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Abstract

Successful deployment of legged robots in industrial applications such as environmental monitor-

ing, material handling, or inspection requires that platforms perform complicated tasks quickly in

unstructured environments. Unlocking the capabilities offered by legged morphologies requires

autonomously harnessing their capability for agility to perform these tasks. However, autonomous

and agile legged robot locomotion over unstructured terrain remains difficult due to underactua-

tion, the hybrid nature of intermittent contact, as well as kinematic, dynamic, and computational

constraints. Overcoming these restrictions requires some level of reasoning about how best to

navigate the environment, yet often it is not clear what level of reasoning is best to solve a task.

Simple models enable efficient computation and are generally robust to many forms of error, but

they cannot capture all the salient features of a complex, multi-behavioral system such as a legged

robot. Highly detailed models may be able to capture these features, but often at the expense of

physical and computational robustness.

This thesis seeks to overcome this apparent trade-off and enable autonomous legged robot

agility by adapting the complexity of the solution to the task at hand. These methods include

a global motion planner with mixed-complexity motion primitives and an accompanying open-

source full stack software framework for deployment on agile quadrupeds, a novel form of model

predictive control that adapts its model to ensure feasibility and improve efficiency, and develop-

ments in bio-inspired robotic tail design to improve stability while reducing overhead costs.

The novel global motion planner enables autonomous agility by constructing long-horizon

plans in real-time. It employs a mixture of motion primitives of varying fidelity to navigate from

the current position to the goal while avoiding (or leaping over) obstacles and uneven terrain. This

planner is shown to compute nearly an order of magnitude faster than comparable algorithms over

dynamically challenging environments.

This global planner is featured within an open-source software package – Quad-SDK – which

enables other researchers to deploy agile autonomy to their quadrupedal platforms. The package

implements a full planning and control hierarchy which also includes a nonlinear model predictive
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controller with a novel warm starting technique that enables highly stable execution of dynamic

motion plans. Several experiments are shown in simulation and hardware which demonstrate the

system’s ability both plan and execute long horizon motion plans which include leaps. The package

is also well supported with software tools to enable rapid development.

Even with efficient global planners, employing reduced-order models will generally result in

locomotion which encounters constraints in the full-order representation of the system. This work

presents a form of model predictive control which adapts the complexity of the model to capture the

salient dynamics and constraints of the task. It is shown that under certain well-known template and

anchor conditions this method yields provable stability properties, and enables simplification of

the optimal control problem which results in improved performance. This method is benchmarked

against fixed complexity formulations over candidate dynamic behaviors and is shown to be more

stable than reduced-order configurations and more efficient than full-order configurations.

The novel tail design explores aerodynamic drag as a tool to regulate angular momentum in-

dependent of foot contact for improved agility. A new metric for the effectiveness of aerodynamic

drag is presented and analyzed. Comparison to standard inertial effectiveness shows that aero-

dynamic drag tails can perform the same reorientation tasks as inertial tails but for a fraction of

the inertia. The utility of these tails is demonstrated in hardware for disturbance rejection and

locomotion assistance tasks, showcasing their enhanced practicality over inertial tails in providing

leg-independent momentum regulation.
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1 Introduction

1.1 The Path to Useful Legged Robots

The ability of mobile robots to combine computational tools and automation with the capability to

move around in and interact with their environment enables a wide variety of both economically

and socially driven tasks. Many of these tasks, such as environmental monitoring, inspection of

dangerous areas, delivery, and space exploration, occur in unstructured terrain like those shown in

Figure 1. These are environments that cannot be easily altered to improve the mobility of the robot

and often include obstacles which the robot must navigate. Of the different categories of ground

mobile robots – primarily wheeled, tracked, and legged – legged robots have a unique potential

for mobility in unstructured environments due to the diversity of possible interactions between the

robot and the environment. The ability to apply an array of forces at different contact locations

enables behaviors like stepping, turning, jumping, and climbing to overcome obstacles and thus

improve mobility.

Despite the potential for mobility in difficult terrain, legged platforms are rarely deployed for

any industrial applications of mobile robots. Tracked inspection robots provide data and imaging

in situations dangerous for humans [Robohub, 2015], wheeled autonomous vehicles show great

promise in improving highway safety and assisting ground delivery [Litman, 2017], wheeled robots

even currently explore other planets [NASA, 2020], yet legged robots lag behind these counterparts

in industrial usage. Some promising platforms are under development such as Spot for inspection

tasks [Boston Dynamics, 2020], Digit for package handling and delivery [Agility Robotics, 2020],

and Vision 60 for surveillance applications [Ghost Robotics, 2020], but these platforms are still

confined to walking over relatively structured terrain and often rely on the guidance of a user or the

tracking of pre-determined paths. The potential for legged robot mobility in unstructured terrain

is unrealized due to two main limitations: agility and autonomy. First, a practical mobile robot

must be agile in order to accomplish tasks quickly and efficiently, and to enable the navigation of

kinematically challenging terrain such as stairs, steep slopes, or large obstacles. Current robotic

1



Figure 1: Legged robots must navigate unstructured environments such as those shown here to
perform useful tasks. These environments often require the ability to step or leap to overcome
obstacles. Current legged robots struggle to autonomously perform these behaviors. Applications
of interest shown clockwise from top-left: space exploration (image credit: NASA), outdoor en-
vironmental monitoring (image credit: www.hiketricities.com), urban delivery or mapping (image
credit: author), and search and rescue (image credit: Linda Davidson/The Washington Post)

platforms are much slower than humans at navigating such terrain. Second, mobile robots must

also be intelligent enough to autonomously interact with many environments in the right way to

enable navigation. Current platforms often make assumptions about terrain structure or restrict

themselves to a small subset of simple motions. They also often require instruction from human

operators or direct intervention in the event of failures caused by uncertainty or disturbances.

1.2 Agility and Autonomy

Before exploring methods to improve agility and autonomy, some definitions are in order to clarify

the usage of these terms. Many different agility metrics have been proposed in robotic, biological,

2



and even athletic literature as a way to quantify the locomotion capabilities of a system although

none definitely and comprehensively quantify agility. Some local metrics quantify the ability of a

system to maneuver over short time horizons such as acceleration, Froude number, specific power,

or specific agility [Alexander, 1984; Duperret et al., 2016; Roberts et al., 2011]. Others take a

more global view by quantifying the performance of longer horizon maneuvers such as turning

radius, time to complete particular motions, or combinations of a number of benchmarks [Eckert

and Ijspeert, 2019; Sheppard and Young, 2006]. Since this work discusses agility in the context of

completing navigation tasks (i.e. moving from point A to point B), agility here refers to the com-

pletion of these tasks with high kinetic energy. This translates to the ability to perform acrobatic

motions such as leaping or rapid turning, but also has a direct correlation to desirable performance

in industrial applications, as higher kinetic energy corresponds to completing tasks more quickly.

While no one metric entirely captures this notion, average kinetic energy while navigating from

one state to another is a useful starting point.

