doesn’t matter. Treating the individual effects
as parameters to be estimated is algebraically the same as esti-
mation in deviations from means. In other words, first we
calculate the individual averages,

yi = αi + λ + ρdi + X
′
iβ + εi.

Subtracting this from (5.1.3) gives

yit −yi = λt − λ + ρ(dit − di) + (Xit − Xi)′β + (εit − εi),
(5.1.4)

2An alternative to the fixed effects specification is random effects (see, e.g.,
Wooldridge, 2006). The random effects model assumes that αi is uncorrelated
with the regressors. Because the omitted variable in a random effects model
is uncorrelated with included regressors, there is no bias from ignoring it—in
effect, it becomes part of the residual. The most important consequence of
random effects is that the residuals for a given person are correlated across
periods. Chapter 8 discusses the implications of this for OLS standard errors.
Random effects models can be estimated by GLS, which promises to be more
efficient if the assumptions of the random effects model are satisfied. How-
ever, as in chapter 3, we prefer fixing OLS standard errors to GLS. GLS
requires stronger assumptions than OLS, and the resulting asymptotic effi-
ciency gain is likely to be modest, while finite-sample properties may be worse.
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so deviations from means kills the unobserved individual
effects.3

An alternative to deviations from means is differencing. In
other words, we estimate,

�yit = �λt + ρ�dit + �X′
itβ + �εit, (5.1.5)

where the � prefix denotes the change from one year to
the next. For example, �yit = yit −yit−1. With two periods,
differencing is algebraically the same as deviations from
means, but not otherwise. Both should work, although with
homoskedastic and serially uncorrelated εit and more than two
periods, deviations from means is more efficient. You might
find differencing more convenient if you have to do it by hand,
though the differenced standard errors should be adjusted for
the fact that the differenced residuals are serially correlated.

Some regression packages automate the deviations from
means estimator, with an appropriate standard error adjust-
ment for the degrees of freedom lost in estimating N individ-
ual means. This is all that’s needed to get the standard errors
right with a homoskedastic, serially uncorrelated residual. The
deviations from means estimator has many names, including
the “within estimator” and “analysis of covariance.” Estima-
tion in deviations from means form is also called absorbing
the fixed effects.4

Freeman (1984) uses four data sets to estimate union wage
effects under the assumption that selection into union status
is based on unobserved but fixed individual characteristics.
Table 5.1.1 displays some of his estimates. For each data set,

3Why is deviations from means the same as estimating each fixed effect
in (5.1.3)? Because, by the regression anatomy formula, (3.1.3), any set of
multivariate regression coefficients can be estimated in two steps. To get the
multivariate coefficient on one set of variables, first regress them on all
the other included variables, then regress the original dependent variable on
the residuals from this first step. The residuals from a regression on a full set
of person-dummies in a person-year panel are deviations from person means.

4The fixed effects are not estimated consistently in a panel where the number
of periods T is fixed while N → ∞. This is called the incidental parame-
ters problem, a name that reflects the fact that the number of parameters
grows with the sample size. Nevertheless, other parameters in the fixed effects
model—the ones we care about—are consistently estimated.
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Table 5.1.1
Estimated effects of union status on wages

Cross Section Fixed Effects
Survey Estimate Estimate

May CPS, 1974–75 .19 .09

National Longitudinal Survey
of Young Men, 1970–78 .28 .19

Michigan PSID, 1970–79 .23 .14

QES, 1973–77 .14 .16

Notes: Adapted from Freeman (1984). The table reports cross section
and panel (fixed effects) estimates of the union relative wage effect.
The estimates were calculated using the surveys listed in the left-hand
column. The cross section estimates include controls for demographic
and human capital variables.

the table displays results from a fixed effects estimator and
the corresponding cross section estimates. The cross section
estimates are typically higher (ranging from .14 to .28) than
the fixed effects estimates (ranging from .09 to .19). This may
indicate positive selection bias in the cross section estimates,
though selection bias is not the only explanation for the lower
fixed effects estimates.

Although they control for a certain type of omitted variable,
fixed effects estimates are notoriously susceptible to attenua-
tion bias from measurement error. On one hand, economic
variables such as union status tend to be persistent (a worker
who is a union member this year is most likely a union mem-
ber next year). On the other hand, measurement error often
changes from year to year (union status may be misreported or
miscoded this year but not next year). Therefore, while union
status may be misreported or miscoded for only a few workers
in any single year, the observed year-to-year changes in union
status may be mostly noise. In other words, there is more mea-
surement error in the differenced regressors in an equation like
(5.1.4) or (5.1.5) than in the levels of the regressors. This fact
may account for smaller fixed effects estimates.5

5See Griliches and Hausman (1986) for a more complete discussion of
measurement error in panel data.
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A variant on the measurement error problem in panel data
arises from that fact that the differencing and deviations from
means estimators used to control for fixed effects typically
remove both good and bad variation. In other words, these
transformations may kill some of the omitted variables bias
bathwater, but they also remove much of the useful informa-
tion in the baby, the variable of interest. An example is the use
of twins to estimate the causal effect of schooling on wages.
Although there is no time dimension to this problem, the basic
idea is the same as the union problem discussed above: twins
have similar but largely unobserved family and genetic back-
grounds. We can therefore control for their common family
background by including a family fixed effect in samples of
pairs of twins.

Ashenfelter and Krueger (1994) and Ashenfelter and Rouse
(1998) estimate the returns to schooling using samples of
twins, controlling for family fixed effects. Because there are
two twins from each family, this is the same as regressing
differences in earnings within twin pairs on differences in
schooling. Surprisingly, the within-family estimates come out
larger than OLS estimates. But how do differences in school-
ing come about between individuals who are otherwise so
much alike? Bound and Solon (1999) point out that there
are small differences between twins, with first-borns typically
having higher birth weight and higher IQ scores (here differ-
ences in birth timing are measured in minutes). While these
within-twin differences are not large, neither is the difference
in their schooling. Hence, small unobserved ability differences
between twins could be responsible for substantial bias in the
resulting estimates.

What should be done about measurement error and related
problems in models with fixed effects? A possible solu-
tion to measurement error is to use IV methods. Ashenfel-
ter and Krueger (1994) use cross-sibling reports to construct
instruments for schooling differences between twins. For
example, they use each twin’s report of his brother’s school-
ing as an instrument for self-reports. A second approach is
to bring in external information on the extent of measure-
ment error and adjust naive estimates accordingly. In a study
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of union wage effects, Card (1996) uses external information
from a separate validation survey to adjust panel data esti-
mates for measurement error in reported union status. But
data from multiple reports and repeated measures of the sort
used by Ashenfelter and Krueger (1994) and Card (1996) are
unusual. At a minimum, therefore, it’s important to avoid
overly strong claims when interpreting fixed effects estimates
(never bad advice for an applied econometrician in any case).

5.2 Differences-in-Differences: Pre and Post,
Treatment and Control

The fixed effects strategy requires panel data, that is, repeated
observations on the same individuals (or firms, or whatever the
unit of observation might be). Often, however, the regressor
of interest varies only at a more aggregate or group level, such
as state or cohort. For example, state policies regarding health
care benefits for pregnant workers may change over time but
are fixed across workers within states. The source of OVB
when evaluating these policies must therefore be unobserved
variables at the state and year level. In some cases, group-level
omitted variables can be captured by group-level fixed effects,
an approach that leads to the differences-in-differences (DD)
identification strategy.

The DD idea was probably pioneered by physician John
Snow (1855), who studied cholera epidemics in London in the
mid-nineteenth century. Snow wanted to establish that cholera
is transmitted by contaminated drinking water (as opposed to
“bad air,” the prevailing theory at the time). To show this,
Snow compared changes in death rates from cholera in dis-
tricts serviced by two water companies, the Southwark and
Vauxhall Company and the Lambeth Company. In 1849 both
companies obtained their water supply from the dirty Thames
in central London. In 1852, however, the Lambeth Com-
pany moved its water works upriver to an area relatively free
of sewage. Death rates in districts supplied by Lambeth fell
sharply in comparison to the change in death rates in districts
supplied by Southwark and Vauxhall.
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To make matters more concrete, let us return to an exam-
ple from economics. Suppose we are interested in the effect
of the minimum wage on employment, a classic question in
labor economics. In a competitive labor market, increases in
the minimum wage move us up a downward-sloping labor
demand curve. Higher minimums therefore reduce employ-
ment, perhaps hurting the very workers minimum wage poli-
cies were designed to help. Card and Krueger (1994) use a
dramatic change in the New Jersey state minimum wage to see
if this is true.6

On April 1, 1992, New Jersey raised the state minimum
from $4.25 to $5.05. Card and Krueger collected data on
employment at fast food restaurants in New Jersey in February
1992 and again in November 1992. These restaurants (Burger
King, Wendy’s, and so on) are big minimum wage employers.
Card and Krueger also collected data from the same type of
restaurants in eastern Pennsylvania, just across the Delaware
River. The minimum wage in Pennsylvania stayed at $4.25
throughout this period. They used their data set to compute
differences-in-differences (DD) estimates of the effects of the
New Jersey minimum wage increase. That is, they compared
the February-to-November change in employment in New
Jersey to the change in employment in Pennsylvania over the
same period.

DD is a version of fixed effects estimation using aggregate
data. To see this, let y1ist be fast food employment at restaurant
i in state s and period t if there is a high state minimum wage,
and let y0ist be fast food employment at restaurant i in state s
and period t if there is a low state minimum wage. These are
potential outcomes; in practice, we only get to see one or the
other. For example, we see y1ist in New Jersey in November
1992. The heart of the DD setup is an additive structure for
potential outcomes in the no-treatment state. Specifically, we
assume that

E[y0ist|s, t] = γs + λt, (5.2.1)

6The DD idea was first used to study the effects of minimum wages by
Obenauer and von der Nienburg (1915), writing for the U.S. Bureau of Labor
Statistics.
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where s denotes state (New Jersey or Pennsylvania) and t
denotes period (February, before the minimum wage increase,
or November, after the increase). This equation says that in
the absence of a minimum wage change, employment is deter-
mined by the sum of a time-invariant state effect and a year
effect that is common across states. The additive state effect
plays the role of the unobserved individual effect in section 5.1.

Let dst be a dummy for high-minimum-wage states and peri-
ods. Assuming that E[y1ist −y0ist|s, t] is a constant, denoted δ,
observed employment, yist, can be written:

yist = γs + λt + δdst + εist, (5.2.2)

where E(εist|s, t) = 0. From here, we get

E[yist|s = PA, t = Nov] − E[yist|s = PA, t = Feb]
= λNov − λFeb

and

E[yist|s = NJ, t = Nov] − E[yist|s = NJ, t = Feb]
= λNov − λFeb + δ.

The population difference-in-differences,

{E[yist|s = NJ, t = Nov] − E[yist|s = NJ, t = Feb]}
− {E[yist|s = PA, t = Nov] − E[yist|s = PA, t = Feb]} = δ,

is the causal effect of interest. This is easily estimated using the
sample analog of the population means.

Table 5.2.1 (based on table 3 in Card and Krueger, 1994)
shows average employment at fast food restaurants in New
Jersey and Pennsylvania before and after the change in the
New Jersey minimum wage. There are four cells in the first
two rows and columns, while the margins show state dif-
ferences in each period, the changes over time in each state,
and the difference-in-differences. Employment in Pennsylva-
nia restaurants is somewhat higher than in New Jersey in
February but falls by November. Employment in New Jer-
sey, in contrast, increases slightly. These two changes produce
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Table 5.2.1
Average employment in fast food restaurants before and after the

New Jersey minimum wage increase

PA NJ Difference, NJ − PA
Variable (i) (ii) (iii)

1. FTE employment before, 23.33 20.44 −2.89
all available observations (1.35) (.51) (1.44)

2. FTE employment after, 21.17 21.03 −.14
all available observations (.94) (.52) (1.07)

3. Change in mean FTE −2.16 .59 2.76
employment (1.25) (.54) (1.36)

Notes: Adapted from Card and Krueger (1994), table 3. The table reports
average full-time-equivalent (FTE) employment at restaurants in Pennsylvania
and New Jersey before and after a minimum wage increase in New Jersey. The
sample consists of all restaurants with data on employment. Employment at
six closed restaurants is set to zero. Employment at four temporarily closed
restaurants is treated as missing. Standard errors are reported in parentheses.

a positive difference-in-differences, the opposite of what we
might expect if a higher minimum wage pushed businesses up
the labor demand curve.

How convincing is this evidence against the standard labor
demand story? The key identifying assumption here is that
employment trends would be the same in both states in the
absence of treatment. Treatment induces a deviation from this
common trend, as illustrated in figure 5.2.1. Although the
treatment and control states can differ, this difference is meant
to be captured by the state fixed effect, which plays the same
role as the unobserved individual effect in (5.1.3).7

7The common trends assumption can be applied to transformed data, for
example,

E[ln y0ist |s, t] = γs + λt .

Note, however, that common trends in logs rule out common trends in levels
and vice versa. Athey and Imbens (2006) introduce a semiparametric DD esti-
mator that allows for common trends after an unspecified transformation of
the dependent variable. Poterba, Venti, and Wise (1995) and Meyer, Viscusi,
and Durbin (1995) discuss DD-type models for quantiles.
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Figure 5.2.1 Causal effects in the DD model.

The common trends assumption can be investigated using
data on multiple periods. In an update of their original
minimum wage study, Card and Krueger (2000) obtained
administrative payroll data for restaurants in New Jersey and a
number of Pennsylvania counties. These data are shown here
in figure 5.2.2, similar to figure 2 in their follow-up study.
The vertical lines indicate the dates when the original Card
and Krueger surveys were conducted, and the third vertical
line indicates the October 1996 increase in the federal min-
imum wage to $4.75, which affected Pennsylvania but not
New Jersey. These data give us an opportunity to look at a
new minimum wage experiment.

As in the original Card and Krueger survey, the administra-
tive data show a slight decline in employment from February
to November 1992 in Pennsylvania, and little change in New
Jersey over the same period. However, the data also reveal
substantial year-to-year employment variation in other peri-
ods. These swings often seem to differ substantially in the two
states. In particular, while employment levels in New Jersey
and Pennsylvania were similar at the end of 1991, employment
in Pennsylvania fell relative to employment in New Jersey over
the next three years (especially in the 14-county group), mostly
before the 1996 increase in the federal minimum wage. So
Pennsylvania may not provide a very good measure of coun-
terfactual employment rates in New Jersey in the absence of a
minimum wage change.
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Figure 5.2.2 Employment in New Jersey and Pennsylvania fast
food restaurants, October 1991 to September 1997 (from Card and
Krueger 2000). Vertical lines indicate dates of the original Card and
Krueger (1994) survey and the October 1996 federal minimum
wage increase.

A more encouraging example comes from Pischke (2007),
who looked at the effect of school term length on student per-
formance using variation generated by a sharp policy change
in Germany. Until the 1960s, children in all German states
except Bavaria started school in the spring. Beginning in the
1966–67 school year, the spring starters moved to start school
in the fall. The transition to a fall start required two short
school years for affected cohorts, 24 weeks long instead of 37.
Students in these cohorts effectively had their time in school
compressed relative to cohorts on either side and relative to
students in Bavaria, which already had a fall start.

Figure 5.2.3 plots the likelihood of grade repetition for the
1962–73 cohorts of second graders in Bavaria and affected
states (there are no repetition data for 1963–65). Repetition
rates in Bavaria were reasonably flat from 1966 on at around
2.5 percent. Repetition rates are higher in the short-school-
year (SSY) states, at around 4–4.5 percent in 1962 and 1966,
before the change in term length. But repetition rates jump
up by about a percentage point for the two affected cohorts
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Figure 5.2.3 Average grade repetition rates in second grade for
treatment and control schools in Germany (from Pischke, 2007).
The data span a period before and after a change in term length for
students outside Bavaria (SSY states).

in these states, a bit more so for the second cohort than for
the first, before falling back to the baseline level. This graph
provides strong visual evidence of treatment and control states
with a common underlying trend, and a treatment effect that
induces a sharp but transitory deviation from this trend. A
shorter school year seems to have increased repetition rates
for affected cohorts.

5.2.1 Regression DD

As with the fixed effects model, we can use regression to
estimate equations like (5.2.2). Let NJs be a dummy for restau-
rants in New Jersey and dt be a time dummy that switches
on for observations obtained in November (i.e., after the
minimum wage change). Then

yist = α + γ NJs + λdt + δ(NJs · dt) + εist (5.2.3)

is the same as (5.2.2) where NJs · dt = dst. In the language
of section 3.1.4, this model includes two main effects for state
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and year and an interaction term that marks observations from
New Jersey in November. This is a saturated model, since the
conditional mean function E(yist|s, t) takes on four possible
values and there are four parameters. The link between the
parameters in the regression equation, (5.2.3), and those in
the DD model for the conditional mean function, (5.2.2), is

α = E[yist|s = PA, t = Feb] = γPA + λFeb

γ = E[yist|s = NJ, t = Feb] − E[yist|s = PA, t = Feb]
= γNJ − γPA

λ = E[yist|s = PA, t = Nov] − E[yist|s = PA, t = Feb]
= λNov − λFeb

δ = {E[yist|s = NJ, t = Nov] − E[yist|s = NJ, t = Feb]}
− {E[yist|s = PA, t = Nov] − E[yist|s = PA, t = Feb]}.

The regression formulation of the DD model offers a conve-
nient way to construct DD estimates and standard errors. It’s
also easy to add additional states or periods to the regression
setup. We might, for example, add additional control states
and pretreatment periods to the New Jersey-Pennsylvania sam-
ple. The resulting generalization of (5.2.3) includes a dummy
for each state and period but is otherwise unchanged.

A second advantage of regression DD is that it facilitates
the study of policies other than those that can be described
by dummy variables. Instead of New Jersey and Pennsylvania
in 1992, for example, we might look at all state minimum
wages in the United States. Some of these are a little higher
than the federal minimum (which covers everyone regardless
of where they live), some are a lot higher, and some are the
same. The minimum wage is therefore a variable with differ-
ing treatment intensity across states and over time. Moreover,
in addition to statutory variation in state minima, the local
importance of a minimum wage varies with average state wage
levels. For example, the early 1990s federal minimum wage of
$4.25 an hour was probably irrelevant in Connecticut, with
high average wages, but a big deal in Mississippi.

Card (1992) exploits regional variation in the impact of
the federal minimum wage. His approach is motivated by an
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equation like

yist = γs + λt + δ(fas · dt) + εist, (5.2.4)

where the variable fas is a measure of the fraction of teenagers
likely to be affected by a minimum wage increase in each state
and dt is a dummy for observations in 1990, when the federal
minimum wage increased from $3.35 to $3.80. The fas vari-
able measures the baseline (pre-increase) proportion of each
state’s teen labor force earning less than $3.80.

As in the New Jersey-Pennsylvania study, Card (1992)
works with data from two periods, before and after, in this
case 1989 and 1990. But this study uses 51 states (includ-
ing the District of Columbia), for a total of 102 state-year
observations. Since there are no individual-level covariates in
(5.2.4), this is the same as estimation with microdata (provided
the group-level estimates are weighted by cell size). Note that
fas · dt is an interaction term, like NJs · dt in (5.2.3), though
here the interaction term takes on a distinct value for each
observation in the data set. Finally, because Card (1992) ana-
lyzes data for only two periods, the reported estimates are
from an equation in first differences:

�ȳs = λ∗ + δfas + �ε̄s,

where �ȳs is the change in average teen employment in state
s and �ε̄s is the error term in the differenced equation.8

Table 5.2.2, based on table 3 in Card (1992), shows that
wages increased more in states where the minimum wage
increase is likely to have had more bite (see the estimate of .15
in column 1). This is an important step in Card’s analysis—it
verifies the notion that the fas (fraction of affected teens) vari-
able is a good predictor of the wage changes induced by an
increase in the federal minimum. Employment, on the other

8Other specifications in the spirit of (5.2.4) put a normalized function of
state and federal minimum wages on the right-hand side instead of fas · dt .
See, for example, Neumark and Wascher (1992), who work with the differ-
ence between state and federal minima, adjusted for minimum wage coverage
provisions, and normalized by state average hourly wage rates.
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Table 5.2.2
Regression DD estimates of minimum wage effects on teens,

1989 to 1990

Change Change in Teen
in Mean Log Wage Employment-Population Ratio

Explanatory Variable (1) (2) (3) (4)

1. Fraction of .15 .14 .02 −.01
affected teens (fas) (.03) (.04) (.03) (.03)

2. Change in overall — .46 — 1.24
emp./pop. ratio (.60) (.60)

3. R2 .30 .31 .01 .09

Notes: Adapted from Card (1992). The table reports estimates from a regres-
sion of the change in average teen employment by state on the fraction of teens
affected by a change in the federal minimum wage in each state. Data are from
the 1989 and 1990 CPS. Regressions are weighted by the CPS sample size for
each state.

hand, seems largely unrelated to fas, as can be seen in col-
umn 3. Thus, the results in Card (1992) are in line with the
results from the New Jersey-Pennsylvania study.

Card’s (1992) analysis illustrates a further advantage of
regression DD: it’s easy to add additional covariates in this
framework. For example, we might like to control for adult
employment as a source of omitted state-specific trends. In
other words, we can model counterfactual employment in the
absence of a change in the minimum wage as

E[y0ist|s, t, Xst] = γs + λt + X′
stβ.

where Xst is a vector of state- and time-varying covariates,
including adult employment (though this may not be kosher if
adult employment also responds to the minimum wage change,
in which case it’s bad control; see section 3.2.3). As it turns
out, the addition of an adult employment control has little
effect on Card’s estimates, as can be seen in columns 2 and 4
in table 5.2.2.

