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Abstract

Unmanned ground vehicles offer great potential, but struggle in rough terrain environments

due to their inability to reason about complex dynamics over longer horizons. Thus, driving

strategies are often short-sighted and underutilize the robot’s dynamic capabilities. This

thesis addresses the challenges of long-horizon, dynamics-aware decision making in rough

terrain, arising from the inability to model complex system dynamics. The findings reveal

two key insights: 1) leveraging low-quality simulation data can reduce training requirements

of real-world dynamics models; and 2) long-horizon decision making can still utilize imprecise

dynamics models through careful handling of prediction uncertainty.

We first discuss our model-based reinforcement learning approach for rough terrain navi-

gation. This approach trains a dynamics model to predict the robot’s trajectory over uneven

terrain and capture prediction uncertainty. Decision making uses this model along with a

closed-loop divergence constraint to aid in longer-horizon trajectory prediction and prevent

exploitation of potentially problematic modeling errors. We show that this approach leads

to robust, non-myopic driving strategies that take full advantage of the robot’s capabilities.

Next, we explore leveraging simulation to reduce real-world training data requirements.

This culminates in an approach that uses a large variety of simulated systems to train

a dynamics model that quickly and probabilistically adapts to any new, including real-

world, target system using any available target system data. Using this model within an

uncertainty-aware decision making framework results in safe, albeit low performance, driving

upon initialization. As more target system observations are collected, the adaptive dynamics

model becomes more tailored to the target system resulting in increased driving performance.

Finally, we combine these concepts to form a non-myopic rough terrain navigation frame-

work that can quickly and robustly adapt to new target systems. We show that upon ini-

tialization, this framework chooses conservative routes that avoids obstacles. However, after

just one demonstration of driving over obstacles, the framework chooses more aggressive

routes over obstacles that match the system’s capabilities.
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Chapter 1

Introduction

Unmanned ground vehicles (UGVs) have demonstrated remarkable utility in a broad spec-

trum of applications, ranging from industrial automation and logistics [1–4] to planetary

exploration and hazardous environment characterization [5–7]. These robots, capable of

navigating various environments autonomously, have significantly reduced human exposure

to hazardous conditions and streamlined numerous repetitive tasks. Historically, however,

the operational domain of these robots have been confined to structured terrains, typically

characterized by flat, uniform, high-friction surfaces. This limitation has predominantly

restricted their applications to indoor settings or well-paved environments.

Recent advancements in the field of robotics have begun to address the challenges of

off-road autonomy [8–11]. Notable research efforts have focused on enhancing robots’ abil-

ity to identify and circumvent problematic terrain features, e.g. challenging soil types or

steep slopes [12, 13]. Alongside avoiding problematic areas, other research streams have

concentrated on quick decision-making algorithms designed to recover from wheel slip and

other disturbances stemming from unexpected environmental interactions, allowing UGVs

to travel at high speed on loose soil [14, 15].

Despite significant advancements in the field of autonomous UGV navigation, numerous

environments still remain challenging for these autonomous systems. Figure 1.1 showcases
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Figure 1.1: Wheeled robot in challenging rough terrain environments.

several examples of particularly challenging rough terrain environments characterized by

abrupt elevation changes and diverse ranges of surface types such as rock, dirt, or concrete.

While these environments are challenging, human teleoperators are capable of driving the

robot through such environments by leveraging their intuitive understanding of vehicle dy-

namics and capabilities in different types of terrain. However, current autonomous navigation

controllers lack this level of sophisticated reasoning.

Navigating such challenging environments presents a unique challenge for autonomous

UGVs as it requires long horizon decision making under careful consideration of the vehicle’s

dynamics and complex robot-terrain interactions. These environments are often littered with

obstacles that block the robot’s path to its destination, so the robot must carefully reason

about which obstacles are traversable and which are are not. However, distinguishing the

traversability of different obstacles is not simple. For example, the angle at which the robot

approaches an obstacle may significantly influence its traction and stability. This variation

leads to differing levels of slippage, which in turn directly affects the robot’s capability

to traverse the obstacle. The traversability of different obstacles may also depend on the

vehicle’s momentum. For example, certain obstacles may require the robot to increase speed

to build up momentum. However, too much momentum may lead to loss of control or

inability to stop in time. Furthermore, the robot must also consider how its dynamics and

capabilities change depending on what kind of surface it is driving on. For example, a vehicle
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may be capable of ascending an incline at low speeds if it is driving on high-friction concrete.

However, the same incline covered in loose dirt might require the vehicle to increase speed

to overcome reduced traction by leveraging momentum.

The robot must not only consider obstacles in its immediate vicinity but also consider

potential obstacles further along its path. Adopting a short-sighted, greedy approach of

heading straight towards the goal can lead the robot into dead ends. For instance, while

initial obstacles on a direct route might be manageable, subsequent ones could be impassable

leaving the robot stuck in a dead end. Long-horizon decision making is especially important

for environments with complex obstacle layouts that resemble intricate mazes. Considering

future obstacles and planning well in advance enables the robot to opt for less direct but

more reliable paths and ensure that it can traverse all obstacles encountered.

1.1 Current Approaches to Off-Road Navigation

Current rough terrain navigation frameworks predominantly fall into two categories: Hier-

archical Planning and Controls, and Model Predictive Controls. Hierarchical Planning and

controls involve a multi-layered strategy, where higher layers handles coarse decision-making,

such as route planning, while lower layers focus on real-time corrections and fine-tuning of

the vehicle’s movements. Model Predictive Controls, on the other hand, present a unified

and integrated method, operating continuously within a feedback loop. This approach is

characterized by its rapid and iterative decision-making process, which constantly adjusts

the vehicle’s trajectory and actions in response to real-time sensor feedback. It’s important

to note that these frameworks are often used in tandem. For instance, Model Predictive

Controls is commonly used as the lower layer within a hierarchical scheme, executing the

plans chosen by the higher layer [16,17].

Additionally, Reinforcement learning has recently emerged as another promising approach

to controlling complex robotic systems [18–20]. This approach adopts a data-driven strat-

3



egy, wherein the robot iteratively refines its decision-making policy through repeated trials.

Again, the boundaries between these categories are not always well defined with Reinforce-

ment learning methods often adopting a hierarchical structure [21] or model predictive control

structure [15]. Despite its potential, reinforcement learning faces practical challenges for the

task of rough terrain navigating of real-world robots. We discuss these limitations below and

aim to address them throughout this dissertation.

Hierarchical Planning and Controls

Hierarchical approaches towards navigation have been predominant in early off-road nav-

igation frameworks and continue to be heavily utilized in current systems [9, 22–24]. In

these frameworks, the navigation task is primarily divided into two layers: a high-level path

planning layer and a low-level controls layer, each handling the problem at distinct levels

of abstractness. At the high level, the focus is on coarse, strategic planning. This involves

making non-myopic decisions to identify safe routes through the environment that avoid po-

tential hazards. On the other hand, the low level focuses on responding in real-time to any

environmental disturbances to ensure that the vehicle adheres to the route chosen by the

high level path planner. This includes adjusting to terrain irregularities, unexpected slip, or

any other factors that cause discrepancies between the robot’s true and planned trajectory.

During high-level path planning, the complexity of off-road navigation is simplified by

abstracting away finer details. The robot’s movements are commonly approximated using

basic kinematic models such as the unicycle [25] or kinematic bicycle model [26]. These

kinematic models ignore the complex effects of vehicle dynamics and robot-terrain interac-

tions to provide a coarse understanding of what paths are feasible assuming minimal slip

and relatively flat terrain.

In many cases, modeling errors arising from these simplifying assumptions at the high

level are non-problematic as the low-level controller can compensate for such inaccuracies.

However, in more challenging environments, such assumptions may pose significant diffi-
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culties to the low-level controller. For example, paths through deep mud or steep slippery

slopes might be deemed feasible by the high-level planner’s simplified models, but in reality

are beyond the physical limits of the robot.

Traversability mapping approaches aim to bridge the gap between high-level route selec-

tion and low-level control capabilities [13]. These approaches identify potentially problematic

regions within the environment and generate traversability cost maps to bias high level plan-

ning towards less problematic regions. Various methods exist to generate these maps. One

common approach is to generate these maps using geometric features of the terrain such as

slope or roughness [27, 28]. Another popular technique includes leveraging visual sensors to

categorize terrain types and assess their traversability [12, 29,30].

However, a notable shortcoming of many of these approaches is the lack of consideration

for vehicle dynamics in the traversability assessment. For rough terrain navigation, factors

such as the vehicle’s momentum, center of mass, traction, and other dynamic effects are

important to consider. The planner’s choice of speed and angle of approach can significantly

alter these dynamic factors, thereby changing the traversability of certain obstacles. By

excluding vehicle dynamics from the traversability assessment, these methods may have

to adopt an overly conservative stance, evaluating terrain navigability based on worst-case

driving scenarios. This conservative assessment could lead to underutilization of the vehicle’s

true capabilities, thereby limiting the efficiency and effectiveness of the navigation strategy,

and in extreme cases prevent the robot from reaching its destination.

Model Predictive Controls

Another approach to off-road navigation is Model Predictive Control (MPC), where the

robot continuously optimizes its trajectory in real-time using a predictive model [31–33].

This approach has two notable benefits over hierarchical planning and controls that are

particularly advantageous for off-road navigation. First, by leveraging a more sophisticated

predictive model that captures effects of momentum, traction and other dynamic effects,
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trajectory optimization can generate dynamically feasible trajectories that utilize the full

capabilities of the robot.

Second, the iterative nature of the trajectory optimization process in MPC makes it in-

herently robust against inaccuracies in the predictive model. Given the complexity of both

the robot and the rough terrain environments, discrepancies between the robot’s actual and

predicted trajectory are inevitable. MPC addresses this issue by continuously reoptimizing

the robot’s trajectory based on real-time sensor feedback, allowing MPC to quickly accom-

modate for any variances between predicted and actual outcomes.

While this iterative optimization process increases robustness towards modeling errors,

it also leads to one notable disadvantage: heavier computational demands. Due to compu-

tational constraints, optimization horizons for MPC are often quite short leading to more

myopic strategies. Previously, numerous methods have been used to solve the nonlinear op-

timization problem within an MPC framework including nonlinear programming [34], differ-

ential dynamic programming [35], interior point optimization [36], and sequential quadratic

programming [37]. More recently, Model Predictive Path Integral (MPPI) [14] has gained

prominence due to its parallelizable sampling-based methodology, which is particularly well-

suited for Graphic Processing Units (GPUs). MPPI’s compatibility with GPUs allows for

more efficient computation and makes it a promising solution for both extending the opti-

mization horizon and control rate of MPC. In [15], this more computationally efficient MPC

approach is used to control a robot at 60 Hz optimizing over a 2.5 second horizon using a

fairly simple neural network dynamics model with 2 hidden layers of 32 neurons each.

While this horizon is still quite short, dynamics model are often quite inaccurate towards

the end of the prediction horizon anyways due to the compounding nature of prediction

error along trajectories. Thus MPC implementations often opt to for a shorter optimization

horizon to allow for quick reoptimization and real-time correction for modeling errors.
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Reinforcement Learning

Reinforcement learning (RL) has recently gained popularity as a data-driven approach to

controlling highly complex robotic systems. Within the large body of work in RL, there are

predominantly two categories of approaches: model-based and model-free method, each with

their own merits.

In the model-based reinforcement learning paradigm, training data collected on the real-

world system is used to train a model to approximate the system’s dynamics [38, 39]. This

dynamics model is then used for decision making using a variety of approaches, including

the hierarchical planning and controls framework and model predictive control framework

described earlier. In contrast, model-free reinforcement learning aims to directly optimize a

policy that maps robot states or observations to actions by observing results of policy trials

on the system [40, 41]. Both model-based and model-free approaches have their advantages

and disadvantages.

The model-based reinforcement learning approach is often more practical for real-world

systems where safety is a critical concern. Firstly, model-based approaches are known for

their higher sample efficiency, which is especially invaluable for real-world systems operating

in unstructured environments. Collecting training data through potentially risky trials can

be time consuming and dangerous to hardware and bystanders. Secondly, model-based

frameworks tend to be more interpretable and predictable compared to their model-free

counterparts. The use of an explicit model of the system’s dynamics allows for a better

understanding of how and why certain decisions are made. This transparency is crucial in

safety-critical applications, as it facilitates easier validation and verification of the system’s

behavior, ensuring that it adheres to safety constraints. Lastly, model-based methods are

generally more adaptable to new tasks and environments. Since the learned model aims

to represent the underlying system dynamics, it can more easily be applied to different

scenarios.

In contrast, model-free methods offer significant advantages in scenarios where creating
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an accurate model of the environment is exceptionally difficult or infeasible. For example,

when dealing with high-dimensional sensory inputs such as RGB images or LiDAR point

clouds [42, 43]. Furthermore, their approach of directly mapping observations to actions

allow for rapid, reflex like responses, as opposed to model-based methods that require an

additional decision-making layer that leverages the model.

In this dissertation, we mainly follow the model-based reinforcement learning paradigm,

although we discuss in Chapter 6 how a model-free policy could be used in conjunction with

our navigation framework.

1.2 Standing Challenges

While there have been significant advancements in the field of autonomous off-road navi-

gation, current autonomous control systems still struggle at long-horizon dynamics-aware

decision making in unstructured rough terrain environments. A large component of this

standing challenge stems from the inability to perfectly model the system’s dynamics.

Modeling the dynamics of off-road vehicles is particularly challenging due to the unpre-

dictable nature of such environments coupled with complexity of robotic hardware. Tradi-

tional analytical methods for vehicle dynamics modeling are often labor-intensive, require

extensive domain expertise, and are prone to errors. Accurate modeling of complex in-

teractions between robots and terrain, such as soil flow or sinkage, necessitates the use of

sophisticated terramechanics models [44–46]. Simplifications are often made to make dynam-

ics modeling more tractable [47], with one extreme but common simplified model being the

kinematic bicycle model [26]. These simplified models, while easier to create and compute,

fail to capture the full intricacies of off-road vehicle dynamics. Regardless of the approach,

these analytical models require careful calibration of model parameters to align model pre-

dictions to the actual behavior of the system.

In contrast to analytical modeling approaches, data-driven approaches have also been

8



explored for learning vehicle dynamics [15, 48, 49]. These methods involve collecting data

from the real-world system to train highly parameterized models, such as neural networks.

Compared to analytical modeling approaches, data-driven methods offer a more automated

approach to modeling system dynamics that are less reliant on domain expertise.

However, the efficacy of data-driven modeling approaches is closely tied to the volume

and quality of training data available. Models trained on limited or non-diverse datasets

may encounter difficulties with out-of-distribution predictions, leading to reduced accuracy

in scenarios not adequately represented in the training data. Collecting the comprehensive

dataset necessary to train accurate dynamics models is often impractical, especially for real-

world systems operating in unstructured environments. This data collection process is not

only time consuming, but also poses safety risks, as implementing untested policies during

data collection can lead to the robot becoming stuck or damaged. This necessitates constant

supervision, with a readiness to intervene, reset, or repair the robot in case of failures. While

risk mitigation and automation of the training are feasible in controlled environments, such

as indoor environments or simulations [50], doing so in unstructured environments, such as

rough terrain environments, is difficult.

This dissertation aims to improve long-horizon decision making for rough terrain navi-

gation by answering two key questions:

Can leveraging low quality simulation data provide insights into real-world ve-

hicle dynamics and reduce the amount of real-world data needed?

Given the practical constraints of collecting training data on real-world systems, simulation

often emerges as appealing alternative. However, substituting real-world data with simu-

lation data comes with inherent limitation. Simulated system dynamics inevitably differ

from real-world dynamics, a problem known as the “reality gap” [51]. Consequently a model

trained on simulation data may accurately approximate the simulated system, but fail to

accurately model real-world dynamics.
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Despite this inevitable reality gap, simulation data can still provides valuable insights

into the general behavior of the real world system. Could the coarse insights drawn from

simulation lead to sufficient, albiet possibly suboptimal, control of the robot? Furthermore,

could insights drawn from simulation be refined online using real-world data to increase

performance?

Besides leveraging simulation, another promising approach towards better rough terrain

navigation is to make decision making robust towards modeling inaccuracies, leading to our

second key question:

Can quantifying uncertainty in an imperfect dynamics model improve long-

horizon decision making?

Dynamics models are inevitably imperfect. Besides the previously mentioned challenges of

analytical and data-driven modeling approaches, robot dynamics may be inherently stochas-

tic due to partial observability and unpredictable environmental factors. Furthermore, their

dynamics may change stemming from variations in terrain types encountered or changes to

the robot’s hardware. Consequently, unless dynamics models are frequently recalibrated or

retrained, they may become inaccurate over time. This inherent imperfection in dynamic

models results in predictions that inevitably contain some degree of error.

Over confidence in incorrect model predictions can result in driving strategies that, de-

spite having high predicted performance, fail in the real world. Ideally, decision making

should recognize potential modeling inaccuracies and choose driving strategies that are ro-

bust towards potential prediction uncertainty. However, can uncertainty in model predictions

be quantified?

Furthermore, handling prediction uncertainty can be particularly challenging when deal-

ing with long-horizon decision making. This is especially true under divergent dynamics, as

is common for rough terrain traversal, as small amounts of uncertainty can amplify quickly

over longer horizons. For example, a small deviation in the robot’s state when navigat-
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ing a steep edge can result in drastically different outcomes. Can decision making choose

non-myopic driving strategies that are robust towards uncertainty despite their divergent

nature?

1.3 Dissertation Outline

The methodology throughout this dissertation centers on a data-driven approach to model-

ing, planning, and control. Specifically, we focus on the model-based reinforcement learning

(MBRL) paradigm [38], where a predictive dynamics model is trained using real-world data,

then used for decision making.

In Chapter 2, we focus on long-horizon decision making under uncertain learned dynam-

ics, addressing the second question posed above: can long-horizon decision making leverage

imprecise dynamics models? We provide an in-depth discussion of our MBRL framework

for non-myopic rough terrain navigation, first presented in [52]. In this framework, we train

a terrain-aware dynamics model to capture the vehicle’s dynamics as it drives over uneven

terrain. This model is trained to capture both aleatoric uncertainty, which refers to the

inherent stochasticity in the system, and epistemic uncertainty, which stems from having in-

sufficient training data. Capturing epistemic uncertainty can be especially useful in situations

where training data is limited or poorly distributed, as in our experiments where training

data was collected offline through short manual teleoperation trials. We also introduce the

closed-loop divergence constraint that facilitates long horizon trajectory predictions while

providing insight into when modelling errors are potentially problematic for the low-level

trajectory tracker, i.e. predictions are not trustworthy. We show that constraining opti-

mization solutions to have low closed-loop divergence prevents the optimizer from exploiting

modeling errors and results in solution trajectories that the robot can track effectively. We

demonstrate this framework’s non-myopic and robust rough terrain navigation capabilities

in simulation and the real world.
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Chapter 3 serves as our initial exploratory work addressing the first question: can sim-

ulation data reduce the need for real-world data? In this chapter, we delve into a framework

for accelerating dynamics model training for a target system by leveraging large amounts of

training data collected on a proxy system with similar, but different, dynamics. This frame-

work was first presented in [53]. In our experiments, we show that this approach results

in more accurate target system dynamics models in low-data regimes when compared to

dynamics models trained using solely data from the target system, but not from the proxy

system. This result suggests that data collected in simulation may help reduce the require-

ment for real-world training data even though simulated dynamics may not perfectly mirror

real-world dynamics.

In Chapter 4, we explore another approach to leveraging cheap simulation data which

we believe to be superior and recommend as the focal point for readers. This approach builds

upon the idea of leveraging simulation and also the idea of capturing modeling uncertainty.

This approach, first presented in [54], leverages simulation data collected on a large set

of simulated systems, each with the same morphology but different dynamics, to train a

dynamics model. This dynamics model can quickly adapt to any new target system of the

given morphology by extracting information from any observations available from the target

system. This model also captures prediction uncertainty stemming from inherent system

stochasticity as well as from insufficient target system observations. By assuming knowledge

of the target system’s morphology, this framework transforms epistemic uncertainty from

uncertainty in neural network parameters to uncertainty about the target system’s specifics

within the given morphology. Using this model within an uncertainty-aware decision making

process allows the driving policy to align with its current understanding of the vehicle’s

dynamics and capabilities. In situations where real-world data is extremely limited, the

robot can still be safely controlled, albeit at a sacrifice of performance. As more real-world

data becomes available, the dynamics model and resulting policy becomes more tailored

towards the target system, resulting in higher performance. We demonstrate this approach
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on different real-world systems for the simpler task of driving along a flat off-road track.