Autonomy is even more difficult to quantify than agility – there are no SI units that could

reasonably express such an abstract notion. Prior literature has sought to qualitatively define “au-

tonomy levels” such as the NIST Autonomy Levels for Unmanned Systems [Huang et al., 2005],

the SAE Levels of Driving Automation [International, 2014], or other qualitative definitions [Beer

et al., 2014]. Other works have sought to quantify autonomy through a series of simulation-derived

performance metrics based on properties like environment complexity, available information, and

system performance [Lampe and Chatila, 2006]. In this work, autonomy refers to the ability of a

system to successfully complete locomotion tasks with minimal information or intervention from

an external operator. This encourages autonomous path planning rather than teleoperation, but also

requires a high level of robustness to uncertainty, disturbances, or changes in the environment as

the inability to reliably overcome these challenges would require operator intervention to com-

plete the task. Thus metrics such as planning time, success rate, and environment complexity can

together shed light on the autonomy of a system.

3



1.3 Challenges in Legged Locomotion

It is important to note that the practical shortcomings of current platforms are generally not due to

limitations of hardware components. The force production of a modern motor can be comparable

to that of human muscle [Marden and Allen, 2002], and current battery technology is sufficient to

power legged robots for a few hours at a time. Many existing legged robots have shown impressive

agility, from running faster than humans [IEEE Spectrum, 2012] to jumping almost 30 times their

body height [Kovac et al., 2008] to performing backflips as early as 1988 [Hodgins and Raibert,

1988]. The primary reason that legged robots remain slow and not autonomous in unstructured ter-

rain lies in the lack of proper algorithms to autonomously plan and execute challenging navigation

tasks while accounting for this terrain.

Constructing these algorithms remains difficult due to the nature of agile legged locomotion.

Successful locomotion requires careful regulation of both linear and angular momentum to ensure

the robot has just the right velocity to leap onto a ledge or to stabilize after a foot slips unexpectedly.

Constructing plans to precisely regulate momentum is challenging because both the kinematics of

locomotion and the presence of intermittent contact render the equations that describe the motion

of these systems both nonlinear and discontinuous. These features complicate the assumptions of

many motion planning and control methods. Additionally, actuation and kinematic limits subject

legged robots to underactuation, meaning they cannot achieve arbitrary accelerations to complete a

given task [Tedrake, 2009]. This is particularly evident in flight phases – when the robot has no legs

in contact with the ground, it has almost no control authority and is at the whim of ballistic motion.

Together these effects – illustrated in Figure 2 – restrict both the ability and rate at which a robot

can alter its own momentum. Reliably attaining agile and autonomous locomotion in unstructured

environments thus requires methods that allow a robot to plan and regulate momentum despite

these limitations.
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Figure 2: Agile and autonomous legged robot locomotion remains difficult for a number of rea-
sons, including a) the need to plan ahead, b) errors in desired ground reaction forces caused by
unexpected changes in contact, c) kinematic and dynamic limits, and d) underactuation which
restricts the ability to regulate momentum (particularly when ground contact is sparse). In each
figure, dashed lines indicate desired properties while solid lines indicate actual properties.

1.4 Locomotion Complexity and Task Difficulty

Researchers have developed a number of strategies for planning and executing locomotion tasks in

the presence of these challenges, and these methods can be broadly differentiated by complexity of

the system and the amount of data they employ to solve the task as illustrated in Fig. 3. “Complex”

systems attempt to process large amounts of data with a high fidelity representation of the system

state, dynamics, and constraints. These types of methods include high-dimensional trajectory op-

timization, search-based planning, dynamic programming, or end-to-end reinforcement learning.

These techniques have produced highly intelligent systems capable of performing difficult tasks

5



Figure 3: The complexity of a locomotion system should match the difficulty of the task to max-
imize the likelihood of success (image credits, clockwise from top-left: IEEE Spectrum, Boston
Dynamics, author, [Hubicki et al., 2016]).

such as coordinated whole-body control, generalization to other tasks such as manipulation, or

end-to-end learning approaches that can operate in a wide range of conditions [Dai et al., 2014;

Kuindersma et al., 2016; Kumar et al., 2021; Lee et al., 2020]. These systems typically require

as much information about the task at hand as possible through diverse sensor arrays, advanced

state estimation algorithms, or huge amounts of experiential data. This results in susceptibility to

modeling errors, sensor inaccuracy, computational limits, and local minima, which can yield brittle

or myopic performance even when performing easier tasks.

“Simple” systems eschew these details for lower-dimensional representations which attempt to

distill the task into its most fundamental components, which can then be resolved in a much more

straightforward manner. Common tools employed by these simpler systems are model reductions

and hierarchies, heuristics, passive dynamics, or learned latent representations of salient properties.

Prior work has demonstrated impressive robustness and efficiency for simple tasks such as steady-

state locomotion over flat or mildly rough terrain [Bhounsule et al.; Collins et al., 2001; Hubicki

et al., 2016; Kajita et al., 2003; Raibert, 1986]. These systems typically function best when applied

to a particular task that can effectively be decomposed into simpler subtasks or when large amounts
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of data processing are unavailable. The drawback of these approaches is that by definition they

ignore certain details of the highly-complex system, and these omissions can often yield solutions

that are at best sub-optimal and at worst completely infeasible.

While researchers often espouse one of these solution methods over the other based on the task

they are solving, in truth many tasks consist of a range of difficulties. Consider a legged system

walking in unstructured terrain such as those in Fig. 1. Many environments contain large portions

of relatively flat terrain segmented by regions of larger elevation changes or roughness. A system

with a high degree of complexity reasoning over a short horizon may fail to recognize that its

greedy actions are directing it to a local minima when it should be accelerating to prepare for some

agile behavior. Likewise a system reasoning about simplified dynamics may not recognize that an

upcoming constraint in its high-dimensional space is about to cause a catastrophic failure.

This trade-off could be resolved by matching the complexity of the solution to the difficulty of

the task. If the system were to leverage a simple model in areas where it accurately captured the

dynamics and constraints of the task, it could spend more of its resources synthesizing behaviors

where these assumptions break down. Likewise by reducing the required complexity in simple

portions the system can improve robustness to uncertainty. This concept of dividing cognitive

effort based on the task at hand is well-studied in fields such as behavioral economics [Kahneman,

2011], and has already been applied to some robotic motion planning tasks [Fridovich-Keil et al.,

2018; Gochev et al., 2012; Styler and Simmons, 2017].

This methodology can apply to mechanical systems as well as data-processing systems. In-

creasing the complexity of a legged platform by adding additional appendages could expand the

range of behaviors the system could achieve, at the cost of degraded performance during behaviors

where the additional complexity is not needed. Such a trade-off could be avoided through de-

signs that adapt to the task at hand, similar to how the fins of aquatic animals expand or retract as

needed for propulsion [Alexander, 2013]. In the context of legged locomotion, this could amount

to systems that improve control authority of the system when terrestrial propulsion is absent or

unreliable, and minimize their added effects otherwise to maintain efficiency and robustness.
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1.5 Dissertation Overview

This work aims to enable autonomous legged robot agility through several approaches that match

the complexity of the system to the locomotion task difficulty. Section 2 presents a novel global

motion planning algorithm that efficiently finds collision-free trajectories for a reduced-order model

of a legged platform [Norby and Johnson, 2020]. This algorithm employs motion primitives of dif-

fering levels of complexity to enable both long-horizon locomotion over simple terrain as well as

leaping behaviors over rough terrain. Experiments over several example terrains show that this

approach can solve a wide range of navigation tasks and is faster than comparable methods.