It’s worth emphasizing that Card (1992) analyzes state aver-
ages instead of individual data. He might have used a pooled
multiyear sample of microdata from the CPS to estimate an
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equation like

yist = γs + λt + δ(fas · dt) + X′
istβ + εist, (5.2.5)

where Xist can include individual level characteristics such as
race as well as time-varying variables measured at the state
level. Only the latter are likely to be a source of omitted
variables bias, but individual-level controls can increase pre-
cision, a point we noted in section 2.3. Inference is a little
more complicated in a framework that combines microdata
on dependent variables with group-level regressors, however.
The key issue is how best to adjust standard errors for possible
group-level random effects, as we discuss in chapter 8.

When the sample includes many years, the regression-DD
model lends itself to a test for causality in the spirit of Granger
(1969). The Granger idea is to see whether causes happen
before consequences, and not vice versa (though as we know
from the epigraph at the beginning of chapter 4, this alone is
not sufficient for causal inference). Suppose the policy variable
of interest, dst, changes at different times in different states.
In this context, Granger causality testing means a check on
whether, conditional on state and year effects, past dst pre-
dicts yist while future dst does not. If dst causes yist but not
vice versa, then dummies for future policy changes should not
matter in an equation like

yist = γs + λt +
m∑

τ=0

δ−τ ds,t−τ +
q∑

τ=1

δ+τ ds,t+τ + X′
istβ + εist,

(5.2.6)

where the sums on the right-hand side allow for m lags (δ−1,
δ−2, . . . , δ−m) or posttreatment effects and q leads (δ+1, δ+2, . . . ,
δ+q) or anticipatory effects. The pattern of lagged effects is
usually of substantive interest as well. We might, for example,
believe that causal effects should grow or fade as time passes.

Autor (2003) implements the Granger test in an investiga-
tion of the effect of employment protection on firms’ use of
temporary help. In the U.S., employment protection is a type
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of labor law—promulgated by state legislatures or, more typ-
ically, through common law as made by state courts—that
makes it harder to fire workers. As a rule, U.S. labor law
allows employment at will, which means that workers can
be fired for just cause or no cause, at the employer’s whim.
But some state courts have allowed a number of exceptions to
the employment-at-will doctrine, leading to lawsuits for unjust
dismissal. Autor is interested in whether fear of employee law-
suits makes firms more likely to use temporary workers for
tasks for which they would otherwise have increased their
workforce. Temporary workers are employed by someone else
besides the firm for which they are executing tasks. As a result,
firms using them cannot be sued for unjust dismissal when they
let temporary workers go.

Autor’s empirical strategy relates the employment of tem-
porary workers in a state to dummy variables indicating state
court rulings that allow exceptions to the employment-at-will
doctrine. His regression-DD model includes both leads and
lags, as in equation (5.2.6). The estimated leads and lags, run-
ning from two years ahead to four years behind, are plotted in
figure 5.2.4, a reproduction of figure 3 from Autor (2003). The
estimates show no effects in the two years before the courts
adopted an exception, with sharply increasing effects on tem-
porary employment in the first few years after the adoption,
which then appear to flatten out with a permanently higher
rate of temporary employment in affected states. This pattern
seems consistent with a causal interpretation of Autor’s results.

An alternative check on the DD identification strategy adds
state-specific time trends to the list of controls. In other words,
we estimate

yist = γ0s + γ1st + λt + δdst + X′
istβ + εist, (5.2.7)

where γ0s is a state-specific intercept, as before, and γ1s is a
state-specific trend coefficient multiplying the time trend vari-
able, t. This allows treatment and control states to follow
different trends in a limited but potentially revealing way. It’s
heartening to find that the estimated effects of interest are
unchanged by the inclusion of these trends, and discouraging
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Figure 5.2.4 The estimated impact of implied-contract exceptions
to the employment-at-will doctrine on the use of temporary workers
(from Autor, 2003). The dependent variable is the log of state
temporary help employment in 1979–1995. Estimates are from a
model that allows for effects before, during, and after exceptions
were adopted.

otherwise. Note, however, that we need at least three periods
to estimate a model with state-specific trends. Moreover, in
practice, three periods is typically inadequate to pin down both
the trends and the treatment effect. As a rule, DD estimation
with state-specific trends is likely to be more robust and con-
vincing when the pretreatment data establish a clear trend that
can be extrapolated into the posttreatment period.

In a study of the effects of labor regulation on businesses in
Indian states, Besley and Burgess (2004) use state trends as a
robustness check. Different states change regulatory regimes
at different times, giving rise to a DD research design. As in
Card (1992), the unit of observation in Besley and Burgess
(2004) is a state-year average. Table 5.2.3 (based on table IV
in their paper) reproduces the key results.

The estimates in column 1, from a regression DD model
without state-specific trends, suggest that labor regulation
leads to lower output per capita. The models used to construct
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Table 5.2.3
Estimated effects of labor regulation on the performance of firms

in Indian states

(1) (2) (3) (4)

Labor regulation (lagged) −.186 −.185 −.104 .0002
(.064) (.051) (.039) (.020)

Log development .240 .184 .241
expenditure per capita (.128) (.119) (.106)

Log installed electricity .089 .082 .023
capacity per capita (.061) (.054) (.033)

Log state population .720 0.310 −1.419
(.96) (1.192) (2.326)

Congress majority −.0009 .020
(.01) (.010)

Hard left majority −.050 −.007
(.017) (.009)

Janata majority .008 −.020
(.026) (.033)

Regional majority .006 .026
(.009) (.023)

State-specific trends No No No Yes
Adjusted R2 .93 .93 .94 .95

Notes: Adapted from Besley and Burgess (2004), table IV. The table reports
regression DD estimates of the effects of labor regulation on productivity. The
dependent variable is log manufacturing output per capita. All models include
state and year effects. Robust standard errors clustered at the state level are
reported in parentheses. State amendments to the Industrial Disputes Act are
coded 1 = pro-worker, 0 = neutral, −1 = pro-employer and then cumulated
over the period to generate the labor regulation measure. Log of installed
electrical capacity is measured in kilowatts, and log development expenditure
is real per capita state spending on social and economic services. Congress,
hard left, Janata, and regional majority are counts of the number of years
for which these political groupings held a majority of the seats in the state
legislatures. The data are for the sixteen main states for the period 1958–92.
There are 552 observations.
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the estimates in columns 2 and 3 add time-varying state-
specific covariates, such as government expenditure per capita
and state population. This is in the spirit of Card’s (1992)
addition of state-level adult employment rates as a control in
the minimum wage study. The addition of controls affects the
Besley and Burgess estimates little. But the addition of state-
specific trends kills the labor regulation effect, as can be seen
in column 4. Apparently, labor regulation in India increased
in states where output was declining anyway. Control for this
trend therefore drives the estimated regulation effect to zero.

Picking Controls

We’ve labeled the two dimensions in the DD setup states and
time because this is the archetypical DD example in applied
econometrics. But the DD idea is much more general. Instead
of states, the subscript s might denote demographic groups,
some of which are affected by a policy and others are not.
For example, Kugler, Jimeno, and Hernanz (2005) look at the
effects of age-specific employment protection policies in Spain.
Likewise, instead of time, we might group data by cohort or
other types of characteristics. An example is Angrist and Evans
(1999), who studied the effect of changes in state abortion
laws on teen pregnancy using variation by state and year of
birth. Regardless of the group labels, however, DD designs
always set up an implicit treatment-control comparison. The
question of whether this comparison is a good one deserves
careful consideration.

One potential pitfall in this context arises when the com-
position of the treatment and control groups changes as a
result of treatment. Going back to a design based on state
and time comparisons, suppose we’re interested in the effects
of the generosity of public assistance on labor supply. Histori-
cally, U.S. states have offered widely varying welfare payments
to poor unmarried mothers. Labor economists have long been
interested in the effects of such income maintenance policies:
how much of an increase in living standards they facilitate,
and whether they make work less attractive (see, e.g., Meyer
and Rosenbaum, 2001, for a recent study). A concern here,
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emphasized in a review of research on welfare by Moffitt
(1992), is that poor people who would in any case have weak
labor force attachment might move to states with more gen-
erous welfare benefits. In a DD research design, this sort of
program-induced migration tends to make generous welfare
programs look worse for labor supply than they really are.

Migration problems can usually be fixed if we know where
an individual starts out. Say we know state of residence in
the period before treatment, or state of birth. State of birth or
previous state of residence are unchanged by the treatment but
are still highly correlated with current state of residence. The
problem of migration is therefore eliminated in comparisons
using these dimensions instead of state of residence. This intro-
duces a new problem, however, which is that individuals who
do move are incorrectly located. In practice, however, this is
easily addressed with the IV methods discussed in chapter 4
(state of birth or previous residence can be used to construct
instruments for current location).

A modification of the two-by-two DD setup with possibly
improved control groups uses higher-order contrasts to draw
causal inferences. An example is the extension of Medicaid
coverage in the United States, studied by Yelowitz (1995).
Eligibility for Medicaid, the massive U.S. health insurance
program for the poor, was once tied to eligibility for Aid for
Families with Dependent Children (AFDC), a large cash wel-
fare program. At various times in the 1980s, however, some
states extended Medicaid coverage to children in families ineli-
gible for AFDC. Yelowitz was interested in how this expansion
of publicly provided health insurance for children affected,
among other things, mothers’ labor force participation and
earnings.

In addition to state and time, children’s age provides a third
dimension on which Medicaid policy varies. Yelowitz exploits
this variation by estimating

yiast = γst + λat + θas + δdast + X′
iastβ + εiast,

where s index states, t indexes time, and a is the age of
the youngest child in a family. This model provides full
nonparametric control for state-specific time effects that are
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common across age groups (γst), time-varying age effects (λat),
and state-specific age effects (θas). The regressor of interest,
dast, indicates families with children in affected age groups in
states and periods where Medicaid coverage is provided. This
triple-differences model may generate a more convincing set of
results than a traditional DD analysis that exploits differences
by state and time alone.

5.3 Fixed Effects versus Lagged
Dependent Variables

Fixed effects and DD estimators are based on the presump-
tion of time-invariant (or group-invariant) omitted variables.
Suppose, for example, we are interested in the effects of par-
ticipation in a subsidized training program, as in the Dehejia
and Wahba (1999) and Lalonde (1986) studies discussed in
section 3.3.3. The key identifying assumption motivating fixed
effects estimation in this case is

E[y0it|αi, Xit, dit] = E[y0it|αi, Xit], (5.3.1)

where αi is an unobserved personal characteristic that deter-
mines, along with covariates, Xit, whether individual i gets
training. To be concrete, αi might be a measure of vocational
skills, though a strike against the fixed effects setup is the
fact that the exact nature of the unobserved variables typi-
cally remains somewhat mysterious. In any case, coupled with
a linear model for E(y0it|αi, Xit), assumption (5.3.1) leads to
simple estimation strategies involving differences or deviations
from means.

For many causal questions, the notion that the most impor-
tant omitted variables are time invariant doesn’t seem plau-
sible. The evaluation of training programs is a case in point.
It’s likely that people looking to improve their labor market
options by participating in a government-sponsored training
program have suffered some kind of setback. Many training
programs explicitly target people who have suffered a recent
setback, such as men who recently lost their jobs. Consis-
tent with this, Ashenfelter (1978) and Ashenfelter and Card
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(1985) find that training participants typically have earnings
histories that exhibit a preprogram dip. Past earnings is a time-
varying confounding variable that cannot be subsumed in a
time-invariant omitted variable like αi.

The distinctive earnings histories of trainees motivates an
estimation strategy that controls for past earnings directly
and dispenses with fixed effects. To be precise, instead of
(5.3.1), we might base causal inference on the conditional
independence assumption,

E[y0it|yit−h, Xit, dit] = E[y0it|yit−h, Xit]. (5.3.2)

This is like saying that what makes trainees special is their
earnings h periods ago. We can then use panel data to estimate

yit = α + θyit−h + λt + δdit + X′
itβ + εit, (5.3.3)

where the causal effect of training is δ. To make this more
general, yit−h can be a vector including lagged earnings for
multiple periods.9

Applied researchers using panel data are often faced with the
challenge of choosing between fixed effects and lagged depen-
dent variables models, that is, between causal inferences
based on (5.3.1) and (5.3.2). One solution to this dilemma
is to work with a model that includes both lagged dependent
variables and unobserved individual effects. In other words,
identification might be based on

E[y0it|αi, yit−h, Xit, dit] = E[y0it|αi, yit−h, Xit], (5.3.4)

which requires conditioning on both αi and yit−h. We can then
try to estimate causal effects using a specification like

yit = αi + θyit−h + λt + δdit + X′
itβ + εit. (5.3.5)

9Abadie, Diamond, and Hainmueller (2007) develop a semiparametric
version of the lagged dependent variables model, more flexible than the
traditional regression setup. As in 5.3.2, the key assumption in this model
is independence of treatment status and potential outcomes conditional on
lagged earnings. The Abadie, Diamond, and Hainmuller approach works for
microdata and for data with a group structure. The Dehejia and Wahba (1999)
matching strategy also uses lagged dependent variables.
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Unfortunately, the conditions for consistent estimation of
δ in equation (5.3.5) are much more demanding than those
required with fixed effects or lagged dependent variables alone.
This can be seen in a simple example where the lagged depen-
dent variable is yit−1. We kill the fixed effect by differencing,
which produces

�yit = θ�yit−1 + �λt + δ�dit + �X′
itβ + �εit. (5.3.6)

The problem here is that the differenced residual, �εit, is nec-
essarily correlated with the lagged dependent variable, �yit−1,
because both are a function of εit−1. Consequently, OLS
estimates of (5.3.6) are not consistent for the parameters in
(5.3.5), a problem first noted by Nickell (1981). This problem
can be solved, though the solution requires strong assump-
tions. The easiest solution is to use yit−2 as an instrument for
�yit−1 in (5.3.6).10 But this requires that yit−2 be uncorrelated
with the differenced residuals, �εit. This seems unlikely, since
residuals are the part of earnings left over after accounting for
covariates. Most people’s earnings are highly correlated from
one year to the next, so that past earnings are also likely to
be correlated with �εit. If εit is serially correlated, there may
be no consistent estimator for (5.3.6). (Note also that the IV
strategy using yit−2 as an instrument requires at least three
periods, so we get data for t, t − 1, and t − 2.)

Given the difficulties that arise when trying to estimate
(5.3.6), we might ask whether the distinction between fixed
effects and lagged dependent variables matters. The answer,
unfortunately, is yes. The fixed effects and lagged dependent
variables models are not nested, which means we cannot hope
to estimate one and get the other as a special case if need be.

So what’s an applied guy to do? One answer, as always,
is to check the robustness of your findings using alternative
identifying assumptions. That means that you would like to
find broadly similar results using plausible alternative mod-
els. Fixed effects and lagged dependent variables estimates
also have a useful bracketing property. The appendix to this

10See Holtz-Eakin, Newey, and Rosen (1988), Arellano and Bond (1991),
and Blundell and Bond (1998) for details and examples.
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chapter shows that if (5.3.2) is correct, but you mistakenly
use fixed effects, estimates of a positive treatment effect will
tend to be too big. On the other hand, if (5.3.1) is correct and
you mistakenly estimate an equation with lagged outcomes,
such as (5.3.3), estimates of a positive treatment effect will
tend to be too small. You can therefore think of fixed effects
and lagged dependent variables as bounding the causal effect
of interest (given some assumptions about the nature of selec-
tion bias). Guryan (2004) illustrates this sort of reasoning in a
study estimating the effects of court-ordered busing on black
students’ high school graduation rates.

5.4 Appendix: More on Fixed Effects
and Lagged Dependent Variables

To simplify, we ignore covariates, intercepts, and year effects
and assume there are only two periods, with treatment equal
to zero for everyone in the first period (the punch line is the
same in a more general setup). The causal effect of interest, δ,
is positive. Suppose first that treatment (training status) is cor-
related with an unobserved individual effect, αi, uncorrelated
with lagged outcome residuals, εit−1, and that outcomes can
be described by

yit = αi + δdit + εit, (5.4.1)

where εit is serially uncorrelated, and also uncorrelated with
αi and dit. We also have

yit−1 = αi + εit−1,

where αi and εit−1 are uncorrelated. You mistakenly esti-
mate the effect of dit in a model that controls for yit−1 but
ignores fixed effects. The resulting estimator has probability
limit Cov(yit ,d̃it )

V(d̃it )
, where d̃it = dit − γyit−1 is the residual from a

regression of dit on yit−1.
Now substitute αi = yit−1 − εit−1 in (5.4.1) to get

yit = yit−1 + δdit + εit − εit−1.
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From here, we get

Cov(yit, d̃it)
V(d̃it)

= δ − Cov(εit−1, d̃it)
V(d̃it)

= δ − Cov(εit−1, dit − γyit−1)
V(d̃it)

= δ + γ σ 2
ε

V(d̃it)
,

where σ 2
ε is the variance of εit−1. Since trainees have low

yit−1, γ < 0, and the resulting estimate of δ is too small.
Suppose instead that treatment is determined by low yit−1.

Causal effects can be estimated using a simplified version of
(5.3.3), say

yit = α + θyit−1 + δdit + εit, (5.4.2)

where εit is serially uncorrelated and uncorrelated with dit.
You mistakenly estimate a first-differenced equation in an
effort to kill fixed effects. This ignores the lagged dependent
variable. In this simple example, where dit−1 = 0 for everyone,
the first-differenced estimator has probability limit

Cov(yit −yit−1, dit − dit−1)
V(dit − dit−1)

= Cov(yit −yit−1, dit)
V(dit)

.

(5.4.3)

Subtracting yit−1 from both sides of (5.4.2), we have

yit −yit−1 = α + (θ − 1)yit−1 + δdit + εit.

Substituting this in (5.4.3), the inappropriately differenced
model yields

Cov(yit −yit−1, dit)
V(dit)

= δ + (θ − 1)
[

Cov(yit−1, dit)
V(dit)

]
.

In general, we think θ is a positive number less than one, other-
wise yit is nonstationary (i.e., an explosive time series process).
Therefore, since trainees have low yit−1, the estimate of δ in
first differences is too big. Note that in this simple model,
differencing turns out to be ok in the unlikely event θ = 1 in
(5.4.2), but that is not true in general.
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Chapter 6

Getting a Little Jumpy: Regression
Discontinuity Designs
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But when you start exercising those rules, all sorts of
processes start to happen and you start to find out all sorts
of stuff about people. . . . It’s just a way of thinking about a
problem, which lets the shape of the problem begin to
emerge. The more rules, the tinier the rules, the more
arbitrary they are, the better.

Douglas Adams, Mostly Harmless

R egression discontinuity (RD) research designs exploit
precise knowledge of the rules determining treatment.
RD identification is based on the idea that in a highly

rule-based world, some rules are arbitrary and therefore
provide good experiments. RD comes in two styles, fuzzy
and sharp. The sharp design can be seen as a selection-on-
observables story. The fuzzy design leads to an instrumental
variables (IV) type of setup.

6.1 Sharp RD

Sharp RD is used when treatment status is a deterministic
and discontinuous function of a covariate, xi. Suppose, for
example, that

di =
{

1 if xi ≥ x0

0 if xi < x0
, (6.1.1)
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where x0 is a known threshold or cutoff. This assignment
mechanism is a deterministic function of xi because once we
know xi we know di. Treatment is a discontinuous function
of xi because no matter how close xi gets to x0, treatment is
unchanged until xi = x0.

This may seem a little abstract, so here is an example.
American high school students are awarded National Merit
Scholarships on the basis of PSAT scores, a test taken by most
college-bound high school juniors, especially those who will
later take the SAT. The question that motivated one of the first
discussions of RD is whether students who win National Merit
Scholarships change their career or study plans as a result.
For example, National Merit Scholars may be more likely to
go to graduate school (Thistlewaithe and Campbell, 1960;
Campbell, 1969). Sharp RD compares the graduate school
attendance rates of students with PSAT scores just above and
just below the National Merit Award thresholds. In general,
we might expect students with higher PSAT scores to be more
likely to go to graduate school, but this effect can be controlled
by fitting a regression to the relationship between graduate
school attendance rates and PSAT scores, at least in the neigh-
borhood of the award cutoff. In this example, jumps in the
relationship between PSAT scores and graduate school atten-
dance in the neighborhood of the award threshold are taken
as evidence of a treatment effect. It is this jump in regression
lines that gives RD its name.1

An interesting and important feature of RD, highlighted
in a recent survey by Imbens and Lemieux (2008), is that
there is no value of xi at which we get to observe both treat-
ment and control observations. Unlike full covariate matching
strategies, which are based on treatment-control comparisons
conditional on covariate values where there is some overlap,

1The basic structure of RD designs appears to have emerged simultaneously
in a number of disciplines but has only recently become important in applied
econometrics. Cook (2008) gives an intellectual history. In an analysis using
Lalonde (1986)-style within-study comparisons, Cook and Wong (2008) find
that RD generally does a good job of reproducing the results from randomized
trials.
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the validity of RD turns on our willingness to extrapolate
across covariate values, at least in a neighborhood of the dis-
continuity. This is one reason why sharp RD is usually seen
as distinct from other control strategies. For this same reason,
we typically cannot afford to be as agnostic about regression
functional form in the RD world as in the world of chapter 3.

Figure 6.1.1 illustrates a hypothetical RD scenario where
those with xi ≥ 0.5 are treated. In panel A, the trend relation-
ship between outcomes and xi is linear, while in panel B it’s
nonlinear. In both cases there is a discontinuity in the observed
CEF, E[yi|xi], around the point x0, while E[y0i|xi] is smooth.