In Chapter 5, we discuss a robust and adaptive rough terrain navigation framework

that serves as the culmination of this dissertation and builds on previously discussed con-

cepts. This framework leverages a large range of simulated systems to train a terrain-aware

dynamics model that can quickly adapt to any new system while capturing uncertainty in

predictions. We adapt the previously discussed closed-loop divergence constraint to be used

within an RRT planning framework [55]. We show in a couple of toy simulated scenarios the

capabilities of this framework. Most notably, the navigation framework results in safer and

more conservative strategies when no data is available from the target system, but quickly

adapts the driving strategy to the particular system’s capabilities after giving the model

adaptation data from just one demonstration.

Finally, in Chapter 6, we summarize the key findings from this dissertation that an-

swer the two key questions posed above. Furthermore, we discuss how concepts from this

dissertation are applicable to other planning and controls frameworks, and discuss potential

future extensions.

Beyond this dissertation on rough terrain navigation, I have also pursued other projects

during my doctorate, such as developing a method for localizing unexpected contact for

compliant robots (demonstrated on a legged robot and a manipulation system) [56], and

designing an environmental sampling robot for surveying large contaminated areas [57].
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Chapter 2

Robust Non-Myopic Decision Making

with Learned Dynamics

2.1 Introduction

Autonomous navigation in rough terrain still presents a significant challenge to wheeled

robots as it requires non-myopic decision making under complex, difficult-to-model dynam-

ics, stemming from unpredictable robot-terrain interactions [58]. Furthermore, the discrete

nature of contact between the robot and obstacles in the terrain results in highly diver-

gent dynamics that causes any modeling errors to compound and propagate poorly along

trajectories.

Methods that rely on accurate handcrafted dynamics models for decision making, e.g. [59–

61], often perform poorly when predictions contradict reality. Some methods aim to combat

this issue by formulating control policies that are robust against model uncertainty [62–65].

Others abstract the robot’s dynamics by using traversability maps to provide heuristics for

how difficult different regions are to traverse [13, 66–70]. However, these approaches are

limited to coarse approximations of traversability and don’t consider dynamic interactions.

Alternatively, reinforcement learning can be used for rough terrain traversal. Some meth-
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ods use model-free reinforcement learning (MFRL) [71–73], where control policies are directly

optimized. Others use model-based reinforcement learning (MBRL) [74], where predictive

dynamics models are learned and then used for decision making. Due to their higher sample

efficiency, MBRL methods are generally more practical for real world systems where training

data is limited and expensive to collect. However, MBRL methods often have poorer perfor-

mance as their decision making processes may exploit model inaccuracies. Previous MBRL

algorithms have addressed this issue by considering prediction uncertainty during decision

making [75,76], though characterizing prediction uncertainty for rough terrain navigation is

challenging since the divergent dynamics cause model uncertainty to propagate poorly over

long prediction horizons.

In this chapter, we delve into our Model-Based Reinforcement Learning (MBRL) frame-

work, first presented in [52]. This framework, summarized in Section 2.3 and Figure 2.1,

aims to address the second question posed in Chapter 1, “Can quantifying uncertainty in an

imperfect dynamics model improve long-horizon decision making?”

Our algorithm’s unique method of handling uncertainty allows the robot to more accu-

rately optimize longer trajectories. Like previous methods [75, 76], our method performs

trajectory optimization using learned probabilistic dynamics models to predict trajecto-

ries and characterize prediction uncertainty. However, we train the probabilistic dynamics

model using a multistep loss that considers how model uncertainty propagates along tra-

jectories (Section 2.4). We perform closed-loop trajectory prediction, where the capability

of the robot’s trajectory tracking controller is considered during trajectory prediction (Sec-

tion 2.5). The use of a multi-step loss and closed-loop trajectory prediction decreases long

horizon trajectory prediction uncertainty and allows the robot to be more selective during

optimization. Our algorithm uses constrained optimization to avoid trajectories that result

in high divergence (Section 2.6), similar to Convergent Planning [65]. Through simulation

and hardware experiments, we show that these improvements allow the robot to find non-

myopic trajectories with high prediction accuracy and precision, increasing the likelihood of
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successful navigation (Section 2.7).

Figure 2.1: Left: An overview of the method. The probabilistic dynamics model is trained
using a multistep loss that considers how uncertainty propagates. The trajectory track-
ing controller is used to predict a distribution of closed-loop trajectories. The divergence
constrained optimizer is used to find a closed-loop trajectory with low divergence. Center:
Example trajectory distribution found using our method (green) and a trajectory distribu-
tion found without using closed-loop predictions or constrained optimization (red). Right:
The actual results of running the two optimized trajectories.

2.2 Related Works

Probabilistic Ensembles with Trajectory Sampling (PETS) [75] aims to make MBRL more

robust to modeling errors by characterizing uncertainty with probabilistic ensemble models

and propogating uncertainty with trajectory sampling. PETS optimizes trajectories based

on expected rewards and performs well on benchmark tasks [77]. However, using PETS on

rough terrain is challenging due to the high variance in predictions, which makes it difficult

to estimate expected reward. Furthermore, high reward expectation with high variance does

not mean the robot will actually perform well.

Kahn et al. [76] use uncertainty in a model-based fashion for collision avoidance in nav-

igation. They train an ensemble of models (via variational dropout [78]) to predict the

probability of a collision. They then use this uncertainty to augment their task-specific cost

function via a risk-averse prediction of the collision probability, which factors in the uncer-
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tainty of the collision predictor ensemble. This collision probability is used in their reward

function, which is solved using MPC. This approach is shown to be effective with real-world

experiments.

Recent work by Yu et al. [79] takes a more general approach to uncertainty-aware MBRL

by learning an ensemble of dynamics models and augmenting arbitrary cost functions with

a scaled penalty based on the uncertainty of the ensemble. The authors show that such an

approach allows them to perform offline reinforcement learning, or reinforcement learning

without access to the environment.

2.3 Method Overview

We formulate the rough terrain navigation problem as a Markov decision process (MDP).

Our problem is defined as (S,A,P , C, γ), where S is the state space, A is the action space,

P(s′|s, a) is the true, but unknown, non-deterministic discrete time transition dynamics,

C(s, a) is the cost function, and γ is the discount factor. We assume that the state includes

terrain features (e.g. terrain height map).

Our approach falls under the MBRL paradigm. We train a probabilistic neural network

to model the unknown transition dynamics P using training data collected offline. We denote

the training dataset as D = {d0, ..., dM}, where di = (s0, .., sT , a0, ..., aT−1) is a state-action

trajectory. This neural network model is terrain-aware, as it’s predictions are conditioned

on a robot-centric terrain height map and captures the effects that uneven terrain has on

the robot. We train the model to capture both aleatoric and epistemic uncertainty using a

multistep training loss that considers how model uncertainty propagates along trajectories

(Section. 2.4). The trained probabilistic model is used to predict a distribution of the robot’s

trajectory under the influence of a tracking controller (Section 2.5). This allows for reduction

in prediction variance when predicting long horizon trajectories. Finally, a low cost trajectory

to the goal is generated using constrained optimization. The solution is constrained based
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on the probabilistic model to avoid steps where the vehicle’s dynamics under the trajectory

tracking controller diverges significantly (Section 2.6). This closed-loop divergence constraint

ensures that potential prediction inaccuracies of the solution trajectory are non-problematic

for the low level tracker, thus preventing the optimizer from exploiting modeling errors. A

visual summary of our approach is shown in Figure 2.1.

2.4 Probabilistic Terrain-Aware Dynamics Models

We propose a method for training a probabilistic terrain-aware dynamics model to predict

long-horizon robot trajectories when driving over uneven terrain. Similar to [75], we train

the model to capture both epistemic and aleatoric uncertainty, however here we propose a

multistep loss that considers how prediction uncertainty propagates along a trajectory.

2.4.1 Aleatoric Uncertainty

In the learned model, we aim to capture aleatoric uncertainty by modeling the true transition

dynamics P with a probabilistic neural network [80] parameterized by θ. Given a state st

and action at at time t, the model predicts a probability distribution of possible next states.

For our implementation, the network predicts the mean and log-variance of an uncorrelated

gaussian distribution. The estimated likelihood of a next state st+1 conditioned on st and at

is denoted as pθ(st+1|st, at). The training method in [75] uses a single step likelihood loss.

However, this loss fails to consider how prediction uncertainty propagates when multiple

single step predictions are chained for trajectory prediction. Furthermore, [81, 82] describe

how states generated from earlier predictions may fall out of the distribution of training

data, leading to poor predictions for later steps in a trajectory. We adapt [81, 82] to non-

deterministic environments by proposing a probabilistic multistep loss that considers the

propagation of model uncertainty instead of model error.

The multistep loss we use aims to minimize the negative log likelihood of states con-
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ditioned on all prior actions and the starting state of the trajectory, i.e. Lms(st, A, θ) :=

− log pθ(st|A), where A = {s0, a0, ..., at−1}. The likelihood of states s1, ..., st conditioned on

A can be found as follows:

pθ(s1|A) = pθ(s1|s0, a0)

pθ(s2|A) = Eŝ1∼pθ(s1|A)

[
pθ(s2|ŝ1, a0)

]
...

pθ(st|A) = Eŝt−1∼pθ(st−1|A)

[
pθ(st|ŝt−1, at−1)

]
(2.1)

Calculating Lms exactly is intractable due to the expectations required. Instead we define

upper bounds that can be used during training instead, denoted as LN
ms where N ∈ N,

LN
ms(st, A, θ) := − log

1

N

N∑
i=1

pθ(st|ŝit−1, at−1) (2.2)

where ŝij is sampled recursively from pθ(sj|ŝij−1, aj−1) for j < t. As N approaches infinity,

LN
ms approaches the true multistep loss, Lms. Furthermore, due to Jensen’s inequality:

E
[
L1

ms(st, A, θ)
]
≥ E

[
L2

ms(st, A, θ)
]
≥ ... ≥ Lms(st, A, θ) (2.3)

As such, minimizing LN
ms using any stochastic optimization methods such as Stochastic

Gradient Descent (SGD) [83] will effectively also minimize the true loss. Any value could be

used for N , however larger values give more realistic estimates at the expense of increased

computation.

2.4.2 Epistemic Uncertainty

Epistemic uncertainty is defined as model uncertainty due to a poorly distributed or lack of

training data. In the context of deep learning, it is typically quantified using a prediction

disagreement metric via an ensemble of neural network models. Some popular methods use
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explicit ensembles of models [75], while other methods such as Bayesian neural networks [84]

or hypernetworks [85, 86] parameterize models via uncertainty in the weights of the neural

network.

In our work, we use variational dropout to characterize epistemic uncertainty [78, 87].

With this approach, inputs to the neural network’s fully connected layers are randomly

dropped (set to zero) with some probability. We define Θ as the parameters of the neural

network dynamics model with no dropout applied. Using dropout on this model will effec-

tively result in a distribution of models. We denote the probability of sampling a model,

parameterized by θ, as qΘ(θ).

During training, we randomly sample parameters θ from qΘ(θ) and calculate the multistep

training loss described in Section 2.4.1. We then update Θ to minimize training loss. The

complete model training procedure is summarized in Algorithm 1.

2.4.3 Terrain-Aware Neural Network Architecture

When navigating over uneven terrain, the shape of the terrain can have a drastic impact

on the robot’s state-transitions. For example, a robot attempting to drive forward over an

elevated step may not make forward progress. In contrast, a robot can easily drive forward

to descend steps. We inform neural network state-transition predictions of the terrain by

assuming that the robot’s state st includes a 2.5D heightmap of the terrain generated using

existing terrain mapping techniques such as [88].

In our implementation, the neural network dynamics model (pθ), consisted of a Convo-

lutional Neural Network (CNN) [89] and a Long-Short Term Memory (LSTM) [90] network.

The CNN was chosen due to the image-like form factor of the terrain height maps, and the

LSTM was chosen for the time sequential nature of state-transition predictions along tra-

jectories. For sample efficiency, we used a robot-centric form for all neural network inputs

and outputs, i.e. a form that is independent of the robot’s x− y position and heading angle.

This choice was motivated by the fact that the robot’s dynamics should not depend on these
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variables. Eliminating these variables from the inputs and outputs eliminates the need to

collect training data from different positions and orientations in the world.

The robot-centric heightmap input, denoted as ml
t, was cropped from the world terrain

heightmap such that the cropping was centered around the robot’s x−y position and aligned

with the robot’s heading. This robot-centric heightmap was processed using the CNN.

The output of the CNN was concatenated with a robot-centric form of the robot’s state,

denoted as slt and fed into the LSTM. The output of the LSTM was a multivariate Gaussian

distribution of the robot’s state-transition. Note that both ml
t and slt can be generated

directly from st. During prediction, the robot’s state st is used to generate the robot-centric

neural network inputs ml
t and slt. Given ml

t, s
l
t, and at, the neural network predicts the robot’s

state-transition distribution. A state-transition can be sampled from this distribution to

transition the robot’s state st to st+1. This prediction process can be chained for trajectory

prediction.

For our simulation experiments, robot state st consisted of a SE(3) pose and R6 twist

velocity vector. The robot-centric state slt consisted of R3 tilt vector denoting the direction

of gravity relative and the twist velocity vector, both relative to the robot’s body frame.

State-transition predictions s′t included the SE(3) pose of the robot at time t + 1 relative

to the robot’s body frame at time t. It also included the robot’s new twist velocity vector.

Since the SE(3) pose included the height of the robot, we adjusted the height values of the

robot-centric heightmap ml
t to be relative to the height of the robot’s body frame.

For our real-world experiments, we chose to represent the robot’s state as a SE(2) pose

and prior state-transition vector, which was the robot’s new SE(2) pose relative to the

prior. As such, the robot-centric state slt only consisted of the prior state-transition vector.

This choice was motivated by two factors. First, the odometry method used resulted in

accurate positional estimates, but noisy velocity estimates. Transitioning from a velocity

vector to a prior state-transition vector input eliminated the reliance on the noisy velocity

measurement signals, while still providing context about the robot’s velocity. Second, moving
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from SE(3) to SE(2) reduced the amount of training data needed due to the lower capacity

state description.

In theory, this lower capacity state description reduces the model’s ability to precisely

capture the robot’s dynamics. In practice however, the effects of moving from a SE(3)

to SE(2) prediction framework was negligible. Furthermore, this simplified representation

can be viewed as a partially observable representation which results in probabilistic system

dynamics with higher aleatoric uncertainty. This is non-problematic for the uncertainty

aware decision framework in this chapter as it is meant to handle aleatoric uncertainty.

Table 2.2 shows the neural network sizes used for simulation experiments and Table 2.1

shows the neural network sizes for the real-world experiments.

Table 2.1: The network architecture for real world

Layer Input Input Dim Activation Output Output Dim
CNN1,8 Heightmap 1× 16× 16 ReLU Hmap feat1 8× 8× 8
Reshape Hmap feat1 8× 8× 8 None Hmap feat2 512
FC517,2048 Hmap feat2 + 517 ReLU feat1 2048

Rob-Cen State +
Action

LSTM2048,256 feat1 2048 feat2 256
FC256,256 feat2 256 ReLU feat3 256
FC256,6 feat3 256 None pred. µ, log-σ 6

Table 2.2: The network architecture for simulation

Layer Input Input Dim Activation Output Output Dim
CNN1,8 Heightmap 1× 64× 64 ReLU Hmap feat1 8× 32× 32
CNN8,4 Hmap feat1 8× 32× 32 ReLU Hmap feat2 4× 16× 16
Reshape Hmap feat2 4× 16× 16 None Hmap feat3 1024
FC1035,2048 Hmap feat3 + 1035 ReLU feat1 2048

Rob-Cen State +
Action

LSTM2048,256 feat1 2048 feat2 256
FC256,256 feat2 256 ReLU feat3 256
FC256,13 feat3 256 None pred. µ, log-σ 13
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2.5 Closed-Loop Trajectory Prediction

Imprecise trajectory predictions are problematic for two reasons. First, predicted trajectory

distributions with high variance provides little insight into the robot’s true outcome. Second,

the standard error of Monte Carlo predictions scales linearly with prediction variance and

inversely with the square root of number of samples. This means that using Trajectory

Sampling [75] may require an intractable number of samples when prediction variance is

high. We observe that it is common to use a low-level trajectory tracking controllers to

correct for deviations of the true trajectory from the desired (predicted) trajectory. Our

method aims to predict robot trajectories under the influence of a low-level trajectory tracker

controllers. Doing so allows prediction of less divergent robot trajectory distributions and

better captures the capabilities of the closed-loop robot control system.

We assume that the controllers take the form:

at = āt + ftrack(s0, ..., st, d̄), (2.4)

where s0, ..., st are the robot’s actual states, and d̄ = (s̄0, ..., s̄T , ā0, ..., āT−1) is a reference

trajectory containing reference states and feed forward actions. at is the combination of the

planned, feed-forward action āt and the corrective action applied to the robot to track the

reference trajectory.

Our method first predicts a nominal reference trajectory given a starting state and feed

forward actions,

s̄t+1 = E
[
st+1 ∼ pΘ(st+1|s̄t, āt)

]
. (2.5)

Our model outputs the predicted distribution’s mean which is the expected value above.

A distribution of closed-loop trajectories is then predicted by propagating a set of particles

forward in time using the probabilistic dynamics model from Section 2.4. At each time step,

corrective actions for each particle is calculated using ftrack based on the predicted nominal

reference trajectory and the feed forward actions. We denote the predicted closed-loop

23



trajectory distribution as D̂ = {d̂0, ..., d̂I}, where d̂i = (ŝi0, ..., ŝ
i
T , â

i
0, ..., â

i
T−1) is a particle’s

state-action trajectory. The procedure for predicting closed-loop trajectories is summarized

in Algorithm 2.

Algorithm 1: Probabilistic Model Training

for number of epochs do
L ← 0
for training batch size(b) do

θ ∼ pΘ(θ)
sample A = {s0, a0, ..., aT−1}
ŝ10, ...ŝ

N
0 ← s0

for t ∈ [1, T ] do
for i ∈ [1, N ] do

ŝit ∼ pθ(st|ŝit−1, at−1)

p← 1
N

∑N
i=1 pθ(s

i
t|ŝit−1, at−1)

L ← L− 1
T

log p

Θ← update using gradient ∇Θ
L
b

Algorithm 2: Closed-Loop Prediction

Input : Starting State s0,
Feed-Forward Actions ā0, ..., āT−1

// Predict Nominal Trajectory

s̄0 ← s0
for t ∈ [1, T ] do

s̄t ← E[st ∼ pΘ(st|s̄t−1, āt−1)]

// Closed-Loop Prediction

for i ∈ [1, I] do
θi ∼ pΘ(θ)
ŝi0, â

i
0 ← s0, ā0

for t ∈ [1, T ] do
ŝit ∼ pθi(st|ŝit−1, â

i
t−1)]

âit ← āt + ftrack(ŝi0, ..., ŝ
i
t, d̄)
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2.6 Divergence Constrained Optimization

In MBRL, low cost trajectories are found via trajectory optimization through the learned

model. However, naively minimizing cost allows the optimizer to exploit modeling errors,

resulting in a trajectory with low predicted cost, but high cost under the true dynamics.

Previous work [79] prevented the optimizer from exploiting modeling errors by penalizing

trajectories with high prediction uncertainty. This approach may be problematic as the

penalty opposes the cost objective. For example, if a robot remains stationary, its trajectory

has low prediction uncertainty, but high task cost.

Instead of penalizing uncertainty, our method uses constrained optimization to find low

cost trajectories with divergence bounded by some U , as trajectory trackers are usually

effective as long as the true trajectory does not diverge too much from the reference. Values

for U are dependant on the trajectory tracker used. In our experiments, we selected U based

on the tracker’s observed capabilities.