Section 3 describes the integration of this global planning algorithm into a hierarchical planning

and control framework – Quad-SDK – capable of performing highly agile behaviors autonomously

[Norby et al., 2022b]. This framework has been released as an open-source software package to

enable other researchers to implement such capabilities within their own applications. This section

discusses how these components interact as well as additional implementation details required for

agile locomotion. Results are presented over a range of environments in simulation and hardware

demonstrating the ability of the system to both plan and execute agile behaviors.

However, executing reduced-order motion plans on the edge of constraint boundaries requires

methods that can resolve infeasibilities without requiring overly conservative approximations. Sec-

tion 4 presents a formulation of model predictive control (MPC) which adaptively reasons about

the complexity of the model required for feasibility and stability [Norby et al., 2022a]. The method

solves MPC problems with a simple model for dynamics and constraints over regions of the hori-

zon where such a model is feasible and a complex model where it is not. It leverages an interleaving

of planning and execution to iteratively identify these regions, which are described by well-studied

template and anchor relations [Full and Koditschek, 1999]. It is shown that this method provides

formal stability and feasibility guarantees and yields a larger region of attraction than directly rea-

soning over the complex system. This section presents experiments in simulation and hardware

for a quadrupedal robot executing agile behaviors over rough terrain which show that this adaptive

framework can enable faster solve times and more stable motion than fixed-complexity implemen-
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tations.

Even with these contributions, locomotion is still limited by the presence and quality of contact

with the terrain, and methods that introduce complexity through additional actuators such as tails

often result in excessive payload costs when these actuators are idle. Section 5 studies the use of

tails that leverage aerodynamic drag to reorient the system when needed but are otherwise much

more lightweight [Norby et al., 2021]. We present a model of the aerodynamic drag and from this

derive a metric that allows for direct comparison between aerodynamic and inertial tails. Motivated

by this model, we construct a tail to maximize this effectiveness while minimizing inertia. We

demonstrate the utility of this tail for two dynamic behaviors executed on a quadrupedal robot.

First, in aerial reorientation the robot achieves a 90 degree rotation within one body length of fall

at the same performance as an inertial tail but with just 37% of the normalized inertia. Second, the

forward acceleration of the robot is improved by 12% despite increasing the system mass by 10%

over a tailless version.

Section 6 summarizes the overall contributions and highlights key remaining challenges and

opportunities towards attaining autonomous legged robot agility.
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2 Fast Global Motion Planning for Dynamic Legged Robots

2.1 Introduction

As discussed in Section 1, automating navigation tasks requires the ability to plan ahead to ensure

the robot has the appropriate positioning and velocity to execute the desired motion. This plan-

ning is challenging due to nonlinear dynamics, underactuation, intermittent contact including flight

phases, and dependence on the terrain itself.

Model-based trajectory planning has proven an effective tool for planning motions while ac-

counting for these challenges. The most straightforward form of trajectory planning is to give the

planner full knowledge of the forces the robot can apply to the world and the constrained manner in

which it can apply them, enabling the planner to predict how it can feasibly navigate the terrain and

generate corresponding control inputs [Mombaur, 2009]. These methods have demonstrated im-

pressive results in simulation, yet their numerical complexity renders them infeasible for real-time

hardware deployment.

Rather than solve for the entire motion all at once with a high fidelity model, many successful

robot implementations employ hierarchical control structures [Fankhauser et al., 2018; Kuindersma

et al., 2016; Zucker et al., 2011]. Such an architecture breaks the problem into multiple sub-

problems that can be solved in parallel. Typically these layers include a long-horizon “global”

planner to determine a rough path through the terrain, a short-horizon “local” planner that refines

this motion and often selects footholds, and a low-level controller that computes joint torques to

send to the motors. Distributing model complexity – with higher complexity for shorter horizons

– ensures that each layer can be computed in real-time, yet presents the challenge of ensuring that

any model simplifications can be resolved by lower layers.

The global planner is critical to this pipeline due to its place at the top. A good global planner

must have an accurate idea of what the robot can and cannot do to ensure that the other layers

can resolve the motion, but also must have a long enough horizon to avoid local minima which

is difficult to achieve in real time. Most global planners used in existing hierarchies achieve fast
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Figure 4: Demonstration of the proposed algorithm generating a long dynamical plan over terrain
challenging for a legged robot in under three seconds. The trajectory from the start pose to the goal
(green circle) is overlaid on an image of the environment used to generate the plan.

solution times by either ignoring dynamics to employ geometric planning methods like A* [Hor-

nung et al., 2012], restricting the horizon to only a few steps [Winkler et al., 2018a], or relying on

traversability maps that use simple heuristics like maximum step height to avoid certain areas of

the terrain [Wermelinger et al., 2016].

This work introduces a fast global motion planning framework that can compute long-horizon

feasible robot pose trajectories (body position and orientation) from which whole-body motions

can be found, while accounting for intermittent contact, underactuation, and constrained kine-

matics and dynamics [Norby and Johnson, 2020]. The framework is based on a computationally

efficient state and action parameterization that is effective at exploring environments dynamically

while also permitting the connection of two states for fast exploitation of trivial terrain. The frame-

work also supports path length reduction methods to produce high quality paths, which is important
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for practical robot implementation. We present the results of four simulation experiments: the first

demonstrates the validity of the constraint approximations with a whole-body trajectory optimiza-

tion, the second analyzes the speed and horizon length of the planner on several terrains, the third

demonstrates path length reduction capabilities, and the fourth shows that this planner finds paths

faster than state-of-the-art legged motion planning algorithms on a benchmarking environment.

2.2 Related Work

Legged robots have long shown remarkable ability to perform dynamic behaviors, demonstrating

walking, running, and even front-flipping as early as the 1980s [Hodgins and Raibert, 1988; Raib-

ert, 1986; Zeglin, 1991]. Though these robots exhibit surprisingly robust locomotion, they rely on

hand-tuned motions or clever mechanical stability through compliant legs or tails. These simple

methods (which form the basis for the proposed algorithm) are adept at walking over relatively flat

terrain but cannot easily handle obstacles that require leaping. More recent robots have demon-

strated impressive obstacle-leaping behaviors [Haldane et al., 2016; Johnson and Koditschek,

2013b; Park et al., 2015], but without a global planner that includes flight phases they cannot

autonomously determine when and how to perform these tasks in unstructured terrain.