A simple model formalizes the RD idea. Suppose that
in addition to the assignment mechanism, (6.1.1), potential
outcomes can be described by a linear, constant effects model

E[y0i|xi] = α + βxi

y1i = y0i + ρ.

This leads to the regression,

yi = α + βxi + ρdi + ηi, (6.1.2)

where ρ is the causal effect of interest. The key difference
between this regression and others we’ve used to estimate treat-
ment effects (e.g., in chapter 3) is that di, the regressor of
interest, not only is correlated with xi, it is a deterministic
function of xi. RD captures causal effects by distinguishing
the nonlinear and discontinuous function, 1(xi ≥ x0), from
the smooth and (in this case) linear function, xi.

But what if the trend relation, E[y0i|xi], is nonlinear? To
be precise, suppose that E[y0i|xi] = f (xi) for some reasonably
smooth function, f (xi). Panel B in figure 6.1.1 suggests there is
still hope even in this more general case. Now we can construct
RD estimates by fitting

yi = f (xi) + ρdi + ηi, (6.1.3)

where again, di = 1(xi ≥ x0) is discontinuous in xi at x0. As
long as f (xi) is continuous in a neighborhood of x0, it should
be possible to estimate a model like (6.1.3), even with a flexible
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Figure 6.1.1 The sharp regression discontinuity design.

functional form for f (xi). For example, modeling f (xi) with a
pth-order polynomial, RD estimates can be constructed from
the regression

yi = α + β1xi + β2x2
i + · · · + βpxp

i + ρdi + ηi. (6.1.4)
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A generalization of RD based on (6.1.4) allows different
trend functions for E[y0i|xi] and E[y1i|xi]. Modeling both of
these CEFs with pth-order polynomials, we have

E[y0i|xi] = f0(xi) = α + β01x̃i + β02x̃2
i + · · · + β0px̃p

i

E[y1i|xi] = f1(xi) = α + ρ + β11x̃i + β12x̃i
2 + · · · + β1px̃i

p,

where x̃i ≡ xi − x0. Centering xi at x0 is a normalization that
ensures that the treatment effect at xi = x0 is the coefficient on
di in a regression model with interaction terms.

To derive a regression model that can be used to estimate
the causal effect of interest in this case, we use the fact that di

is a deterministic function of xi to write

E[yi|xi] = E[y0i|xi] + (E[y1i|xi] − E[y0i|xi])di. (6.1.5)

Substituting polynomials for conditional expectations, we
then have

yi = α + β01x̃i + β02x̃2
i + · · · + β0px̃p

i

+ ρdi + β∗
1dix̃i + β∗

2dix̃i
2 + · · · + β∗

pdix̃i
p + ηi, (6.1.6)

where β∗
1 = β11 − β01, β∗

2 = β12 − β02, and β∗
p = β1p − β0p and

ηi is the residual.
Equation (6.1.4) is a special case of (6.1.6) where β∗

1 = β∗
2 =

β∗
p = 0. In the more general model, the treatment effect at

xi − x0 = c > 0 is ρ + β∗
1c + β∗

2c2 + · · · + β∗
pcp, while the treat-

ment effect at x0 is ρ. The model with interactions has the
attraction that it imposes no restrictions on the underlying
conditional mean functions. But in our experience, RD esti-
mates of ρ based on the simpler model, (6.1.4), usually turn
out to be similar to those based on (6.1.6). This is not sur-
prising, since either way the estimated ρ is mostly driven by
variability in E[yi|xi] in the neighborhood of x0.

The validity of RD estimates of causal effects based on
(6.1.4) or (6.1.6) turns on whether polynomial models provide
an adequate description of E[y0i|xi]. If not, then what looks
like a jump due to treatment might simply be an unaccounted-
for nonlinearity in the counterfactual conditional mean



256 Chapter 6

function. This possibility is illustrated in panel C of figure
6.1.1, which shows how a sharp turn in E[y0i|xi] might be mis-
taken for a jump from one regression line to another. To reduce
the likelihood of such mistakes, we can look only at data in a
neighborhood around the discontinuity, say the interval [x0 −
�, x0 + �] for some small positive number �. Then we have

E[yi|x0 − � < xi < x0] � E[y0i|xi = x0]
E[yi|x0 ≤ xi < x0 + �] � E[y1i|xi = x0],

so that

lim
�→0

E[yi|x0 ≤ xi < x0 + �] − E[yi|x0 − � < xi < x0]
= E[y1i −y0i|xi = x0]. (6.1.7)

In other words, comparisons of average outcomes in a small
enough neighborhood to the left and right of x0 estimate the
treatment effect in a way that does not depend on the correct
specification of a model for E[y0i|xi]. Moreover, the validity
of this nonparametric estimation strategy does not turn on
the constant effects assumption, y1i −y0i = ρ; the estimand in
(6.1.7) is the average causal effect, E[y1i −y0i|xi = x0].

The nonparametric approach to RD requires good estimates
of the mean of yi in small neighborhoods to the right and left
of x0. Obtaining such estimates is tricky. The first problem is
that working in a small neighborhood of the cutoff means you
don’t have much data. Also, the sample average is biased for
the CEF in the neighborhood of a boundary (in this case, x0).
Solutions to these problems include the use of a nonparamet-
ric version of regression called local linear regression (Hahn,
Todd, and van der Klaauw, 2001) and the partial linear and
local polynomial regression estimators developed by Porter
(2003). Local regression amounts to weighted least squares
(WLS) estimation of an equation like (6.1.6), with more weight
given to points close to the cutoff.

Sophisticated nonparametric RD methods have not yet
found wide application in empirical practice; most applied RD
work is still parametric. But the idea of focusing on observa-
tions near the cutoff value—what Angrist and Lavy (1999)
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call a “discontinuity sample”—suggests a valuable robustness
check: Although RD estimates become less precise as the win-
dow used to select a discontinuity sample gets smaller, the
number of polynomial terms needed to model f (xi) should go
down. Hopefully, as you zero in on x0 with fewer and fewer
controls, the estimated effect of di remains stable.2 A second
important check looks at the behavior of pretreatment vari-
ables near the discontinuity. Since pretreatment variables are
unaffected by treatment, there should be no jump in the CEF
of these variables at x0.

Lee’s (2008) study of the effect of party incumbency on
reelection probabilities illustrates the sharp RD design. Lee
is interested in whether the Democratic candidate for a seat
in the U.S. House of Representatives has an advantage if his
party won the seat last time. The widely noted success of House
incumbents raises the question of whether representatives use
the privileges and resources of their office to gain advantage for
themselves or their parties. This conjecture sounds plausible,
but the success of incumbents need not reflect a real electoral
advantage. Incumbents—by definition, candidates and par-
ties who have shown they can win—may simply be better at
satisfying voters or getting the vote out.

To capture the causal effect of incumbency, Lee looks at
the likelihood a Democratic candidate wins as a function of
relative vote shares in the previous election. Specifically, he
exploits the fact that an election winner is determined by di =
1(xi ≥ 0), where xi is the vote share margin of victory (e.g., the
difference between the Democratic and Republican vote shares
when these are the two largest parties). Note that, because di

is a deterministic function of xi, there are no confounding

2Hoxby (2000) also uses this idea to check RD estimates of class size effects.
A fully nonparametric approach requires data-driven rules for selection of the
width of the discontinuity-sample window, also known as “bandwidth”. The
bandwidth must shrink with the sample size at a rate sufficiently slow so as to
ensure consistent estimation of the underlying conditional mean functions. See
Imbens and Lemieux (2008) for details. We prefer to think of estimation using
(6.1.4) or (6.1.6) as essentially parametric: in any given sample, the estimates
are only as good as the model that you happen to be using. Promises about
how you might change the model if you had more data should be irrelevant.



258 Chapter 6

0
-0.25 0.15 0.20 0.25

P
ro

b
ab

ili
ty

 o
f W

in
n

in
g

 E
le

ct
io

n
 t

+1

Democratic Vote Share Margin of Victory, Election t

A. 

0.2

0.8

0.6

0.4

1.0

-0.20 -0.15 -0.10 -0.05 0.100.050

Local Average
Logit Fit

0
-0.25 0.15 0.20 0.25

N
o

. o
f 

P
as

t V
ic

to
ri

es
 a

s 
o

f 
E

le
ct

io
n

 t

Democratic Vote Share Margin of Victory, Election t

B. 

1

4

3

2

5

-0.20 -0.15 -0.10 -0.05 0.100.050

Local Average
Logit Fit

Figure 6.1.2 The probability of winning an election by past and
future vote share (from Lee, 2008). (A) Candidate’s probability of
winning election t + 1, by margin of victory in election t: local
averages and logit polynomial fit. (B) Candidate’s accumulated
number of past election victories, by margin of victory in election t:
local averages and logit polynomial fit.

variables other than xi. This is a signal feature of the RD
setup.

Figure 6.1.2A, from Lee (2008), shows the sharp RD design
in action. This figure plots the probability that a Democrat
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wins against the difference between Democratic and Republi-
can vote shares in the previous election. The dots in the figure
are local averages (the average win rate in nonoverlapping
windows of share margins that are .005 wide); the lines in
the figure are fitted values from a parametric model with a
discontinuity at zero.3 The probability of a Democratic win
is an increasing function of past vote share. The most impor-
tant feature of the plot, however, is the dramatic jump in win
rates at the 0 percent mark, the point where a Democratic
candidate gets more votes. Based on the size of the jump,
incumbency appears to raise party reelection probabilities by
about 40 percentage points.

Figure 6.1.2B checks the sharp RD identification assump-
tions by looking at Democratic victories before the last
election. Democratic win rates in older elections should be
unrelated to the margin-of-victory cutoff in the last election,
a specification check that works out well and increases our
confidence in the RD design in this case. Lee’s investigation of
pretreatment victories is a version of the idea that covariates
should be balanced by treatment status as if in a randomized
trial. A related check examines the density of xi around the
discontinuity, looking for bunching in the distribution of xi

near x0. The concern here is that individuals with a stake in
di might try to manipulate xi near the cutoff, in which case
observations on either side may not be comparable (McCrary,
2008, proposes a formal test for this). Until recently, we would
have said this is unlikely in election studies like Lee’s. But
the recount in Florida after the 2000 presidential election sug-
gests we probably should worry about manipulable vote shares
when U.S. elections are close.

6.2 Fuzzy RD Is IV

Fuzzy RD exploits discontinuities in the probability or
expected value of treatment conditional on a covariate. The

3The fitted values in this figure are from a logit model for the probability
of winning as a function of the cutoff indicator di = 1(xi ≥ 0), a 4th-order
polynomial in xi, and interactions between the polynomial terms and di.
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result is a research design where the discontinuity becomes an
instrumental variable for treatment status instead of determin-
istically switching treatment on or off. To see how this works,
let di denote treatment status as before, though here di is no
longer deterministically related to the threshold-crossing rule,
xi ≥ x0. Rather, there is a jump in the probability of treatment
at x0, so that

P(di = 1|xi) =
{

g1(xi) if xi ≥ x0

g0(xi) if xi < x0
, where g1(x0) �= g0(x0).

The functions g0(xi) and g1(xi) can be anything as long as they
differ (and the more the better) at x0. We’ll assume g1(x0) >

g0(x0), so xi ≥ x0 makes treatment more likely. We can write
the relation between the probability of treatment and xi as

E[di|xi] = P(di = 1|xi) = g0(xi) + [g1(xi) − g0(xi)]ti,

where
ti = 1(xi ≥ x0).

The dummy variable ti indicates the point where E[di|xi] is
discontinuous.

Fuzzy RD leads naturally to a simple 2SLS estimation strat-
egy. Assuming that g0(xi) and g1(xi) can be described by
pth-order polynomials as we did for f0(xi) and f1(xi), we have

E[di|xi] = γ00 + γ01xi + γ02x2
i + · · · + γ0pxp

i (6.2.1)

+ [π + γ ∗
1 xi + γ ∗

2 x2
i + · · · + γ ∗

p xp
i ]ti

= γ00 + γ01xi + γ02x2
i + · · · + γ0pxp

i

+ πti + γ ∗
1 xiti + γ ∗

2 x2
i ti + · · · + γ ∗

p xp
i ti,

where the γ ∗’s are coefficients on the polynomial interactions
with ti.

From this we see that ti, as well as the interaction terms
{xiti, x2

i ti, . . . xp
i ti} can be used as instruments for di in

(6.1.4).4

4The idea of using jumps in the probability of assignment as a source of
identifying information appears to originate with Trochim (1984), although
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The simplest fuzzy RD estimator uses only ti as an instru-
ment, without the interaction terms (with the interaction
terms in the instrument list, we might also like to allow for
interactions in the second stage as in 6.1.6). The resulting
just-identified IV estimator has the virtues of transparency and
good finite-sample properties. The first stage in this case is

di = γ0 + γ1xi + γ2x2
i + · · · + γpxp

i + πti + ξ1i, (6.2.2)

where π is the first-stage effect of ti.
The fuzzy RD reduced form is obtained by substituting

(6.2.2) into (6.1.4):

yi = µ + κ1xi + κ2x2
i + · · · + κpxp

i + ρπti + ξ2i, (6.2.3)

where µ = α + ργ0 and κj = βj + ργj for j = 1, . . . , p. As with
sharp RD, identification in the fuzzy case turns on the ability
to distinguish the relation between yi and the discontinuous
function, ti = 1(xi ≥ x0), from the effect of polynomial con-
trols included in the first and second stage. In one of the first
RD studies in applied econometrics, van der Klaauw (2002)
used a fuzzy design to evaluate the effects of university finan-
cial aid awards on college enrollment. In van der Klaauw’s
study, di is the size of the financial aid award offer and ti is
a dummy variable indicating applicants with an ability index
above predetermined award threshold cutoffs. His fuzzy RD
estimates control for polynomial functions of this index.5

Fuzzy RD estimates with treatment effects that change as
a function of xi can be constructed by 2SLS estimation of an
equation with treatment-covariate interactions. The second-
stage model with interaction terms is the same as (6.1.6),

the IV interpretation came later. Not everyone agrees that fuzzy RD is IV, but
this view is catching on. In a recent history of the RD idea, Cook (2008) writes
about the fuzzy design: “In many contexts, the cutoff value can function as an
IV and engender unbiased causal conclusions . . . fuzzy assignment does not
seem as serious a problem today as earlier.”

5Van der Klaauw’s original working paper circulated in 1997. Note that
the fact that the additive model, (6.2.2), is only an approximation of E[di|xi]
is not very important; second-stage estimates are still consistent.
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while the first stage is similar to (6.2.1), except that to match
the second-stage parametrization, we center polynomial terms
at x0. In this case, the excluded instruments are {ti, x̃iti,
x̃2

i ti, . . . x̃p
i ti} while the variables {di, x̃idi, dix̃2

i , . . . dix̃
p
i } are

treated as endogenous. The first stage for di becomes

di = γ00 + γ01x̃i + γ02x̃2
i + · · · + γ0px̃p

i

+ πti + γ ∗
1 x̃iti + γ ∗

2 x̃2
i ti + · · · + γ ∗

p x̃p
i ti + ξ1i. (6.2.4)

An analogous first stage must be constructed for each of the
polynomial interaction terms in the set {x̃idi, dix̃2

i , . . . dix̃
p
i }.

The nonparametric version of fuzzy RD consists of IV esti-
mation in a small neighborhood around the discontinuity. The
reduced-form conditional expectation of yi near x0 is

E[yi|x0 ≤ xi < x0 + �] − E[yi|x0 − � < xi < x0] � ρπ .

Similarly, for the first stage for di, we have

E[di|x0 ≤ xi < x0 + �] − E[di|x0 − � < xi < x0] � π .

Therefore

lim
�→0

E[yi|x0 < xi < x0 + �] − E[yi|x0 − � < xi < x0]
E[di|x0 < xi < x0 + �] − E[di|x0 − � < xi < x0] = ρ.

(6.2.5)

The sample analog of (6.2.5) is a Wald estimator of the sort
discussed in section 4.1.2, in this case using ti as an instrument
for di in a �-neighborhood of x0.6 As with other dummy vari-
able instruments, the result is a local average treatment effect.
In particular, the Wald estimand for fuzzy RD captures the
causal effect on compliers, defined as individuals whose treat-
ment status changes as we move the value of xi from just to
the left of x0 to just to the right of x0. This interpretation of
fuzzy RD was introduced by Hahn, Todd, and van der Klaauw

6To allow for changes in slope on either side of the cutoff, Imbens and
Lemieux (2008) suggest (6.2.5) be computed by 2SLS using ti as an instru-
ment for di in a small neighborhood of the cutoff, with the interaction terms
{x̃iti, x̃2

i ti, . . . x̃p
i ti} included as exogenous controls.
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(2001). However, there is another sense in which this version
of LATE is local: the estimates are for those with xi near x0, a
feature of sharp nonparametric RD estimates as well.

Finally, as with the nonparametric version of sharp RD,
the finite-sample behavior of the sample analog of (6.2.5) is
not likely to be very good. Hahn, Todd, and van der Klaauw
(2001) develop a nonparametric IV procedure using local lin-
ear regression to estimate the top and bottom of the Wald
estimator with less bias. This takes us back to a 2SLS model
with linear or polynomial controls, but the model is fit in a
discontinuity sample using a data-driven bandwidth. The idea
of using discontinuity samples informally also applies in this
context: start with a parametric 2SLS setup in the full sample,
say, based on (6.1.4). Then restrict the sample to points near
the discontinuity and get rid of most or all of the polynomial
controls. Ideally, 2SLS estimates in the discontinuity samples
with few controls will be broadly consistent with the more
precise estimates constructed using the larger sample.

Angrist and Lavy (1999) use a fuzzy RD research design
to estimate the effects of class size on children’s test scores,
the same question addressed by the STAR experiment dis-
cussed in chapter 2. Fuzzy RD is an especially powerful and
flexible research design, a fact highlighted by the Angrist and
Lavy study, which generalizes fuzzy RD in two ways relative
to the discussion above. First, the causal variable of interest,
class size, takes on many values (as in the discussion of aver-
age causal response an chapter 4). So the first stage exploits
jumps in average class size instead of probabilities. Second,
the Angrist and Lavy (1999) research design uses multiple
discontinuities.

The Angrist and Lavy study begins with the observation that
class size in Israeli schools is capped at 40. Students in a grade
with up to 40 students can expect to be in classes as large as 40,
but grades with 41 students are split into two classes, grades
with 81 students are split into three classes, and so on. Angrist
and Lavy call this “Maimonides’ rule,” since a maximum class
size of 40 was first proposed by the medieval Talmudic scholar
Maimonides. To formalize Maimonides’ rule, let msc denote
the predicted class size (in a given grade) assigned to class
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c in school s, where enrollment in the grade is denoted es.
Assuming grade cohorts are split up into classes of equal size,
the predicted class size that results from a strict application of
Maimonides’ rule is

msc = es

int
[ (es−1)

40

]+ 1
,

where int(a) is the integer part of a real number, a. This func-
tion, plotted with dotted lines in figure 6.2.1 for fourth and
fifth graders, has a sawtooth pattern with discontinuities (in
this case, sharp drops in predicted class size) at integer mul-
tiples of 40. At the same time, msc is clearly an increasing
function of enrollment, es, making the enrollment variable an
important control.

Angrist and Lavy exploit the discontinuities in Maimonides’
rule by constructing 2SLS estimates of an equation like

yisc = α0 + α1ds + β1es + β2e2
s + · · · + βpep

s + ρnsc + ηisc,
(6.2.6)

where yisc is student i′s test score in school s and class c,
nsc is the size of this class, and es is enrollment. In this ver-
sion of fuzzy RD, msc plays the role of ti, es plays the role
of xi, and class size, nsc, plays the role of di. Angrist and
Lavy also include a nonenrollment covariate, ds, to control
for the proportion of students in the school from a disadvan-
taged background. This is not necessary for RD, since the only
source of omitted variables bias in the RD model is es, but
it makes the specification comparable to the model used to
construct a corresponding set of OLS estimates.7

Figure 6.2.1 plots the average of actual and predicted class
sizes against enrollment in fourth and fifth grade. Maimonides’
rule does not predict class size perfectly, mostly because some
schools split grades at enrollments lower than 40. This is what

7The Angrist and Lavy (1999) study differs modestly from the description
here in that the data used to estimate equation (6.2.6) are class averages. But
since the covariates are all defined at the class or school level, the only differ-
ence between student-level and class-level estimation is the implicit weighting
by number of students in the student-level estimates.
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Figure 6.2.1 The fuzzy-RD first-stage for regression-discontinuity
estimates of the effect of class size on test scores (from Angrist and
Lavy, 1999).

makes the RD design fuzzy. Still, there are clear drops in class
size at enrollment levels of 40, 80, and 120. Note also that
the msc instrument implicitly combines both discontinuities
and slope-discontinuity interactions such as x̃iti in (6.2.4) in a
single variable (msc becomes a shallower function of es above
each kink). This compact parametrization comes from a spe-
cific understanding of the institutions and rules that determine
Israeli class size.