Given a nominal trajectory d̄ and predicted closed-loop trajectory distribution D̂, we

define divergence as follows:

u(d̄, D̂) = max
t

1

I

I∑
i=1

∥ŝit − s̄t∥22. (2.6)

The constrained optimization problem we aim to solve is defined as follows:

min
ā0,...,āT−1

C(d̄) s.t. u(d̄, D̂) < U (2.7)

We use an Augmented Lagrangian optimizer to solve (2.7), as shown in Algorithm 3. During

optimization, the estimated divergence is thresholded, max[u − U, 0], scaled by a penalty

factor λ, and added to the nominal trajectory cost. λ starts small, but is progressively

increased. While we chose to use an Augmented Lagrangian optimizer here, this choice

of optimizer is arbitrary and any constrained optimization framework could be used. In
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Chapter 5, we even reuse the divergence constraint within a Rapidly-exploring Random

Trees (RRT) [55] planning framework.

Algorithm 3: Divergence Constrained Optimization

Input: Starting State s0
ā0, ..., āT−1 ← random initialization
for number of Augmented Lagrangian iterations do

for number of gradient descent iterations do

d̄, D̂ ← predict nominal and closed-loop trajectories using Algorithm 2
u← maxt

∑
i∥ŝit − s̄t∥22

L ← c(d̄) + λmax(u− U, 0)
a0, ..., aT−1 ← update using gradient ∇a0,...,aT−1

L
Increase λ

The divergence metric defined in (2.6) serves as an indication of when potential modeling

errors may be problematic for the low level trajectory tracker. While we chose a metric

based on mean squared error between the predicted trajectory distribution and the nominal

trajectory, this choice is non-unique. Other distance measures between the predicted and

nominal trajectories could also serve the same purpose. One possible choice is the dynamic

time warping metric [91], which deforms time between sequences to handle temporal shifts.

However, one important advantage of using mean squared error (MSE) over dynamic time

warping (DTW) that should be taken into consideration is that MSE inherently increases as

the variance in the predictions increases. This characteristic of MSE makes it particularly

useful for indicating when trajectory predictions become unreliable. In some situations, using

DTW to compare particle trajectory predictions against the nominal trajectory may result

in low distance measure although the predicted distribution has high variance and should

not be trusted. An example of such a situation can be seen in Figure 2.6a. In this example,

the robot is attempting to drive over a nontraversable obstacle. The nominal prediction and

a few of the particles predictions incorrectly predict that the robot can easily drive over the

obstacle. Other particles in the distribution predict that the robot initially gets stuck on

the obstacle but then eventually makes it over the obstacle after some time. While the high

variance in the predicted distribution results in high divergence, the DTW metric remains
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low.

2.7 Experiments

We compare our navigation method against others in simulation 1 and in the real world.

We used PyBullet [92] for our simulation environment and a MuSHR robot [93] for our real

world experiment.

2.7.1 Model Training and Prediction

For both the simulation and real world system, we trained a probabilistic terrain-aware

dynamics model using training data collected offline, using either random actions or manual

controls. We trained using our proposed multistep loss, L128
ms , with Algorithm 1 using 5 step

prediction horizons.

For the simulation experiments, training data was collected by randomly driving the robot

using Ornstein–Uhlenbeck noise in random environments. The terrain in each environment

was randomly generated, and had both discrete block-like features and continuously varying

noise features. For the block-like features, we first segmented the environments into cell

regions using Voronoi diagrams with random sites. The height of each cell was randomized

using Perlin noise, where the cell height corresponded to the Perlin noise height at the

site point. We applied Gaussian blur to smooth the edges of each cell. Finally, we added

continuous variations to the terrain using Perlin Noise. A few examples of the randomly

generated environments can be seen in Figure 2.4. We used ground truth pose, velocity, and

terrain height map measurements for both model training and online decision making.

For the real world experiments, training data was collected using human selected actions

with added Gaussian noise in one environment. The training environment consisted of the

same obstacles as the test environment, shown in Figure 2.1, but with different arrangements.

1Simulation code can be found at https://github.com/robomechanics/dco rough terrain nav.
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As this work is not focused on state estimation or terrain mapping, we chose to use ground

truth vehicle odometry and world terrain height maps, measured using a motion capture

system, for both training and online decision making. For terrain mapping, we measured

the locations of and shape of all obstacles using the motion capture system, and manually

recreated a height map of the environment.

Trajectory Tracker

In our implementation, we chose a simple Proportional-Derivative (PD) controller as the

trajectory tracker for the Ackermann steered robot. This choice was mainly motivated

by the simplistic form of ftrack(s0, ..., st, d̄) takes that makes for easier computation during

optimization. In Chapter 5, we describe a modification to the closed-loop prediction frame-

work that allows for more sophisticated trajectory tracking policies, such as linear-quadratic

regulator (LQR) controller or even model-free reinforcement learning trajectory tracking

policies [94–96].

Given the desired state trajectory and feed forward actions d̄ = (s̄0, ..., s̄T , ā0, ..., āT−1),

the feed back actions executed by the PD trajectory tracking controller takes the form:

at = āt + ftrack(s0, ..., st, d̄) (2.8)

ftrack(s0, ..., st, d̄) = Kpet + Kd(et − et−1), (2.9)

where Kp and Kd are gain terms, and et ∈ R2 is the error vector. The error vector et is

defined as the x − y position of the desired state s̄t relative to the actual state st of the

vehicle. An illustration of this vector is shown in Figure 2.2.

At each time step, the PD tracker calculates a corrective feedback action to minimize the

error between the true robot state st and the desired state s̄t. For our systems, an action

a = [1, 0]T drives the robot forward in the +x direction, and an action of a = [0, 1]T will

steer the robot to turn counterclockwise in the +θz direction. An approximate action of
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a = [1, 1]T is illustrated in Figure 2.2.

Figure 2.2: Definition of PD tracker’s error vector. The actual state st is shown in red. The
reference state s̄t is shown in green. The error vector is shown in black and defined relative
to frame st.

Trajectory Prediction Accuracy

In simulation, we evaluated the effects of 1) using a multistep loss during training, and 2)

making closed-loop predictions on trajectory prediction accuracy. We trained one model

using a single-step log-likelihood loss, and another model using our proposed multistep loss,

L128
ms , with Algorithm 1. Using each model, we predicted 32 time-step long trajectories using

a naive open-loop method and the proposed closed-loop (tracked) method. For the open-

loop method, a sequence random actions were selected and executed on the robot with no

low-level tracker. The trained models were used to naively predict the trajectory of the

robot executing the actions with no feedback controller. We repeated this process for the

closed-loop method, performing trajectory predictions using Algorithm 2. However, when

executing the action sequences on the robot, we included the feedback action term from the

low-level trajectory tracker following the nominal trajectory, s̄0, ..., s̄T , calculated during the

closed-loop trajectory prediction process.

For all methods, we predicted the probability distribution of the robot’s final state and

reported the log-likelihood of the true final state. We predicted the final probability distri-

bution as a Gaussian mixture model by propagating 512 particles using the trained models

(each uniformly weighted mixture of the Gaussian mixture model corresponds to the final
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Gaussian distribution prediction of a particle).

In total, we ran 100 trials. The mean and variance of the log-likelihood metric for all

methods are listed in Table 2.3. The true trajectories and some particle trajectories for one

trial are shown in Figure 2.3. From these results, we find that both the multistep training

loss and closed-loop prediction framework aids in predictions that more accurately capture

uncertainty.

Single-Step Single-Step Tracked Multistep Multistep Tracked
Log-Likelihood -692.7 ± 470.0 -242.5 ± 364.6 -110.0 ± 166.6 -31.1 ± 48.5

Table 2.3: Mean and standard deviation of prediction log-likelihood for 100 trials.

(a) Single Step (b) Single Step Tracked (c) Multistep (d) Multistep Tracked

Figure 2.3: Predicted robot trajectories using different prediction methods The predicted
trajectories are shown in red, and the true trajectories are shown in green.

2.7.2 Rough Terrain Navigation

We compared the performance of three different trajectory optimization frameworks:

1. an optimizer that only minimizes the goal cost, C(d̄)

2. an optimizer that adds a scaled divergence penalty

3. the proposed divergence constrained optimizer (Algorithm 3)
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We used final squared distance to the goal as our optimization cost. We evaluate the

performance of the different methods by reporting success rate, defined as reaching a cer-

tain distance from the goal, and average final squared distance to the goal. The number

of optimization gradient steps were kept consistent between methods. We tracked opti-

mized trajectories using a simple PD controller (detailed definition of ftrack provided in

Section 2.7.1). The effects of the tracker were considering during optimization using closed-

loop predictions (Algorithm 2). We treated the threshold U for constrained optimization

as a hyperparameter, which we adjusted based on the observed abilities of the tracker. All

optimization methods used the same trained model.

Navigating Over Simulated Terrain

We compared the performance of different navigation methods for the task of driving over

randomly generated terrain with large obstacles to a goal 7m away. Besides the three afore-

mentioned optimization frameworks, we also included an A* path planning method with

tracking using the traverssability mapping method from [97], which considered local terrain

smoothness, slope, and curvature. We also evaluated the sensitivity of the optimizers to tra-

jectory prediction accuracy by not performing closed-loop predictions. For 250 trials, Table

2.4 shows each method’s success rate, defined as ending within 0.5m of the goal. Table 2.5

shows the actual cost and standard deviation for each method with tracking.

A* Planner No Uncertainty Penalty Constraint
Tracking 72 % 66 % 60 % 82 %

No Tracking - 62 % 32 % 64 %

Table 2.4: Random terrain results. Success percentage over fifty random terrains, using the
same terrain set for all methods. The A* planner does not provide actions, so tracking was
required.

Overall, we found that the constrained optimization has the highest success rate and low-

est final cost. Furthermore, seeding the constrained optimization with the planner resulted

in an even higher success rate (88%), suggesting that future work should address issues with
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A* Planner No Uncertainty Penalty Constraint
Cost (Squared distance to goal) 2.0892 1.8792 0.9561 0.9109

Divergence 0.2039 0.2350 0.1220 0.1529

Table 2.5: Results of random terrain testing. Despite having higher divergence than the
penalty method, the constrained method has lower final cost.

local minima. As expected, the penalty method has the lowest divergence since it directly

minimizes it, however this did not translate to higher success rate. We also found that

prediction accuracy was especially important to uncertainty aware optimization methods.

Not including tracking during prediction significantly decreased the success rate of both the

penalty and constrained optimization methods.

Figure 2.4 shows some example trials. When divergence is not considered, the optimizer

tends to exploit prediction error and finds risky solutions with high divergence. When ex-

ecuted, the robot tends to collide with obstacles and rolls over. Conversely, the penalty

method tends to find overly conservative trajectories since the optimizer minimizes diver-

gence at the expense of task cost. The trajectories have low divergence, but does not reach

the goal. The divergence constrained method strikes a middle ground finding safe low-

divergence trajectories to the goal. This behavior was exhibited throughout most of our

experiments.

Figure 2.5 shows another illustrative example in a simple ramp environment. When di-

vergence is not considered, the optimizer exploits prediction errors and finds a short, but

highly divergent trajectory that is infeasible. During execution, the robot slides off the ramp

due to insufficient friction. Again, penalizing divergence leads to an overly conservative tra-

jectory since the optimizer minimizes divergence at the expense of task cost. The divergence

constrained optimizer finds a trajectory with low divergence and task cost, allowing the robot

to consistently reach the goal.
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No Uncertainty Penalty Constraint

Figure 2.4: Three random simulation trials. Left: optimization without uncertainty. Middle:
optimization using closed-loop divergence as a penalty. Right: optimization using closed-
loop divergence as a constraint (our method). Predicted nominal solution trajectories are
shown in red, and true trajectories are shown in green. The goals are marked with vertical
green lines.
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(a) No uncertainty (b) Penalty (c) Constraint (d) AL Optimization

Figure 2.5: Ramp climbing trial. The optimized, predicted closed-loop, and actual trajec-
tories are shown in red, yellow, and green respectively. The optimization process for (c) is
shown in (d), where the divergence constraint is progressively satisfied, with red indicating
higher divergence.

Real World Navigation

We also compared the three optimization frameworks in the real world, Figure 2.6. The robot

was tasked with navigating across an obstacle field to a goal 5m away. The field consisted of

a traversable short obstacle, a non-traversable tall obstacle, and a ramp whose traversability

depended on the robot’s maneuver. Table 2.6 shows the actual cost and success rate for 10

trials of each of the three optimization frameworks. As in the simulated examples, our cost

is squared distance to goal.

When no uncertainty was considered, the optimizer exploited nominal prediction errors

and found impossible trajectories through the tall obstacle. For 9 out of 10 trials, the robot

got stuck on the tall obstacle. For one trial, the true trajectory deviated from the nominal

enough for the robot to catch the edge of the ramp and make it to the goal. When penalizing

divergence, the optimizer avoided the ramp 6 times to minimize divergence. When using

divergence constrained optimization, the robot made it over the ramp 8 times, and on average

got closer to the goal.
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No Uncertainty Penalty Constraint
Actual Trajectory Cost (Squared dist. to goal) 3.57±1.30 5.11±4.45 1.68±1.42

Success Rate 10% 40% 70%

Table 2.6: Real world navigation results. Actual cost values are mean and standard deviation
for 10 trials. Success is defined as getting within 1.5m of the goal.

(a) No Uncertainty (b) Penalty (c) Constraint

Figure 2.6: One trial of navigating a real world robot across an obstacle field. The goal (red
cross), predicted closed-loop trajectories (red lines with last time step marked with dots),
predicted nominal trajectory (black line), and actual robot trajectory (green line) are shown
over a height map.

2.8 Discussion

Here, we note some advantages of our closed-loop divergence constrained optimization ap-

proach observed in our experimental results. We also note some potential future extension

that could help make this approach applicable to more systems, some of which are addressed

in future chapters of this dissertation.

Strengths of Method

First, the adoption of data-driven terrain-aware dynamics models provides a more stream-

lined approach to generating higher fidelity models when compared to traditional handcraft-
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ing methods. This approach eliminates the need for domain expertise as models are directly

generated from data collected on the system. As a resulting benefit, this makes resulting

models less prone to modeling errors that may arise from incorrect system assumptions or

inadequate system identification. Additionally, the statistical approach to generating these

data-driven models naturally captures inherent uncertainty in the system, which is crucial

for robust and reliable navigation in unpredictable environments.

Second, the use of a closed-loop prediction framework significantly enhances long hori-

zon decision making capabilities in systems characterized by uncertainty. Figure 2.1 Right,

contrasts the predicted trajectory distribution made with an open-loop prediction frame-

work and with a closed-loop prediction framework. When not using a closed-loop prediction

framework, the predicted distribution has much higher variance, especially towards the end

of the prediction horizon. For any trajectory optimization framework that considers uncer-

tainty, including ours, this high variance in predictions can be problematic. In contrast,

the closed-loop framework, by continuously integrating real-time feedback, maintains tighter

control over the trajectory predictions, enabling decision making to precisely plan further

into the future.

Another key strength of our framework is its ability to prevent trajectory optimization

from exploiting modeling inaccuracies, a common challenge in model-based control frame-

works. This aspect is particularly crucial in unpredictable environments, such as scenarios

involving navigating over unstructured obstacles, where perfect predictions of the robot’s

dynamics is infeasible. In our framework, the divergence constraint avoids trajectories that

are characterized by high prediction uncertainty, stemming either from aleatoric or epistemic

uncertainty. In our experiments, we found that our method had a higher success rate com-

pared to the baseline optimization framework that ignored uncertainty and the divergence

metric. This was as a result of the baseline method tending to return optimized solutions

who’s predicted nominal trajectory reached the goal, but could not be faithfully executed on

the actual system. In contrast, when the divergence metric was used as a penalty instead of
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a constraint, the solutions tended to be faithfully executable by the robot, but were overly

conservative and did not reach the goal. Our divergence constraint approach resulted in

optimized solutions that reached the goal and could be faithfully executed.

As an added benefit of being robust against prediction errors, our method lends itself

well to the offline learning setting, where the agent is unable to interact with the environ-

ment during the learning process. In both the real-world experiments and the simulation

experiments, training data was collected a prior either through random actions or manual

controls. In spite of this, the resulting control policy was still able to navigate through new

environments. We tribute this to the epistemic uncertainty quantification by the learned

model as well as closed-loop divergence constraint used during trajectory optimization. The

divergence constrained optimization naturally avoids actions that result in high epistemic un-

certainty. As a result, the robot’s policy is biased towards maneuvers that are well supported

by the training dataset.

Future Extensions

One notable shortcoming of the approach described in this chapter is the tendency for a

gradient descent based optimizer to fall into a local minimum. In our experiments, this was

the biggest source of failure for our method, where a lower cost solution that satisfied the

constraint existed, but was not found by the optimizer. In our implementation, we alleviated

this issue by performing multiple gradient descent optimization descent in parallel, each

with different random seeds, and choosing the best final solution. The intuition behind this

approach is that at least one of the local minima found will likely be near optimal. However,

it does not guarantee that the globally optimal solution will be found. Thus, it is important

to acknowledge that this approach does not guarantee that a constraint satisfying trajectory

to the goal will be found if one exists.

This local minima issue is not unique to our approach, but is inherent to all optimization

based approaches. On the other hand, planning based approach discretize the search space
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in order to guarantee that a solution will be found if one exists. In our own simulation

experiments, we experimented with seeding divergence constrained optimization with the

solution from an A* search algorithm using a traversability mapping cost. This combination

showed an improvement over using divergence constrained optimization or planning alone.

However, we note that the seed used in this approach can only serve as a heuristic, as the

traversability mapping cost only provides a coarse approximation of the dynamic capabilities

of the robot. In Chapter 5, we revisit the divergence constraint but adapt it for use within

an RRT planning framework. This adaptation suggests that the divergence constraint could

also be relevant to other decision making frameworks.

In this chapter, we assumed that the feedback controller used for trajectory tracking

takes the form shown in equation 2.4. However, we note that not all feedback controllers take

this form. For example, the low-level trajectory tracker could be conditioned on additional

observations not captured in the system’s state, e.g. RGB images. Alternatively, if the

tracker does take the form shown in equation 2.4, there many not be a simple closed form

solution mapping states to feedback action. For example, a model-predictive trajectory

tracker could be used, which requires optimization to calculate the feedback action term.

In such scenarios, determining the feedback action terms iteratively within the closed-loop

divergence constrained optimization framework may not be computationally feasible. In

Chapter 5, we describe an alternative modeling approach to directly learn the closed-loop

behavior of the system given candidate reference trajectories.

Finally, although we assume full state knowledge, we believe that the approach could

be extendable to Partially Observable Markov Decision Processes (POMDP). Recent work

[98, 99] have formed predictive dynamics models for POMDPs by learning an encoder that

maps observations to a latent vector, and learning a latent space dynamics model that

predicts how the latent state vector evolves over time. We believe that this could potentially

extend our method to situations where the robot does not have complete world terrain height

map knowledge, such as when the robot only has observations from a camera.
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2.9 Conclusion

In this chapter, we delve into our model-based reinforcement learning framework for rough

terrain navigation. This framework addresses the second key question posed in Chapter 1,

“Can quantifying uncertainty in an imperfect dynamics model improve long-horizon decision

making?”

In this framework, training data is collect on the system offline to train a dynamics model

to approximate the robot’s complex dynamics when driving over uneven terrain. Given the

understanding that dynamics model are inevitably imperfect, this framework also trains the

model to capture aleatoric and epsitemic uncertainty in its predictions. We introduce the

divergence constraint to prevent decision making from exploiting potential modeling errors.

During trajectory optimization, solution trajectories are constrained to have low divergence

ensuring that they can be faithfully executed by the low-level trajectory tracking controller.

Addressing the issue of poor propagation of prediction uncertainty along longer-horizon

trajectories, we perform closed-loop trajectory prediction, where the capabilities of the low-

level trajectory tracker is considered during trajectory prediction. This reduces prediction

variance along longer-horizon trajectories and facilitates better long-horizon decision making.