Accounting for unstructured terrain requires a notion of the capabilities of the system, and a

method to employ this knowledge to plan a path through the environment. The clearest way to

achieve this is through trajectory optimization with a full-order representation of both the kinemat-

ics and dynamics of the robot, an accurate model of the terrain, and a nonlinear solver that can

find a feasible trajectory from the start to the goal. This method has shown impressive results in

walking, running, jumping, and object manipulation [Mombaur, 2009; Mordatch et al., 2012; Posa

et al., 2014], yet fully representing the nonlinearities and intermittent contact of legged locomo-

tion yields extremely large and highly constrained nonlinear programs that take hours to solve on

state-of-the-art solvers. Researchers have shown that ignoring any limb dynamics and modeling

just the centroidal momentum of the system is sufficient to perform challenging tasks like running,

jumping, and brachiation [Dai et al., 2014; Kuindersma et al., 2016; Orin et al., 2013]. This ap-
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proach reduces computation times from hours to minutes, but the problem still cannot be solved

fast enough to be used in real time.

These solution times can be improved by further reducing the model complexity while rely-

ing on the aforementioned hierarchical control structure to handle any small feasibility violations.

One common method of reducing model complexity is approximating kinematic constraints with

more efficiently computed heuristics such as bounding boxes [Caron et al., 2016; Winkler et al.,

2018a], reachability sets [Shapiro et al., 2005; Tonneau et al., 2018], learned measures [Carpentier

and Mansard, 2018; Kalakrishnan et al., 2009], or ignoring them entirely [Audren et al., 2014;

Di Carlo et al., 2018]. Conservative kinematic approximations reduce the space of trajectories, but

overly optimistic approximations can lead to infeasible plans that cannot be resolved lower in the

hierarchy. Other methods simplify the dynamics further by enforcing quasi-static, inverted pen-

dulum, or Zero Moment Point dynamics [Bartoszyk et al., 2017; Fankhauser et al., 2018; Hauser

et al., 2008; Hornung et al., 2012; Zucker et al., 2011]. These reductions allow for planning over a

long horizon of many steps, but restrict the dynamics of the planned motion to trivial applications.

Some planners augment the terrain map with a notion of traversability, such that regions of

the environment are processed and labeled with regards to the capabilities of the robot [Brunner

et al., 2013; Wermelinger et al., 2016]. By conducting simple tests of a walking controller’s per-

formance based on factors such as terrain slope, surface roughness, step height, and footprint size,

features of a terrain can be given a score based on the likelihood of successful navigation. Then,

common sampling-based methods such as RRT* [Karaman and Frazzoli, 2011] can be employed

to maximize the traversability of the given path. This approach has some features of a dynamic

global planner in that it can be computed in real-time and account for the dynamic capabilities of

the robot, but the construction of the traversability map is highly heuristic, robot and controller

dependent, and unable to synthesize new motions to navigate.

One of the most promising methods, [Fernbach et al., 2017], utilizes the RRT-Connect algo-

rithm [Kuffner and LaValle, 2000] to synthesize kinodynamic motions for legged locomotion over

long horizons in under a minute. This algorithm connects states by solving linear programs (LPs) to
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determine acceleration bounds and valid footstep locations, then interpolates between states while

using these bounds to check for feasibility. The algorithm plans for flight phases by identifying

states that do not satisfy a reachability requirement and trying to find feasible ballistic trajectories

to connect to the path to surpass them. The utilization of RRT-Connect allows this method to plan

over longer horizons than other motion planners [Deits and Tedrake, 2014; Mordatch et al., 2012],

but the repeated solving of LPs and heuristic approach to handling flight phases restrict the horizon

under which this method can plan. The proposed algorithm in this work parameterizes the state and

action spaces similarly for compatibility with RRT-Connect, but in a way that allows for the au-

tomatic generation of feasible actions by randomly sampling within bounds on force constraints.

This parameterization also directly incorporates flight phases rather than identifying them with

heuristics. In addition, the proposed algorithm incorporates path length reduction methods such

as RRT* and anytime planning with short-cutting to produce high quality paths more amenable to

execution on a robot.

2.3 Planning Algorithm

The core of the proposed algorithm is the reduction of the dynamics of legged locomotion to a state-

action pair framework conducive to both RRT-Connect for rapid exploration of mostly flat terrain

and kinodynamic RRT (KD-RRT) for exploration of challenging terrain [LaValle and Kuffner Jr,

2001]. This is achieved by reducing the system state to just the robot’s body position, orientation,

and their velocities, with double integrator dynamics to determine the overall path through the

environment. So long as the resulting trajectories can be feasibly tracked with whole-body motions

– as shown in Section 2.4.1 – this reduction permits efficient long horizon planning while allowing

more complex tasks such as footstep planning to be solved with existing shorter-horizon methods

such as [Winkler et al., 2018a; Zhao and Sentis, 2012].

Pose motion is expressed as a sequence of piece-wise polynomials due to their computational

efficiency and closed form solutions. Expressing motion with polynomials also allows dynamic

constraints such as ballistic motion during flight phases and non-adhesive forces, friction cones,
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and actuation limits in stance phases to be automatically satisfied through the selection of appro-

priate polynomial coefficients. Motions are then planned by stitching these piece-wise trajectories

in a way that satisfies kinematic constraints, in particular collision avoidance and reachability.

2.3.1 State Parameterization

Sampling-based planning methods rely on a set of states and actions that map to other states. The

algorithm proposed here defines these discrete time states as the position, orientation, and velocities

of the base of the robot. This sort of COM trajectory planning is not itself a new concept [Klemm

et al., 2015; LaValle and Kuffner Jr, 2001], but here we explicitly reason about intermittent contact

and formulate the actions to account for the dynamics and kinematics of the system.

The discrete time states are defined at the beginning of a stance phase and denoted as,

si =

 qi

q̇i


=

[
qx,i qy,i qz,i qp,i q̇x,i q̇y,i q̇z,i q̇p,i

]T
, (1)

where si ∈ R8 is the state at the beginning of the ith stance phase, qi ∈ R4 is the position and

pitch of the system, x, y, z subscripts denote Cartesian directions, and the p subscript denotes the

pitch. To reduce the dimensionality of the state space, roll is set to zero and yaw is defined as

atan2(q̇y,i, q̇x,i) so that the robot’s heading aligns with its velocity. A stance phase is defined as a

period of motion where a ground reaction force (GRF) is applied to the robot (and may correspond

to multiple overlapping stance phases for each individual foot). Each stance phase is then followed

by a flight phase consisting of ballistic motion, after which the next state si+1 denotes the beginning

of the following stance phase. Figure 5 shows example states and the stance and flight phase

trajectories connecting them. More complicated stance trajectories can be synthesized by setting

the flight time tf to zero to string multiple actions together.

Efficiently computed kinematic constraint approximations are applied over the entire state tra-
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Figure 5: Example state trajectory over one stance and one flight phase. Each planning state is
defined as the COM position, orientation, and velocity at the beginning of the stance phase. Each
action is defined as a piece-wise linear acceleration trajectory during stance combined with the
durations of stance and flight phases, yielding piece-wise cubic and quadratic polynomials for the
position and velocity. During the flight phase the robot undergoes ballistic motion until it reaches
the beginning of the next stance phase.

jectory. The ground clearance of the corners and center of the underside of the body are checked

against a minimum height threshold to avoid collision with the ground. During the stance phase

a maximum height threshold of the base of the leg linkage is also applied to ensure the ground is

reachable for each leg. No such maximum is applied in flight, allowing the robot to reach terrain

of different elevation by leaping up or falling down. These constraints can be written as,

hbody(q(t)) ≥ hmin ∀t ∈ [0, ts + tf ], (2)

hleg(q(t)) ≤ hmax ∀t ∈ [0, ts], (3)

where hbody(q(t)) and hleg(q(t)) are the clearance of the corners of the underside of the body and
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the base of the leg linkages, respectively, and hmin and hmax are the clearance thresholds.