Estimates of equation (6.2.6) for fifth-grade math scores are
reported in table 6.2.1, beginning with OLS. With no controls,
there is a strong positive relationship between class size and



266 Chapter 6

Table 6.2.1
OLS and fuzzy RD estimates of the effect of class size on

fifth-grade math scores

OLS 2SLS

Full Sample Discontinuity Samples

±5 ±3

(1) (2) (3) (4) (5) (6) (7) (8)

Mean score 67.3 67.3 67.0 67.0
(SD) (9.6) (9.6) (10.2) (10.6)

Regressors
Class size .322 .076 .019 −.230 −.261 −.185 −.443 −.270

(.039) (.036) (.044) (.092) (.113) (.151) (.236) (.281)
Percent −.340 −.332 −.350 −.350 −.459 −.435

disadvantaged (.018) (.018) (.019) (.019) (.049) (.049)
Enrollment .017 .041 .062 .079

(.009) (.012) (.037) (.036)
Enrollment −.010

squared/100 (.016)
Segment 1 −12.6
(enrollment 38–43) (3.80)
Segment 2 −2.89
(enrollment 78–83) (2.41)
R2 .048 .249 .252
Number of classes 2,018 2,018 471 302

Notes: Adapted from Angrist and Lavy (1999). The table reports estimates of equation
(6.2.6) in the text using class averages. Standard errors, reported in parentheses, are corrected
for within-school correlation.

test scores. Most of this vanishes however, when the percent
disadvantaged in the school is included as a control. The
positive correlation between class size and test scores shrinks
to insignificance when enrollment is added as an additional
control, as can be seen in column 3. Still, there is no evidence
that smaller classes are better, as the results from the Tennessee
STAR randomized trial would lead us to expect.

In contrast to the OLS estimates in column 3, 2SLS estimates
of similar specifications using msc as an instrument for nsc

strongly suggest that smaller classes increase test scores. These
results, reported in column 4 for models that include a linear
enrollment control and in column 5 for models that include a
quadratic enrollment control, range from −.23 to −.26, with
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standard error around .1. These results suggest a seven-student
reduction in class size (as in Tennessee STAR) raises math
scores by about 1.75 points, for an effect size of .18σ , where
σ is the standard deviation of class average scores. This is not
too far from the Tennessee estimates.

Importantly, the functional form of the enrollment control
does not seem to matter very much (though estimates with no
controls, not reported in the table, come out much smaller
and insignificant). Columns 6 and 7 check the robustness of
the main findings further using a ±5 discontinuity sample.
Not surprisingly, these results are much less precise than those
reported in columns 4 and 5 since they were estimated with
only about one-quarter of the data used to construct the full-
sample estimates. Still, they bounce around the −.25 mark.
Finally, the last column shows the results of estimation using
an even narrower discontinuity sample limited to schools with
an enrollment of plus or minus three students around the dis-
continuities at 40, 80, and 120 (with dummy controls for
which of these discontinuities is relevant). These are Wald
estimates in the spirit of Hahn, Todd, and van der Klaauw
(2001) and formula (6.2.5); the instrument used to construct
these estimates is a dummy for being in a school with enroll-
ment just to the right of the relevant discontinuity. The result
is an imprecise −.270, but still strikingly similar to the other
estimates in the table. This set of estimates illustrates the price
to be paid in terms of precision when we shrink the sample
around the discontinuities. Happily, however, the picture that
emerges from table 6.2.1 is fairly clear.
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Quantile Regression
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Here’s a prayer for you. Got a pencil? . . . “Protect me from
knowing what I don’t need to know. Protect me from even
knowing that there are things to know that I don’t know.
Protect me from knowing that I decided not to know about
the things I decided not to know about. Amen.” There’s
another prayer that goes with it. “Lord, lord, lord. Protect
me from the consequences of the above prayer.”

Douglas Adams, Mostly Harmless

R ightly or wrongly, 95 percent of applied econometrics is
concerned with averages. If, for example, a training pro-
gram raises average earnings enough to offset the costs,

we are happy. The focus on averages is partly because it’s hard
enough to produce good estimates of average causal effects.
And if the dependent variable is a dummy for something like
employment, the mean describes the entire distribution. But
many variables, such as earnings and test scores, have contin-
uous distributions. These distributions can change in ways not
revealed by an examination of averages; for example, they can
spread out or become more compressed. Applied economists
increasingly want to know what is happening to an entire
distribution, to the relative winners and losers, as well as to
averages.

Policy makers and labor economists have been especially
concerned with changes in the wage distribution. We know,
for example, that flat average real wages are only a small part
of what’s been going on in the labor market for the past 25
years. Upper earnings quantiles have been increasing, while
lower quantiles have been falling. In other words, the rich
are getting richer and the poor are getting poorer. Recently,
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inequality has grown asymmetrically; for example, among col-
lege graduates, it’s mostly the rich getting richer, with wages at
the lower decile unchanging. The complete story of the chang-
ing wage distribution is fairly complicated and would seem to
be hard to summarize.

Quantile regression is a powerful tool that makes the task of
modeling distributions easy, even when the underlying story
is complex and multidimensional. We can use this tool to
see whether participation in a training program or member-
ship in a labor union affects earnings inequality as well as
average earnings. We can also check for interactions, such as
whether and how the relation between schooling and inequal-
ity has been changing over time. Quantile regression works
very much like conventional regression: confounding factors
can be held fixed by including covariates; interaction terms
work similarly too. And sometimes we can even use instrumen-
tal variables methods to estimate causal effects on quantiles
when a selection-on-observables story seems implausible.

7.1 The Quantile Regression Model

The starting point for quantile regression is the conditional
quantile function (CQF). Suppose we are interested in the dis-
tribution of a continuously distributed random variable, yi,
with a well-behaved density (no gaps or spikes). Then the CQF
at quantile τ given a vector of regressors, Xi, can be defined
as:

Qτ (yi|Xi) = F−1
y (τ |Xi)

where Fy(y|Xi) is the distribution function for yi at y, condi-
tional on Xi. When τ = .10, for example, Qτ (yi|Xi) describes
the lower decile of yi given Xi, while τ = .5 gives us the con-
ditional median.1 By looking at the CQF of earnings as a
function of education, we can tell whether the dispersion in

1More generally, we can define the CQF for discrete random variables and
random variables with less than well-behaved densities as

Qτ (yi|Xi) = inf {y : Fy(y|Xi) ≥ τ }.
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earnings goes up or down with schooling. The CQF of earn-
ings as a function of education and time tells us whether the
relationship between schooling and inequality is changing over
time.

The CQF is the conditional quantile version of the condi-
tional expectation function (CEF). Recall that the CEF can
be derived as the solution to a mean-squared error prediction
problem,

E[yi|Xi] = arg min
m(Xi)

E[(yi − m(Xi))2].

In the same spirit, the CQF solves the following minimization
problem,

Qτ (yi|Xi) = arg min
q(X)

E[ρτ (yi − q(Xi))], (7.1.1)

where ρτ (u) = (τ − 1(u ≤ 0))u is called the “check function”
because it looks like a check-mark when you plot it. If τ =
.5, this becomes least absolute deviations because ρ.5(u) =
1
2 (sign u)u = 1

2 |u|. In this case, Qτ (yi|Xi) is the conditional
median since the conditional median minimizes absolute devi-
ations. Otherwise, the check function weights positive and
negative terms asymmetrically:

ρτ (u) = 1(u > 0) · τ |u| + 1(u ≤ 0) · (1 − τ )|u|.
This asymmetric weighting generates a minimand that picks
out conditional quantiles (a fact that is not immediately obvi-
ous but can be proved with a little work; see Koenker, 2005).

With continuous or high-dimensional Xi, the CQF shares
the disadvantages of the CEF: it may be hard to estimate and
summarize. We’d therefore like to boil this function down to
a small set of numbers, one for each element of Xi. Quantile
regression accomplishes this by substituting a linear model for
q(Xi) in (7.1.1), producing

βτ ≡ arg min
b

E[ρτ (yi − X′
ib)]. (7.1.2)

The quantile regression estimator, β̂τ , is the sample ana-
log of (7.1.2). It turns out this minimization is a linear
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programming problem that is fairly easy (for computers) to
solve.

Just as OLS fits a linear model to yi by minimizing expected
squared error, quantile regression fits a linear model to yi using
the asymmetric loss function, ρτ (u). If Qτ (yi|Xi) is in fact lin-
ear, the quantile regression minimand will find it (just as if the
CEF is linear, OLS will find it). The original quantile regres-
sion model, introduced by Koenker and Bassett (1978), was
motivated by the assumption that the CQF is linear. As it turns
out, however, the assumption of a linear CQF is unnecessary:
quantile regression is useful whether or not we believe this.

Before turning to a more general theoretical discussion of
quantile regression, we illustrate the use of this tool to study
the wage distribution. The motivation for the use of quan-
tile regression to look at the wage distribution comes from
labor economists’ interest in the question of how inequality
varies conditional on covariates like education and experience
(see, e.g., Buchinsky, 1994). The overall gap in earnings by
schooling group (e.g., the college wage premium) grew consid-
erably in the 1980s and 1990s. Less clear, however, is how the
wage distribution was changing within education and experi-
ence groups. Many labor economists believe that increases in
within-group inequality provide especially strong evidence of
fundamental changes in the labor market, not easily accounted
for by changes in institutional features such as the percentage
of workers who belong to labor unions.

Table 7.1.1 reports schooling coefficients from quantile
regressions estimated using the 1980, 1990, and 2000 cen-
suses. The models used to construct these estimates control
for race and a quadratic function of potential labor market
experience (defined as age − education − 6). The .5 quantile
coefficients—for the conditional median—are close to the OLS
coefficients in the far right columns. For example, the OLS
estimate of .072 in the 1980 census is not very different from
the .5 quantile coefficient of about .068 in the same data. If
the conditional-on-covariates distribution of log wages is sym-
metric, so that the conditional median equals the conditional
mean, we should expect these two coefficients to be the same.
Also noteworthy is that fact that the quantile coefficients are
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Table 7.1.1
Quantile regression coefficients for schooling in the 1980,

1990, and 2000 censuses

Desc. Stats. Quantile Regression Estimates OLS Estimates

Census Obs. Mean SD 0.1 0.25 0.5 0.75 0.9 Coeff. Root MSE

1980 65,023 6.4 .67 .074 .074 .068 .070 .079 .072 .63
(.002) (.001) (.001) (.001) (.001) (.001)

1990 86,785 6.5 .69 .112 .110 .106 .111 .137 .114 .64
(.003) (.001) (.001) (.001) (.003) (.001)

2000 97,397 6.5 .75 .092 .105 .111 .120 .157 .114 .69
(.002) (.001) (.001) (.001) (.004) (.001)

Notes: Adapted from Angrist, Chernozhukov, and Fernandez-Val (2006). The table
reports quantile regression estimates of the returns to schooling in a model for log wages,
with OLS estimates shown at the right for comparison. The sample includes U.S.-born white
and black men aged 40–49. The sample size and the mean and standard deviation of log
wages in each census extract are shown at the left. Standard errors are reported in paren-
theses. All models control for race and potential experience. Sampling weights were used
for the 2000 census estimates.

similar across quantiles in 1980. An additional year of school-
ing raises median wages by 6.8 percent, with slightly higher
effects on the lower and upper quartiles of the conditional
wage distribution equal to .074 and .070. Although the esti-
mated returns to schooling increased sharply between 1980
and 1990 (up to .106 at the median, with an OLS return
of .114 percent), there is still a reasonably stable pattern of
returns across quantiles in the 1990 census. The largest effect
is on the upper decile, a coefficient of .137, while the other
quantile coefficients are around .11.

We should expect to see constant coefficients across quan-
tiles if the effect of schooling on wages amounts to what is
sometimes called a location shift. Here, this means that as
higher schooling levels raise average earnings, other parts
of the wage distribution move in tandem (i.e., within-group
inequality does not change). Suppose, for example, that
log wages can be described by a classical linear regression
model:

yi ∼ N(X′
iβ, σ 2

ε ), (7.1.3)
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where E[yi|Xi] = X′
iβ and yi − X′

iβ ≡ εi is a normally dis-
tributed error with constant variance σ 2

ε . Homoskedasticity
means the conditional distribution of log wages is no more
spread out for college graduates than for high school gradu-
ates. The implications of the linear homoskedastic model for
quantiles are apparent from the fact that

P[yi − X′
iβ < σε�

−1(τ )|Xi] = τ ,

where �−1(τ ) is the inverse of the standard normal CDF. From
this we conclude that Qτ (yi|Xi) = X′

iβ + σε�
−1(τ ). In other

words, apart from the changing intercept, σε�
−1(τ ), quan-

tile regression coefficients are the same at each quantile. The
results in table 7.1.1 for 1980 and 1990 are not too far from
this stylized representation.

In contrast to the simple pattern in 1980 and 1990 census
data, quantile regression estimates from the 2000 census dif-
fer markedly across quantiles, especially in the right tail. An
additional year of schooling raises the lower decile of wages
by 9.2 percent, the median by 11.1 percent, and the upper
decile by 15.7 percent. Thus, in addition to increases in overall
inequality in the 1980s and 1990s (a fact we know from sim-
ple descriptive statistics), by 2000, inequality began to increase
with education as well (since a pattern of increasing school-
ing coefficients across quantities means the wage distribution
spreads out as education increases). This development is the
subject of considerable discussion among labor economists,
who are particularly concerned with whether it points to fun-
damental or institutional changes in the labor market (see, e.g.,
Autor, Katz, and Kearney, 2005, and Lemieux, 2008).

A parametric example helps us see the link between quantile
regression coefficients and conditional variance. Specifically,
we can generate increasing quantile regression coefficients
by adding heteroskedasticity to the classic normal regression
model, (7.1.3). Suppose that

yi ∼ N(X′
iβ, σ 2(Xi)),

where σ 2(Xi) = (λ′Xi)2 and λ is a vector of positive coefficients
such that λ′Xi > 0 (perhaps proportional to β, so that the
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conditional variance grows with the conditional mean).2 Then

P[yi − X′
iβ < (λ′Xi)�−1(τ )|Xi] = τ ,

with the implication that

Qτ (yi|Xi) = X′
iβ + (λ′Xi)�−1(τ ) = X′

i[β + λ�−1(τ )].
(7.1.4)

so that quantile regression coefficients increase across quan-
tiles with βτ = β + λ�−1(τ ).

Putting the pieces together, table 7.1.1 neatly summa-
rizes two stories, both related to variation in within-group
inequality. First, results from the 2000 census show inequality
increasing sharply with education. The increase is asymmet-
ric, however, and appears much more clearly in the upper
tail of the wage distribution. Second, this increase is a new
development. In 1980 and 1990, schooling affected the wage
distribution in a manner roughly consistent with a simple
location shift.3

7.1.1 Censored Quantile Regression

Quantile regression allows us to look at features of the condi-
tional distribution of yi when part of the distribution is hidden.
Suppose you have have data of the form

yi,obs = yi · 1[yi < c] + c · 1[yi ≥ c], (7.1.5)

2See Card and Lemieux (1996) for an empirical example of a regression
model with this sort of heteroskedasticity. Koenker and Portnoy (1996) call
this a linear location-scale model.

3The formula for asymptotic quantile regression standard errors assuming
a linear CQF is

τ (1 − τ ){E[fuτ(0|Xi)XiX′
i]−1E[XiX′

i]E[fuτ(0|Xi)XiX′
i]−1,

where fuτ(0|Xi) is the conditional density of the quantile regression residual
at zero. If the residuals are homoskedastic this simplifies to τ (1−τ )

f 2
uτ (0)

E[XiX′
i]−1,

where f 2
uτ

(0) is the square of the unconditional residual density. Angrist, Cher-
nozhukov, and Fernandez-Val (2006) give a more general formula allowing
the CQF to be nonlinear.
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where yi,obs is what you get to see and yi is the variable you
would like to see. The variable yi,obs is censored—information
about yi in yi,obs is limited for confidentiality reasons or
because it was too difficult or time-consuming to collect more
information. In the CPS, for example, high earnings are top-
coded to protect respondent confidentiality. This means that
data above the topcode are recoded to have the topcode value.
Duration data may also be censored: in a study of the effects
of unemployment insurance on the duration of employment,
we might follow new claimants for up to 40 weeks. Any-
one out of work for longer has an unemployment spell length
that is censored at 40. Note that limited dependent variables
such as hours worked or medical expenditure, discussed in
section 3.4.2, are not censored; they take on the value zero
by their nature, just as dummy variables such as employment
status do.

When dealing with censored dependent variables, quantile
regression can be used to estimate the effect of covariates
on conditional quantiles that are below the censoring point
(assuming censoring is from above). This reflects the fact that
censoring earnings above, say, the median has no effect on the
median. So if CPS topcoding affects relatively few people (as
is often true), censoring has no effect on estimates of the con-
ditional median or even βτ for τ = .75. Likewise, if less than
10 percent of the sample is censored conditional on all values
of Xi, then, when estimating βτ for τ up to .9, you can sim-
ply ignore censoring. Alternatively, you can limit the sample to
values of Xi where Qτ (yi|Xi) is below c (or above, if censoring
is from the bottom with yi,obs = yi · 1[yi > c] + c · 1[yi ≤ c]).

Powell (1986) formalizes this idea with the censored quan-
tile regression estimator. Because we may not know which con-
ditional quantiles are below the censoring point (continuing to
think of top codes for example), Powell proposes we work with

Qτ (yi|Xi) = min (c, X′
iβ

c
τ ).

The parameter vector βc
τ solves

βc
τ = arg min

b
E{1[X′

ib < c] · ρτ (yi − X′
ib)}. (7.1.6)
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In other words, we solve the quantile regression minimiza-
tion problem for values of Xi such that X′

iβ
c
τ < c. (In practice,

we minimize the sample analog of (7.1.6).) As long is there
are enough uncensored data, the resulting estimates give us
the quantile regression function we would have gotten had
the data not been censored (assuming the conditional quantile
function is, in fact, linear). And if it turns out that the condi-
tional quantiles you are estimating are all below the censoring
point, then you are back to regular quantile regression.

The sample analog of (7.1.6) is no longer a linear pro-
gramming problem, but Buchinsky (1994) proposes a simple
iterated linear programming algorithm that seems to work.
The iterations go like this. First estimate βc

τ ignoring the cen-
soring. Then find the cells with X′

iβ
c
τ < c. Then estimate the

quantile regression again using these cells only, and so on. This
algorithm is not guaranteed to converge, but it appears to do
so in practice. Standard errors can be bootstrapped. Buchinsky
(1994) used this approach to estimate the returns to schooling
for highly experienced workers who may have earnings above
the CPS top code. The censoring adjustment tends to increase
the returns to schooling for this group.4

7.1.2 The Quantile Regression
Approximation Property�

The CQF of log wages given schooling is unlikely to be exactly
linear, so the assumptions of the original quantile regression
model fail to hold in this example. Luckily, quantile regression
can be understood as giving a MMSE linear approximation
to the CQF, though in this case the approximation is a little
more complicated and harder to derive than the regression-
CEF theorem. For any quantile index τ ∈ (0, 1), define the
quantile regression specification error as:

�τ (Xi, βτ ) ≡ X′
iβτ − Qτ (yi|Xi).

4See Buchinsky and Hahn (1998) and Chernozhukov and Hong (2002) for
more sophisticated estimators with better theoretical properties.
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The population quantile regression vector can be shown to
minimize an expected weighted average of the squared specifi-
cation error, �2

τ (Xi, βτ ), as described in the following theorem
from Angrist, Chernozhukov, and Fernandez-Val (2006):

Theorem 7.1.1 Quantile Regression Approximation.
Suppose that (i) the conditional density fy(y|Xi) exists almost
surely, (ii) E[yi], E[Qτ (yi|Xi)], and E‖Xi‖ are finite, and
(iii) βτ uniquely solves (7.1.2). Then

βτ = arg min
b

E[wτ (Xi, b) · �2
τ (Xi, b)], (7.1.7)

where

wτ (Xi, b) =
∫ 1

0
(1 − u) · fε(τ )(u�τ (Xi, b)|Xi)du

=
∫ 1

0
(1 − u) · fy(u · X′

ib + (1 − u) · Qτ (yi|Xi)|Xi)du

≥ 0

and εi(τ ) is a quantile-specific residual,

εi(τ ) ≡ yi − Qτ (yi|Xi),

with conditional density fε(τ )(e|Xi) at εi(τ ) = e. Moreover,
when yi has a smooth conditional density, we have for β in
the neighborhood of βτ :

wτ (Xi, β) ≈ 1/2 · fy(Qτ (yi|Xi)|Xi). (7.1.8)

The quantile regression approximation theorem looks com-
plicated, but the big picture is simple. We can think of quantile
regression as approximating Qτ (yi|Xi), just as OLS approxi-
mates E[yi|Xi]. The OLS weighting function is the histogram
of Xi, denoted P(Xi). The quantile regression weighting func-
tion, implicitly given by wτ (Xi, βτ ) · P(Xi), is more elaborate
than P(Xi) alone (the histogram is implicitly part of the
quantile regression weighting function because the expec-
tation in (7.1.7) is over the distribution of Xi). The term
wτ (Xi, βτ ) involves the quantile regression vector, βτ , but can
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be rewritten with βτ partialed out so that it is a function
of Xi only (see Angrist, Chernozhukov, and Fernandez-Val,
2006, for details). In any case, the quantile regression weights
are approximately proportional to the density of yi in the
neighborhood of the CQF.

The quantile regression approximation property is illus-
trated in figure 7.1.1, which plots the conditional quantile
function of log wages given highest grade completed using
1980 census data. Here we take advantage of the discrete-
ness of schooling and large census samples to estimate the
CQF nonparametrically by computing the quantile of wages
for each schooling level. Panels A–C plot a nonparametric esti-
mate of Qτ (yi|Xi) along with the linear quantile regression fit
for the 0.10, 0.50, and 0.90 quantiles, where Xi includes only
the schooling variable and a constant. The nonparametric cell-
by-cell estimate of the CQF is plotted with circles in the figure,
while the quantile regression line is solid. The figure shows
how linear quantile regression approximates the CQF.