We show in our experiments that this enables effective non-myopic navigation despite

using an imperfect dynamics model trained with limited training data collected offline. This

framework is robust against modeling errors, and can take full advantage of the robot’s

dynamics and capabilities. As a result, decision making does not simply avoid obstacles, but

reason about how the robot should drive over them.
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Chapter 3

Accelerating Dynamics Model

Training with Cheap Simulation Data

3.1 Introduction

In the previous chapter, we discussed our model-based reinforcement learning framework to

driving wheeled robots over uneven terrain. In that framework, machine learning was used

to model the robot’s dynamics, offering a more streamlined and higher fidelity alternative

to traditional modeling approaches.

However, this data-driven approach to modeling dynamics is highly dependant on the

quality and quantity of training data available. In situations where training data is insuffi-

cient, or has a distribution shift, the learned dynamics model will have inaccurate predictions.

When paired with uncertainty-aware decision making processes, like the closed-loop diver-

gence constrained optimization process used in Chapter 2, this may result in a dead-lock

due to high uncertainty in predictions. Even worse, uncertainty-unaware decision making

processes may control the robot dangerously.

In this chapter, we discuss our work that aims to aims to make data-driven dynamics

modeling, and thus model-based reinforcement learning, more practical for a target system
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Figure 3.1: The prediction pathway for the expert is shown on the top and the prediction
pathway for the novice is shown on the bottom. The expert and novice share a system
invariant dynamics model (SIDM) which models the underlying dynamics shared by the
systems. Each system has an encoder and decoder to model their relationship to the SIDM.

(novice), by leveraging a similar proxy systems (expert) on which data can be collected

cheaply. This approach was first presented in [53] and serves as preliminary work answering

the first key question posed in Chapter 1, “Can leveraging low quality simulation data provide

insights into real-world vehicle dynamics and reduce the amount of real-world data needed?”

While in this chapter we focus on leveraging data from one simulated system to accelerate

model training for a different simulated system, this approach could be used in theory to

accelerate model training on a real-world system as well.

Our domain adaptation approach, summarized in Figure 3.1, allows model-based rein-

forcement learning algorithms to use the large expert dataset to learn more accurate novice

dynamics models when novice data is limited. This approach trains a System Invariant Dy-

namnics Model (SIDM) that models underlying dynamics shared between the expert and

novice. We provide an algorithm to train the SIDM as well as learn the relationship each

particular system has to it. We show through experimentation that using novice and expert

data to learn a SIDM and the novice’s relation to it results in more accurate predictions for

the novice compared to if a dynamics model was trained using solely novice data.
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3.2 Related Work

Model Based Reinforcement Learning In model-based reinforcement learning [100,

101], a predictive model of the robot’s dynamics is learned. This dynamics model is then

used to generate control policies using methods such as the cross-entropy method (CEM) of

optimization [102]. Model-based reinforcement learning methods are appealing due to their

sample efficiency as well as ability to generalize to new tasks due to the reward independent

nature of the dynamics model. However, model-based reinforcement learning methods are

sensitive to the prediction accuracy of the dynamics model due to the compounding nature

of their error. In this chapter, we focus on using expert training data to improve model

prediction accuracy for a novice system in cases where novice training data is limited.

Domain Adaptation In domain adaptation, learning is performed on a expert robot and

knowledge is transferred to a novice robot. One common approach for domain adaptation

is in Sim2Real, where the goal is to transfer knowledge learned in simulation to the real

robot. The simplest approach to the Sim2Real problem is system identification, where

parameters of the simulation are fine tuned to closely match the real robot’s dynamics.

Another Sim2Real approach is domain randomization [103,104], where training is performed

on multiple simulations with randomized parameters. Domain randomization allows for

robust policies that perform well in a wide range of domains, hopefully including the desired

real world domain. Alternatively, training could be performed on a single expert domain,

and the relationship of the novice domain to the expert domain could be learned. [105]

restylizes images from a novice domain to make them more similar to images from the expert

domain. [106] trains a network to transform predictions for the expert to true predictions

for the novice. Since these methods train the base policy or dynamics model to be specific

to the expert, the novice can only vary slightly from the expert dynamics.

Another approach is to use autoencoders to form system invariant latent representations

of expert and novice states. [107] focus on transferring new policies from the expert to
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the novice. A new novice policy is trained to output similar states as the known expert

policy, using the latent state representation for state similarity comparisons. [108] focus on

corresponding expert and novice policies by learning the forward dynamics of the policies

in the latent state space, with the hope that this correspondence knowledge can be used

to accelerate policy training on the novice. One challenge to learning system invariant

representations of states is ensuring that latent state representations from different systems

are similar. [107] uses Dynamic Time Warping [91] to find corresponding states from novice

policies and expert policies trained for proxy tasks. The encoder is trained to maximize

similarity of the corresponding states’ latent representation. Unfortunately, this method

requires a priori knowledge of similar proxy task policies on the novice and the expert. [108]

use Iterative Closet Point (ICP) [109] to correspond the shape of the latent state space for

each batch given similar novice and expert policies. Using ICP to match the latent space

requires large batch sizes during training, making computation difficult especially in memory

limited cases. [108] used a batch size of 4096 during their experiments.

The method proposed in this chapter is similar to [107] and [108]. We use system invariant

latent spaces to correspond systems. However, instead of transferring policies, we focus on

transferring models of the system’s dynamics. We use a system invariant latent space to

represent not only states, but also actions. We also use another system invariant latent

space to represent state transitions. We ensure that latent state-actions from the expert

and novice are similar by using an adversarial network for similarity comparison. A system

invariant dynamics model is learned to predict latent state transitions given latent state-

actions. This method allows model-based reinforcement learning algorithms to leverage

large expert datasets to learn more accurate novice dynamics models when only small novice

datasets are available.
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3.3 Method

Our method assumes that similar systems share some underlying dynamics, as has been

observed for many classes of dynamical tasks such as running and climbing [110]. We model

the underlying dynamics of the systems with a System Invariant Dynamics Model (SIDM).

The inputs of the SIDM are system invariant representations of the robot state-action tuples.

The output of the SIDM are predicted state transitions represented in a system invariant

form. For each particular system, an encoder is used to transform the system specific state-

action tuples to inputs for the SIDM. Similarly, each system has a decoder that transforms

predictions from the SIDM to system specific state transition predictions. Our method trains

an encoder and decoder specific to each system, and an SIDM shared between all systems.

This prediction structure is shown in Figure 3.1. We use an adversarial network to force

SIDM inputs and outputs to be similar between systems, and thus system invariant.

The encoder and decoder of each system can be modeled with relatively small networks,

so they are less susceptible to overfitting. Although the SIDM network is required to be

larger for precise predictions, it is trained using a larger dataset consisting of data from

all systems. As a result, the novice prediction network graph, which consists of the novice

encoder, novice decoder, and SIDM, can be trained for high accuracy before it becomes

overfit.

3.3.1 Notation

We denote the expert and novice state-action spaces, which contain state-actions pairs for the

expert or novice system, respectively, as Xe and Xn. We denote the state-transition spaces,

which contains state transition vectors for the expert or novice system, as Ye and Yn. We

also define two latent spaces. The latent state-action space, denoted as X̂, contains system

invariant representations of state-action pairs. The latent state-transition space, denoted as

Ŷ , contains system invariant representations of state transitions.
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We define an encoder that maps the state-action space to the latent state-action space of

the expert or novice as Ee : Xe → X̂ and En : Xn → X̂. Similarly, we define a decoder that

maps the latent state-transition space to the state-transition space for the expert or novice

as De : Ŷ → Ye and Dn : Ŷ → Yn. The system invariant dynamics model predicts resulting

latent state transitions given latent state-actions and is denoted as SIDM : X̂ → Ŷ .

We denote De = {(x(i)
e , y

(i)
e )}Ni=1 as the expert dataset containing N samples, where

x
(i)
e ∈ Xe is a state-action pair resulting in the state transition y

(i)
e ∈ Ye. Likewise, we denote

Dn = {(x(i)
n , y

(i)
n )}Mi=1, xn ∈ Xn, yn ∈ Yn, as the novice dataset contains M samples. We

assume that M << N . For simplicity of notation, we drop the e or n subscript denoting

which system an element or function belongs to when it is clear from context.

3.3.2 Training Procedure

The training approach of our method follows closely to that of Adversarial Autoencoders

(AAE) [111]. For AAE, an autoencoder is trained with the two objectives of minimizing

reconstruction loss and matching the aggregated posterior distribution of latent represen-

tations to an arbitrary prior distribution. For the second training objective, an adversarial

training criterion is used to match generated samples (latent representations from the en-

coder) to the true samples (sampled from the prior distribution). As our application focus

is on state transition prediction instead of reconstruction, our approach differs from AAE

in two ways: (1) Instead of reconstructing the input and minimizing reconstruction error,

our whole network predicts state transitions of the robot and we minimize prediction error.

(2) We divide the single latent representation from AAE into two latent representations:

a latent state-action representation and a latent state transition representation. We add a

SIDM network to predict latent state transitions given latent state-actions.

The training procedure for our method alternates between two phases – the prediction

phase, and the regularization phase. The prediction phase aims to increase prediction ac-

curacy for both the expert and novice system. The regularization phase aims to match
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the distribution of latent state-actions over novice state-actions to the distribution of latent

state-actions over expert state-actions. We only match the distribution of latent state-

actions, since the SIDM network should map similarly distributed latent state-actions to

similarly distributed latent state transitions. Both the prediction training and regulariza-

tion phase can be executed on minibatches using stochastic optimization methods such as

SGD or Adagrad [112].

During the prediction training phase, samples are randomly chosen from either the ex-

pert dataset with probability pe or the novice dataset with probability 1 − pe. For each

sample (x(i), y(i)), the appropriate encoder, either expert or novice, is used to map x(i) to a

latent state-action x̂(i). Given x̂(i), the SIDM predicts a latent state-transition ŷ(i). Finally,

the appropriate decoder is used to map ŷ(i) to a predicted state transitions y′(i). For the

prediction phase, the loss function compares the predicted state transitions to true state

transitions using the squared second norm difference,

Lpred(y
′, y) = ∥y′ − y∥2 (3.1)

The procedure for the prediction training phase is summarized in Algorithm 4.

Algorithm 4: Prediction Training

for number of prediction training iterations do
g ← 0
for prediction batch size (bpred) do

if randomly chosen to update expert with probability pe then
(x, y)← random sample from expert dataset De

y′ ← De ◦ SIDM ◦ Ee(x)
else

(x, y)← random sample from novice dataset Dn

y′ ← Dn ◦ SIDM ◦ En(x)

g ← g + 1
bpred
∇Ee,En,SIDM ,De,DnLpred(y

′, y)

Ee, En, SIDM , De, Dn ← update parameters using gradient g

The regularization phase follows the Generative Adversarial Networks (GAN) framework

[113]. An adversarial network (discriminator) is used to distinguish between latent state-
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actions from the expert encoder and latent state-actions from the novice encoder. The

sigmoid output of the discriminator, A(x̂), predicts the probability that a latent state-action

came from the expert instead of the novice. At the start of the regularization phase, the

adversarial network is trained to minimize expected negative log-likelihood,

min
A

Exe∼De,xn∼Dn [Ldisc(Ee(xe), En(xn), A)] (3.2)

Ldisc(x̂e, x̂n, A) = − logA(x̂e)− log(1− A(x̂n)) (3.3)

After updating the weights of the discriminator, the novice encoder (generator) is trained

to minimize the negative log-likelihood of latent state-action of the novice coming from the

expert.

min
En

Exn∼Dn [Lgen(En(xn), A)] (3.4)

Lgen(x̂n, A) = − log(A(x̂n)) (3.5)

The procedure for the regularization training phase is summarized in Algorithm 5.

In this formulation, all mappings are deterministic. Alternatively, an approach similar to

that taken by [114] could be used, where mappings are nondeterministic. In this alternate

approach, the encoders, decoders, and SIDM would estimate posterior distributions for the

latent state-actions, latent state transitions, and system specific state transitions. Latent

state-actions and latent state transitions would be randomly sampled from the estimated dis-

tributions, and negative log-likelihood of the true state transition given estimated posterior

distribution from the decoder would be used as the prediction phase loss function.

47



Algorithm 5: Regularization Training

for number of discriminator training iterations do
g ← 0
for discriminator batch size (bd) do

xe, xn ← random sample from expert and novice datasets Dn,De respectively
x̂e, x̂n ← Ee(xe), En(xn) respectively
g ← g + 1

bd
∇ALdisc(x̂e, x̂n, A)

A← update parameters using gradient g

for number of distribution matching iterations do
g ← 0
for distribution matching batch size (bg) do

xn ← random sample from novice datasets Dn

x̂n ← En(xn)
g ← g +∇EnLgen(x̂n, A)

En ← update parameters using gradient g

3.4 Experiment Setup

We demonstrate the value of using SIDM by training dynamics models for novice systems

with and without knowledge transfer from expert systems using SIDM. The improvement

in motion prediction accuracy for the novice is compared over varying amounts of novice

training data.

3.4.1 Simulated Systems

The expert and novice systems used were both wheeled robots driving over randomly gener-

ated rough terrain simulated with PyBullet [92], as shown in Figure 3.2. The robot actions

corresponded to desired wheel velocity and steering angle applied using PD controllers. The

expert and novice had different scaling of actions, contact friction, link masses, link inertia,

suspension heights, suspension limits, spring constants, and damping constants.

The state-action input (x) to the dynamics models included the robot’s tilt (represented

as the gravity vector relative to the robot frame), body velocity (represented as a twist),

terrain height map centered about the robot, and action taken. The robot centered terrain

height maps were generated from global terrain height maps, as shown in Figure 3.2. We
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Figure 3.2: Left shows the simulation environment used for experiments. Right shows the
world terrain height map with the robot centered map outlined in black. The robot frame is
shown in red. State-Actions for prediction included the robot body velocity, gravity vector
relative to the robot frame, robot centered terrain map, and action (throttle, steering).
Predicted state transitions included the new robot frame relative to the previous, and the
new robot body velocity.

find it realistic to assume the robot has knowledge of the global terrain height map due to

existing methods for generating these maps from raw sensor data [88, 115]. Alternatively,

SIDM could also be used in other approaches where state transitions are predicted directly

from raw depth sensor data [74]. The dynamics model’s predicted state transition (y) consists

of the relative movement of the robot’s body (represented as a translation and quaternion

orientation vector) and the new body velocity of the robot. In total, the state-action tuple

consisted of a 11 dimension vector and a 300 by 300 matrix (terrain map) while the state

transition vector had a size of 13.

3.4.2 Model Training

Motion data was collected using random actions and PyTorch [116] was used to train dy-

namics models. During training, 75 percent of the novice data was used for training and

25 percent of the data was used for testing. We stopped training once the test prediction

loss started increasing indicating overfitting of the dynamics model. We then validated the

prediction loss of each trained model using a separate novice validation dataset.

49



When training without SIDM, the prediction phase only sampled data from the novice

dataset (pe = 0) and the regularization phase was ignored. To keep the comparison consis-

tent, the same novice dynamics model network structure was used when training without

SIDM, and the expert encoder and decoder were simply removed. Anecdotally, we found

that changing the network structure when training without SIDM led to minimal change in

prediction loss. Adam [117] with weight decay [118] was used to optimize the neural network

parameters.

3.4.3 Network Architecture

Each encoder network consisted of a two layer Convolutional Neural Network (CNN) [89]

to process the terrain height map, consisting of an 8 channel layer and a 4 channel layer,

both with a kernel size of 4. All CNN layers used no padding, and a stride of 1. The output

of the CNN was reshaped into a vector, concatenated with the rest of the state and action

input, and fed into a single hidden fully connected (FC) layer and an output FC layer, both

of size 128 (latent state-action vector, x̂). Each SIDM network consisted of four Long-Short

Term Memory (LSTM) [90] layers, each with a hidden state size of 1024. The output of the

LSTM layers was fed into a FC output layer of size 64 (latent state transition vector, ŷ).

Each decoder network consisted of a single hidden FC layer of size 64, and an output FC

layer of size 13. All CNN and FC layers used leaky ReLu except for the output FC layer of

the decoder which did not have an activation function.

It is important to use an appropriate value for pe, otherwise the SIDM network will be

biased towards a specific system and not be system invariant. Low pe values cause training

of the SIDM network to be biased towards the novice and not take advantage of the large

expert dataset. High pe values cause the SIDM network to be biased towards the expert and

lead to poor performance on the novice. In cases where the novice dataset is much smaller

than the expert dataset, choosing a pe value proportional to the dataset sizes will cause pe

to be too high. In our experiments, we use a pe value of 0.5 when the dynamics of the novice
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and expert differed greatly, and a pe value of 0.75 when the novice and expert were more

similar. For the same reason, the SIDM network cannot be pretrained using just expert

data, although we believe the SIDM could be pretrained using multiple expert systems.

It is also important not to train in any one phase for too many iterations. Since the

prediction and regularization training phases update the weights of the novice encoder for

different loss functions, training in one phase for too long led to high losses for the other

phase and unstable training. In our experiments, we set the number of prediction iterations

to 100, and the number of distribution matching iterations to 20.

3.5 Results

To show the accuracy improvements using SIDM, we ran training experiments with varying

amount of novice data on two different expert and novice systems. In the first system the

expert dynamics were more similar to the novice dynamics, while in the second system the

expert dynamics greatly varied from the novice dynamics. The difference in the systems was

most pronounced in the suspension parameters. In the first system, the suspension of the

novice was 5 times stiffer, had 2 times more damping, but had the same amount of travel

compared to that of the expert. In the second system, the suspension of the novice was 667

times stiffer, had 100 times more damping, and about 1.5 times less travel compared to that

of the expert, leading to an almost completely rigid suspension. For both, we collected about

14 simulation hours worth of motion data for the expert system. For the first system we

varied the novice dataset size between 1 minute and 2 hours worth of motion data. For the

second system, we increased this range so that the novice dataset ranged between 1 minute

and 10 hours worth of motion data, as the improvements using SIDM did not converge to

the non-SIDM system by 2 hours. For each system and novice dataset size, we ran 10 trials,

for a total of 320 trials overall. Figure 3.3 shows the validation losses for these experiments.

In addition to the prediction validation loss, we also tested the improvement using SIDM
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Figure 3.3: Dynamics models were trained for two different novice systems with and without
knowledge transfer from expert systems using SIDM. On the left, the dynamics of the expert
were more similar to the dynamics of the novice. On the right, the dynamics of the expert
were less similar to the dynamics of the novice. The line shows the mean validation loss for
10 trials, while the shading shows the range between the minimum and maximum.
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by simulating 25 step (2.5 simulation second) trajectories for the novice robot (from the

first system). For each trajectory, an action was randomly selected and applied over the

length of the trajectory. We use the learned novice dynamics models to predict the resulting

trajectories over rough terrain given the action taken. We integrate the predicted state

transitions to predicted the robot’s absolute position and orientation over the course of the

trajectory. At each time step, the predicted absolute position and orientation was used

to generate a new robot centered terrain height map for the input of the next prediction.

Figure 3.4 shows the results comparing the actual trajectory of the robot to the predicted

trajectory of the robot using 5 minutes and 2 hour of novice training data both with and

without SIDM.

Using the SIDM to transfer knowledge from the expert system to the novice system

resulted in a significant improvement in novice predictions especially when the novice dataset

was small. When the expert and novice were more similar, training using SIDM resulted in

similar performance to training with up to 20 times the amount of data as training without

SIDM. When the expert and novice were less similar, training using SIDM resulted in similar

performance to training with about 5 times the amount of data as training without SIDM.

As expected, when the novice dataset becomes larger the performance with and without

SIDM become comparable (at about 2 hours and 5 hours of novice training data for the two

systems, respectively). Although using SIDM does not increase overfitting as the dataset

becomes larger, it does make the network harder to train. We recommend reducing expert

train probability, discriminator training iterations, and distribution matching iterations as

the novice dataset grows. Doing so will effectively cause training to be done only on the

novice system data once the benefits of SIDM are expected to be minimal.
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3.6 Conclusion

In this chapter, we explored how dynamics model training on a novice system could be

accelerated by leveraging cheap training data collected on an expert system, with similar

but different dynamics. More specifically, we investigated whether more accurate novice

system dynamics models could be trained with less data collected on the novice system. The

implication of this work is that model-based reinforcement learning could be made more

practical for real-world systems, by leveraging cheap training data collected on a simulated

system that imperfectly approximates the real-world system.