2.3.2 Action Parameterization

These discrete time states are connected by actions that account for double integrator dynamics

and synthesize piece-wise polynomial COM trajectories. Similar polynomial state trajectories have

been employed in prior motion planners [Fernbach et al., 2017; Hauser and Ng-Thow-Hing, 2010;

Kunz and Stilman, 2014] but have not explicitly handled the intermittent contact of legged loco-

motion including flight phase dynamics. By specifying piece-wise linear ground reaction forces

during stance, the resulting velocity and position trajectories are quadratic and cubic, respectively.

Polynomials of this order are useful because cubic splines can efficiently connect states while

maintaining dynamic feasibility. Each action is defined as,

a =

[
q̈T
TD q̈T

TO ts tf

]T
= [ q̈x,TD q̈y,TD q̈z,TD q̈p,TD · · ·

q̈x,TO q̈y,TO q̈z,TO q̈p,TO ts tf ]T (4)

where a ∈ R10 is the action taken, q̈ denotes the acceleration of the system, ts and tf are the stance

and flight time, and the subscripts TD and TO denote touchdown and take-off (start and end of

stance times). Under this parameterization, the acceleration, velocity, and position of the system

during stance can be written as,

q̈(t) = (q̈TO − q̈TD)
t

ts
+ q̈TD, (5)

q̇(t) = (q̈TO − q̈TD)
t2

2ts
+ q̈TDt+ q̇TD, (6)

q(t) = (q̈TO − q̈TD)
t3

6ts
+ q̈TD

t2

2
+ q̇TDt+ qTD, (7)

where t ∈ [0, ts] is the time since the beginning of the stance phase. Examples of these trajectories

can be seen in Fig. 5. During flight the only acceleration is due to gravity, yielding the following
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trajectories,

q̈(t) = g, (8)

q̇(t) = g (t− ts) + q̇TO, (9)

q(t) =
g (t− ts)2

2
+ q̇TO (t− ts) + qTO, (10)

where t ∈ [ts, ts + tf ] and g is the gravity vector. These polynomials can also be reversed in time

to enable planning tree growth from the goal towards the start.

Dynamic constraints are easily applied by computing bounds on the valid actions. Rather than

bounding accelerations directly, or solving an LP to find acceleration boundaries as in [Fernbach

et al., 2017], valid ground reaction forces at the beginning and end of stance are sampled directly,

and then transformed into valid accelerations. This transformation is given by Newton’s second

law,

 mI3 0

0 Jp

 q̈ =

 fGRF +mg

τp

 , (11)

where fGRF is the GRF, τp is the torque applied about the pitch axis, m and Jp are the mass and

pitch inertia of the system, and I3 is a 3×3 identity matrix. This transformation allows for actuation

limits, non-penetration, and friction cone constraints to be respectively enforced by,

|fGRF | ≤ fmax (12)

|τp| ≤ τmax (13)

fz ≥ 0 (14)

µfz ≥
√
f 2
x + f 2

y (15)

where fmax is a maximum ground reaction force, τmax is a maximum torque threshold, and µ is the

friction coefficient. Randomly sampling GRF vectors and torques at touchdown and takeoff within
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the bounds of these constraints and applying (74) allows for the automatic generation of feasible

actions. The resulting piece-wise cubic position trajectories are then checked at regular intervals

for kinematic feasibility to ensure collision avoidance and reachability. Upper and lower bounds

are placed on the stance and flight times to aid the planner in producing feasible state-action pairs.

2.3.3 Planning Framework

These state-action pairs form the basis of the tree structure that RRT-Connect employs to explore

the state space. While we refer the reader to prior literature for the detailed workings of RRT-

Connect [Brandt, 2006; Klemm et al., 2015; Kuffner and LaValle, 2000], the general strategy is

to grow trees from the start and goal by alternately extending the trees towards randomly sampled

states, then attempting to connect the trees together. The planning framework proposed here fol-

lows the RRT-Connect algorithm from [Kuffner and LaValle, 2000], with particular instantiations

of the extend and connect functions to account for the dynamics and kinematics of this problem.

The extend function in any RRT planner guides the planning tree towards new, unexplored

areas of the state space by generating a random state, identifying the closest state in the tree, and

leveraging a local planner to extend from that closest state towards the random one. The local

planner implemented here samples desired states (1) uniformly but with zero angular velocity to

regulate orientation. As with KD-RRT [LaValle and Kuffner Jr, 2001], random actions described

by (4) are sampled, checking for kinematic feasibility, and returning the closest new state to the

desired under a weighted Euclidean distance metric. This extend function is effective at exploring

challenging terrain by allowing frequent flight phases.

The connect function handles large portions of less challenging terrain more rapidly than the

extend function. This is achieved by computing in closed form the unique cubic spline that con-

nects two states assuming zero flight time and a choosing a stance time that yields a nominal
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forward speed. Solving this boundary problem yields the following accelerations:

q̈TD = −6 (qTD − qTO)− 2ts(2q̇TD + q̇TO)

t2s

q̈TO =
6 (qTD − qTO)− 2ts(q̇TD + 2q̇TO)

t2s
. (16)

The resulting forces are checked with (12–15) and discarded if dynamically infeasible, then checked

for kinematic feasibility. If these constraints are satisfied the states are connected. If they are not

satisfied, the algorithm considers the feasible portion of the trajectory and inserts a state into the

tree corresponding to the midpoint of the feasible portion (to ensure the tree is not trapped right

against a constraint). No upper bound is placed on the distance of this connect operation to allow

it to traverse large areas of terrain. The long “stance” phase produced by this operation can be

thought of not as one single stance phase but as a trajectory induced by a collection of steps taken

by the robot between flight phases, during which the lower level controller can easily find a valid

whole-body motion.

Another benefit to such a connect function is the ability to exactly connect two states, which

is helpful for reducing path length. We employ this ability in two separate ways and compare

performance. One common way to reduce path length is to employ RRT*, which adds and removes

connections through new states to reduce a cost function [Karaman and Frazzoli, 2010; Klemm

et al., 2015]. We implement the re-wiring algorithm described in [Karaman and Frazzoli, 2011],

using the connect function to check for valid connections.

Though this method consistently reduces path length, re-wiring the connections whenever a

new state is added slows the planner. A simpler short-cutting algorithm offers a faster but sub-

optimal method of reducing path length after the completion of the planner [Kuffner and LaValle,

2000]. This algorithm checks each state in the path for connections to other states. If a valid

connection is found, those states are directly connected and all intermediate states are removed

from the path. This process continues until the goal state is reached. Removing extraneous states

in this fashion results in simpler, smoother paths without re-wiring throughout the entire planning
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process.