It’s also interesting to compare quantile regression to a
histogram-weighted fit to the CQF, similar to that provided
by OLS for the CEF. The histogram-weighted approach to
quantile regression was proposed by Chamberlain (1994). The
Chamberlain minimum distance (MD) estimator is the sample
analog of the vector β̃τ obtained by solving

β̃τ = arg min
b

E[(Qτ (yi|Xi) − X′
ib)2]

= arg min
b

E[�2
τ (Xi, b)].

In other words, β̃τ is the slope of the linear regression of
Qτ (yi|Xi) on Xi, weighted by the histogram of Xi. In contrast
to quantile regression, which requires only one pass through
the data, MD relies on the ability to estimate Qτ (yi|Xi)
consistently in a nonparametric first step.

Figure 7.1.1 plots MD fitted values with a dashed line. The
quantile regression and MD lines are close, but they are not
identical because of the implicit weighting by wτ (Xi, βτ ) in the
quantile regression fit. This weighting accentuates the quality
of the fit at values of Xi where yi is more densely distributed



5.
0

5.
5

6.
0

6.
5

Lo
g−

ea
rn

in
gs

5.
5

6.
0

6.
5

7.
0

6.
5

7.
0

7.
5

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Schooling

W
ei

gh
t

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Schooling
5 10 15 20

5 10 15 20 5 10 15 20 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Schooling

CQ
QR
MD

CQ
QR
MD

CQ
QR
MD

QR weights
Importance wts.
Density wts.

QR weights
Importance wts.
Density wts.

QR weights
Importance wts.
Density wts.

A. τ = 0.10 B. τ = 0.50 C. τ = 0.90

D. τ = 0.10  E. τ = 0.50  F. τ = 0.90 

Figure 7.1.1 The quantile regression approximation property (adapted from Angrist, Chernozhukov, and
Fernandez-Val, 2006). The figure shows alternative estimates of the conditional quantile function of log wages given
highest grade completed using 1980 Census data, along with the implied weighting function. Panels A-C report
nonparametric (CQ), quantile regression (QR) and minimum distance (MD) estimates for τ = .1, .5, .9. Panels D-F
show the corresponding weighting functions for QR, as explained in the text.
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near the CQF. Panels D–F in figure 7.1.1 plot the overall quan-
tile weights, wτ (Xi, βτ ) · P(Xi), against Xi. The panels also
show estimates of wτ (Xi, βτ ), labeled “importance weights,”
and their density approximations, 1/2 · fy(Qτ (yi|Xi)|Xi). The
importance weights and the density weights are similar and
fairly flat. The overall weighting function looks a lot like the
schooling histogram, and therefore places the highest weight
on 12 and 16 years of schooling.

7.1.3 Tricky Points

The language of conditional quantiles is tricky. Sometimes we
talk about “quantile regression coefficients at the median,”
or “effects on those at the lower decile.” But it’s important
to remember that quantile coefficients tell us about effects on
distributions, not on individuals. If we discover, for example,
that a training program raises the lower decile of the wage dis-
tribution, this does not necessarily mean that someone who
would have been poor (i.e., at the lower decile without train-
ing) is now less poor. It only means that those who are poor
in the regime with training are less poor than the poor would
be in a regime without training.

The distinction between making a given set of poor people
richer and changing what it means to be poor is subtle. This
distinction has to do with whether we think an intervention
preserves an individual’s rank in the wage (or other dependent
variable) distribution. If an intervention is rank-preserving,
then an increase in the lower decile indeed makes those who
would have been poor richer, since rank preservation means
relative status is unchanged. Otherwise, we can only say that
the poor—defined as the group in the bottom 10 percent of
the wage distribution, whoever they may be—are better off.
We elaborate on this point briefly in section 7.2.

A second tricky point is the transition from conditional
quantiles to marginal quantiles. A link from conditional to
marginal quantiles allows us to investigate the impact of
changes in quantile regression coefficients on overall inequal-
ity. Suppose, for example, that quantile coefficients fan out
even further with schooling, beyond what is observed in the
2000 census. What does this imply for the ratio of upper-decile
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to lower-decile wages? Alternatively, we can ask: How much
of the overall increase in inequality (say, as measured by
the ratio of upper to lower deciles) is explained by increases
in within-group inequality summarized by the fanning out
of quantile regression coefficients? These sorts of questions
turn out to be surprisingly difficult to answer. The difficulty
has to do with the fact that all conditional quantiles are
needed to pin down a particular marginal quantile (Machado
and Mata, 2005). In particular, Qτ (yi|Xi) = X′

iβτ does not
imply Qτ (yi) = Qτ (Xi)′βτ . This contrasts with the much more
tractable expectations operator, where, if E(yi|Xi) = X′

iβ,
then by iterating expectations, we have E(yi) = E(Xi)′β.

Extracting Marginal Quantiles�

To show the link between conditional quantiles and marginal
distributions more formally, suppose the CQF is indeed linear,
so that Qτ (yi|Xi) = X′

iβτ . Let Fy(y|Xi) ≡ P[yi < y|Xi] be the
conditional CDF of yi given Xi, with marginal distribution
Fy(y) = P[yi < y]. The CDF and its inverse are related by∫ 1

0
1[F−1

y (τ |Xi) < y]dτ = Fy(y|Xi), (7.1.9)

where F−1
y (τ |Xi) is also the CQF, Qτ (yi|Xi).

In other words, the proportion of the population below y
conditional on Xi is the same as the proportion of conditional
quantiles that are below y.5 Substituting for the CQF inside
the integral using the linear model, gives

Fy(y|Xi) =
∫ 1

0
1[X′

iβτ < y]dτ .

Next, we use the law of iterated expectations to get the
marginal distribution function, Fy(y):

Fy(y) = E
[∫ 1

0
1[X′

iβτ < y]dτ

]
(7.1.10)

5For example, if y is the conditional median, then Fy(y|Xi) = .5, and half
of all conditional quantiles are below y. The relation (7.1.9) can be proved
formally using the change of variables formula.



Quantile Regression 283

Finally, marginal quantiles, say, Qτ (yi) for τ ∈ (0, 1), come
from inverting Fy(y):

Qτ (yi) = inf {y : Fy(y) ≥ τ }.
An estimator of the marginal distribution replaces the inte-
gral and expectations with sums in (7.1.10), where the sum
over quantiles comes from quantile regression estimates at,
say, every .01 quantile. In a sample of size N, this becomes:

F̂y(y) = N−1
∑

i

(1/100)
τ=1∑
τ=0

1[X′
iβ̂τ < y].

The corresponding marginal quantile estimator inverts F̂y(y).
A number of difficulties arise with this approach in practice.

For one thing, you have to estimate lots of quantile regres-
sions. Another is that the asymptotic distribution theory is
complicated (though not insurmountable; see, Chernozhukov,
Fernandez-Val, and Melly, 2008). Simplifying the conditional
to marginal quantile transition is an active research area.
Gosling, Machin, and Meghir (2000) and Machado and Mata
(2005) are among the first empirical studies to go from con-
ditional to marginal quantiles. When the variable of primary
interest in a quantile regression model is a dummy variable
such as treatment status and the other regressors are seen as
controls, a propensity score type of weighting scheme can be
used to estimate effects on marginal distributions. See Firpo
(2007) for the exogenous case and Frölich and Melly (2007)
for a marginalization scheme that works for endogenous treat-
ment effects models of the sort discussed in the next section.

7.2 IV Estimation of Quantile Treatment Effects

The $42,000 question regarding any set of regression estimates
is whether they have a causal interpretation. This is no less true
for quantile regression than ordinary least squares. Suppose we
are interested in estimating the effect of a training program on
earnings. OLS regression estimates measure the impact of the
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program on average earnings while quantile regression esti-
mates can be used to measure the impact of the program on
median earnings. In both cases, we must worry about whether
the estimated program effects are contaminated by omitted
variables bias (OVB).

Here too, omitted variables problems can be solved using
instrumental variables, though IV methods for quantile mod-
els are a relatively new development and not yet as flexible
as conventional 2SLS. We discuss an approach that captures
the causal effect of a binary variable on quantiles (i.e., a treat-
ment effect) using a binary instrument. The quantile treatment
effects (QTE) estimator for IV, introduced in Abadie, Angrist,
and Imbens (2002), relies on essentially the same assumptions
as the LATE framework for average causal effects. The result
is an Abadie-type weighting estimator of the causal effect of
treatment on quantiles for compliers.6

Our discussion of the QTE estimator is based on an addi-
tive model for conditional quantiles, so that a single treatment
effect is estimated in a model with covariates. The result-
ing estimator simplifies to Koenker and Bassett (1978) linear
quantile regression when there is no instrumenting. The rela-
tionship between QTE and quantile regression is therefore
analogous to that between conventional 2SLS and OLS when
the regressor of interest is a dummy.

The parameters of interest are defined as follows. For τ ∈
(0, 1), we assume there exist ατ and βτ such that

Qτ (yi|Xi, di, d1i > d0i) = ατ di + X′
iβτ , (7.2.1)

where Qτ (yi|Xi,di,d1i > d0i) denotes the τ -quantile of yi

given Xi and di for compliers. Thus, ατ and βτ are quantile
regression coefficients for compliers.

Recall that di is independent of potential outcomes condi-
tional on Xi and d1i > d0i, as we discussed in (4.5.2). The
parameter ατ in this model therefore gives the difference in

6For an alternative approach, see Chernozhukov and Hansen (2005), which
allows for regressors of any type (i.e., not just dummies) but invokes a rank-
similarity assumption that is unnecessary in the QTE framework.
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the conditional-on-Xi quantiles of y1i and y0i for compliers.
In other words,

Qτ (y1i|Xi, d1i > d0i) − Qτ (y0i|Xi, d1i > d0i) = ατ (7.2.2)

This tells us, for example, whether a training program changed
the conditional median or lower decile of earnings for com-
pliers. Note that the parameter ατ does not tell us whether
treatment changed the quantiles of the unconditional distri-
butions of y1i and y0i. For that, we have to integrate families
of quantile regression results using a procedure like the one
described in section 7.1.3.

It also bears emphasizing that ατ is not the conditional
quantile of the individual treatment effects, (y1i −y0i). You
might want to know, for example, whether the median treat-
ment effect is positive. Unfortunately, questions like this
are very hard to answer without making strong assumptions
such as rank-invariance.7 Even a randomized trial with per-
fect compliance fails to reveal the distribution of (y1i −y0i).
Although a difference in averages is the same as an average
difference, other features of the distribution of y1i −y0i are
hidden because we never get to see both y1i and y0i for any
one person. The good news for applied econometricians is
that differences in distributions are usually more important
than the distribution of treatment effects because compar-
isons of social welfare typically require only the distributions
of y1i and y0i, and not the distribution of their difference
(see, e.g., Atkinson, 1970). This point can be made with-
out reference to quantiles. When evaluating an employment
program, we are inclined to view the program favorably if
it increases overall employment rates. In other words, we
are happy if the average y1i is higher than the average y0i.
The number of individuals who gain jobs (y1i −y0i = 1) or
lose jobs (y1i −y0i = −1) should be of secondary interest,
since a good program will necessarily have more gainers than
losers.

7In this context, rank-invariance means y1i and y0i are related by an
invertible function. See, for example, Heckman, Smith, and Clements (1997).
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7.2.1 The QTE Estimator

The QTE estimator is motivated by the observation that quan-
tile regression coefficients for compliers can (theoretically) be
estimated by running quantile regressions in the population of
compliers. We cannot list the compliers in a given data set, but
as in section 4.5.2, we can use the Abadie kappa theorem to
find them. Specifically,

(ατ , βτ ) = arg min
a,b

E{ρτ (yi − adi − X′
ib)|d1i > d0i}

= arg min
a,b

E{κiρτ (yi − adi − X′
ib)}, (7.2.3)

where

κi = 1 − di(1 − zi)
1 − P(zi = 1|Xi)

− (1 − di)zi

P(zi = 1|Xi)
,

as before. The QTE estimator is the sample analog of (7.2.3).
A number of practical issues arise when implementing QTE.

First, κi must be estimated, and the sampling variance induced
by this first-step estimation should be reflected in the relevant
asymptotic distribution theory. Abadie, Angrist, and Imbens
(2002) derive the limiting distribution of the sample analog
of (7.2.3) when κi is estimated nonparametrically. In practice,
however, it is easier to bootstrap the whole procedure (i.e.,
beginning with the construction of estimated kappas) than to
use the asymptotic formulas.

Second, κi is negative when di �= zi. The kappa-weighted
quantile regression minimand is therefore nonconvex and,
unlike the regular quantile regression estimator, does not have
a linear programming representation. This problem can be
solved by minimizing

E{E[κi|yi, di, Xi]ρτ (yi − adi − X′
ib)} (7.2.4)

instead. This minimand is derived by iterating expectations
in (7.2.3). The practical difference between (7.2.3) and (7.2.4)
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is that the term

E[κi|yi, di, Xi] = P[d1i > d0i|yi, di, Xi]
is a probability and therefore between zero and one.8 A further
simplification comes from the fact that

E[κi|yi, di, Xi] = 1 − di(1 − E[zi|yi, di = 1, Xi)
1 − P(zi = 1|Xi)

− (1 − di)E[zi|yi, di = 0, Xi)
P(zi = 1|Xi)

. (7.2.5)

Angrist (2001) used this to implement QTE with probit mod-
els for E[zi|yi,di,Xi] estimated separately in the di = 0 and
di = 1 subsamples, constructing E[κi|yi,di,Xi] using (7.2.5),
and then trimming any of the resulting estimates of
E[κi|yi,di,Xi] that are outside the unit interval. The result-
ing non-negative first-step estimates of E[κi|yi,di,Xi] can be
plugged in as weights using Stata’s qreg command to con-
struct weighted quantile regression estimates in a second step.9

Estimates of the Effect of Training on the Quantiles
of Trainee Earnings

The Job Training Partnership Act was a large federal program
that provided subsidized training to disadvantaged Ameri-
can workers in the 1980s. JTPA services were delivered at
649 sites, also called Service Delivery Areas (SDAs), located

8The expectation of κi is a probability because κi “finds compliers.” A
formal statement of this result appears in Abadie, Angrist, and Imbens (2002;
lemma 3.2).

9Step-by-step, it goes like this:

1. Probit zi on yi and Xi separately in the di = 0 and di = 1
subsamples. Save these fitted values.

2. Probit zi on Xi in the whole sample. Save these fitted values.
3. Construct E[κi|yi,di,Xi] by plugging the two sets of fitted values

into (7.2.5). Set anything less than zero to zero and anything greater
than one to one.

4. Use these kappas to weight quantile regressions.
5. Bootstrap this whole procedure to construct standard errors.
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throughout the country. The original study of the labor-
market impact of JTPA services was based on a sample of
men and women for whom continuous data on earnings (from
either state unemployment insurance records or two follow-up
surveys) were available for at least 30 months after ran-
dom assignment.10 There are 5,102 adult men with 30-month
earnings data in the sample.

In our notation, yi is 30-month earnings, di indicates enroll-
ment for JTPA services, and zi indicates the randomly assigned
offer of JTPA services. A key feature of most social exper-
iments, as with many randomized trials of new drugs and
therapies, is that some participants decline the intervention
being offered. In the JTPA, those offered services were not
compelled to participate in training. Consequently, although
the offer of subsidized training was randomly assigned, only
about 60 percent of those offered training actually received
JTPA services. Treatment received is therefore partly self-
selected and likely to be correlated with potential outcomes.
On the other hand, as discussed in 4.4.3, the randomized offer
of training provides a good instrument for training received,
since the two are obviously correlated and the offer of treat-
ment is independent of potential outcomes. Moreover, because
of the very low percentage of individuals receiving JTPA ser-
vices in the control group (less than 2 percent), effects for
compliers can be interpreted as effects on those who were
treated (as discussed in 4.4.3: LATE equals the effect on the
treated when there are no always-takers).

Since training offers were randomized in the National JTPA
Study, covariates (Xi) are not required to consistently estimate
effects on compliers. Even in experiments like this, how-
ever, it’s customary to control for covariates to correct for
chance associations between treatment status and applicant
characteristics and to increase precision (see chapter 2). The
covariates used here are baseline measures from the JTPA
intake process. They include dummies for black and Hispanic
applicants, a dummy for high school graduates (including
GED holders), dummies for married applicants, five age-group

10See Bloom et al. (1997) and Orr et al. (1996).
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dummies, and a dummy for whether the applicant worked at
least 13 weeks in the year preceding random assignment. Also
included are dummies for the original recommended service
strategy (classroom training, on-the-job training, job search
assistance, other) and a dummy for whether earnings data
are from the second follow-up survey. Since these covariates
mostly summarize subjects’ demographic and socioeconomic
background, we can think of the quantile analysis as telling us
how the JTPA experiment affected the earnings distribution
within demographic and socioeconomic groups.

As a benchmark, OLS and conventional instrumental vari-
ables (2SLS) estimates of the impact of training on adult men
are reported in the first column of table 7.2.1. The OLS train-
ing coefficient is a precisely estimated $3,754. This is the
coefficient on di in a regression of yi on di and Xi. These
estimates ignore the fact that trainees are self-selected. The
2SLS estimates in table 7.2.1 use the randomized offer of treat-
ment zi as an instrument for di. The 2SLS estimate is $1,593
with a standard error of $895, less than half the size of the
corresponding OLS estimate.

Quantile regression estimates show that the gap in quantiles
by trainee status is much larger (in proportionate terms) below
the median than above it. This can be seen in the top right-hand
columns of table 7.2.1, which reports quantile regression esti-
mates for the .15, .25, .5, .75, and .85 quantiles. Specifically,
the .85 quantile of trainee earnings is about 13 percent higher
than the corresponding quantile for non-trainees, while the .15
quantile is 136 percent higher. Like the OLS estimates in the
table, these quantile regression coefficients do not necessarily
have a causal interpretation. Rather, they provide a descrip-
tive comparison of the earnings distributions of trainees and
nontrainees.

QTE estimates of the effect of training on median earn-
ings are similar in magnitude though less precise than the
benchmark 2SLS estimates. On the other hand, the QTE
estimates exhibit a pattern very different from the quan-
tile regression estimates. The estimates at low quantiles are
substantially smaller than the corresponding quantile regres-
sion estimates, and they are small in absolute terms. For
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Table 7.2.1
Quantile regression estimates and quantile treatment effects from the JTPA

experiment

A. OLS and Quantile Regression Estimates
Quantile

Variable OLS .15 .25 .50 .75 .85

Training effect 3,754 1,187 2,510 4,420 4,678 4,806
(536) (205) (356) (651) (937) (1,055)

% Impact of training 21.2 135.6 75.2 34.5 17.2 13.4
High school or GED 4,015 339 1,280 3,665 6,045 6,224

(571) (186) (305) (618) (1,029) (1,170)
Black −2, 354 −134 −500 −2, 084 −3, 576 −3, 609

(626) (194) (324) (684) (1087) (1,331)
Hispanic 251 91 278 925 −877 −85

(883) (315) (512) (1,066) (1,769) (2,047)
Married 6,546 587 1,964 7,113 10,073 11,062

(629) (222) (427) (839) (1,046) (1,093)
Worked < 13 −6, 582 −1, 090 −3, 097 −7, 610 −9, 834 −9, 951
weeks in past year (566) (190) (339) (665) (1,000) (1,099)
Constant 9,811 −216 365 6,110 14,874 21,527

(1,541) (468) (765) (1,403) (2,134) (3,896)

B. 2SLS and QTE Estimates
Quantile

Variable 2SLS .15 .25 .50 .75 .85

Training effect 1,593 121 702 1,544 3,131 3,378
(895) (475) (670) (1,073) (1,376) (1,811)

% Impact of training 8.55 5.19 12.0 9.64 10.7 9.02
High school or GED 4,075 714 1,752 4,024 5,392 5,954

(573) (429) (644) (940) (1,441) (1,783)
Black −2, 349 −171 −377 −2, 656 −4, 182 −3, 523

(625) (439) (626) (1,136) (1,587) (1,867)
Hispanic 335 328 1,476 1,499 379 1,023

(888) (757) (1,128) (1,390) (2,294) (2,427)
Married 6,647 1,564 3,190 7,683 9,509 10,185

(627) (596) (865) (1,202) (1,430) (1,525)
Worked <13 −6, 575 −1, 932 −4, 195 −7, 009 −9, 289 −9, 078
weeks in past year (567) (442) (664) (1,040) (1,420) (1,596)
Constant 10,641 −134 1,049 7,689 14,901 22,412

(1,569) (1,116) (1,655) (2,361) (3,292) (7,655)

Notes: The table reports OLS, quantile regression, 2SLS, and QTE estimates of the
effect of training on earnings (adapted from Abadie, Angrist, and Imbens, 2002). The
sample includes 5,102 adult men. Assignment status is used as an instrument for training
status in Panel B. In addition to the covariates shown in the table, all models include
dummies for service strategy recommended and age group, and a dummy indicating data
from a second follow-up survey. Robust standard errors are reported in parentheses.
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example, the QTE estimate of the effect on the .15 quantile
is $121, while the corresponding quantile regression estimate
is $1,187. Similarly, the QTE estimate of the effect on the
.25 quantile is $702, while the corresponding quantile regres-
sion estimate is $2,510. Unlike the results at low quantiles,
however, the QTE estimates of effects on earnings above
the median are large and statistically significant (though still
smaller than the corresponding quantile regression estimates).