Our approach uses what we call a System Invariant Dynamics Model (SIDM) to model

the underlying dynamics shared between the two systems. The SIDM is trained using motion

data from both the expert and the novice. We provide an algorithm to train the SIDM as

well as an encoder and decoder for each system that describe each system’s relationship to

the SIDM.

This chapter serves as preliminary work addressing the first question posed in the intro-

duction, “Can leveraging low quality simulation data provide insights into real-world vehicle

dynamics and reduce the amount of real-world data needed?” We show through experimen-

tation that training dynamics models for the novice using SIDM and expert data leads to

more accurate novice dynamics models especially in cases where motion data for the novice is

limited. These promising results show that data collected in simulation could help accelerate

dynamics models training for a real-world system.

While the experimental results presented in this chapter show promise, we note a few

practical drawbacks, which we aimed to improve upon in our subsequent work, presented

in Chapter 4. First, while using SIDM does make dynamics modeling more sample efficient

for the target system, it still requires a substantial amount of data from the target system.

In extreme cases where there is virtually no data from the real world system, predictions

from the dynamics model will be nonsensical. Second, the resulting dynamics model using

the SIDM approach is deterministic and does not capture uncertainty in predictions. Given
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that the benefits are most pronounced in low-data regimes, where there will still inevitably

be model inaccuracies, this may lead to poor or potentially dangerous policies resulting from

decision making exploiting modeling errors. Lastly, the approach from this chapter requires

a lengthy network training process for every new target system. This can be problematic

in situations where the robot’s dynamics are expected to frequently change. For example,

when operating in environments composed of diverse terrain, or if the payload of the robot

is consistently changing.

Given these limitations, we recommend the readers to refer to Chapter 4, where we

discuss our subsequent approach that effectively addresses all these limitation.
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Chapter 4

Simulation-Trained Dynamics Models

that Robustly Adapt to New Systems

4.1 Introduction

Reinforcement learning, while powerful, faces practical challenges when applied to real-world

robotic systems. One significant hurdle is the requirement for extensive training data, col-

lected through numerous trials on the system. Not only is this process time consuming

for real-world systems, but also dangerous. Inappropriate or misjudged actions can cause

substantial damage to the robot, requiring expensive and time-intensive recovery and repair

efforts.

Consequently, simulation has become instrumental in the development and validation

of off-road driving algorithms. Beyond offering a risk-free environment for testing, simu-

lations can operate faster than real-time, benefit from parallelization, and conduct trials

autonomously. Simulation has been especially crucial in the development of model-free re-

inforcement learning algorithms [71, 72, 119], which aim to directly optimize a policy over

many trials, as deploying an underdeveloped model during trials often leads to catastrophic

failure.
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However, the performance of policies trained and validated in simulation do not always

transfer to the real world. This discrepancy arises from the “reality gap” – the inevitable dif-

ferences between the simulated environment and the real world. Addressing these challenge

requires effectively translating simulation-trained policies into the real-world, known as the

“sim2real” transfer problem. While some methods aim to minimize the reality gap [120–124],

accurately modeling intricate dynamics of a robot interacting with a diverse range of un-

structured terrains remains challenging. Robot dynamics are not only affected by the robot

properties, such as weight distribution, tire friction coefficient, and motor models, but they

are also affected by the unknown terrain properties including soil cohesion, dampness, or

presence of debris.

While simulated dynamics inevitably differ from real-world dynamics, we explored in

Chapter 3 how training data collected in simulation could augment real-world data to help

accelerate dynamics model training for model-based reinforcement learning. We demon-

strated an approach that used both large amounts of data collected on an expert system

(simulation) and limited amounts of data collected on a target system (ideally a real-world

system) to train a dynamics model for the target system. We shown that this approach

resulted in more accurate dynamics models for the target system when compared to training

a dynamics model using solely target system data.

While this approach shows promise, its primary limitation lies in its deterministic nature

which provides no notion into prediction uncertainty. This can be problematic for decision

making in scenarios where the resulting dynamics model is unreliable, such as when target

system data is particularly limited or when there is a high difference in dynamics between

the expert and target system.

In this chapter, we build upon concepts introduced in Chapter 3, further addressing the

first question posed in Chapter 1: Can leveraging low quality simulation data provide in-

sights into real-world vehicle dynamics and reduce the amount of real-world data needed?

Furthermore, we also build upon concepts introduced in Chapter 2, further exploring the
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quantification of prediction uncertainty to make decision making robust towards inaccurate

dynamics models. This is a vital component to addressing the second question: Can quan-

tifying uncertainty in an imperfect dynamics model improve long-horizon decision making?

We propose a novel framework for sim2real transfer that balances robustness with adapt-

ability, first published in [54]. Our method follows the model-based reinforcement learning

(MBRL) paradigm, where a probabilistic predictive dynamics model is first trained then

used for decision making. We train the model in simulation with varying simulation pa-

rameters to make our model robust across a variety of system dynamics. Similar to prior

methods [120, 125], we train a neural network to extract a latent context vector to help

adapt the policy to the target system’s particular dynamics. In our approach, this neural

network, called the System Identification Transformer (SIT), uses attention mechanisms to

distill state-transition observations from the particular system into a context vector under-

standing of its particular dynamics. Unlike other approaches that condition a policy on this

context vector, our approach instead conditions a dynamics model on the context vector.

Given this context vector, the Adaptive Dynamics Model (ADM) probabilistically models

the system’s dynamics, capturing uncertainty both from the system’s inherent stochasticity

and from ambiguities due from insufficient state-transition observations. Online, we use a

Risk-Aware Model Predictive Path Integral (RA-MPPI) controller [126] to safely control the

robot under its current understanding of dynamics.

The remainder of this chapter aims to validate the following hypotheses:

Hypothesis 1: Our proposed approach enables safer control in terms of the number of

constraint violations, even when there is insufficient historical observation data (e.g. upon

initialization).

Hypothesis 2: Leveraging the attention mechanism to extract context allows for continual

improvement of the adapted policy (i.e. better lap times) as the number of state-transition

observations increases.
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Figure 4.1: Method Overview: The System Identification Transformer (SIT) and Adaptive
Dynamics Model (ADM) are trained with randomized simulation dynamics to gain a prob-
abilistic understanding of any target system’s dynamics. The SIT leverages an attention
mechanism to condense state-transition observations from the target system into a compact
context vector. The ADM predicts state transition distributions conditioned on robot state,
action, and context vector. Online, Risk Aware MPPI chooses safe actions according to the
ADM’s probabilistic predictions.

Hypothesis 3: Using a risk aware MPPI controller reduces the number of constraint

violations compared to a risk unaware controller with the same SIT and ADM models.

4.2 Background

One common approach to the sim2real transfer problem includes domain randomization

[103,122,127,128]. In this approach, a model-free reinforcement learning policy is trained in

simulation while simulated dynamics are varied through randomizing simulation parameters.

This approach ensures that the trained policy is robust under a diverse range of dynamics,

hopefully including the dynamics of the real-world system. However, a notable trade-off of
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this approach is its tendency towards conservative performance, as the policy is designed to

generalize across a spectrum of potential systems rather than being optimized for a specific

one.

Alternatively, some approaches train a latent vector conditioned policy that can be

adapted to some particular dynamics simply by identifying a suitable latent vector. In

[129–131], suitable latent vectors were found through optimization techniques such as CMA-

ES [132]. Although these approaches can tailor the policy towards the particular system,

they still require trial and error to refine the policy, and may be unsafe while the policy

is being refined. In [120, 125], an auxiliary neural network is used to rapidly identify a

suitable latent vector given a short fixed-length horizon of prior states and actions. While

this allows for faster adaptation, the fixed-horizon input only utilizes recent observations for

latent vector inference. Furthermore, the model-free nature of these methods prohibits any

interpretability with respect to the adaptation process or the resultant policy.

4.3 Probabilistic Predictive Dynamics Model

We formulate the autonomous off-road driving problem as a distribution of Markov decision

processes (MDPs), where each real world environment is represented by a single MDP. For

a given environment i, the problem is defined as (S,A,Pi, Ci), where S is the state space,

A is the action space, Pi(st+1|st, at) is the stochastic discrete-time transition dynamics from

st ∈ S to st+1 ∈ S under action at ∈ A, and Ci(s, a) is the cost function for a given state-

action pair. In this formulation, the state and action space is shared between environments,

but the transition dynamics and cost function are unique to each environment. The function

Pi is a member of the function space F that comprises all possible stochastic transition

functions. We define W as the distribution over of the function space F which encompasses

all potential dynamics functions the robot might encounter in the real world.

Note that it is impossible to perfectly simulate the unknown dynamics Pi for any given
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real world environment i, let alone the distributionW of all real world dynamics. We instead

define a proxy distribution of dynamics in simulation, Ŵ , such that supp(W) ⊆ supp(Ŵ).

That is, all of the true dynamics inW lie within the range of dynamics functions represented

in Ŵ . Using many cheap simulations sampled from Ŵ , we train a policy that can safely

adapt to the particular system dynamics within supp(Ŵ), which includes all real world

systems lying in W .

Following the model-based reinforcement learning paradigm, we train a predictive model

to approximate the probabilistic transition dynamics of any given system. The predictive

model consists of two key components: the System Identification Transformer (SIT) and

the Adaptive Dynamics Model (ADM). This model is then utilized for decision making,

specifically using MPPI with a Conditional Value-at-Risk cost to drive the robot safely

given the stochastic predictions from the predictive model.

System Identification Transformer (SIT) The SIT, denoted by Tθ, identifies the dy-

namics of a given target system by analyzing prior state-transition observations collected on

that system, denoted by H, and extracting relevant information about the target system’s

dynamics into a latent context vector, denoted as c,

ct = Tθ(Ht). (4.1)

In this formulation, state-transition observations collected for a target system at time t are,

Ht = {(si, ai, si+1)|i < t− 1}. (4.2)

We use a transformer network [133] for the SIT due to several advantages it offers. Trans-

formers can natively accommodate sequences of varying lengths by utilizing self-attention

mechanisms to selectively focus on specific segments of the input sequence. These advan-

tages are crucial for our application since state-transition observation sequences expand with
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the system’s run-time. Furthermore, not all state-transition observations are of equal signif-

icance (e.g., periods when the robot remains stationary may offer minimal insights), so this

selective focus ensures the extracted context is most representative of the system’s dynamics.

The SIT’s architecture mirrors the encoder component from [133]. It comprises of a

series of identical layers, each featuring a multi-head self-attention sub-layer followed by a

position-wise, fully connected feed-forward network sub-layer. Each sub-layer incorporates a

residual connection [134] followed by a layer normalization [135]. Unlike the original design,

we opted not to use positional encoding for the input sequences. In our application, the order

of (state, action, state-transition) observations is unimportant. In our trials, incorporating

positional encoding seemed to negatively impact performance. Finally, we aggregated the

vector outputs from the last layer by taking their mean, resulting in a single context vector.

This compact representation, c ∈ R32 for our implementation, encapsulates the essence of

all prior state-transition observations.

Adaptive Dynamics Model (ADM) The ADM provides a probabilistic understanding

of the robot’s dynamics based on the context vector extracted by the SIT. The ADM, denoted

as Pθ(st+1|st, at, ct), is trained to predict state-transition distributions conditioned on the

robot’s current state, action, and context vector ct extracted by the SIT. By predicting

state-transitions as probability distributions, the ADM can capture uncertainty inherent to

the non-deterministic system as well as ambiguities resulting from limited state-transition

observations.

Similar to Chapter 2, the adaptive dynamics model can be used to predict a trajectory

distribution for the robot by sequentially iterating through each time step of the prediction

horizon and chaining samples from the predicted state-transitions distribution, as is done

in Algorithm 6. We chose to use a Long Short Term Memory (LSTM) architecture [90],

which inherently captures temporal dependencies across state-transition sequences. For our

implementation, the LSTM is followed by a fully connected network to predict a multivariate
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Gaussian state-transition distribution, parameterized by its mean µ and covariance matrix Σ.

More specifically, the covariance component of the neural network output is the off-diagonal

and positive diagonal terms of a lower triangular matrix L, where Σ = LLT .

4.4 Risk-Aware Model Predictive Path Integral

In this section, we describe how controls can be made robust against the uncertainty in the

probabilistic output of the SIT and ADM. This allows the robot to drive safely even when

it is unsure about its dynamics while improving performance as its understanding improves

with more state-transition observations.

Track Driving Problem For our application, the robot is tasked with driving down

different tracks. Each track is defined by a path (its center line) and a fixed width w. Given

path, we structure the task as the following constrained optimization problem,

maximize
at0 ,...,atf

Lpath(stf+1) (4.3)

subject to: st+1 ∼ Pi(st+1|st, at) (4.4)

Dpath(st) ≤ w (4.5)

|s̈t,lateral| ≤ A, (4.6)

where Lpath(s) denotes the distance of state s along path, Dpath(s) denotes the distance of

state s from path, and s̈t,lateral denotes the lateral component of the robot’s acceleration (cal-

culated through numerical differentiation). Intuitively, the robot’s task is to make as much

progress down the track (4.3), while staying on track (4.5), and keeping lateral acceleration

under a threshold to prevent it from rolling over (4.6), subject to the stochastic dynamics

(4.4).
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Robust Controls While numerous methods exist for robust control of systems with prob-

abilistic dynamics, e.g. [75, 136], we use Model Predictive Path Integral (MPPI) [137] with

a Conditional Value-at-Risk (CVaR) cost to avoid risky actions, similar to [126].

MPPI is a variant of Model Predictive Control (MPC) that relies on a sampling-based

approach for trajectory optimization. During each MPPI optimization iteration, candidate

action sequences are sampled from a distribution centered around the previous solution. The

cost associated with each candidate action sequence is evaluated by simulating the system

with a predictive model. The solution is then updated by weighting the candidate actions

based on their costs.

To minimize constraint violation within MPPI, we use the relaxed logarithmic barrier

function introduced in [138]. This function reformulates a constraint of the form z ≥ 0, into

the following as an additional cost term:

B̂(z) =


−ln(z) z > δ

βe(z; δ) z ≤ δ

(4.7)

βe(z; δ) = exp (1− z

δ
)− 1− ln δ (4.8)

In our approach, we enhance the robustness of MPPI against uncertainties in system

dynamics by incorporating a CVaR cost, Algorithm 6. The CVaR cost quantifies the expected

cost in the worst α percent of scenarios. To calculate the CVaR cost for each candidate action

sequence, we perform multiple trajectory simulations using our stochastic dynamics model

(ADM) and average the cost of the worst-performing trajectories. This enables the optimizer

to be risk-aware when choosing actions.
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Algorithm 6: Calculating CVaR Cost

Input : Initial State: st0 ,
Context Vector: ct0 = Tθ(Ht0)
Candidate Actions: at0 , at1 , . . . , atf ,
Number of Stochastic Evaluations: N
Confidence Level: α

Output: CVaR cost

for j ← 1 to N do
ŝt0 ← st0
Jj ← 0
for t← t0 to tf do

ŝt+1 ∼ Pθ(ŝt+1|ŝt, at, ct)
Jj ← Jj + C(st, at)

return Average of top ⌈α ·N⌉ values of J

4.5 Training in Simulation

We train the SIT and ADM solely in simulation. However, instead of using one simulated

system, we sample a large number of simulated systems from the distribution Ŵ , created

by randomly varying physical parameters in simulation. By doing so, we train the SIT and

ADM to adapt to a wide variety of systems including real world systems from the distribution

W . During training, we cycle between a data collection phase and a model training phase.

4.5.1 Data Collection

During the data collection phase, we first generate a set of new systems in simulation using

PyBullet. To generate a new system, we randomize link dimensions, link inertial terms,

scaling of steering and throttle commands, motor torque and PID values, contact parameters

(friction, stiffness, and damping), and suspension parameters (limits, stiffness, damping). For

each system, we collect a set of trajectories by driving the system using the current SIT and

ADM models within the Risk Aware MPPI framework. At each time step during driving,

the policy is adapted to the particular system by feeding all prior collect data on that system

into the SIT.
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4.5.2 Neural Network Training

During the model training phase, we sample a system and time step from the dataset and use

the SIT and ADM to predict the state-transition given the robot’s current state, action, and

all state-transition observations collected on the particular system prior to that time step.

We update the neural network parameters of SIT and ADM using a negative log-likelihood

loss with an Adam optimizer [117].

4.5.3 Distributed Simulation & Training

We opted for a distributed simulation architecture to better facilitate large scale multi-

system data collection. With this architecture, a server trains a SIT and ADM models while

an arbitrary number of clients collects training data in simulation. During each training

cycle, the server generates a new set of simulated systems, described by a set of robot and

physics parameters, and sends them to the clients along with the current neural network

parameters of the SIT and ADM models. Each client loads the particular simulated system,

collects data on the system using the current policy, and sends the results back to the server.

Asynchronously, the server trains the SIT and ADM models, reloading the dataset as new

data is received from the clients.

Since each instance of MPPI along with the neural-network training procedure was ex-

tremely GPU intensive, running more than one process on a machine would have been

difficult. This distributed architecture was invaluable as it allowed us to train the neural

network, and collect data on multiple systems in parallel using multiple cloud instances.

Furthermore, it allowed us to add or remove simulation clients depending on computational

resources.
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4.6 Experimental Results

We compare our method against a different baselines in simulation and on a real world

robot. In simulation, we run large statistical tests comparing the performance metrics of

different approaches on newly generated systems and tracks, none of which were seen during

training. On the real world system, we evaluate whether the trained model and resultant

policy can safely adapt to different real world systems. We vary the dynamics of the real

world system by changing the robot’s configuration and varying the type of terrain used.

Both the simulated and real world systems use a four-wheeled robot with flexible solid-axle

suspension and all wheel steering.

4.6.1 Fast and Continual Adaptation to New Dynamics

In the first experiment, we evaluate this method’s ability to generate a safe and effective

policy for a new system upon initialization and then continually adjust that policy to better

adapt to the target system. For each newly generated system, we run trials over randomly

generated tracks starting with no state-transition observations. These new state-transition

observations created by driving the system are collected and used to adapt the model at

every time step.

For the baseline comparison, we use a model-based reinforcement learning policy where

the neural network dynamics model is reinitialized for each new system and trained using

only data collected on that particular system. In this baseline approach, the dynamics model

uses the same architecture as our Adaptable Dynamics Model, but is given a fixed zero vector

for the context input. We collect training data by driving the robot using the baseline model

and retraining the model every 250 time steps.

We evaluated the performance of both methods as a function of time steps collected for

training or adaptation. We fix the models created given different amounts of data and use

them to drive the robot down a new test track. The test track is fixed between all methods
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and models for a particular system, but varied for the different systems or trials. Note

that for our method, we allowed the model to continue adapting on the test track run since

adaptation involved simple SIT inference, which could be computed at each time step.

During each evaluation, we record the lap time (in time steps of 0.1 seconds) needed

to complete the test track as well as the number of constraint violations (either the robot

driving off track or exceeding the lateral acceleration limit). We also record the number of

times the robot made no progress, or was stationary for too long, due to MPPI struggling

to find a non-trivial solution. In cases where the robot makes no progress or violates the

constraints, the robot is reset to the center of the track at the last progress point and allowed

to continue. The average lap time and number of constraint violations for both methods

across 230 systems are shown in Figure 4.2.

Compared to the baseline, our method was able to reach much higher levels of perfor-

mance in low-data regimes. With our method, the robot was able to drive down the test

track even when initialized with zero data. With the baseline method, we were unable to

evaluate its performance with less than 500 time steps of training data, as the robot often

could not finish the track. When comparing our method given zero data and the baseline

given 500 time steps of data, our method had a much faster lap time and exhibited many

fewer constraint violations. Furthermore, the baseline method averaged 3.4 incidents of no

progress per test track run, where the robot needed to be reset due to not making any

progress. In comparison, our method averaged 0.004 incidents. Unlike our approach, the

baseline approach is impractical to deploy on real world systems due to the high number

of constraint violations and resets needed in low-data regimes. This evidence supports hy-

pothesis 1, since our approach enables safer control in absence of historical observation

data.