Path quality for this method is further improved by applying an anytime framework, wherein

RRT-Connect is called repeatedly and only higher quality paths are accepted [Ferguson and Stentz,

2006]. This anytime framework also improves the speed of the algorithm by restarting the planner

if a solution is not quickly found, thus avoiding the increased complexity of adding more nodes to

the planning trees.

2.4 Algorithm Analysis

To analyze the proposed planner, the kinematic and dynamic model approximations are validated

with a full-order model trajectory optimization framework. We then generate robot paths over sev-

eral terrains, analyze the resulting performance, and compare to other multi-contact kinodynamic

planning algorithms.

2.4.1 Trajectory Validation

Much of the efficiency of the proposed algorithm stems from approximations made to the kine-

matics and dynamics of legged robot locomotion. These approximations must be sufficiently ex-

pressive to capture the dynamic behaviors of interest yet conservative enough for a short-horizon

planner to resolve. To test this formulation of the kinematic and dynamic constraints we ran-

domly generate one hundred state-action pairs and check them for feasibility with the extend func-

tion described above, employing kinematic and dynamic bounds derived from an MIT Cheetah 3

quadruped model [Bledt et al., 2018]. The resulting trajectories are then passed to a whole-body

hybrid trajectory optimization created in the FROST framework [Hereid and Ames, 2017b]. This

optimization produces motions that track the planned trajectories over flat ground while satisfying

full-order dynamics and kinematics constraints, as well as a DC motor model and friction cones.

To avoid solving the contact-implicit problem [Posa et al., 2014], which is quite slow, we specify

the contact sequence as all four feet starting on the ground, lifting off simultaneously, then ending

within reach of the ground. This is slightly conservative as an ideal footstep planner would select

21



the footstep sequence best suited to a particular motion, but such a planner is outside the scope of

this work.

The optimization framework was able to find solutions for 98% of the tested state-action pairs,

indicating that this planner’s heuristics closely approximate the full model. Those that it could not

find a solution for nearly converged but could not overcome the conservative kinematic restrictions

of requiring contact at all four feet during stance, and in each case it is likely that a full local

footstep planner would still succeed.

2.4.2 Algorithm Performance

To test the performance of the proposed planner, we created several environments that pose varying

motion planning challenges. For each environment we specify a start and goal pose, provide the

planner with a height map of the terrain, execute the anytime planner with short-cutting 100 times,

and collect statistics. The planner finds a feasible path then executes the short-cutting algorithm but

does not re-plan to prioritize algorithm speed. All trials are run in C++ on an Intel Core i7-8700K

CPU at 3.7 GHz.

The “Rough Terrain” environment shown in Fig. 6 tests the planner’s ability to overcome un-

structured terrain including uneven ground, obstacles, and a ledge requiring a flight phase. The

“Hallway” environment shown in Fig. 7 tests the ability to generate long-horizon paths in the pres-

ence of local minima. The “Slope” terrain shown in Fig. 8 tests the ability to handle steep slopes.

Finally, the “Staircase” environment shown in Fig. 4 and 9 puts all these together, requiring a long-

horizon, highly dynamic path that navigates slopes and local minima. The Staircase environment

was tested with and without an obstacle blocking the middle of the small stairs, requiring the robot

to navigate the larger stairs.

Table 1 shows the statistics averaged over each set of trials on the environments including the

amount of time spent planning until a feasible path was found, the number of states generated

during the planning call, and the length of the returned trajectory. Each environment figure also

shows an example trajectory found on that terrain.
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Figure 6: The Rough Terrain environment includes a ledge requiring a flight phase, in addition to
uneven terrain and obstacles. In this and the following figures, red lines indicate a stance phase,
cyan indicates flight, the black box indicates the starting pose, and the green circle indicates the
goal.

Figure 7: The Hallway environment replicates an indoor areas with long stretches of flat terrain.
The local minima presented by the large open portion or the area that approaches but does not
reach the goal require a planner with a long enough horizon to avoid.
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Figure 8: The Slope environment tests the planner’s ability to incorporate friction cones and usage
of orientation to find more feasible regions of the state space.

The results shown in Table 1 demonstrate the effectiveness of the proposed planner in handling

a wide variety of challenging legged robot planning tasks, as every planning call was successfully

completed. The length of each plan is on the order of tens of body lengths, showcasing a horizon

long enough for global planning. Each plan – with the exception of the Staircase with the obstacle

– is computed on the order of seconds and therefore fast enough for real-time deployment. The

Hallway environment in Fig. 7 showcases the connect function’s ability to rapidly traverse wide

sections of trivial terrain and return a straightforward path with little erratic motion while avoiding

local minima. Conversely, the performance on the Rough Terrain environment demonstrates the

ability to navigate dynamically challenging terrain with flight phases which are unresolvable by

geometric planners.

These challenges are combined in the Staircase environment. The algorithm automatically dis-

covers that the regular stairs are more traversable than the large stairs and explores that area rapidly,

with no scripted stair-climbing controller. This behavior is desirable as favoring less challenging
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Figure 9: The Staircase environment, top, based on the location from Fig. 4, presents a long-
horizon task with discrete changes in ground height. When an obstacle is placed on the regular
stairs, bottom, the planner must find a dynamic path over the larger steps.

motion improves the likelihood of resolution by a lower level controller. When those stairs are ob-

structed, the algorithm employs multiple flight phases to leap up the large stairs towards the goal,

although it takes much longer to find such a path through the tightly constrained space.

The two methods of reducing path length – RRT*-Connect and anytime RRT-Connect with

short-cutting – are tested on the Slope terrain environment in Fig. 8 and allowed to run for five

seconds before termination. Each planner is called one hundred times and the results are averaged.
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Table 1: Algorithm performance on test environments. Data reported as mean± standard deviation
over 100 trials.

Environment Plan Time States Plan Length
(s) Generated (m)

Rough Terrain 2.3± 2.2 1100± 1000 14± 2.8
Hallway 1.8± 1.4 640± 420 25± 2.8

Slope 0.15± 0.2 150± 31 13± 2.1
Staircase 2.9± 2.5 720± 550 17± 2.6

Staircase w/obstacle 26± 20 4400± 2700 21± 3.8

The results are shown in Fig. 10, along with the average path length for regular RRT-Connect with

short-cutting.

Figure 10 demonstrates a small advantage of anytime RRT-Connect with short cutting over

RRT*-Connect in quickly reducing path length, though both perform well compared to the non-

optimal planners. The anytime framework is able to reduce cost by rapidly growing multiple

trees in succession rather than re-wiring a single tree. Both of these methods outperform standard

RRT-Connect in less than one second, demonstrating the utility of these cost-reducing strategies in

yielding high quality paths.

2.4.3 Algorithm Benchmarking

We compare the proposed algorithm directly against other state-of-the-art methods on the “Plinth”

environment, based on [Geisert et al., 2019], shown in Fig. 11. In particular we benchmark against

the root trajectory from the multi-contact RRT-Connect planner described in [Fernbach et al., 2017]

and implemented in [Geisert et al., 2019] as well as the contact-implicit trajectory optimization

method presented in [Winkler et al., 2018a]. Each test is performed with a model of the ANYmal

quadruped [Hutter et al., 2016]. The proposed algorithm and the trajectory optimization are exe-

cuted on the CPU described above, and the statistic for the multi-contact RRT-Connect planner is

obtained directly from [Geisert et al., 2019] which utilized a similar CPU.