The result that JTPA training for adult men did not raise
the lower quantiles of their earnings distribution is the most
interesting finding arising from this analysis. This suggests that
the quantile regression estimates in the top half of table 7.2.1
are contaminated by positive selection bias. One response
to this finding might be that few JTPA applicants were very
well off, so that distributional effects within applicants are of
less concern than the fact that the program appears to have
helped many applicants overall. However, the upper quantiles
of earnings were reasonably high for adults who participated
in the National JTPA Study. Increasing the upper tail of the
trainee earnings distribution is therefore unlikely to have been
a high priority for policy makers.
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Nonstandard Standard Error Issues
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We have normality. I repeat, we have normality.
Anything you still can’t cope with is therefore your own
problem.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Today, software packages routinely compute asymptotic
standard errors derived under weak assumptions about
the sampling process or underlying model. For example,

you get regression standard errors based on formula (3.1.7)
using the Stata option robust. Robust standard errors
improve on old-fashioned standard errors because the result-
ing inferences are asymptotically valid when the regression
residuals are heteroskedastic, as they almost certainly are when
regression approximates a nonlinear conditional expectation
function (CEF). In contrast, old-fashioned standard errors are
derived assuming homoskedasticity. The hangup here is that
estimates of robust standard errors can be misleading when
the asymptotic approximation that justifies these estimates is
not very good. The first part of this chapter looks at the failure
of asymptotic inference with robust standard error estimates
and some simple palliatives.

A pillar of traditional cross section inference—and the dis-
cussion in section 3.1.3—is the assumption that the data are
independent. Each observation is treated as a random draw
from the same population, uncorrelated with the observa-
tion before or after. We understand today that this sampling
model is unrealistic and potentially even foolhardy. Much
as in the time series studies common in macroeconomics,
cross section analysts must worry about correlation between
observations. The most important form of dependence arises
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in data with a group structure—for example, the test scores
of children observed within classes or schools. Children in the
same school or class tend to have test scores that are corre-
lated, since they are subject to some of the same environmental
and family background influences. We call this correlation the
clustering problem, or the Moulton problem, after Moulton
(1986), who made it famous. A closely related problem is
correlation over time in the data sets commonly used to imple-
ment differences-in-differences (DD) estimation strategies. For
example, studies of state-level minimum wages must confront
the fact that state average employment rates are correlated over
time. We call this the serial correlation problem, to distinguish
it from the Moulton problem.

Researchers plagued by clustering and serial correlation also
have to confront the fact that the simplest fixups for these
problems, like Stata’s cluster option, may not be very good.
The asymptotic approximation relevant for clustered or seri-
ally correlated data relies on a large number of clusters or time
series observations. Alas, we are not always blessed with many
clusters or long time series. The resulting inference problems
are not always insurmountable, though often the best solu-
tion is to get more data. Econometric fixups for clustering
and serial correlation are discussed in the second part of this
chapter. Some of the material in this chapter is hard to work
through without matrix algebra, so we take the plunge and
switch to a mostly matrix motif.

8.1 The Bias of Robust Standard Error Estimates�

In matrix notation

β̂ =
[∑

i

XiX′
i

]−1 ∑
i

Xiyi = (X′X)−1X′y,

where X is the N×k matrix with rows X′
i and y is the

N × 1 vector of yi’s. We saw in section 3.1.3 that β̂ has an
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asymptotically normal distribution. We can write:
√

N(β̂ − β) ∼ N(0, �)

where � is the asymptotic covariance matrix and β =
E[XiX′

i]−1E[Xiyi]. Repeating (3.1.7), the formula for � in this
case is

�r = E[XiX′
i]−1E[XiX′

ie
2
i ]E[XiX′

i]−1, (8.1.1)

where ei = yi − X′
iβ. When residuals are homoskedastic, the

covariance matrix simplifies to �c = σ 2E[XiX′
i]−1, where

σ 2 = E[e2
i ].

We are concerned here with the bias of robust standard error
estimates in independent samples (i.e., no clustering or serial
correlation). To simplify the derivation of bias, we assume
that the regressor vector can be treated as fixed, as it would
be if we sampled stratifying on Xi. Nonstochastic regressors
gives a benchmark sampling model that is often used to look
at finite-sample distributions. It turns out that we miss little
of theoretical importance by making this assumption, while
simplifying the derivations considerably.

With fixed regressors, we have

�r =
(

X′X
N

)−1 (X′�X
N

)(
X′X
N

)−1

, (8.1.2)

where
� = E[ee′] = diag(ψi)

is the covariance matrix of residuals. Under homoskedasticity,
ψi = σ 2 for all i and we get

�c = σ 2
(

X′X
N

)−1

.

Asymptotic standard errors are given by the square root of the
diagonal elements of �r and �c, after removing the asymptotic
normalization by dividing by N.

In practice, the pieces of the asymptotic covariance matrix
are estimated using sample moments. An old-fashioned or
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conventional covariance matrix estimator is

�̂c = (X′X)−1σ̂ 2 = (X′X)−1
(∑ ê2

i

N

)
,

where êi = yi − X′
iβ̂ is the estimated regression residual and

σ̂ 2 =
∑ ê2

i

N

estimates the residual variance. The corresponding robust
covariance matrix estimator is

�̂r = N(X′X)−1
(∑ XiX′

i ê
2
i

N

)
(X′X)−1. (8.1.3)

We can think of the middle term as an estimator of the form∑ Xi X′
iψ̂i

N , where ψ̂i = ê2
i estimates ψi.

By the law of large numbers and Slutsky’s theorem, N�̂c

converges in probability to �c, while N�̂r converges to �r.
But in finite samples, both variance estimators are biased. The
bias in �̂c is well-known from classical least squares theory and
easy to correct. Less appreciated is the fact that if the resid-
uals are homoskedastic, the robust estimator is more biased
than the conventional estimator, perhaps a lot more. From
this we conclude that robust standard errors can be more mis-
leading than conventional standard errors in situations where
heteroskedasticity is modest. We also propose a rule of thumb
that uses the maximum of old-fashioned and robust standard
errors to avoid gross misjudgments of precision.

Our analysis begins with the bias of �̂c. With nonstochastic
regressors, we have

E[�̂c] = (X′X)−1σ̂ 2 = (X′X)−1
(∑ E(ê2

i )
N

)
.

To analyze E[ê2
i ], start by expanding ê = y − Xβ̂:

ê = y − X(X′X)−1X′y = [IN − X(X′X)−1X′](Xβ + e) = Me,

where e is the vector of population residuals, M = IN −
X(X′X)−1X′ is a nonstochastic residual-maker matrix with
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ith row m′
i, and IN is the N × N identity matrix. Then êi = m′

ie,
and

E(ê2
i ) = E(m′

iee′mi)

= m′
i�mi.

To simplify further, write mi = �i − hi, where �i is the ith
column of IN and hi = X(X′X)−1Xi, the ith column of the
projection matrix H = X(X′X)−1X′. Then

E(ê2
i ) = (�i − hi)′�(�i − hi)

= ψi − 2ψihii + h′
i�hi, (8.1.4)

where hii, the ith diagonal element of H, satisfies

hii = h′
ihi = X′

i(X
′X)−1Xi. (8.1.5)

Parenthetically, hii is called the leverage of the ith observa-
tion. Leverage tells us how much pull a particular value of Xi

exerts on the regression line. Note that the ith fitted value (ith
element of Hy) is

ŷi = h′
iy = hiiyi +

∑
j �=i

hijyj. (8.1.6)

A large hii means that the ith observation has a large impact on
the ith predicted value. In a bivariate regression with a single
regressor, xi,

hii = 1
N

+ (xi − x)2∑
(xj − x)2

. (8.1.7)

This shows that leverage increases when xi is far the mean. In
addition to (8.1.6), we know that hii is a number that lies in

the interval [0, 1] and that
N∑

i=1

hii = k, the number of regressors

(see, e.g., Hoaglin and Welsch, 1978).1

1The property
N∑

i=1

hii = k comes from the fact that H is idempotent, and so

has trace equal to rank. We can also use (8.1.7) to verify that in a bivariate

regression,
N∑

i=1

hii 2.
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Suppose residuals are homoskedastic, so that ψi = σ 2. Then
(8.1.4) simplifies to

E(ê2
i ) = σ 2[1 − 2hii + h′

ihi] = σ 2(1 − hii) < σ 2.

So �̂c tends to be too small. Using the properties of hii, we can
go one step further:

∑ E(ê2
i )

N
= σ 2

∑ 1 − hii

N
= σ 2

(
N − k

N

)
.

Thus, the bias in �̂c can be fixed by a simple degrees-of-
freedom correction: divide by N − k instead of N in the
formula for σ̂ 2. This correction is used by default in most
regression software.

We now want to show that under homoskedasticity, the bias
in �̂r is likely to be worse than the bias in �̂c. The expected
value of the robust covariance matrix estimator is

E[�̂r] = N(X′X)−1
(∑ XiX′

iE(ê2
i )

N

)
(X′X)−1, (8.1.8)

where E(ê2
i ) is given by (8.1.4). Under homoskedasticity,

ψi = σ 2 and we have E(ê2
i ) = σ 2(1 − hii) as in �̂c. It’s clear,

therefore, that the bias in ê2
i tends to pull robust standard

errors down. The general expression, (8.1.8), is hard to evalu-
ate, however. Chesher and Jewitt (1987) show that as long as
there is not “too much” heteroskedasticity, robust standard
errors based on �̂r are indeed biased downward.2

How do we know that �̂r is likely to be more biased
than �̂c? Partly this comes from Monte Carlo evidence (e.g.,
MacKinnon and White, 1985, and our own small study, dis-
cussed below). We also prove this here for a bivariate example,
where the single regressor, x̃i, is assumed to be in deviations-
from-means form, so there is a single coefficient. In this case,
the estimator of interest is β̂1 =

∑
x̃iyi∑
x̃2

i
and the leverage is

2In particular, as long as the ratio of the largest ψi to the smallest ψi is less
than 2, robust standard errors are biased downward.
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hii = x̃2
i∑
x̃2

i
(we lose the 1

N term in (8.1.7) by partialing out

the constant). Let s2
x =

∑
x̃2

i
N . For the conventional covariance

estimator, we have

E[�̂c] = σ 2

Ns2
x

[∑
(1 − hii)

N

]
= σ 2

Ns2
x

[
1 − 1

N

]
,

so the bias here is small. A simple calculation using (8.1.8)
shows that under homoskedasticity, the robust estimator has
expectation:

E[�̂r] = σ 2

Ns2
x

∑ (1 − hii)
N

(
x̃2

i

s2
x

)

= σ 2

Ns2
x

∑
(1 − hii)hii = σ 2

Ns2
x

[
1 −∑

h2
ii

]
.

The bias of �̂r is therefore worse than the bias of �̂c if∑
h2

ii > 1
N , as it is by Jensen’s inequality unless the regressor

has constant leverage, in which case hii = 1
N for all i.3

We can reduce the bias in �̂r by trying to get a better estima-
tor of ψi, say ψ̂i. The estimator �̂r sets ψ̂i = ê2

i , as proposed by
White (1980a) and our starting point in this section. The resid-
ual variance estimators discussed in MacKinnon and White
(1985) include this and three others:

HC0 : ψ̂i = ê2
i

HC1 : ψ̂i = N
N − k

ê2
i

3Think of hii as a random variable with a uniform distribution in the sample.
Then

E[hii] =
∑

hii

N
= 1

N
,

and

E[h2
ii] =

∑
h2

ii

N
> (E[hii])2 =

(
1
N

)2

by Jensen’s inequality unless hii is constant. Therefore
∑

h2
ii > 1

N . The
constant leverage case occurs when (x̃i)2 is constant.
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HC2 : ψ̂i = 1
1 − hii

ê2
i

HC3 : ψ̂i = 1
(1 − hii)2

ê2
i .

HC1 is a simple degrees of freedom correction as is used for �̂c.
HC2 uses the leverage to give an unbiased estimate of the vari-
ance of the ith residual when the residuals are homoskedastic,
while HC3 approximates a jackknife estimator.4 In the appli-
cations we’ve seen, the estimated standard errors tend to get
larger as we go down the list from HC0 to HC3, but this is not
a theorem.

Time-Out for the Bootstrap

Bootstrapping is a resampling scheme that offers an alterna-
tive to inference based on asymptotic formulas. A bootstrap
sample is a sample drawn from our own data. In other words,
if we have a sample of size N, we treat this sample as if it
were the population and draw repeatedly from it (with replace-
ment). The bootstrap sampling distribution is the distribution
of an estimator across many draws of this sort. Intuitively,
we expect the sampling distribution constructed by sampling
from our own data to provide a good approximation to the
sampling distribution we are after.

There are many ways to bootstrap regression estimates. The
simplest is to draw pairs of {yi, Xi} values, sometimes called
the “pairs bootstrap” or a “nonparametric bootstrap.” Alter-
natively, we can keep the Xi values fixed, draw from the
distribution of residuals (êi), and create a new estimate of the
dependent variable based on the predicted value and the resid-
ual draw for each observation. This procedure, which is a type
of parametric bootstrap, mimics a sample drawn with non-
stochastic regressors and ensures that Xi and the regression

4A jackknife variance estimator estimates sampling variance from the
empirical distribution generated by omitting one observation at a time. Stata
computes HC1, HC2, and HC3. You can also use a trick suggested by Messer

and White (1984): divide yi and Xi by
√

ψ̂i and instrument the transformed

model by Xi/

√
ψ̂i for your preferred choice of ψ̂i.
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residuals are independent. On the other hand, we don’t want
independence if we’re interested in standard errors under het-
eroskedasticity. An alternative residual bootstrap, called the
wild bootstrap, draws X′

iβ̂ + êi (which, of course, is just the
original yi) with probability 0.5, and X′

iβ̂ − êi otherwise (see,
e.g., Mammen, 1993, and Horowitz, 1997). This preserves
the relationship between residual variances and Xi observed
in the original sample, while imposing mean-independence of
residuals and regressors, a restriction that improves bootstrap
inference when true.

Bootstrapping is useful as a computer-intensive but other-
wise straightforward calculator for asymptotic standard
errors. The bootstrap calculator is especially useful when the
asymptotic distribution of an estimator is hard to compute
or involves a number of steps (e.g., the asymptotic distribu-
tions of the quantile regression and quantile treatment effects
estimates discussed in chapter 7 require the estimation of den-
sities). Typically, however, we have no problem deriving or
evaluating asymptotic formulas for the standard errors of OLS
estimates.

More relevant in this context is the use of the bootstrap
to improve inference. Improvements in inference potentially
come in two forms: (1) a reduction in finite-sample bias in esti-
mators that are consistent (for example, the bias in estimates
of robust standard errors) and (2) inference procedures which
make use of the fact that the bootstrap sampling distribution
of test statistics may be closer to the finite-sample distribu-
tion of interest than the relevant asymptotic approximation.
These two properties are called asymptotic refinements (see,
e.g., Horowitz, 2001).

Here we are mostly interested in use of the bootstrap for
asymptotic refinement. The asymptotic distribution of regres-
sion estimates is easy enough to compute, but we worry that
the traditional robust covariance estimator (HC0) is biased.
The bootstrap can be used to estimate this bias, and then, by a
simple transformation, to construct standard error estimates
that are less biased. However, for now at least, bootstrap bias
correction of regression standard errors is not often used in
empirical practice, perhaps because the bias calculation is not
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automated and perhaps because bootstrap bias corrections
introduce extra variability. Also, for simple estimators like
regression coefficients, analytic bias corrections such as HC2

and HC3 are readily available (e.g., in Stata).
An asymptotic refinement can also be obtained for hypoth-

esis tests (and confidence intervals) based on statistics that
are asymptotically pivotal. These are statistics that have
asymptotic distributions that do not depend on any unknown
parameters. An example is a t-statistic: this is asymptoti-
cally standard normal. Regression coefficients are not asymp-
totically pivotal; they have an asymptotic distribution that
depends on the unknown residual variance. To refine infer-
ence for regression coefficients, you calculate the t-statistic in
each bootstrap sample and compare the analogous t-statistic
from your original sample to this bootstrap “t-distribution.”
A hypothesis is rejected if the absolute value of the original t-
statistic is above, say, the 95th percentile of the absolute values
from the bootstrap distribution.

Theoretical appeal notwithstanding, as applied researchers,
we don’t like the idea of bootstrapping pivotal statics very
much. This is partly because we’re not only (or even primarily)
interested in formal hypothesis testing: we like to see the stan-
dard errors in parentheses under our regression coefficients.
These provide a summary measure of precision that can be
used to construct confidence intervals, compare estimators,
and test any hypothesis that strikes us, now or later. In our
view, therefore, practitioners worried about the finite-sample
behavior of robust standard errors should focus on bias cor-
rections like HC2 and HC3. As we show below, for moderate
heteroskedasticity at least, an inference strategy that uses the
larger of conventional and bias-corrected standard errors often
seems to give us the best of both worlds: reduced bias with a
minimal loss of precision.

An Example

For further insight into the differences between robust covari-
ance estimators, we analyze a simple but important example
that has featured in earlier chapters in this book. Suppose you
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are interested in an estimate of β1 in the model

yi = β0 + β1di + εi, (8.1.9)

where di is a dummy variable. The OLS estimate of β1 is the
difference in means between those with di switched on and off.
Denoting these subsamples by the subscripts 1 and 0, we have

β̂1 = y1 −y0.

For the purposes of this derivation we think of di as nonran-
dom, so that

∑
di = N1 and

∑
(1 − di) = N0 are fixed. Let

r = N1/N.
We know something about the finite-sample behavior of β̂1

from statistical theory. If yi is normal with equal but unknown
variance in both the di = 1 and di = 0 populations, then the
conventional t-statistic for β̂1 has a t-distribution. This is the
classic two-sample t-test. Heteroskedasticity in this context
means that the variances in the di = 1 and di = 0 popula-
tions are different. In this case, the testing problem in small
samples becomes surprisingly difficult: the exact small-sample
distribution for even this simple problem is unknown.5 The
robust variance estimators HC0–HC3 give asymptotic approx-
imations to the unknown finite-sample distribution for the case
of unequal variances.

The differences between HC0, HC1, HC2, and HC3 are dif-
ferences in how the sample variances in the two groups defined
by di are processed. Define S2

j = ∑
di=j ( yi −yj)2 for j = 0, 1.

The leverage in this example is

hii =
{

1
N0

if di = 0
1

N1
if di = 1

.

Using this, it’s straightforward to show that the five variance
estimators we’ve been discussing are

Conventional :
N

N0N1

(S2
0 + S2

1

N − 2

)
= 1

Nr(1 − r)

(S2
0 + S2

1

N − 2

)
5This is called the Behrens-Fisher problem (see, e.g., DeGroot and

Schervish, 2001, chap. 8).
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HC0:
S2

0

N2
0

+ S2
1

N2
1

HC1:
N

N − 2

(
S2

0

N2
0

+ S2
1

N2
1

)

HC2:
S2

0

N0(N0 − 1)
+ S2

1

N1(N1 − 1)

HC3:
S2

0

(N0 − 1)2
+ S2

1

(N1 − 1)2
.

The conventional estimator pools subsamples: this is efficient
when the two variances are the same. The White (1980a)
estimator, HC0, adds separate estimates of the sampling vari-
ances of the means, using the consistent (but biased) variance

estimators,
S2

j
Nj

. The HC2 estimator uses unbiased estimators

of the sample variance for each group, since it makes the
correct degrees-of-freedom correction. HC1 makes a degrees-
of-freedom correction outside the sum, which will help but is
generally not quite correct. Since we know HC2 to be the unbi-
ased estimate of the sampling variance under homoskedastic-
ity, HC3 must be too big.6 Note that with r = 0.5, a case where
the regression design is said to be balanced, the conventional
estimator equals HC1 and all five estimators differ little.

A small Monte Carlo study based on (8.1.9) illustrates the
pluses and minuses of alternative estimators and the extent to
which a simple rule of thumb goes a long way toward amelio-
rating the bias of the HC class. We choose N = 30 to highlight
small sample issues, and r = 0.10 (10 percent treated), which
implies hii = 1

3 if di = 1 and hii = 1
27 if di = 0. This is a highly

unbalanced design. We draw residuals from the distributions:

εi ∼
{

N(0, σ 2) if di = 0
N(0, 1) if di = 1

and report results for three cases. The first has lots of het-
eroskedasticity, with σ = 0.5, while the second has relatively

6In this simple example, HC2 is unbiased whether or not residuals are
homoskedastic.
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little heteroskedasticity, with σ = 0.85. No heteroskedasticity
is the benchmark case.

Table 8.1.1 displays the results. Columns 1 and 2 report
means and standard deviations of the various standard error
estimates across 25,000 replications of the sampling experi-
ment. The standard deviation of β̂1 is the sampling variance
we are trying to measure. With lots of heteroskedasticity, as
in the upper panel of the table, conventional standard errors
are badly biased and, on average, only about half the size of
the Monte Carlo sampling variance that constitutes our target.
On the other hand, while the robust standard errors perform
better, except for HC3, they are still too small.7

The standard errors are themselves estimates and have con-
siderable sampling variability. Especially noteworthy is the
fact that the robust standard errors have much higher sam-
pling variability than the conventional standard errors, as can
be seen in column 2.8 The sampling variability of estimated
standard errors further increases when we attempt to reduce
bias by dividing the residuals by 1 − hii (HC2) or (1 − hii)2

(HC3). The worst case is HC3, with a standard deviation about
50 percent above the standard deviation of the White (1980a)
standard error, HC0.

The last two columns in the table show empirical rejection
rates in a nominal 5 percent test for the hypothesis β1 = 0,
the population parameter in this case. The test statistics are
compared with a normal distribution and to a t-distribution
with N − 2 degrees of freedom. Rejection rates are far too high
for all tests, even with HC3. Using a t-distribution rather than
a normal distribution helps only marginally.