For both methods, the policy’s performance improved with more training data. When

given 5000 time steps of data, the baseline method exhibited an average lap time of 69.43

time steps and averaged 0.0087 constraint violations. In contrast, after only 500 time steps
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Figure 4.2: Adaptive Method vs. Baseline Method. For the baseline, a new policy was
trained on each target system. The standard error is shown with shaded region. For each
time step at fixed intervals, we take the model trained at that time step to run each system
on a test track in simulation. We averaged out the lap time and violations across all systems
as it completed the track.

our approach had an average lap time of 72.17 and averaged 0.0043 constraint violations.

By using attention mechanisms in the SIT, our approach can use variable length state-

transition observation sequences to tailor the ADM to a particular system. This allows

for continual improvement of the policy for a potentially long period of time, where the

observation sequence is long. This is shown in our experiment (Figure 4.2), where our method

exhibits gradual performance improvements from 0 to 500 time steps of data. Furthermore,

at 500 time steps of data, the performance of our method is comparable to the performance

limits of training a policy from scratch for the particular system. This supports hypothesis

2, since the adaptive method continually improves in lap-time performance as the number

of state-transition observations increases.
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Note that when give 0 seconds of historical observations, our method is similar in concept

to domain randomization, where a policy is trained to be robust across a wide range of sim-

ulated dynamics. When given no historical observations the probabilistic ADM predictions

capture the wide distribution of dynamics simulated during training. As a result, similar to

domain randomization, our method is initially robust across a wide range of systems leading

to few constraint violations. However, our approach tailors the model to each particular

system allowing for increased performance as more observations are collected.

4.6.2 Safety During Adaptation

We evaluated our method’s ability to remain safe during initial periods of adaptation by

comparing it to a baseline that did not consider uncertainty in MPPI. During MPPI, this

baseline calculated the cost of an action sequence by predicting the resulting trajectory

using the deterministic transition model ŝt+1 = E[Pθ(ŝt+1|ŝt, at, ct)]. This is in contrast to

our method that calculates a CVaR cost based on predicting multiple possible trajectories

under the stochastic dynamics Pθ(st+1|st, at, ct), described in Section 4.4.

We compared the two methods by generating 1000 new systems in simulation and one

track per system. For each system, we use both methods to drive the robot down the same

track 5 times, starting with zero state-transition observations on the first run and adapting

the model at each time step throughout the 5 runs. For the two methods, we plot the

average lap time and number of constraint violation for the 5 runs, across the 1000 systems,

in Figure 4.3.

Our method exhibited far fewer constraint violations than the baseline method that did

not use risk aware MPPI. The average number of violations among all runs were 0.015 for

our method and 0.49 for the risk unaware MPPI method. The risk unaware MPPI method

exhibited more violations on the first run, with an average of 0.59, than on the last run,

with an average of 0.45, due to the model adapting and improving. For both methods,

the lap time dramatically improved from the first run to the second run, but had minimal
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Figure 4.3: Risk Aware vs Risk Unaware MPPI with Adaptive Model. Lap time and number
of violations per run are shown, with the average over all systems as the solid line and the
standard error shown as the shaded region.

improvements after the second run. We attribute this to the robot driving down the same

track for all runs leading to saturation of useful information that could be extracted after

the first run. The risk unaware MPPI method had a significantly faster lap time than the

risk aware MPPI method. However, it achieved faster lap times by driving aggressively off

track and leveraging the penalty-free resets to the middle of the track whenever a constraint

was violated. This evidence supports hypothesis 3, since the risk aware MPPI is shown to

have significantly fewer constraints compared to the risk unaware version.

4.6.3 Sim2real Transfer

In this experiment, we evaluated the ability of our method to transfer to real world dynamics,

shown in Figure 4.4. As a baseline, we trained a model-based reinforcement learning policy
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in simulation using only the fixed nominal dynamics, meaning simulation parameters were

a best approximation of the real world system and not varied. The training procedure for

this baseline method followed closely to that from Section 4.6.1. We then ran the policy

from both methods on a real world robot. Between trials, we introduced variations to

the system’s dynamics by changing the terrain type (concrete, dirt, and gravel) and the

robot’s configuration by changing the scaling of steering and throttle commands as well as

swapping the standard rubber tires with low friction PLA 3D printed tires. For each new

system dynamics, we reinitialized our method and allowed it to adapt to the new system’s

dynamics. The baseline method was fixed and therefore was not retrained whenever the

system changed. In total, we ran 10 trials of each.

For the real world system, MPPI controls was ran on board at 10 Hz using an onboard

computer with an Intel i7 processor and NVIDIA GeForce RTX 2060 GPU. For odometry, we

used a Microstrain 3DM-GQ7-GNSS/INS sensor. This sensor comprised of a dual antenna,

multi-band RTK GPS sensor along side an IMU. Signals from the RTK GPS sensor and

the IMU were fused using an extended kalman filter. To account for noise in real-world

odometry measurements, we also added Gaussian noise to the measured state in simulation

during training. The variance in noise added was determined by keeping the real-world robot

stationary, and measuring the variance in the odometry readings.

For each trial, we used both methods to drive the robot down a fixed track 5 times. For

our adaptive method, the robot was given no state-transition observations at the start of

the first run, but allowed to adapt using collected observations at each time step throughout

the 5 runs. For the baseline method, performing more runs had no effect since there was

no mechanism for adaptation. As such, we averaged the performance over all runs for the

baseline method. For all runs, the robot was automatically stopped anytime a constraint was

violated and manually placed on the center of the track. For every reset, we assigned a 10

second penalty, as the manually resets usually took longer than 10 seconds. The penalized

lap times for both methods are shown in Figure 4.5.

72



Figure 4.4: Sim2real Experiments. From top to bottom, the wheeled robot driving on dirt,
concrete, and gravel. The red line indicates the predefined track for each trial. The tires
were changed from compliant rubber tires to hard plastic tires in the dirt experiment shown.

Our method completed all runs with a 100% success rate, where success is defined as

completing the track with no constraint violations. This is much higher than the baseline,

which had a 40% success rate. Furthermore, we ran a paired t-test between the first and

second run’s laptime for our method and found significant improvement for the second run

with a p value of 0.017. However, none of the successive runs showed any further significant

improvement (p < 0.05) from the second run. Again, we attribute this to the fixed track

leading to saturation of useful adaptation information after the first run. For the baseline

method, which used a non adaptive model, there was no statistically significant difference

in lap times between runs. This provides additional evidence for hypotheses 1 and 2,
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Figure 4.5: Adaptive Model vs. Nominal Model for Sim2real. For the adaptive model,
we show average lap time of different systems across each run. Given the nominal model’s
inability to adapt leading to no difference in method between runs, we plot the average across
all runs and systems. Shaded region indicates standard error.

since the adaptive approach is shown to remain safe in low-data regimes, while continually

improving as it collects more observation data across different real-world environments.

4.7 Discussion

Here, we note some benefits of using System Identification Transformer with Adaptive Dy-

namics Models observed in our experimental results. We also note some potential future

extension that could help extend the capabilites of this framework.

4.7.1 Benefits of Method

Our approach in this chapter allows for effective robust controls in scenarios where target

system observations is extremely limited, or even non-existent. In our experiments, both

in simulation and in the real world, we demonstrate the effectiveness of our approach in
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safely driving unseen systems right from the initialization, with zero state-transition obser-

vations. The robustness comes as a result of capturing uncertainty in predictions and using

an uncertainty-aware decision making process (Risk-Aware MPPI). While we also took the

approach of capturing uncertainty and using a robust decision making framework in Chap-

ter 2, the prior framework was unable to effectively control the robot when target system

observations were extremely limited. The drastic increase in sample efficiency for this new

framework stems from the use of large training datasets collected on a diverse range of

simulated systems. In this framework, we assume a general understanding of the robot’s

morphology, but not its specific. For example, we might know that system is a wheeled

robot with front and rear steering, but not know the exact frictional forces of its tires.

During training, we sample different variations of this morphology and train the System

Identification Transformer to capture an understanding of the target system’s specifics and

the adaptive dynamics model to probabilistically predict state-transitions given the under-

standing. While the framework from Chapter 2 viewed epistemic uncertainty as uncertainty

in neural network parameters stemming from insufficient data, this new framework effec-

tively views epistemic uncertainty as uncertainty in the target system’s specifics within the

known morphology. In scenarios where target system observations are extremely limited,

dynamics model predictions still carry a higher level of epistemic uncertainty. However, they

maintain a basic understanding of the robot’s morphological characteristics, enabling them

to be effectively utilized in decision making.

Furthermore, our method facilitates continual model adaptation and thus policy en-

hancements as the robot operates and accumulates more state-transition observations. This

adaptability stems from the attention mechanisms in the System Identification Transformer,

which can process variable-length observations and focus on pertinent segments of extended

sequences to distill insights about the system’s dynamics. In our experiments, as more state-

transition observations were gathered, our method exhibited better performance, indicating

its adaptability to the particular dynamics of the target system. This adaptability was par-
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ticularly evident in trials where observations were collected across different tracks. Each

track appeared to enrich the system’s understanding, subsequently improving the resulting

policy’s performance. This improvement in policy performance can be seen as a result of

reduced epistemic uncertainty. As more observations are available, the System Identification

Transformer is able to gain a clearer understanding of the target system’s particular dynam-

ics. Thus, decision making can better tailor the driving strategy to the exact capabilities of

the target system.

4.7.2 Future Work

One notable limitation of our approach in this chapter is the assumption of static system

dynamics. We assume that all state-transition observations collected on the target system

are a result of driving under the same system dynamics. Furthermore, we assume that these

system dynamics do not change in the future. However, in real-world settings, a robot’s dy-

namics can often change due to factors such as encounter new types of terrain, degradation

of hardware, or change of payload. A relatively simple extension to this framework would

be in-situ detection of changes in system dynamics, and subsequent re-initialization of the

adaptation process, i.e. restarting the set of state-transition observations H and collecting

new observations. Future work could also potentially implement a more sophisticated al-

ternative to the System Identification Transformer that actively predicts how the system’s

dynamics might change using onboard sensors such as RGB cameras potentially combined

with pre-existing terrain segmentation frameworks [12,29,30].

Another potential concern for this framework is the requirement for diverse simulation

training data. This framework does not assume that any sampled simulated system matches

the real-world system exactly. However, it does assume sufficient diversity within the training

systems to encompass the range of potential real-world systems. Furthermore, the perfor-

mance of the System Identification Transformer is reliant on the diversity of observations

seen on training systems. This is relatively easy for the simple task of driving over flat-terrain
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as the variety of possible observations are somewhat limited. However, more complex tasks

might have a wider range of potential observations. For example, for the task of driving over

obstacles, real-world observations might include interactions with a wide range of differ-

ently shaped objects. This increased complexity can be better seen and is discussed further

in Chapter 5. Careful consideration is required to ensure enough diversity in simulation

training dataset.

4.8 Conclusion

In this chapter, we introduce our sim2real transfer framework that balances robustness with

adaptability. Our approach trains two neural network models, the System Identification

Transformer (SIT) and the Adaptive Dynamics Model (ADM), in simulation while random-

izing simulation dynamics parameters. The SIT leverages attention mechanisms to distill

state-transition observations collected on the target system into a context vector, which

succinctly encodes knowledge about the particular system’s dynamics. The ADM predicts

state-transition distributions given the robot’s current state, action, and context vector from

the SIT. Together, the SIT and ADM capture a probabilistic understanding of a target sys-

tem’s dynamics from state-transition observations on the target system. In real-time, our

framework utilizes MPPI combined with a CVaR cost to safely control the system under its

current understanding of dynamics.

The experimental results in this Chapter show that leveraging data from many simulated

systems can heavily reduce the requirement for real-world training data. We show that even

upon initialization, when there is no real-world data, the dynamics model can still result in

safe, but low performing, driving policies. Furthermore, the model can be tailored to the

target system, resulting in increased performance, with minimal amounts of data from the

target system. This addresses the first key question posed in Chapter 1,“Can leveraging

low quality simulation data provide insights into real-world vehicle dynamics and reduce the
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amount of real-world data needed?”

Furthermore, the quantification of modeling uncertainty in this framework is a vital

component to answering the second key question posed in Chapter 1, “Can quantifying

uncertainty in an imperfect dynamics model improve long-horizon decision making?” We

will demonstrate this further in Chapter 5.

In this chapter, we opted for the more straightforward task of driving along a flat-terrain

track for our experiment setup to demonstrate the capabilities of our approach. For this

purpose, we used risk-aware Model Predictive Path Integral (MPPI) as our decision-making

strategy, given its suitability. However, it’s important to note that the modeling approach

and the benefits derived from this chapter are not confined to this task alone. This ap-

proach is broadly applicable to any uncertainty-aware decision-making process. Therefore,

the insights and methodologies developed here can be extended to a wide range of tasks that

demand a balance of robustness and task performance. In Chapter 5, we combine this mod-

eling approach with insights from Chapter 2 to form an adaptive rough terrain navigation

framework.
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Chapter 5

Robustly Adapting Non-Myopic

Navigation to New Dynamics

Off-road navigation requires the robot to drive at the edge of its physical capabilities while

considering the obstacles ahead to avoid reaching dead-ends. The robot’s decision making

must be non-myopic and choose long-horizon driving routes that avoid non-traversable ob-

stacles on the way to the goal. At the same time, decision making must be aware of the

robot’s dynamic capabilities to understand what obstacles can be traversed and decide how

the robot should traverse them. This is a challenging task as the vehicle’s dynamics can be

highly complex and difficult to model. We argued in Chapter 1, that, in many cases, it is

impossible to perfectly model the system’s dynamics and model predictions will inevitably

have some prediction error.

In Chapter 2, discussed our model-based reinforcement learning framework for rough

terrain navigation. In this framework, we trained a terrain-aware dynamics model using real-

world data to approximate the system’s dynamics when driving over uneven terrain. With

the understanding that this model will never be perfect, we quantified aleatoric and epistemic

uncertainty in the model’s predictions. This framework then used a closed-loop divergence

constraint during decision making to avoid trajectories that could possibly be problematic
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for the low-level trajectory tracker given the estimated potential trajectory prediction errors.

This framework enables long-horizon decision making under highly complex rough terrain

driving dynamics.

This decision making framework is robust towards epistemic uncertainty, which stems

from having insufficient training data. Thus, we’ve shown that it could effectively navigate

the robot even given limited training data collected offline and off policy (with a human

driver a priori). However, when real-world training data is extremely limited, the extreme

amounts of epistemic uncertainty will still render the model useless for decision making.

In Chapter 4, we offered a different perspective on epistemic uncertainty, supported by the

availability of cheap simulations. Instead of viewing epistemic uncertainty as uncertainty in

neural network model parameters, it could be viewed as uncertainty about the exact specifics

of the true system within a domain of systems. We described a framework where different

system variations within the given system morphology were simulated and used to train a

system identification transformer and adaptive dynamics model. Given whatever limited

observations are available from the target system, the system identification transformer ex-

tracts a succinct latent context vector that encodes an understanding about the particulars

of the given system. This context vector is fed into the adaptive dynamics model to tailor

its predictions to the target system. The probabilistic predictions from the dynamics model

then capture not only aleatoric uncertainty inherent to the system, but also epistemic un-

certainty stemming from having insufficient observations to properly identify the specifics of

the target system.

This alternative dynamics modeling approach and perspective on epistemic uncertainty

has a number of benefits when combined with an uncertainty-aware decision making process.

In situations where real-world data is extremely limited, the resulting dynamics model still

provides useful predictions, although with higher levels of uncertainty. In fact, the robot can

be safely controlled even with no real-world observations, albeit at a sacrifice of performance.

Furthermore, as more observations are collected for the target system, the dynamics model
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and resulting policy becomes more tailored towards the target system, resulting in higher

performance.

In this chapter, we extend and combine concepts from prior chapters to form a robust

and adaptive rough terrain navigation framework via training in a diverse set of simulated

systems. This framework is a culmination of the concepts discussed throughout this disser-

tation. We demonstrate that this framework: 1) can perform long-horizon dynamics-aware

decision making, 2) is capable of adapting to the dynamic capabilities of a new target system,

and 3) is aware of and robust towards uncertainty stemming from insufficient target system

observations.

In Section 5.1, we discuss an approach to training an adaptive terrain-aware dynamics

model that can be used for closed-loop trajectory prediction while capturing prediction

uncertainty. In Section 5.2, we discuss how the divergence constraint from Chapter 2 can be

used within an RRT planning framework [55]. In Section 5.5, we discuss the findings from

the results and potential future improvements. Finally, we make some concluding remarks

in Section 5.6.

5.1 Adaptive Closed-Loop Terrain-Aware Predictions

Rough terrain can have a drastic impact on the vehicle’s driving dynamics. For example, a

robot may be capable of driving down stairs, but incapable of driving up them. Furthermore,

the exact properties of the robot and the type of terrain it is driving on also all effect the

vehicle’s driving capabilities. For example, low friction tires or loose soil may inhibit its

ability to drive up inclines. Building upon concepts from Chapter 4, we train an Adaptive

Dynamics Model (ADM) and System Identification Transformer (SIT) on a wide range of

simulated dynamics. These two networks work in conjunction to adapt dynamics predictions

towards a particular target system given state-transition observations from the target system.

Furthermore, dynamic predictions capture epistemic uncertainty stemming from insufficient
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target system observations for proper system identification, as well as aleatoric uncertainty

inherent in the system. Building upon concepts from Chapter 2, we use a terrain-aware

architecture for both the ADM and SIT. We also train the ADM to capture closed-loop

dynamics, that is predict the robot’s state transitions given different reference trajectories

and the robot’s low-level trajectory tracker’s capabilities.

5.1.1 Terrain-Aware System Identification Transformer

Following the framework from Chapter 4, we train a System Identification Transformer to

extract relevant information about the target system’s dynamics given observations collected

as the system operates. Similar to the prior framework, observations consists of an arbitrary

length set of robot states st, actions at, and resulting state transition s′t. However, in this

framework, we also aim to extract information about the effects that uneven terrain has on

the particular target system. As such, we provide terrain heightmap observations to the SIT.

Following the framework from Chapter 2, we transform all the System Identification

Transformer inputs into a robot-centric form for sample efficiency. For each individual ob-

servation (st, at, s
′
t), the corresponding robot-centric observation consists of a robot-centric

form of the robot state, denoted as slt, a robot-centric terrain heightmap, denoted as ml
t, the

robot action at, and the state transition s′t. Following Chapter 2, we assume that the robot

state st includes a global terrain heightmap from which ml
t is generated. Note that the robot

action, corresponding to the throttle and steering, is already inherently in a robot-centric

form. Similarly, state-transitions were inherently in a robot-centric form as they consisted

of the robot’s next state st+1 relative to the robot’s current frame at state st. In our im-

plementation, we also include the prior state-transition s′t−1 in each observation to provide

the System Identification Transformer with insight about the robot’s current velocity as it

effects the robot’s driving capabilities. For example, the robot may be capable of traversing

a slippery incline depending on if it built up momentum.

For the SIT’s neural network architecture, we use a combination of Convolutional Neu-
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ral Networks [89] and Self Multi-head Attention Networks [133]. For each robot-centric

observation, we first process the robot-centric heightmap using a shallow ResNet like archi-

tecture [134], where each layer consists of CNNs with a residual connection. The output of

the ResNet is concatenated with the rest of the robot-centric observations (robot state, ac-

tion, and state-transition). All of the processed robot-centric observations are then fed into

an attention network. In this framework, we opt for a simpler self attention network rather

than the transformer encoder used in Chapter 4. We use a single multi-head self-attention

network. Similar to before, we opt not to use positional encoding for the observation in-

put sequences. All outputs of the multi-head self attention network are then aggregated by

taking their mean, resulting in a single context vector c.

Similar to before, this context vector c succinctly encapsulates an understanding of the

target system’s dynamics informed by whatever state-transition observations are available

from the target system. Downstream, probabilistic predictions from the ADM are condi-

tioned on this context vector to adapt the model to the current understanding of the target

system’s dynamics.