The results from the benchmarking are shown in Table 2. The proposed algorithm constructs

plans six times faster than the multi-contact RRT-Connect method when similarly constrained to
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Figure 10: Path length reduction is tested on the Slope environment for three variations of the pro-
posed planner. Both RRT*-Connect and anytime RRT-Connect provide higher quality paths over
time than regular RRT-Connect, with the anytime version outperforming its RRT* counterpart on
account of its speed. RRT-Connect returns after 0.15 seconds on average but does not further im-
prove path quality. The solid lines indicate the mean and the shaded regions indicate one standard
deviation over 100 trials.

planar motion, and is still slightly faster when allowed to explore the environment in three dimen-

sions. This algorithm is also around an order of magnitude faster than the trajectory optimization

method, although that method computes footstep locations in addition to a pose trajectory. This

suggests that such a method could be an effective short-horizon planner to determine contact loca-

tions a few steps ahead once provided the global plan from the algorithm presented here.
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Figure 11: The algorithm benchmarking is performed on the Plinth environment, which requires
navigating height changes but does not explicitly require a flight phase.

Table 2: Algorithm comparison on Plinth environment. Data reported as mean ± standard devia-
tion over 100 trials.

Solver Dimension Plan Time (s)
Proposed Algorithm 2D 0.20± 0.21
Proposed Algorithm 3D 1.0± 0.91

Prior RRT-Connect [Geisert et al., 2019] 2D 1.3± unreported
Traj Opt (w/contacts) [Winkler et al., 2018a] 3D 9.5± 0.082

2.5 Discussion and Conclusion

The diversity of the environments tested showcases the speed and ability to dynamically overcome

obstacles of the proposed algorithm. The trajectory validation results and optimality analysis in-

dicate that the resulting paths are feasible and near-optimal. These features together highlight the

practicality of this algorithm for deployment as a global planner for legged robots.

By design, many of the assumptions and model approximations made in this planner are heuris-

tic in nature and thus offer no model-based guarantees. The strength of this approach is rooted in

the objective of the planner – finding a basic path that navigates an unstructured environment

which can serve as an initial seed for short horizon footstep and whole-body planners. Relaxing

hard constraints on full-order feasibility allows for each constraint to be expressed in a more com-

putationally efficient way. This enables longer planning horizons, ensuring that the footstep and

whole-body planners can focus on refining motion rather than trying to escape local minima. In
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particular, reasoning about contact via the net ground reaction force rather than through each in-

dividual contact captures the hybrid nature of intermittent contact but does not enforce particular

contact locations. This approach allows a shorter horizon footstep planner with a more expressive

contact model to dedicate increased computation to selecting robust contact locations.

Another consideration of this approach is the role of a discrete number of motion primitives

which define the action space employed by the planner. A potential drawback of implementing a

discrete union of continuous action spaces is how to handle the combinatorial nature of selecting

these primitives, particularly for larger numbers of potential primitives. This is a known issue in

fields such as manipulation where behavior libraries must be quite large to capture the desired ob-

ject manipulations. However, the primitives chosen here are not attempting to discretely capture

the space of all possible legged robot behaviors, but rather a hierarchy of model fidelity approach-

ing a full expression of the platforms kinematics and dynamics. One could presumably add more

primitives which captured further details of the system and its interactions with the environment,

however the two presented here are sufficient to expand the capabilities of the platform as evi-

denced by the performance in a diverse range of environments.

While the centroidal dynamics approximations of this model are reasonably accurate for low

leg inertia quadrupeds, these approximations may be invalid for systems with high-inertia limbs.

This framework also does not explicitly reason about body stability and instead assumes that the

ground reaction force vector always extends through the COM. For bipedal robots or other highly

underactuated systems this assumption may not hold. Accounting for stability would require ei-

ther a method of counteracting the moment caused by the GRF, or by expanding this planning

framework to explicitly reason about the stability of the body.
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3 Quad-SDK: Open-Sourcing Autonomous Agility via a Full

Stack Software Framework

Section 2 introduced a novel global motion planning algorithm along with results demonstrating

its efficiency in a number of unstructured environments, but attaining agile autonomy in these

environments requires more than just a good approximation of the desired motion. Executing

these plans on legged platforms requires systems that can reliably translate them into actuator

inputs while parsing sensor streams, handling full-order dynamics and constraints, and resolving

any disturbances. However, prior examples of such frameworks generally rely on some offline

or manual trajectory generation, and are often only implemented for one system which reduces

the utility for related locomotion research. This section describes Quad-SDK1, a set of open-

source software packages created to provide this functionality in a unified hierarchical framework

for multiple quadrupedal platforms and available as a resource for the broader legged locomotion

community [Norby et al., 2022b].

3.1 Introduction

3.1.1 Prior Work Towards Agile Autonomy

As discussed in Section 1, unlocking the potential of legged robot locomotion requires improving

the agility and autonomy of a system. Over the past few decades many efforts have extended the

agility of legged robots. In the 1980s Marc Raibert introduced a robot design with spring-like legs

and simple control laws that decoupled motion to maintain dynamic stability. These breakthrough

ideas enabled remarkably dynamic motions like running, jumping, and even acrobatics as shown in

Figure 12 [Hodgins and Raibert, 1988; Raibert, 1986]. The Raibert hopper and controller inspired

many subsequent developments in robot agility due to their simple efficacy. Work with robots like

1Quad-SDK is a collaborative project built by a hardworking team of researchers at CMU and as such I cannot take
complete responsibility for its development. My contributions to the project are as follows: project management, de-
velopment of Global Planner, logging, visualization, and communications packages, co-development of Local Planner,
Robot Driver, and simulation packages.
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Figure 12: Robots such as the Ghost Robotics Spirit 40 (top left, from [Ghost Robotics, 2020]),
SALTO 1-P (bottom left, reproduced from [Haldane et al., 2017]), the MIT Cheetah 3 (center,
reproduced from [Nguyen et al., 2019]), and the Raibert Hopper (right, reproduced from [Hodgins
and Raibert, 1988]) demonstrate a remarkable capacity for agility despite the difficulty they face
in completing fully autonomous navigation tasks in unstructured environments.

RHex, SCOUT II, and DASH expanded this agility to rough terrain by embracing these spring-like

legs and their accompanying spring-loaded inverted pendulum (SLIP) model-based control [Birk-

meyer et al., 2009; Blickhan, 1989; Poulakakis et al., 2006; Saranli et al., 2001], or by controlling

the legs to behave in a SLIP-like way as with MABEL and ATRIAS [Hubicki et al., 2016; Sreenath

et al., 2012]. SLIP-based robots demonstrate remarkable stability even during relatively agile mo-

tions, but since the dynamics of the model itself are fairly restrictive they struggle to perform more

complicated motions. For example, RHex is capable of performing acrobatic behaviors, but doing

so requires an entirely new modeling framework [Johnson and Koditschek, 2013b]. Other robots

that employ Raibert-like controllers show impressive agility such as Big Dog or SALTO without

SLIP-based modeling [Haldane et al., 2017; Playter et al., 2006] yet these platforms still struggle

to navigate with full autonomy because their underlying controllers do not intelligently account for

their environment in prescribing a desired motion.