7Although HC2 is an unbiased estimator of the sampling variance, the mean
of the HC2 standard errors across sampling experiments (0.52) is still below
the standard deviation of β̂1 (0.59). This comes from the fact that the standard
error is the square root of the sampling variance, the sampling variance is itself
estimated and hence has sampling variability, and the square root is a concave
function.

8The large sampling variance of robust standard error estimators is noted
by Chesher and Austin (1991). Kauermann and Carroll (2001) propose an
adjustment to confidence intervals to correct for this.
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Table 8.1.1
Monte Carlo results for robust standard error estimates

Empirical 5% Rejection Rates

Mean Standard Normal t
Deviation

Parameter Estimate (1) (2) (3) (4)

A. Lots of heteroskedasticity
β̂1 −.001 .586

Standard Errors
Conventional .331 .052 .278 .257
HC0 .417 .203 .247 .231
HC1 .447 .218 .223 .208
HC2 .523 .260 .177 .164
HC3 .636 .321 .130 .120
max(HC0, Conventional) .448 .172 .188 .171
max(HC1, Conventional) .473 .190 .173 .157
max(HC2, Conventional) .542 .238 .141 .128
max(HC3, Conventional) .649 .305 .107 .097

B. Little heteroskedasticity
β̂1 .004 .600

Standard Errors
Conventional .520 .070 .098 .084
HC0 .441 .193 .217 .202
HC1 .473 .207 .194 .179
HC2 .546 .250 .156 .143
HC3 .657 .312 .114 .104
max(HC0, Conventional) .562 .121 .083 .070
max(HC1, Conventional) .578 .138 .078 .067
max(HC2, Conventional) .627 .186 .067 .057
max(HC3, Conventional) .713 .259 .053 .045

C. No heteroskedasticity
β̂1 −.003 .611

Standard Errors
Conventional .604 .081 .061 .050
HC0 .453 .190 .209 .193
HC1 .486 .203 .185 .171
HC2 .557 .247 .150 .136
HC3 .667 .309 .110 .100
max(HC0, Conventional) .629 .109 .055 .045
max(HC1, Conventional) .640 .122 .053 .044
max(HC2, Conventional) .679 .166 .047 .039
max(HC3, Conventional) .754 .237 .039 .031

Notes: The table reports results from a sampling experiment with 25,000 replica-
tions. Columns 1 and 2 shows the mean and standard deviation of estimated standard
errors, except for the first row in each panel which shows the mean and standard devi-
ation of β̂1. The model is as described by (8.1.9), with β1 = 0, r = .1, N = 30, and
heteroskedasticity as indicated in the panel headings.
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The results with little heteroskedasticity, reported in the sec-
ond panel, show that conventional standard errors are still too
low; this bias is now on the order of 15 precent. HC0 and HC1

are also too small, about as before in absolute terms, though
they now look worse relative to the conventional standard
errors. The HC2 and HC3 standard errors are still larger than
the conventional standard errors, on average, but empirical
rejection rates are higher for these two than for conventional
standard errors. This means the robust standard errors are
sometimes too small “by accident,” an event that happens
often enough to inflate rejection rates so that they exceed the
conventional rejection rates.

One lesson we can take away from this is that robust
standard errors are no panacea. They can be smaller than con-
ventional standard errors for two reasons: the small sample
bias we have discussed and their higher sampling variance.
We therefore take empirical results where the robust standard
errors fall below the conventional standard errors as a red flag.
This is very likely due to bias or a chance occurrence that is bet-
ter discounted. In this spirit, the maximum of the conventional
standard error and a robust standard error may be the best
measure of precision. This rule of thumb helps on two counts:
it truncates low values of the robust estimators, reducing
bias, and it reduces variability. Table 8.1.1 shows the empir-
ical rejection rates obtained using max(HCj, Conventional).
Rejection rates using this rule of thumb look pretty good
in panel B and are considerably better than the rates using
robust estimators alone, even with lots of heteroskedasticity,
as shown in panel A.9

Since there is no gain without pain, there must be some cost
to using max(HCj, Conventional). The cost is that the best
standard error when there is no heteroskedasticity is the con-
ventional estimate. This is documented in the bottom panel of
the table. Use of the maximum inflates standard errors unnec-
essarily under homoskedasticity, depressing rejection rates.
Nevertheless, the table shows that even in this case, rejection

9Yang, Hsu, and Zhao (2005) formalize the notion of test procedures
based on the maximum of a set of test statistics with differing efficiency and
robustness properties.



308 Chapter 8

rates don’t go down all that much. We also view an underes-
timate of precision as being less costly than an overestimate.
Underestimating precision, we come away thinking the data
are not very informative and that we should try to collect more
or improve the research design, while in the latter case we may
mistakenly draw important substantive conclusions.

A final comment on this Monte Carlo investigation con-
cerns the small sample size. Labor economists like us are used
to working with tens of thousands of observations or more.
But sometimes we don’t. In a study of the effects of busing on
public school students, Angrist and Lang (2004) worked with
samples of about 3,000 students grouped in 56 schools. The
regressor of interest in this study varied within grade only at
the school level, so some of the analysis uses 56 school means.
Not surprisingly, therefore, Angrist and Lang (2004) obtained
HC1 standard errors below conventional OLS standard errors
when working with school-level data. As a rule, even if you
start with the microdata on individuals, when the regressor
of interest varies at a higher level of aggregation—a school,
state, or some other group or cluster—effective sample sizes
are much closer to the number of clusters than to the num-
ber of individuals. Inference procedures for clustered data are
discussed in detail in the next section.

8.2 Clustering and Serial Correlation in Panels

8.2.1 Clustering and the Moulton Factor

Heteroskedasticity rarely leads to dramatic changes in infer-
ence. In large samples where bias is not likely to be a problem,
we might see standard errors increase by about 25 percent
when moving from the conventional to the HC1 estimator. In
contrast, clustering can make all the difference.

The clustering problem can be illustrated using a simple
bivariate model estimated in data with a group structure.
Suppose we’re interested in the bivariate regression,

yig = β0 + β1xg + eig, (8.2.1)
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where yig is the dependent variable for individual i in cluster
or group g, with g groups. Importantly, the regressor of inter-
est, xg, varies only at the group level. For example, data from
the STAR experiment analyzed by Krueger (1999) come in the
form of yig, the test score of student i in class g, and class
size, xg.

Although students were randomly assigned to classes in the
STAR experiment, the STAR data are unlikely to be inde-
pendent across observations. The test scores of students in
the same class tend to be correlated because students in the
same class share background characteristics and are exposed
to the same teacher and classroom environment. It’s therefore
prudent to assume that, for students i and j in the same class, g,

E[eigejg] = ρeσ
2
e > 0, (8.2.2)

where ρe is the residual intraclass correlation coefficient and
σ 2

e is the residual variance.
Correlation within groups is often modeled using an addi-

tive random effects model. Specifically, we assume that the
residual, eig, has a group structure,

eig = vg + ηig, (8.2.3)

where vg is a random component specific to class g and ηig is a
mean-zero student-level error component that’s left over. We
focus here on the correlation problem, so both of these error
components are assumed to be homoskedastic. The group-
level error component is assumed to capture all within-group
correlation, so the ηig are uncorrelated.10

When the regressor of interest varies only at the group level,
an error structure like (8.2.3) can increase standard errors
sharply. This unfortunate fact is not news—Kloek (1981) and

10This sort of residual correlation structure is also a consequence of strat-
ified sampling (see, e.g., Wooldridge, 2003). Most of the samples that we
work with are close enough to random that we typically worry more about the
dependence due to a group structure than clustering due to stratification. Note
that there is no GLS estimator for equation 8.2.1 with error structure 8.2.3
because the regressor is fixed within groups. In any case, here as elsewhere we
prefer a “fix-the-standard-errors” approach to GLS.
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Moulton (1986) both made the point—but it seems fair to
say that clustering didn’t really become part of the applied
econometrics zeitgeist until about 15 years ago.

Given the error structure, (8.2.3), the intraclass correlation
coefficient becomes

ρe = σ 2
v

σ 2
v + σ 2

η

,

where σ 2
v is the variance of vg and σ 2

η is the variance of ηig.
A word on terminology: ρe is called the intraclass corre-
lation coefficient even when the groups of interest are not
classrooms.

Let Vc(β̂1) be the conventional OLS variance formula for the
regression slope (a diagonal element of �c in the previous sec-
tion), while V(β̂1) denotes the correct sampling variance given
the error structure, (8.2.3). With nonstochastic regressors
fixed at the group level and groups of equal size, n, we have

V(β̂1)

Vc(β̂1)
= 1 + (n − 1)ρe, (8.2.4)

a formula derived in the appendix to this chapter. We call the
square root of this ratio the Moulton factor, after Moulton’s
(1986) influential study. Equation (8.2.4) tells us how much
we overestimate precision by ignoring intraclass correlation.
Conventional standard errors become increasingly misleading
as n and ρe increase. Suppose, for example, that ρe = 1. In
this case, all the errors within a group are the same, so the
yig values are the same as well. Making a data set larger by
copying a smaller one n times generates no new information.
The variance Vc(β̂1) should therefore be scaled up from Vc(β̂1)
by a factor of n. The Moulton factor increases with group size
because with a fixed overall sample size, larger groups mean
fewer clusters, in which case there is less independent infor-
mation in the sample (because the data are independent across
clusters but not within).11

11With nonstochastic regressors and homoscedastic residuals, the Moulton
factor is a finite-sample result. Survey statisticians call the Moulton factor the
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Even small intraclass correlation coefficients can generate a
big Moulton factor. In Angrist and Lavy (2008), for example,
4,000 students are grouped in 40 schools, so the average n is
100. The regressor of interest is school-level treatment sta-
tus: all students in treated schools were eligible to receive
cash awards for passing their matriculation exams. The intra-
class correlation in this study fluctuates around .1. Applying
formula (8.2.4), the Moulton factor is over 3, so the stan-
dard errors reported by default are only one-third what they
should be.

Equation (8.2.4) covers an important special case where the
regressors are fixed within groups and group size is constant.
The general formula allows the regressor, xig, to vary at the
individual level and for different group sizes, ng. In this case,
the Moulton factor is the square root of

V(β̂1)

Vc(β̂1)
= 1 +

[
V(ng)

n
+ n − 1

]
ρxρe, (8.2.5)

where n is the average group size, and ρx is the intraclass
correlation of xig:

ρx =

∑
g

∑
j

∑
i �=j

(
xig − x

) (
xjg − x

)
V(xig)

∑
g

ng(ng − 1)
.

Note that ρx does not impose a variance components structure
like (8.2.3); here, ρx is a generic measure of the correlation of
regressors within groups. The general Moulton formula tells
us that clustering has a bigger impact on standard errors with
variable group sizes and when ρx is large. The impact vanishes
when ρx = 0. In other words, if the xig values are uncorrelated
within groups, the grouped error structure does not matter for
standard errors. That’s why we worry most about clustering
when the regressor of interest is fixed within groups.

design effect because it tells us how much to adjust standard errors in stratified
samples for deviations from simple random sampling (Kish, 1965).
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We illustrate formula (8.2.5) using the Tennessee STAR
example. A regression of kindergartners’ percentile score on
class size yields an estimate of −.62 with a robust (HC1) stan-
dard error of .09. In this case, ρx = 1 because class size is
fixed within classes, while V(ng) is positive because classes
vary in size (in this case, V(ng) = 17.1). The intraclass corre-
lation coefficient for residuals is .31 and the average class size
is 19.4. Plugging these numbers into (8.2.5) gives a value of

about 7 for V(β̂1)
Vc(β̂1)

, so that conventional standard errors should

be multiplied by a factor of 2.65 = √
7. The corrected standard

error is therefore about 0.24.
The Moulton factor works similarly with 2SLS estimates. In

particular, we can use (8.2.5), replacing ρx with ρx̂, where ρx̂

is the intraclass correlation coefficient of the first-stage fitted
values and ρe is the intraclass correlation of the second-stage
residuals (Shore-Sheppard, 1996). To understand why this
works, recall that conventional standard errors for 2SLS are
derived from the residual variance of the second-stage equa-
tion divided by the variance of the first-stage fitted values.
This is the same asymptotic variance formula as for OLS, with
first-stage fitted values playing the role of the regressor.

To conclude, we list and compare solutions to the Moul-
ton problem, starting with the parametric approach described
above.

1. Parametric: Fix conventional standard errors using (8.2.5).
The intraclass correlations ρe and ρx are easy to com-
pute and supplied as descriptive statistics in some software
packages.12

2. Cluster standard errors: Liang and Zeger (1986) general-
ize the White (1980a) robust covariance matrix to allow
for clustering as well as heteroskedasticity. The clustered
covariance matrix is

�̂cl = (
X′X

)−1

⎛
⎝∑

g
Xg�̂gXg

⎞
⎠(

X′X
)−1 , where

(8.2.6)

12Use Stata’s loneway command, for example.
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�̂g = aêgê′
g

= a

⎡
⎢⎢⎢⎢⎢⎢⎣

ê2
1g ê1gê2g · · · ê1gêngg

ê1gê2g ê2
2g · · · ...

...
... êng−1,gêngg

ê1gêngg · · · êng−1,gêngg ê2
ngg

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Here, Xg is the matrix of regressors for group g and a is a
degrees of freedom adjustment factor similar to that which
appears in HC1. The clustered estimator is consistent as the
number of groups gets large given any within-group correla-
tion structure and not just the parametric model in (8.2.3).
�̂cl is not consistent with a fixed number of groups, how-
ever, even when the group size tends to infinity. Consistency
is determined by the law of large numbers, which says that
we can rely on sample moments to converge to population
moments (section 3.1.3). But here the sums are at the group
level and not over individuals. Clustered standard errors are
therefore unlikely to be reliable with few clusters, a point
we return to below.

3. Use group averages instead of microdata: let yg be the mean
of yig in group g. Estimate

yg = β0 + β1xg + eg

by WLS using the group size as weights. This is equivalent
to OLS using micro data but the grouped-equation stan-
dard errors reflect the group structure, (8.2.3).13 Again,
the asymptotics here are based on the number of groups
and not the group size. Importantly, however, because the
group means are close to normally distributed with modest
group sizes, we can expect the good finite-sample properties
of regression with normal errors to kick in. The standard
errors that come out of grouped estimation are therefore
likely to be more reliable than clustered standard errors in
samples with few clusters.

13The grouped residuals are heteroskedastic unless group sizes are equal
but this is less important than the fact that the error has a group structure in
the microdata.
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Grouped-data estimation can be generalized to models
with microcovariates using a two-step procedure. Suppose
the equation of interest is

yig = β0 + β1xg + β2wig + eig , (8.2.7)

where wig is a covariate that varies within groups. In
step 1, construct the covariate-adjusted group effects, µg ,
by estimating

yig = µg + β2wig + ηig .

The µg , called group effects, are coefficients on a full set of
group dummies. The estimated µ̂g are group means adjusted
for differences in the individual level variable, wig . Note
that, by virtue of (8.2.7) and (8.2.3), µg = β0 + β1xg + νg .
In step 2, therefore, we regress the estimated group effects
on group-level variables:

µ̂g = β0 + β1xg + {νg + (µ̂g − µg)}. (8.2.8)

The efficient GLS estimator for (8.2.8) is WLS, using the
reciprocal of the estimated variance of the group-level resid-
ual, {νg + (µ̂g − µg)}, as weights. This can be a problem,
since the variance of νg is not estimated very well with few
groups. We might therefore weight by the reciprocal of the
variance of the estimated group effects, the group size, or use
no weights at all.14 In an effort to better approximate the
relevant finite-sample distribution, Donald and Lang (2007)
suggest that inference for grouped equations like (8.2.8) be
based on a t-distribution with g – k degrees of freedom.

Note that the grouping approach does not work when
xig varies within groups. Averaging xig to x̄g is a version
of IV, as we saw in chapter 4. So with micro-variation
in the regressor of interest, grouped estimation identifies
parameters that differ from the target parameters in a model
like (8.2.7).

14See Angrist and Lavy (2008) for an example of the latter two weighting
schemes.
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4. Block bootstrap: In general, bootstrap inference uses the
empirical distribution of the data by resampling. But simple
random resampling won’t do in this case. The trick with
clustered data is to preserve the dependence structure in the
target population. We can do this by block bootstrapping,
that is, drawing blocks of data defined by the groups g.
In the Tennessee STAR data, for example, we’d block
bootstrap by resampling entire classes instead of individual
students.

5. In some cases, you may be able to estimate a GLS or
maximum likelihood model based on a version of (8.2.1)
combined with a model for the error structure like (8.2.3).
This fixes the clustering problem but also changes the esti-
mand unless the CEF is linear, as detailed in section 3.4.1
for LDV models. We therefore prefer other approaches.

Table 8.2.1 compares standard-error fixups in the STAR
example. The table reports six estimates: conventional robust
standard errors (using HC1); two versions of corrected stan-
dard errors using the Moulton formula (8.2.5), the first using
the formula for the intraclass correlation given by Moulton
and the second using Stata’s estimator from theloneway com-
mand; clustered standard errors; block-bootstrapped standard
errors; and standard errors from weighted estimation at the
group level. The coefficient estimate is −.62. In this case, all
cluster adjustments deliver similar results, a standard error of
about .23. This happy outcome is due in large part to the fact
that with 318 classrooms, we have enough clusters for group-
level asymptotics to work well. With few clusters, however,
things are much dicier, a point we return to at the end of the
chapter.

8.2.2 Serial Correlation in Panels
and Difference-in-Difference Models

Serial correlation—the tendency for one observation to be
correlated with those that have gone before—used to be Some-
body Else’s Problem, specifically, the unfortunate souls who
make their living out of time series data (macroeconomists, for
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Table 8.2.1
Standard errors for class size effects in the STAR

data (318 clusters)

Variance Estimator Std. Err.

Robust (HC1) .090

Parametric Moulton correction .222
(using Moulton intraclass correlation)

Parametric Moulton correction .230
(using Stata intraclass correlation)

Clustered .232

Block bootstrap .231

Estimation using group means .226
(weighted by class size)

Notes: The table reports standard errors for the estimates
from a regression of kindergartners’ average percentile scores
on class size using the public use data set from Project STAR.
The coefficient on class size is −.62. The group level for clus-
tering is the classroom. The number of observations is 5,743.
The bootstrap estimate uses 1,000 replications.

example). Applied microeconometricians have therefore long
ignored it.15 But our data often have a time dimension, too,
especially in DD models. This fact combined with clustering
can have a major impact on statistical inference.

Suppose, as in section 5.2, that we are interested in the
effects of a state minimum wage. In this context, the regres-
sion version of DD includes additive state and time effects. We
therefore get an equation like (5.2.2), repeated below:

yist = γs + λt + δdst + εist, (8.2.9)

15The Somebody Else’s Problem (SEP) field, first identified as a natural
phenomenon in Adams’s Life, the Universe, and Everything, is, according to
Wikipedia, “a generated energy field that affects perception. . . . Entities within
the field will be perceived by an outside observer as ‘Somebody Else’s Problem,’
and will therefore be effectively invisible unless the observer is specifically
looking for the entity.”
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As before, yist is the outcome for individual i in state s in year
t and dst is a dummy variable that indicates treatment states
in posttreatment periods.

The error term in (8.2.9) reflects the idiosyncratic variation
in potential outcomes across people, states, and time. Some
of this variation is likely to be common to individuals in the
same state and year, for example, a regional business cycle. We
can model this common component by thinking of εist as the
sum of a state-year shock, vst, and an idiosyncratic individual
component, ηist. So we have:

yist = γs + λt + δdst + vst + ηist. (8.2.10)

We assume that in repeated draws across states and over time,
E[vst] = 0, while E[ηist|s, t] = 0 by definition.

State-year shocks are bad news for DD models. As with
the Moulton problem, state- and time-specific random effects
generate a clustering problem that affects statistical inference.
But that might be the least of our problems in this case. To see
why, suppose we have only two periods and two states, as in
the Card and Krueger (1994) New Jersey-Pennsylvania study.
The empirical DD estimator is

δ̂CK = (ys=NJ,t=Nov −ys=NJ,t=Feb) − (ys=PA,t=Nov −ys=PA,t=Feb).

This estimator is unbiased, since E[vst] = E[ηist] = 0. On the
other hand, assuming we think of probability limits as increas-
ing group size while keeping the choice of states and periods
fixed, state-year shocks render δ̂CK inconsistent:

plim δ̂CK

= δ + {(vs=NJ,t=Nov − vs=NJ,t=Feb)−(vs=PA,t=Nov − vs=PA,t=Feb)}.

Averaging larger and larger samples within New Jersey and
Pennsylvania in a pair of periods does nothing to eliminate
the regional shocks specific to a given location and period.
With only two states and years, we have no way to dis-
tinguish the differences-in-differences generated by a policy
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change from the difference-in-dfferences due to the fact that,
say, the New Jersey economy was holding steady in 1992
while Pennsylvania was experiencing a cyclical downturn. The
presence of vst amounts to a failure of the common trends
assumption discussed in section 5.2.

The solution to the inconsistency induced by random shocks
in differences in differences models is to analyze samples
including multiple time periods or many states (or both).
For example, Card (1992) uses 51 states to study minimum
wage changes, while Card and Krueger (2000) take another
look at the New Jersey-Pennsylvania experiment with a longer
monthly time series of payroll data. With multiple states or
periods, we can hope that the vst average out to zero. As in the
first part of this chapter on the Moulton problem, the inference
framework in this context relies on asymptotic distribution
theory with many groups and not on group size (or, at least,
not on group size alone). The most important inference issue
then becomes the behavior of vst. In particular, if we are pre-
pared to assume that shocks are independent across states and
over time—that is, that they are serially uncorrelated—we are
back to the plain vanilla Moulton problem in section 8.2.1, in
which case clustering standard errors by state × year should
generate valid inferences. But in most cases, the assumption
that vst is serially uncorrelated is hard to defend. Almost
certainly, for example, regional shocks are highly serially cor-
related: if things are bad in Pennsylvania in one month, they
are likely to be about as bad in the next.