5.1.2 Closed-Loop Terrain-Aware Adaptive Dynamics Model

We train an Adaptive Dynamics Model that captures the effects of uneven terrain as well as

the effects of the low-level trajectory tracker. In Chapter 2, we trained a dynamics model

that predicted state-transition probability distributions given the robot states, actions, and

terrain heightmap. In that framework, we captured the effects of the low-level trajectory

tracker by assuming closed-form knowledge of the low-level trajectory tracker in the form:

at = āt + ftrack(s0, ..., st, d̄), (5.1)

where s0, ..., st are the robot’s actual states, and d̄ = (s̄0, ..., s̄T ) is a reference trajectory

containing reference states and feed forward actions. at is the combination of the planned,
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feed-forward action āt and the corrective action applied to the robot to track the reference

trajectory.

However, we acknowledge that this assumption may not always hold. For example,

if an optimization based trajectory tracker is used, then ftrack may not be a closed-form

equation and may require significant computational resources to compute. Or, more complex

trajectory trackers may require additional observations, such as RGB-D images, which are

unavailable given only states s0, ..., st. Here, we take an alternative approach to modeling

the closed-loop effects of the low-level trajectory tracker to generalize the methods to a wider

range of trajectory tracking controllers. Instead of conditioning state-transition predictions

on actions, we directly condition predictions on the reference trajectory directly. Later in

Section 5.2, we discuss how this transforms decision making from a search in the nominal

action space to a search in the reference trajectory space.

The Adaptive Dynamics Model in this framework, denoted as

Pθ(st+1|st, d̄lst , ct), (5.2)

predicts a probability distribution of the robot’s next state st+1, given its current state st,

context-vector ct from the System Identification Transformer described in Section 5.1.1, and

the reference trajectory of the robot’s low-level trajectory tracker.

As with the SIT network, we transform all ADM inputs into a robot-centric form for

better sample efficiency. Just like the dynamics model from Chapter 2, the ADM’s in-

puts includes a robot-centric form of the robot’s state, denoted as slt, and a robot-centric

heightmap, denoted as ml
t. In our prior framework (Chapter 2), we conditioned dynamic

model predictions on actions (throttle and steering) and calculated the feedback action using

Equation 5.1 during trajectory prediction to capture the effects of the low-level trajectory

tracker. In this framework however, we directly condition predictions on the reference tra-

jectory. At each time step during trajectory prediction, we use the predicted robot state ŝt
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to transform the reference trajectory d̄ into a robot-centric form d̄lŝt , which is then fed into

the ADM. We denote this mapping function as d̄lst = RC(d̄, st).

The output of the neural network is the mean µ and covariance matrix Σ corresponding

to the multivariate Gaussian distribution estimate of the robot’s state transition, or robot’s

st+1 relative to its state st. More specifically, the covariance component of the neural network

output is the off-diagonal and positive diagonal terms of a lower triangular matrix L, where

Σ = LLT . By sampling from this distribution at each time step and chaining individual

time step predictions, the ADM can be used to predict the robot’s trajectory distribution

as it drives over uneven terrain tracking a reference trajectory. Furthermore, the predicted

trajectory distribution can be adapted to the target system by providing state-transition

observations. This trajectory distribution prediction process is summarized in Algorithm 7.

Algorithm 7: Adapted Closed-Loop Trajectory and Divergence Prediction

Input : Reference Trajectory: d̄ = (s̄0, ..., s̄T )
Initial State Distribution: ŝ10, ..., ŝ

I
0

Target System Observations: H0

Output: Predicted Trajectory Distribution: D̂ = (d̂1, ..., d̂I), d̂i = (ŝi0, ..., ŝ
i
T )

Predicted Divergence: u

// Infer context from target system observations

c0 ← Tθ(H0)

// Predict trajectory distribution

u← 0
for t ∈ [0, T − 1] do

for i ∈ [1, I] do

// Transform reference trajectory to be robot-centric

d̄l
ŝit
← RC(d̄, ŝit)

// Calculate state-transition distribution and sample next state

ŝit+1 ∼ pθi(st+1|ŝit, d̄lŝit , c0)

// update divergence

u← max(u, 1
I

∑I
i=1∥ŝit − s̄t∥22)
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5.2 Divergence Constrained Planning

In our prior decision making framework, we used a divergence constraint to prevent the

optimizer from exploiting modeling errors. This divergence constraint was defined as

u(d̄, D̂) < Umax, (5.3)

where Umax is a hyperparameter which is set based on the capabilities of the low-level tra-

jectory tracker and u is the divergence metric. The divergence metric is defined as

u(d̄, D̂) = max
t

1

I

I∑
i=1

∥ŝit − s̄t∥22, (5.4)

where d̄ = (s̄0, ..., s̄T ) is the reference trajectory and D̂ = {d̂0, ..., d̂I} is the predicted closed-

loop trajectory distribution, where d̂i = (ŝi0, ..., ŝ
i
T ) is a single trajectory roll out predicted

using the dynamics model. Satisfying this divergence constraint ensures that the robot

robot’s true state is unlikely to deviate too far from the reference trajectory, meaning that

the low-level controller can effectively track the reference trajectory. The process for cal-

culating divergence metric during closed-loop probabilistic trajectory prediction is shown in

Algorithm 7.

This divergence constraint was previously used within a constrained trajectory optimiza-

tion framework utilizing a gradient-based Augmented Lagrangian optimizer [139]. However,

in Chapter 2, we noted a few challenges of this constrained trajectory approach. First, this

optimizer, based on gradient descent, was prone to local minima issues, resulting in poor

solution trajectories that were locally optimal but did not reach the goal. In our prior work,

we mitigated this issue by executing multiple optimizations simultaneously, each initiated

with distinct random seeds, in the hope that at least one would yield a good solution. Sec-

ond, calculating gradients can be computationally intensive, especially for longer horizon

trajectories since individual time step predictions are chained along the horizon.
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While previously we opted to use the divergence constraint within constrained trajectory

optimization, this divergence constraint can also be used to inform other decision making

frameworks about the robot’s dynamics and capabilities. In this section, we describe how

this divergence constraint can be used within a Rapidly exploring Random Trees (RRT)

planner [55] to find a feasible path over rough terrain to the goal. This approach is similar

to Convergent Planning [65], where kinodynamic RRT is guided by divergence metrics.

Unlike trajectory optimization, RRT can explore large areas quickly and offers probabilistic

completeness so that the probability of finding a feasible path to the goal approaches 1 as

the number of search iterations increases, given that a solution exists. While RRT offers

probabilistic completeness guarantees, the solution found is unlikely to be optimal. In this

application, we are primarily concerned with finding a path to the goal that is feasible

(satisfies the divergence constraint), and less concerned with optimality. However, in our

approach, we perform path smoothing after the RRT search process to improve optimality

of the final solution, similar to other approaches [140–142].

5.2.1 Divergence Constrained RRT

In RRT, a search tree, rooted at the initial state, grows by selecting random points in the

search space and connecting them to the nearest existing node in the tree, while ensuring

that these connections satisfy a collision check to avoid obstacles in the environment. RRT

is normally used in environments where obstacles are well defined, such as environments

with walls, other vehicles, or pedestrians. For rough terrain navigation, what objects are

considered an obstacle are not as well defined, but depends on the robot’s capabilities as

well as how it approaches the object. Instead of traditional collision detection, our RRT

approach uses the divergence constraint to inform whether a trajectory is likely to cause

failure when executed.

During each iteration of RRT search, we sample a random state srand within the con-

figuration space or choose the goal with probability pgoal. We then choose the closest node
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on the existing search tree snear and generate a reference trajectory of max length Texpand

from snear to srand using a steer function denoted as d̄ = Steer(snear, srand, Texpand). In our

implementation, we used a pure pursuit based steer function, as described in Section 5.3

to generate a trajectory from snear to srand, but the choice of steer function is not unique

and may be robot dependant. We then use Algorithm 7 to predict the robot’s trajectory

distribution and divergence as it tracks this reference trajectory. If the predicted divergence

satisfies the constraint from Equation 5.4, we add the last state of the reference trajectory

snew as a new node to the search tree with the associated edge (snear, snew).

Note that given the sequential nature of trajectory prediction and divergence evaluation,

we find that it is important to reinitialize trajectory prediction (Algorithm 7) with the

previously predicted state distribution. In our implementation, we also include the predicted

last state distribution whenever adding a new new node to the search tree. If this new node

is then expanded in the future, we reinitialize trajectory prediction with the saved last state

distribution.

Once a node that matches the goal is added to the search tree, the planner then works

backwards through the tree, concatenating all reference trajectories from parent nodes to

children nodes until the initial root node is found. The result of this process is a continuous

reference trajectory from the start state to the goal that satisfies the divergence constraint.

Thus, if the robot tracks this trajectory with its low-level trajectory tracker, it should be

able to traverse any obstacle along the path and reach the goal. The Divergence Constrained

RRT search process is depicted in Algorithm 8. In Section 5.3, we provide details on our

implementation the setup of our experiments. In Section 5.4, we provide some qualitative

results illustrating the capabilities of this framework.

5.2.2 Divergence Constrained Trajectory Pruning

While Divergence Constrained RRT (Algorithm 8) results in a solution reference trajectory

to the goal that satisfies the divergence constraint, if one exists, its solutions are often
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Algorithm 8: Divergence Constrained RRT Search

Input : Starting State: sstart
Goal Location: sgoal
Target System Observations: H

Output: Solution Trajectory: d̄RRT

// Initialize tree root and initial prediction distribution at sstart
znew ← NewNode(sstart, D̂last = (sstart, ..., sstart))
T ← InitializeTree(znew)
while znew ̸= goal do

// Generate reference trajectory to random state

srand ← RandState() or goal with probability pgoal
znear = (snear, D̂last)← Nearest(T, srand)
d̄← Steer(snear, srand, Texpand)

// Predict Trajectory Distribution & Divergence with Algorithm 7

D̂, u← Predict(d̄, D̂last,H)

// Add new node to tree if divergence constraint satisfied

if u < Umax then

snew, D̂last ← LastTimeStep(d̄, D̂)
znew ← NewNode(s̄new, D̂last)
T ← InsertNode(T, znear, znew)

// Work backward through tree to find solution reference trajectory

d̄RRT ← Backward(T, znew)

suboptimal. The issue of suboptimal solutions stems from the use of standard Rapidly-

exploring Random Tree Algorithm. RRT* addresses the problem of suboptimality by adding

a rewiring step that checks if new nodes added to the search tree may serve as a more optimal

parent to neighboring nodes in the tree [143]. Unfortunately, we found that extending

Divergence Constrained RRT to RRT* was non-trivial due to the sequential and continuous

nature of trajectory prediction an divergence evaluation.

Given two reference trajectories, where both trajectories satisfies the divergence con-

straint individually and the first trajectory ends at the starting state of the second trajec-

tory, combining the two trajectories into one continuous reference trajectory may result in

a trajectory that does not satisfy the divergence constraint. In some cases, the divergence

evaluation at the end of the first trajectory may be nearing, but not past, violation. If
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trajectory prediction and divergence evaluation for the second trajectory is incorrectly reini-

tialized with the starting state of the second trajectory, the divergence captured from the

first trajectory will be lost and reset to zero. Divergence for any given trajectory must be

evaluated in the trajectory’s entirety.

Instead of using RRT*, we opted to improve the solution trajectory from Divergence

Constrained RRT using random pruning. In this approach, we iteratively improve upon a

solution trajectory by sampling a random subtrajectory and attempting to replace it with

a better subtrajectory. For each sampled subtrajectory, we generate multiple candidate

replacements. Out of all the candidates and original subtrajectory, we choose the shortest

replacement such that the resulting complete solution trajectory still satisfies the divergence

constraint. Furthermore, with probability pgoal, we choose a random state within the solution

trajectory and generate a direct reference trajectory from the chosen state to the goal. We

replace the subtrajectory after the chosen state with the direct path to the goal if the resulting

trajectory satisfies the divergence constraint. This process is depicted in Algorithm 9.

5.3 Simulation Experiment

We demonstrate the capabilities of this robustly adapting rough terrain navigation framework

in simulation. In our experiments, different variants of a wheeled robot are tasked with

driving over rough terrain to the goal. For each variant, we evaluate whether the robot

can gain an understanding of its specific rough terrain traversal capabilities and align its

navigation strategy to match. Furthermore, we evaluate if the robot is capable of adopting

a more conservative navigation strategy in situations where observations from the specific

system are virtually non-existent.

Similar to Chapter 4, we use a four wheel drive vehicle with independent front and rear

steering and vary robot parameters to generate different system variants. For simplicity

however, we primarily vary tire traction in this implementation and keep other parameters
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Algorithm 9: Divergence Constrained Trajectory Pruning

Input : Initial Solution: d̄RRT

Goal Location: goal
Target System Observations: H

Output: Refined Solution: d̄prune

d̄prune ← d̄RRT

for number of prune iterations do
// Choose random segment to replace

ts, te ← RandomWindow(d̄prune)
d̄best ← d̄prune[ts : te]

// Iterate through possible replacements to find best option

for d̄sub ∈ CandidateSubTrajs(d̄prune[ts], d̄prune[te]) do

// Predict divergence of resulting complete trajectory

d̄cand ← Substitute(d̄prune, ts, te, d̄sub)
u← EvalDivergence(d̄cand,H)

// Choose substitute if feasible and more optimal

if u < Umax and Cost(d̄sub) < Cost(d̄best) then
d̄best ← d̄sub

d̄prune ∈ Substitute(d̄prune, ts, te, d̄best)

mostly fixed. However, this variation in tire traction results in a drastic difference in the

robot’s ability to traverse different obstacles. The environments that the robot is tasked

with navigating through are shown in Figure 5.1 and Figure 5.2. For simplicity, we kept the

environment mostly fixed during training and evaluation, with only small amounts of Perlin

noise added to the terrain.

Data Collection & Model Training Our approach to data collection and model training

follows closely to that of Chapter 4. We use a distributed training architecture, where training

data is generated asynchronously while the System Identification Transformer and Adaptive

Dynamics Model is trained. For each system, we generate training data by driving the robot

to random goal configurations in the environment using the steer function to generate a

reference trajectory and the trajectory tracker to execute it. We collect the following training

data: robot’s states (x, y, heading angle, prior state transition), robot’s actions (throttle,
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front steer, rear steering), world terrain map, reference trajectory, robot state transitions

(x, y, heading angle change relative to prior body frame). For each system, we collect 256

time steps of data, resetting the robot whenever it reaches the end of the reference trajectory,

or upon failure, i.e. robot flips over or deviates too far from the reference trajectory.

During model training, we iteratively sample a system variant from the collected data.

We train both the System Invariant Transformer and the Adaptive Dynamics Model end-

to-end. From the 256 time steps of data, we choose a 32 continuous time step trajectory to

predict with the Adaptive Dynamics Model. We provide the System Invariant Transformer

with all the data collect prior to that randomly chosen 32 time step trajectory, thus varying

the amount of data given to the System Invariant Transformer.

We used an Adam Optimizer [117] to optimize the neural networks. Similar to [133],

we linearly increased the learning rate initially during a warm up period then decreased it

proportionally to the inverse square root of the training iteration count. For our implemen-

tation, we used a warm up period of 10, 000 training steps, where the learning rate increased

up to 0.001.

Pure Pursuit Trajectory Tracker For the robot’s trajectory tracker, we use a pure

pursuit trajectory tracker [144], but adapted for a vehicle with all-wheel steering. In the

standard formulation of a pure pursuit path tracker for an Ackermann steered (front-wheel

steer only) vehicle, the vehicle chases a look-ahead point on the desired path. The steering

angle of the vehicle is chosen such that the turn arc of the vehicle passes through that point.

For a front-wheel steered vehicle, the vehicle’s heading is always tangent to the turn arc,

so the vehicle has no control over what orientation it reaches the look-ahead point at if it only

holds its steering constant. For a all-wheel steered vehicle however, the robot can control

its orientation by changing the ratio of steering angle for the front and rear wheels. This

increased maneuverability gives the robot the ability to reach a desired look-ahead point at

a desired heading angle.
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In our pure pursuit trajectory tracker implementation, the reference trajectory is defined

as a sequence of desired poses. During tracking, the robot chooses a look-ahead pose based

on a predetermined time horizon. It then chooses steering angles (front and rear) such that

if held constant, the chosen steering angles will guide the vehicle to the look-ahead pose. For

throttle control, we calculate the arc length between the robot and the look-ahead pose and

use this distance as an error input to a proportional (P) controller.

This variant of pure pursuit gives the high level path planner additional control of the

vehicle. By choosing an appropriate trajectory, it result in behaviors such as strafing (crab

steering), or tight turning.

Steer Function The steer function generates a trajectory to either a pose (x, y position

and heading angle) or a location (just x, y position). It was used during to RRT and during

data collection to drive the robot to random poses. For generating a trajectory to a pose, we

used a similar approach to that of the pure pursuit trajectory tracker. We calculated the front

and rear steering angle needed such that if robot drove holding the steering angles constant,

the robot would reach the desired pose. We then discretized the expected trajectory of the

robot if it held these two steering angles constant and drove at a constant speed.

For steering to a location, the path consisted of a tight turn, where the robot’s heading

was aligned with the goal location at the end of the turn, followed by a straight line path to

the goal. The turn radius of the tight turn was defined by the tightest turn the robot was

capable of when steering both front wheels and rear wheels together.

Candidate Subtrajectories for Pruning During trajectory pruning (Algorithm 9), we

randomly choose a window in the trajectory and attempt to replace the subtrajectory with a

more optimal one. During this process, multiple candidate subtrajectories are generated and

evaluated for cost and feasibility. All candidate subtrajectories start and end at the same

state as the original subtrajectory. We use two options to generate candidate subtrajectories:

The steer function described previously, and the Dubins path [145] given the turn capabilities
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of the robot.

5.4 Simulation Results

We evaluated the navigation framework’s ability to 1) choose robust strategies when unsure

about the target system’s capabilities, and 2) adapt its strategy to the target system’s

capabilities given target system observations. We chose two systems for evaluation. One

system had low traction, and could only drive up gentle slopes. On the other hand, the

other system had high traction and could drive up steep slopes and even some stairs. Here,

we qualitatively analyzed the framework’s decision-making process and strategy adaptation.

For each test, we generated feasible trajectories to the goal using the divergence con-

strained RRT (Algorithm 8) and trajectory pruning (Algorithm 9), then tracked the tra-

jectories using the robot’s low-level trajectory tracker. For each system, we ran two trials.

One trial before using the trained predictive model before any adaptation data was collected

on the particular system. Then one trial after giving the System Identification Transformer

data to adapt the model to the specific system. Adaptation data was collected through one

short trial of the robot tracking a manually defined trajectory.

The initial trail is similar to Domain Randomization, where the robot’s policy is trained

to be robust across a wide spectrum of systems. Before the model is adapted to any partic-

ular system, its probabilistic predictions capture possible outcomes for a wide spectrum of

systems. The divergence constrained RRT planner then finds a strategy that will be effective

across this range of dynamics. On the other hand, after adaptation, the model and resulting

driving strategy is tailored to the particular target system.

5.4.1 Driving Up Stairs

In the first test, the robots were tasked with driving to the top of a set of stairs, which were

surrounded on both sides by ramps. Both systems were capable of driving up the ramp, but
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only the high-traction system could drive directly up the stairs. While driving up the ramp

is a safer route, driving directly up the stairs is a more direct and lower cost route. The

results of the trials for both systems before and after adaptation are shown in Figure 5.1.

Before adaptation, the path planner chooses the more conservative path of driving up the

ramp. For both systems, we collected adaptation data by having the robots track a trajectory

going straight up the stairs. Notice that the high-traction system was able to climb the stairs

and track the trajectory faithfully, whereas the low-traction system failed and got stuck at

the bottom of the stairs. After adapting the dynamics model to the low friction system,

the strategy chosen by the planner did not change much and still avoided going straight

up the stairs. However, after adapting to the high friction system, the planner chose the

more aggressive strategy of driving directly up the stairs, showing a gained understanding

of the robot’s capabilities. Notice that the conservative strategy of driving up the ramp still

required the robot to drive across the stairs. This means that the planner must not simply

avoid stairs. The model must understand that ascending stairs may be problematic, while

descending or driving across them is feasible.