The consequences of serial correlation for clustered panels
are highlighted by Bertrand, Duflo, and Mullainathan (2004)
and Kézdi (2004). Any research design with a group structure
where the group means are correlated can be said to have the
serial correlation problem. The upshot of recent research on
serial correlation in data with a group structure is that, just as
we must adjust our standard errors for the correlation within
groups induced by the presence of vst, we must further adjust
for serial correlation in the vst themselves. There are a number
of ways to do this, not all equally effective in all situations. It
seems fair to say that the question of how best to approach
the serial correlation problem is currently under study, and a
consensus has not yet emerged.
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The simplest and most widely applied approach is to pass the
clustering buck one level higher. In the state-year example, we
can report Liang and Zeger (1986) standard errors clustered by
state instead of by state and year (e.g., using Stata cluster).
This might seem odd at first blush, since the model controls
for state effects. The state effect, γs, in (8.2.10) removes the
state mean of vst, which we denote by vs. Nevertheless, vst − vs

is probably still serially correlated. Clustering standard errors
at the state level takes account of this, since the one-level-up
clustered covariance estimator allows for unrestricted residual
correlation within clusters, including the time series correla-
tion in vst − vs. This is a quick and easy fix.16 The problem
here is that passing the buck up one level reduces the number
of clusters. And asymptotic inference supposes we have a large
number of clusters because we need many states or periods to
estimate the correlation between vst − vs and vst−1 − vs rea-
sonably well. A paucity of clusters can lead to biased standard
errors and misleading inferences.

8.2.3 Fewer than 42 Clusters

Bias from few clusters is a risk in both the Moulton and the
serial correlation contexts because in both cases, inference is
cluster-based. With few clusters, we tend to underestimate
either the serial correlation in a random shock like vst or the
intraclass correlation, ρe, in the Moulton problem. The rele-
vant dimension for counting clusters in the Moulton problem
is the number of groups, g. In a DD scenario where you’d like
to cluster on state or some other cross-sectional dimension,
the relevant dimension for counting clusters is the number of
states or cross-sectional groups. Therefore, following Douglas
Adams’s dictum that the ultimate answer to life, the universe,
and everything is 42, we believe the question is: How many
clusters are enough for reliable inference using the standard
cluster adjustment derived from (8.2.6)?

If 42 is enough for the standard cluster adjustment to be
reliable, and if less is too few, then what should you do when

16Arellano (1987) appears to have been the first to suggest higher-level
clustering for models with a panel structure.
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the cluster count is low? First-best is to get more clusters by
collecting more data. But sometimes we’re too lazy for that,
or the number of groups is naturally fixed, so other ideas are
detailed below. It’s worth noting at the outset that not all of
these ideas are equally well-suited for the Moulton and serial
correlation problems.

1. Bias correction of clustered standard errors: Clustered stan-
dard errors are biased in small samples because E(êg ê′

g) �=
E(ege′

g) = �g , just as with the residual covariance matrix
in section 8.1. Usually, E(êg ê′

g) is too small. One solution
is to inflate residuals in the hopes of reducing bias. Bell and
McCaffrey (2002) suggest a procedure (called bias-reduced
linearization, or BRL) that adjusts residuals by

�̂g = aẽgẽ′
g

ẽg = Agêg

where Ag solves

A′
gAg = (

I − Hg
)−1 ,

Hg = Xg(X′X)−1X′
g ,

and a is a degrees-of-freedom correction.
This is a version of HC2 for the clustered case. BRL

works for the straight-up Moulton problem with few clus-
ters but for technical reasons cannot be used for the typical
DD serial correlation problem.17

17The matrix Ag is not unique; there are many such decompositions. Bell
and McCaffrey (2002) use the symmetric square root of (I − Hg)−1, or

Ag = R�1/2,

where R is the matrix of eigenvectors of
(
I − Hg

)−1 and �1/2 is the diagonal
matrix of the square roots of the eigenvalues. One problem with the Bell and
McCaffrey adjustment is that

(
I − Hg

)
may not be of full rank, and hence the

inverse may not exist for all designs. This happens, for example, when one of
the regressors is a dummy variable that is one for exactly one of the clusters,
and zero otherwise. This scenario occurs in the panel DD model discussed by
Bertrand et al. (2004), which includes a full set of state dummies and clusters
by state.
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2. Recognizing that the fundamental unit of observation is a
cluster and not an individual unit within clusters, Bell and
McCaffrey (2002) and Donald and Lang (2007) suggest that
inference be based on a t-distribution with g − k degrees of
freedom rather than on the standard normal distribution.
For small g, this makes a difference: confidence intervals
will be wider, thereby avoiding some mistakes. Cameron,
Gelbach, and Miller (2008) report Monte Carlo examples
where the combination of a BRL adjustment and the use of
t-tables works well.

3. Donald and Lang (2007) argue that estimation using group
means works well with small g in the Moulton problem,
and even better when inference is based on a t-distribution
with g − k degrees of freedom. But, as we discussed in sec-
tion 8.2.1, for grouped estimation the regressor should be
fixed within groups. The level of aggregation is the level
at which you’d like to cluster, such as schools in Angrist
and Lavy (2008). For serial correlation, this is the state, but
state averages cannot be used to estimate a model with a
full set of state effects. Also, since treatment status varies
within states, averaging up to the state level averages the
regressor of interest as well, changing the rules of the game
in a way we may not like (the estimator becomes IV using
group dummies as instruments). The group means approach
is therefore out of bounds for the serial correlation problem.
Note also that if the grouped residuals are heteroskedastic,
and you therefore use robust standard errors, you may have
to worry about bias of the form discussed in section 8.1.
In some cases, heteroskedasticity in the grouped residuals
can be fixed by weighting by the group size. But weight-
ing changes the estimand when the CEF is nonlinear, so the
case for weighting is not open and shut (Angrist and Lavy,
1999, chose not to weight school-level averages because the
variation in their study comes mostly from small schools).
Weighted or not, a conservative approach when working
with group-level averages is to use our rule of thumb from
section 8.1: take the larger of robust and conventional
standard errors as your measure of precision.



322 Chapter 8

4. Cameron, Gelbach, and Miller (2008) report that some
forms of a block bootstrap work well with small numbers
of groups, and that the block bootstrap typically outper-
forms Stata-clustered standard errors. This appears to be
true both for the Moulton and serial correlation problems.
But Cameron, Gelbach, and Miller (2008) focus on rejec-
tion rates using (pivotal) test statistics, while we like to see
standard errors.

5. Parametric corrections: For the Moulton problem, this
amounts to use of the Moulton factor. With serial cor-
relation, this means correcting your standard errors for
first-order serial correlation at the group level. Based on
our sampling experiments with the Moulton problem and a
reading of the literature, parametric approaches may work
well, and better than the nonparametric cluster estimator
(8.2.6), especially if the parametric model is not too far
off (see, e.g., Hansen, 2007a, which also proposes a bias
correction for estimates of serial correlation parameters).
Unfortunately, however, beyond the greenhouse world of
controlled Monte Carlo studies, we’re unlikely to know
whether parametric assumptions are a good fit.

Alas, the bottom line here is not entirely clear, nor is the
more basic question of when few clusters are fatal for infer-
ence. The severity of the resulting bias seems to depend on the
nature of your problem, in particular whether you confront
straight-up Moulton or serial correlation issues. Aggregation
to the group level as in Donald and Lang (2007) seems to
work well in the Moulton case as long as the regressor of
interest is fixed within groups and there is not too much
underlying heteroskedasticity. At a minimum, you’d like to
show that your conclusions are consistent with the inferences
that arise from an analysis of group averages, since this is
a conservative and transparent approach. Angrist and Lavy
(2008) use BRL standard errors to adjust for clustering at
the school level but validate this approach by showing that
key results come out the same using covariate-adjusted group
averages.
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As far as serial correlation goes, most of the evidence sug-
gests that when you are lucky enough to do research on U.S.
states, giving 51 clusters, you are on reasonably safe ground
with a naive application of Stata’s cluster command at
the state level. But you might have to study Canada, which
offers only 10 clusters in the form of provinces, well below
42. Hansen (2007b) finds that Liang and Zeger (1986) (Stata-
clustered) standard errors are reasonably good at correcting
for serial correlation in panels, even in the Canadian scenario.
Hansen also recommends use of a t-distribution with g − k
degrees of freedom for critical values.

Clustering problems have forced applied microeconometri-
cians to eat a little humble pie. Proud of working with large
microdata sets, we like to sneer at macroeconomists toying
with small time series samples. But he who laughs last laughs
best: if the regressor of interest varies only at a coarse group
level, such as over time or across states or countries, then it’s
the macroeconomists who have had the most realistic mode of
inference all along.

8.3 Appendix: Derivation of the Simple
Moulton Factor

Write

yg =

⎡
⎢⎢⎢⎣

y1g

y2g
...

yngg

⎤
⎥⎥⎥⎦ eg =

⎡
⎢⎢⎢⎣

e1g

e2g
...

engg

⎤
⎥⎥⎥⎦

and

y =

⎡
⎢⎢⎢⎣

y1

y2
...

yg

⎤
⎥⎥⎥⎦ x =

⎡
⎢⎢⎢⎣

ι1x1

ι2x2
...

ιgxg

⎤
⎥⎥⎥⎦ e =

⎡
⎢⎢⎢⎣

e1

e2
...

eg

⎤
⎥⎥⎥⎦ ,
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where ιg is a column vector of ng ones and g is the number of
groups. Note that

E(ee′) = � =

⎡
⎢⎢⎢⎢⎣

�1 0 · · · 0

0 �2
...

...
. . . 0

0 · · · 0 �g

⎤
⎥⎥⎥⎥⎦

�g = σ 2
e

⎡
⎢⎢⎢⎢⎣

1 ρe · · · ρe

ρe 1
...

...
. . . ρe

ρ · · · ρe 1

⎤
⎥⎥⎥⎥⎦ = σ 2

e

[
(1 − ρe)I + ρeιgι

′
g

]
,

where ρe = σ2
v

σ2
v +σ2

η
.

Now

X′X =
∑

g

ngxgx′
g

X′�X =
∑

g

xgι
′
g�gιgx′

g.

But

xgι
′
g�gιgx′

g = σ 2
e xgι

′
g

⎡
⎢⎢⎣

1 + (ng − 1)ρe

1 + (ng − 1)ρe

· · ·
1 + (ng − 1)ρe

⎤
⎥⎥⎦ x′

g

= σ 2
e ng

[
1 + (ng − 1)ρe

]
xgx′

g.

Let τg = 1 + (ng − 1)ρe, so we get

xgι
′
g�gιgx′

g = σ 2
e ngτgxgx′

g

X′�X = σ 2
e

∑
g

ngτgxgx′
g.
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With this in hand, we can write

V(β̂) = (X′X)−1X′�X(X′X)−1

= σ 2
e

(∑
g

ngxgx′
g

)−1 ∑
g

ngτgxgx′
g

(∑
g

ngxgx′
g

)−1
.

We want to compare this with the standard OLS covariance
estimator

Vc(β̂) = σ 2
e

(∑
g

ngxgx′
g

)−1
.

If the group sizes are equal, ng = n and τg = τ = 1 + (n − 1)ρe,
so that

V(β̂) = σ 2
e τ

(∑
g

nxgx′
g

)−1 ∑
g

nxgx′
g

(∑
g

nxgx′
g

)−1

= σ 2
e τ

(∑
g

nxgx′
g

)−1

= τVc(β̂),

which implies (8.2.4).
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I f applied econometrics were easy, theorists would do it.
But it’s not as hard as the dense pages of Econometrica
might lead you to believe. Carefully applied to coherent

causal questions, regression and 2SLS almost always make
sense. Your standard errors probably won’t be quite right,
but they rarely are. Avoid embarrassment by being your own
best skeptic, and especially, DON’T PANIC!
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Technical terms

2SLS Two-stage least squares, an instrumental variables
(IV) estimator.

ACR Average causal response, the weighted average causal
response to an ordered treatment.

ANOVA Analysis of variance, a decomposition of total
variance into the variance of the conditional expectation
function (CEF) and the average conditional variance.

BRL Biased reduced linearization estimator, a
bias-corrected covariance matrix estimator for clustered
data.

CDF Cumulative distribution function, the probability that
a random variable takes on a value less than or equal to
a given number.

CEF Conditional expectation function, the population
average of yi with Xi held fixed.

CIA Conditional independence assumption, a core
assumption that justifies a causal interpretation of
regression and matching estimators.

COP Conditional on positive effect, the treatment-control
difference in means for a non-negative random variable
looking at positive values only.

CQF Conditional quantile function, defined for each
quantile τ , the τ -quantile of yi, holding Xi fixed.

DD Differences-in-differences estimator. In its simplest
form, a comparison of changes over time in treatment
and control groups.

GLS Generalized least squares estimator, a regression
estimator for models with heteroskedasticity and/or
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serial correlation. GLS provides efficiency gains when the
conditional expectation function (CEF) is linear.

GMM Generalized method of moments, an econometric
estimation framework in which estimates are chosen to
minimize a matrix-weighted average of the squared
difference between sample and population moments.

HC0–HC3 Heteroskedasticity consistent covariance matrix
estimators discussed by MacKinnon and White (1985).

ILS Indirect least squares estimator, the ratio of
reduced-form to first-stage coefficients in an instrumental
variables (IV) setup.

ITT Intention to treat effect, the effect of being offered
treatment.

IV Instrumental variables estimator or method.
JIVE Jackknife instrumental variables (IV) estimator.
LATE Local average treatment effect, the causal effect of

treatment on compliers.
LDVs Limited dependent variables, such as dummies,

counts, and non-negative random variables on the
left-hand side of regression and related statistical models.

LIML Limited information maximum likelihood estimator,
an alternative to two-stage least squares (2SLS) with less
bias.

LM Lagrange multiplier test, a statistical test of the
restrictions imposed by an estimator.

LPM Linear probability model, a linear regression model
for a dummy dependent variable.

MFX Marginal effects. In nonlinear models, the derivative
of the conditional expectation function (CEF) implied by
the model with respect to the regressors.

MMSE Minimum mean squared error, the minimum
expected squared prediction error, or the minimum of
the expected square of the difference between an
estimator and a target.

OLS Ordinary least squares estimator, the sample analog of
the population regression vector.
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OVB Omitted variables bias, the relationship between
regression estimates in models with different sets of
control variables.

QTE Quantile treatment effect, the causal effect of
treatment on conditional quantiles of the outcome
variable for compliers.

RD Regression discontinuity design, an identification
strategy in which treatment, the probability of treatment,
or the average treatment intensity is a known,
discontinuous function of a covariate.

SEM Simultaneous equations model, an econometric
framework in which causal relationships between
variables are described by several equations.

SSIV Split-sample instrumental variables estimator, a
version of the two-sample instrumental variables (TSIV)
estimator.

TSIV Two-sample instrumental variables estimator, an
instrumental variables (IV) estimator that can sometimes
be constructed from two data sets when either data set
alone would be inadequate.

VIV Visual instrumental variables, a plot of reduced form
against first-stage fitted values in instrumental variables
models with dummy instruments.

WLS Weighted least squares, a GLS estimator with a
diagonal weighting matrix.

Data sets and variable names

AFDC Aid to Families with Dependent Children, an
American welfare program no longer in effect.

AFQT Armed Forces Qualification Test, used by the U.S.
armed forces to gauge recruits’ academic and cognitive
ability.

CPS Current Population Survey, a large monthly survey of
U.S. households, source of the U.S. unemployment rate.
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GED General Educational Development certificate, a
substitute for traditional high school credentials,
obtained by passing a test.

IPUMS Integrated public use microdata series, consistently
coded samples of census records from the United States
and other countries.

NHIS National Health Interview Survey, a large American
survey with many questions related to health.

NLSY National Longitudinal Survey of Youth, a
long-running panel survey that started with a high
school-aged cohort in 1979.

PSAT Preliminary SAT, qualifies American high school
sophomores for a National Merit Scholarship.

PSID Panel Study of Income Dynamics, a panel survey of
American households begun in 1968.

QOB Quarter of birth.
RSN Random sequence numbers, draft lottery numbers

randomly assigned to dates of birth in the Vietnam-era
draft lotteries held from 1970 to 1973.

SDA Service delivery area, one of the 649 sites where Job
Training Partnership Act (JTPA) services were delivered.

SSA Social Security Administration, a U.S. government
agency.

Study Names

HIE Health Insurance Experiment conducted by the RAND
Corporation, a randomized trial in which participants
were exposed to health insurance programs with
different features.

JTPA Job Training Partnership Act, a large, federally
funded training program that included a randomized
evaluation.

MDVE Minneapolis Domestic Violence Experiment, a
randomized trial in which police response to a domestic
disturbance was determined in part by random
assignment.
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NSW National Supported Work demonstration, an
experimental mid-1970s training program that provided
work experience to men and women with weak labor
force attachment.

STAR The Tennessee Student/Teacher Achievement Ratio
experiment, a randomized study of elementary school
class size.

WHI Women’s Health Initiative, a series of randomized
trials that included an evaluation of hormone
replacement therapy.
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This index lists studies contributing to tables and figures in the
book.

Abadie, Angrist, and Imbens (2002) Constructs QTE (IV)
estimates of the effect of subsidized JTPA training on the
distribution of trainee earnings. Discussed in
section 7.2.1. Results appear in table 7.2.1.

Acemoglu and Angrist (2000) Uses compulsory schooling
laws and quarter of birth to construct IV estimates of the
economic returns to schooling. Discussed in
section 4.5.3. Results appear in table 4.4.2 and
figure 4.5.1.

Angrist (1990) Uses the draft lottery to construct IV
estimates of the effect of military service on earnings.
Discussed in sections 4.1.2 and 4.1.3. Results appear in
tables 4.1.3 and 4.4.2.

Angrist (1998) Estimates the effect of voluntary military
service on civilian earnings using matching, regression,
and IV. Discussed in section 3.3.1. Results appear in
table 3.3.1.

Angrist (2001) Compares OLS and IV with marginal effects
estimates using nonlinear models. Discussed in
section 4.6.3. Results appear in table 4.6.1.

Angrist and Evans (1998) Uses sibling sex composition and
twin births to construct IV estimates of the effects of
family size on mothers’ and fathers’ labor supply.
Discussed in sections 3.4.2 and 4.6.3. Results appear in
tables 3.4.2, 4.4.2, and 4.6.1.

Angrist and Imbens (1995) Shows that 2SLS estimates can
be interpreted as the weighted average causal response to
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treatment. Discussed in section 4.5.3. Results appear in
table 4.1.2.

Angrist and Krueger (1991) Uses quarter of birth to
construct IV estimates of the economic returns to
schooling. Discussed in sections 4.1, 4.5.3, and 4.6.4.
Results appear in figure 4.1.1 and tables 4.1.1, 4.1.2,
4.4.2, and 4.6.2.

Angrist and Lavy (1999) Uses a fuzzy RD to estimate the
effects of class size on student achievement. Discussed in
section 6.2. Results appear in figure 6.2.1 and
table 6.2.1.

Angrist, Chernozhukov and Fernandez-Val (2006) Shows
that quantile regression generates a MMSE
approximation to a nonlinear CQF, and illustrates the
quantile regression approximation property by
estimating the effects of schooling on the distribution of
wages. Discussed in section 7.1.2. Results appear in
table 7.1.1 and figure 7.1.1.

Autor (2003) Uses state variation in employment
protection laws to construct DD estimates of the effect of
labor market regulation on temporary employment.
Discussed in section 5.2.1. Results appear in figure 5.2.4.

Besley and Burgess (2004) Use state variation to estimate
the effect of labor laws on firm performance in India.
Discussed in section 5.2.1. Results appear in table 5.2.3.

Bloom, et al. (1997) Reports the JTPA main findings.
Discussed in section 4.4.3. Results appear in table 4.4.1.

Card (1992) Uses state minimum wages and regional
variation in wage levels to estimate the effect of the
minimum wage. Discussed in section 5.2.1. Results
appear in table 5.2.2.

Card and Krueger (1994, 2000) Use a New Jersey
minimum wage increase to estimate the employment
effects of a minimum wage change. Discussed in
section 5.2. Results appear in table 5.2.1 and figure 5.2.2.

Dehejia and Wahba (1999) Uses the propensity score to
estimate the effects of subsidized training on earnings in
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a reanalysis of the Lalonde (1986) NSW sample.
Discussed in section 3.3.3. Results appear in table 3.3.2.

Freeman (1984) Uses fixed effects models to construct
panel-data estimates of the effect of union status on
wages. Discussed in section 5.1. Results appear in
table 5.1.1.

Krueger (1999) Uses the Tennessee STAR randomized trial
to construct IV estimates of the effect of class size on test
scores. Discussed in section 2.2. Results appear in
tables 2.2.1, 2.2.2, and 8.2.1.

Lee (2008) Uses a regression discontinuity design to
estimate the effect of party incumbency on reelection.
Discussed in section 6.1. Results appear in figure 6.1.2.

Manning et al. (1987) Uses randomized assignment to
estimate the impact of health insurance plans on health
care use, cost, and outcomes. Discussed in section 3.4.2.
Results appear in table 3.4.1.

Pischke (2007) Uses a sharp change in the length of the
German school year to estimate the effect of school term
length on achievement. Discussed in section 5.2. Results
appear in figure 5.2.3.
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