5.4.2 Slope Driving Given Stair Demonstration

As another simple example, we tested the approach in an environment again containing

stairs surrounded by ramps. However, in this scenario, the low-traction system was unable

to drive up the ramp sides. The robot was placed on one side of the obstacle with the goal

on the other. The direct route to the goal involved driving up and down the ramp sides of

the obstacle, which only the high-traction system was capable of. The safer, but less direct,

route involved driving around the obstacle to the goal. The results of the trials for both

systems before and after adaptation are shown in Figure 5.2.

Similar to the results before, the path planner chooses the more conservative path of

driving around the obstacle for both systems. Again, we collected adaptation data by having

the robots track a trajectory going up the stairs. Again, only the high-friction system was
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Figure 5.1: A low-traction robot and high-traction robot navigating a stair obstacle. Before
adaptation, both systems choose a safe route that avoids driving directly up the stairs
(top). The dynamics model was adapted to each system using data collected through one
demonstration (middle). After adaptation, the planner matches the route to the capabilities
of each system, with the high-traction system’s route going directly up the stairs (bottom).
The reference trajectory chosen by the planner or manually chosen (for demonstration) is
shown in red. The goal is shown in green. Robot’s actual path is overlaid.
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Figure 5.2: A low-traction robot and high-traction robot navigating a ramp obstacle. Be-
fore adaptation, both systems choose a safe route that avoids driving directly up the ramp
(top). The dynamics model was adapted to each system using data collected through one
demonstration (middle). After adaptation, the planner matches the route to the capabilities
of each system, with the high-traction system’s route going directly up the ramp towards
the goal (bottom). The reference trajectory chosen by the planner or manually chosen (for
demonstration) is shown in red. The goal is shown in green. Robot’s actual path is overlaid.
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able to track the trajectory faithfully and make it up the stairs. Again, after demonstration,

the planner changed only the plan for the high-traction system to be more aggressive and

direct. However, in this scenario, the model took an observation of the two systems on

stairs and correctly predicted each system’s capabilities on a different steep ramp obstacle.

This suggests that the System Identification Transformer and Adaptive Dynamics Model are

not simply memorizing obstacles, but gaining a generalized understanding of the system’s

capabilities.

5.5 Discussion

Strengths of Method

While the results in this chapter are drawn from relatively simple toy environments, they

highlight some key advantages of the adaptive rough terrain navigation framework developed

in this chapter. Note that many of these key advantages stem from combining concepts from

previous chapters (Chapter 2 and Chapter 4).

First, this framework is capable of non-myopic dynamics-aware decision making. In

situations where the dynamics model has determined that the robot may be incapable of

driving over the obstacle, the path planner chooses the path around the obstacle despite it

being longer and less direct. This demonstrates that this navigation framework is capable of

non-greedy long-horizon decision making. Furthermore, the planner seems to be considering

the robot’s dynamics capabilities and not simply just avoiding certain obstacles. This can be

seen in the stair example. If the planner just avoided the stairs completely, the robot would

not be able to make it to the goal. Instead the planner seems to distinguish the differences in

traction encountered when ascending the stairs, as opposed to descending or driving across

them. In certain cases, it correctly chooses to avoid driving directly up the stairs, but not

avoid driving across them to get to the goal.

This framework also allows for robust navigation given the current understanding of the
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target system’s particular dynamics and capabilities. In the trials, the planner chose the

more conservative route upon initialization when target system observations are virtually

non-existent and provide a vague understanding of the target system’s particular capabilities.

Furthermore, the understanding of the target system’s capabilities is not static but improves

as more observations are collected. This can be seen with the high-traction system. After

collecting observations through one demonstration of driving up stairs, the planner changes

its path to drive directly up the stairs, matching the robot’s capabilities.

Furthermore, adaptations to the divergence constraint in this chapter make it relevant

to other high-level planning frameworks and low-level planners. In this framework we show

the divergence constraint used in an RRT-based decision making frameworks. We also show

the divergence constrained using a different trajectory tracker (pure-pursuit). Although this

tracker is still relatively simple, the modifications to the divergence constraint does open

up many more possibilities. In Chapter 6, we delve more into the implications of these

adaptations and potential future directions.

Current Limitations

Currently, the System Identification Transformer trained is only effective within the two envi-

ronments shown in Figure 5.1 and Figure 5.2. Ideally, the System Identification Transformer

could effectively extract an understanding of the system’s capabilities through observing the

system interacting with any type of obstacles.

However, this would require training the System Identification Transformer with a large

dataset containing a diverse set of target system observations (H) with many different combi-

nations of obstacle interactions, along with a diverse set of simulated dynamics. To simplify

the problem, we used only a couple environments for training and testing to limit the number

of obstacles the robot might encounter.

When we tried training the System Identification Transformer by randomizing the terrain,

following the approach in Chapter 2, the System Identification Transformer was unable to
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properly distinguish between different systems. This could be perhaps due to the sparsity

of relevant information in the observation set H during training. Or perhaps this approach

just required more data, a larger neural network architecture, and more engineering effort.

Another limitation of our current planning framework is its inability to vary velocity,

thus not fully exploiting the vehicle dynamics potential, as could be achieved with the

optimization framework discussed in Chapter 2. Consequently, the robot is restricted from

performing dynamic behaviors, such as accelerating to overcome larger obstacles. In our

current implementation, the RRT planner’s state space includes only the robot’s position

and orientation, with the steer function generating trajectories at a constant velocity between

states. Theoretically, this framework could be extended to incorporate velocity variations,

enhancing the robot’s dynamic maneuverability. This would involve extending the state

space to include the robot’s velocity and extending the steer function to interpolate velocities

between states. This would significantly improve the planner’s capability to navigate more

difficult environments dynamically.

Another potential extension to the framework is to incorporate safety constraints into the

planner. In the current framework, the planner only constrains solutions to satisfy the diver-

gence constraint, which mainly focuses on dynamic feasibility given prediction uncertainty.

In practice, there may be other important considerations such as vehicle rollover [146]. In

the future, the planner can also incorporate other important safety constraints, such as the

track boundary or later acceleration constraints from Chapter 4.

5.6 Conclusions

This chapter serves as the culmination of this dissertation, integrating concepts discussed in

previous chapters into a cohesive rough terrain navigation framework. Following Chapter 4,

this framework uses a large range of simulated systems to train a dynamics model that can

quickly adapt to any new target system given limited target system observations. During
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adaptation, the model captures both aleatoric uncertainty inherent in the stochastic system

as well as epistemic uncertainty stemming from having insufficient target system observa-

tions to properly identify the specific target system’s dynamics and capabilities. Following

Chapter 2, this navigation framework uses a divergence constraint to find routes over rough

terrain to the goal that are robust under the current probabilistic understanding of target

system dynamics.

We demonstrated this navigation framework in two toy simulated scenarios and showed

that it can tailor navigation strategies to the capabilities of different target systems while also

remaining robust before adaptation. When no observations are available to adapt the model

to the particular system, the navigation framework chooses conservative paths that can be

effectively executed by a large range of systems. These initial routes mostly avoid obstacles

choosing the longer path containing less risky terrain. However, the framework can also adapt

to the particular target system and choose shorter routes over certain obstacles depending on

the system’s capabilities. We show that providing observations of a capable system driving

up stairs resulted in more aggressive driving strategies that drove over obstacles, matching

the system’s capabilities.
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Chapter 6

Conclusion

This dissertation tackles the challenges of rough terrain navigation for unmanned ground

vehicles (UGVs). It primarily focuses on the factors that hinder these robot’s ability to

effectively make long-horizon decisions that utilize the dynamic capabilities of the robot,

which is vital for navigating challenging rough terrain. In Chapter 1, we explored the dif-

ficulties of creating accurate dynamics model and introduced two pivotal questions driving

this dissertation. Below we summarize our findings that begin to answer these questions.

Can leveraging low quality simulation data provide insights into real-world ve-

hicle dynamics and reduce the amount of real-world data needed?

We started addressing this question by exploring if data collected on one simulated system

could potentially be used to the increase accuracy of data-driven dynamics models for real-

world systems when real-world data is limited.

In Chapter 3, we discussed our framework that trains dynamics models for a target

system using large quantities of data from a proxy system and small quantities of data from

the target system. This approach aimed to learn the underlying dynamics shared between

the two systems and the target system’s relationship to it. In our results, we found that

the resulting dynamics model for the target system had higher prediction accuracy than if

102



a naive dynamics model was trained using only the limited amounts of target system data.

This increase in model accuracy was more pronounced when the proxy system’s dynamics

were more similar to the target system’s dynamics. The results from this chapter suggest

that insights could be drawn from data collected on one simulated system (proxy) to improve

the accuracy of dynamics models for a real-world system (target) when real-world data is

limited.

While these results are promising, this approach is not without limitations. First, its

benefits for sim2real applications is dependent on how similar the simulation is to the real-

world system. This may require the tedious task of fine tuning of simulation parameters

to match the real world. Furthermore, the resulting dynamics models are never perfect,

especially when target system data is extremely limited. The deterministic nature of these

models provide no indication into how imperfect model predictions might be.

After establishing the potential of using data from one simulated system, we then ex-

plored whether using multiple simulations could provide additional benefits. In Chapter 4,

we discussed an improved sim2real framework that leverages a large variety of simulated

systems, each with different dynamics but the same morphology, to train a System Identifi-

cation Transformer and Adaptive Dynamics Model. These two models work in conjunction

to quickly adapt predictions to any new target system by extracting an understanding of

system dynamics from any available target system observations. Furthermore, this model

captures uncertainty in predictions that is either inherent in the system or stems from having

insufficient target system observations. We show that using these models within Risk-Aware

MPPI allows for safe and conservative driving when no observations are available, and an

increase in performance as more data becomes available. In our performance comparison, the

baseline approach of training a dynamics model with only target system data was not able

to complete the course without driving off track at 500 time steps of data. In comparison,

our approach already converged to the performance limits of the vehicle, and rarely drove off

track even when no target system data was available yet. These benefits are also shown for
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the sim2real application where a simulation trained model was used to safely and effectively

control different real-world systems. This shows that leveraging cheap simulations, that do

not perfectly match the real-world, can help heavily reduce the need for real-world data.

Furthermore, the insights drawn from simulation are enough to conservatively control the

robot with no real-world data.

Can quantifying uncertainty in an imperfect dynamics model improve long-

horizon decision making?

Our approach to addressing this question can be decomposed into two components: 1)

quantify prediction uncertainty in the inevitably imperfect dynamics model, and 2) improve

long-horizon decision making in the presence of modeling uncertainty.

In Chapter 2, we discussed our model-based reinforcement learning framework for rough

terrain navigation that addresses both components. Addressing the first component, this

framework trains a dynamics model to predict the robot’s state transitions in rough terrain

while capturing aleatoric and epistemic uncertainty in predictions. In this approach, we view

epistemic uncertainty as uncertainty in neural network parameters stemming from insufficient

training data. Addressing the second component, we manage the growth of uncertainty along

longer-horizon trajectories by considering the effects of the low-level trajectory tracker during

trajectory prediction. Furthermore, we introduce a divergence constraint to indicate when

model predictions are unreliable, i.e. modeling errors may potentially cause the low-level

tracker to fail. During decision making, we use this closed-loop divergence constraint to

facilitate better long-horizon decision making while ensuring that solution trajectories could

be effectively tracked, mitigating the potential of solutions exploiting modeling errors. We

show in our experiments that this approach results in effective non-myopic driving strategies

through obstacle field environments, despite using an imperfect dynamics model trained with

limited data collected offline. The resulting driving strategies were able to take full advantage

of the robot’s dynamic capabilities. For example, they avoided ascending step obstacles, but
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drove off similar height steps at speed, matching the vehicle’s capabilities. Furthermore, we

show quantitatively that this approach is far more reliable than if uncertainty in the model

was ignored, which often resulted in solution trajectories that exploited modeling errors and

resulted in failure when executed.

In Chapter 4, we provided an alternative view on epistemic uncertainty. We discuss

a framework that leverages a variety of simulation, each with the same morphology but

different dynamics, to train an adaptive model for the given morphology. Online, the model

probabilistically adapts to a new target system’s dynamics by extracting an understanding of

the system’s particular dynamics from any available observations. By assuming knowledge

of the target system’s morphology, this framework transforms epistemic uncertainty from

uncertainty in neural network parameters stemming from insufficient data to uncertainty

about the target system’s specifics within the given morphology.

In Chapter 5, we combine this adaptive dynamics model and alternative view on epistemic

uncertainty with the closed-loop divergence constrained navigation framework. We used this

framework to drive a couple new target systems through toy obstacle filled environments.

The resulting driving strategies matched the insights provided by available observations

into vehicle dynamics. Upon initialization, when no observations were available from the

target system, the driving strategies defaulted to more conservative driving behaviors. After

adapting the dynamics model using observations collected through one demonstration, the

driving strategies changed to match the witnessed capabilities of the system. For higher

traction systems, this involved driving directly over obstacles. Again the driving strategies

were non-myopic, opting for less direct paths to avoid obstacles if necessary. They also took

advantage of the robot’s dynamic capabilities, choosing specific directions to traverse certain

obstacles depending on tire traction. Even in scenarios where no target system data was

available, driving strategies avoided ascending stairs, but did not avoid descending or driving

across them, matching the capabilities of the lowest traction system.

Despite dynamics models being inevitably imperfect, decision making for rough terrain
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navigation was capable of making non-myopic decisions that utilized the dynamic capabilities

of the robot through capturing prediction uncertainty and using the closed-loop divergence

constraint.

6.1 Future Directions

Here, we note some potential future extensions to the concepts from this dissertation that

could make them applicable more broadly to other planning and controls frameworks as well

as to other robotic applications.

6.1.1 Divergence Constraint within Other Hierarchies

The closed-loop divergence constraint is a great metric to facilitate a better understanding of

the robot’s dynamics and capabilities within high-level decision making. It helps indicate the

low-level controller’s ability to track a reference plan in the presence of modeling uncertainty.

By constraining planned trajectories to have low closed-loop divergence ensures that the

low-level controller could faithfully execute the plan and mitigates the risk of the planner

exploiting modeling errors.

Extending to Other High-Level Planners

Originally, this metric was used within a constrained trajectory optimization framework.

However, in Chapter 5, we adapted the divergence constraint to be used within an RRT-

based path planner, similar to [65]. Here, the divergence constraint served as the collision

check and indicated when different candidate reference trajectories would potentially result

in failure. In this adaptation, the dynamics model directly predicts robot state transitions

given the reference trajectory instead of the robot’s action.

In the broader context of robotics, the closed-loop divergence constraint can help any

high-level decision making framework determine whether a candidate trajectory is dynam-
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ically feasible under the capabilities of the low-level trajectory tracking controller and the

robot’s dynamics. It is particularly well suited for sampling based planners and optimizers

as samples that violate the divergence constraint could simply be discarded or heavily penal-

ized. A few decision-making frameworks that could potentially benefit from the divergence

constraint include, but are not limited to Model Predictive Path Integral (MPPI) [14, 15],

Cross Entropy Method (CEM) [147], Bayesian Optimization [148], and Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) [149].

While we believe that many high-level decision making frameworks could potentially

benefit from the divergence constraint, we also note some limitations. Most notably, calcu-

lating the divergence constraint metric requires significant computational resources. When

computing the divergence constraint, multiple trajectory predictions are performed using a

probabilistic dynamics model and considering the effects of the low-level tracker. The de-

viation of each prediction from the reference trajectory is averaged. Due to the stochastic

nature of trajectory predictions, using more predictions provides a more consistent metric

evaluation, but at a cost of computation. This problem is exacerbated with more complex

and computationally heavy models, such as the terrain-aware model we used that requires

generating a robot-centric terrain height map at each time step during prediction.

While there are numerous potential optimizations to this computation process, most

notably moving from Python to C++ utilizing CUDA [150], we wonder if there is a better

alternative to bypass the need for so many trajectory predictions in parallel. Potentially

collecting a dataset of the robot attempting to track different reference trajectories could

allow us to train a neural network model that directly predicts the divergence metric.

Another important consideration for adapting the divergence constraint to other planning

frameworks is the continuity requirement for computing the divergence constraint. Due to

the sequential nature of performing multiple trajectory predictions in parallel, the divergence

constraint effectively has a rather large “hidden state”, comprised of the current state of each

individual trajectory prediction. This factor might limit it from graph search methods that
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require substituting the parents of different nodes with more optimal parents, as is the case

for RRT* [143] and even RRT-connect [151]. The divergence constraint could still be relevant

to such planning algorithms, but require more careful consideration into how the divergence

constraint propagates along edges in the graph.

Extending to Low-Level RL Policies

The original formulation of the closed-loop divergence constraint required trajectory tracker

to have a simple closed-loop form since the feedback action of the trajectory tracker was

calculated at each prediction time step given the current state prediction. This require-

ment limited the framework to relatively simple trajectory trackers such as the PD tracker

originally used. However, we lifted this restriction in Chapter 5 by revising the dynamics

model to directly predict the robot’s state transitions given the reference trajectory of the

trajectory tracker. While we still used a relatively simple pure-pursuit trajectory tracker,

this revision opens up the possibility of using far more complex low-level controllers such as

computationally heavy model predictive controllers or potentially model-free policies that

rely on complex observations not included in the system’s state, e.g. RGB-D observations.

A potentially promising avenue for future work would be to use the divergence constraint

to bridge the gap between model-free and model-based reinforcement learning within a hi-

erarchical framework. Recent advancements in reinforcement learning has led to impressive

policies that achieve agile maneuvering in the precise of obstacles and rough terrain [152–154].

However, while these policies demonstrate impressive locomotion capabilities moving the

robot in a direction or to a nearby waypoint, they are often poorly suited for the task of

navigation that requires long-horizon decision making. Beyond lacking interpretability, these

policies often struggle to strategize over extended timeframes and generalize to new envi-

ronments with new obstacle layouts. Using these learned policies at the low-level with the

divergence constrained planning framework could combine the agile abilities of these policies

with the robust long-horizon planning abilities of our framework. This potential extension is
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similar in some ways to some hierarchical reinforcement learning approaches [21,155], where

a low-level policy follows instructions from a high-level model-based planner, which chooses

actions based on a learned model that predicts the outcomes of different instructions.

6.1.2 Adaptive Dynamics Models

In our framework, we use a System Identification Transformer to adapt the Adaptive Dy-

namics Model to the target system by extracting an understanding of the particular system’s

dynamics from observations collected on the target system. However, we note a few chal-

lenges of the framework and potential future directions for improvements.

Training a System Identification Transformer requires a large variety of simulation data.

Not only in terms of variety in simulated system dynamics, but also in terms of variety in

collected target system observations given to the System Identification Transformer. For the

original simple task of driving over flat terrain, generating enough diversity in target system

observations was rather simple. However, generating enough diversity was significantly more

difficult when we moved to uneven terrain in Chapter 5, due to the large variety of obstacles

the vehicle might encounter. The System Identification Transformer must learn to extract

system dynamics regardless of what obstacles the robot interacted with in the observation

dataset. In Chapter 5, we limited the robot to just a couple environments to limit the

number of obstacles it may encounter.

Ideally, this restriction could be lifted and the System Identification Transformer could

extract an understanding of the vehicle’s dynamics from prior interactions with any type of

obstacle in any type of environment. This is still likely possible through additional engineer-

ing effort, i.e. scaling up the simulation framework and fine tuning of the neural network

training. However, a potential alternative to alleviate this burden would be to move from

neural network inference of the context vector to an optimization based approach, where an

optimization scheme is used to find the best context vector to describe the target system.

This is in some aspects similar to some existing approaches [129–131, 156], but focused on
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generating a probabilistic dynamics model for robust model-based planning or controls.

Another limitation to using a System Identification Transformer is its assumption of

static dynamics. While this approach allows the dynamics model to quickly adapt to a

new system, it assumes that dynamics for that system does not change. Future work could

address this limitation by detecting changes to the vehicle’s dynamics or actively predicting

the effects that different terrain in the robot’s horizon has on vehicle dynamics.

We believe that the ideas and concepts discussed throughout this dissertation hold vast

potential, not only in the context of UGV navigation in rough terrain environments, but

potentially also in other robotic systems, such as UAV, AUVs, legged systems, or manipu-

lation. The approaches developed are especially useful for any task that involves complex

robot dynamics and requires non-myopic decision making under careful consideration of the

robot’s dynamic capabilities.
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