This highlights the fundamental issue with simplistic approaches to dynamic locomotion con-

trol. These models often make the implicit assumption that locomotion is periodic and that any

deviations from the desired limit cycle (e.g. changes in ground height) are disturbances that ought
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to be rejected once they occur. Yet often navigating rough terrain with agility requires planning

ahead to overcome these deviations (e.g. accelerating a few steps before a change in ground height

to prepare for a leap). Even if these reactive frameworks were coaxed into achieving desired be-

haviors by modifying their nominal limit cycles as in [Bazeille et al., 2014], they offer no clear

method for autonomously doing so for dynamic motions over arbitrary terrains. In lieu of these

methods, autonomous agility in unstructured environments can be promoted with some form of

motion planning.

Motion planning for legged robots in rough terrain is a well-studied field – the kinematic meth-

ods and hierarchical control structure Robert McGhee et al. demonstrated on a hexapod robot

predate Raibert’s work [McGhee and Iswandhi, 1979; Orin et al., 1976]. Since McGhee, legged

robot motion planning has developed to include more complicated models, planning methods, and

terrain. The DARPA Learning Locomotion project in 2011 pushed these methods to new lev-

els, with groups implementing a variety of methods from trajectory optimization to search based

planning to machine learning for quadrupedal locomotion over extremely rough terrain [Byl et al.,

2009; Kalakrishnan et al., 2011; Zucker et al., 2011]. Each of these teams – like McGhee – adopted

some sort of hierarchical planning and control structure to separate high-level planning from low-

level execution, thereby enabling real-time operation.

However in order to achieve real-time speeds and increase error margins of low-level con-

trollers, many of these and more recent high-level planners restrict the dynamics by assuming

quasi-static or Zero-Moment Point (ZMP) stability [Carpentier and Mansard, 2018; Fankhauser

et al., 2018; Hornung et al., 2012; Tonneau et al., 2018; Vukobratović and Borovac, 2004]. These

restrictions prohibit flight phases or other highly dynamic motions, greatly reducing the agility of

the robot platform. Other recent methods of motion planning have relaxed these restrictions by

planning with models of the full dynamics or just the centroidal dynamics of a robot, but these

methods remain too computationally expensive for real-time execution over long time horizons

[Dai et al., 2014; Mombaur, 2009; Posa et al., 2014]. Other researchers have leveraged further

simplifications of either the kinematics and dynamics to achieve more agile autonomy in real-time
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[Di Carlo et al., 2018; Neunert et al., 2018; Winkler et al., 2018a], but in doing so are still re-

stricted to planning over very short horizons (generally under one second) or over terrain with a

known structure.

A few more recent works have demonstrated some ability to plan and execute dynamic primi-

tives such as leaps [Chignoli and Kim, 2021; Gilroy et al., 2021; Nguyen et al., 2019; Park et al.,

2015]. However, these works either rely on assumptions about the structure of the environment, of-

fline generation of full-order trajectories for tracking (and therefore coming to rest before leaping),

or manually authored reference trajectories for online optimization. The lack of full integration

with an agility-enabling global planner and a low-level controller capable of executing these be-

haviors prohibits truly autonomous agility. Additionally, the success of these frameworks can often

be dependent on the details of the implementation of the hierarchy, which so far has only developed

for isolated demonstrations rather than as tools for use by the wider legged locomotion community.

3.1.2 Prior Work in Software Tools for Legged Robots

The agile autonomy these works approach would be ideal for expanding performance in real world

applications like environmental monitoring, industrial inspection, disaster recovery, and material

handling [Bellicoso et al., 2018; Hutter et al., 2017; Kolvenbach et al., 2020]. Developing robotic

solutions for these applications is more effective when researchers can focus on higher level be-

haviours instead of low-level implementation. Infrastructure to enable this sort of development

is well-established for simpler platforms, e.g. MoveIt for manipulators [Coleman et al., 2014] or

ROS Navigation for planar mobile robots [Marder-Eppstein et al., 2010], but they are not suited to

handle the complexity of legged robots.

In the absence of standard tools for a full quadruped autonomy and control stack, many open-

source software tools have been created to solve various individual layers of the locomotion prob-

lem. For example, tools like Altro [Howell et al., 2019], Crocoddyl [Mastalli et al., 2020], OSC2

[Farshidian et al., 2022], and TOWR [Winkler et al., 2018b] are primarily focused on implementa-

tions of constrained optimal control problems. Other packages like Drake [Tedrake and the Drake
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Figure 13: Quad-SDK enables agile autonomy for quadrupedal systems in unstructured terrain.
Left: live data visualization provided by Quad-SDK exposes the underlying planning and control
states. Right: deployment of Quad-SDK on a hardware platform.

Development Team, 2019] and FROST [Hereid and Ames, 2017b] are targeted towards design,

simulation, and optimization for multi-body systems but do not provide full stack support. Robot

manufacturers like Unitree, ANYbotics, and Boston Dynamics provide platform-specific SDKs

for external development, but these tools are generally closed source and platform specific. Some

packages such as Cheetah-Software [DiCarlo et al., 2019], Free Gait [Fankhauser et al., 2019], and

CHAMP [Jimeno] offer open-source hierarchical frameworks for legged robots, but they lack the

desired combination of high-level autonomy, agility, and support for multiple platforms.

Quad-SDK meets the needs of modern locomotion researchers in two ways. First, it provides

autonomous agility for quadrupeds through advanced algorithms including the novel global mo-

tion planner described in Section 2 that can plan long-horizon motions including aerial phases, as

well as an efficient real-time Nonlinear Model Predictive Controller (NMPC) for executing agile

behaviors. Second, it enables rapid development of new locomotion algorithms through its modu-

lar architecture, support for multi-robot simulation, and a host of visualization and data-processing

tools. Section 3.2 discusses the structure of the framework and the tools it provides, Section 3.3
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demonstrates the system in action, and Section 3.4 discusses plans for future extensions of the

framework.

3.2 Software Architecture

Quad-SDK provides a modular hierarchical structure to both enable system modification and to

match the separation of timescales present within legged locomotion. This structure is illustrated

in Figure 14 and is divided into three primary sections – Global Planner, Local Planner, and Robot

Driver – each of which are implemented as ROS nodes which wrap a C++ class. This structure

enables asynchronous communication to accommodate timescale separation and sensor update

rates and allows users to easily extend the software by implementing their own classes inside these

nodes or packages that communicate over the same topics. This extensibility is supported with

API documentation, continuous integration, and unit testing to enable anyone from researchers

to companies to use and contribute to Quad-SDK under an open source license2. The following

subsections describe the functionality of the primary components in greater detail as well as the

development tools which accompany the SDK.

3.2.1 Global Planner

The top of the stack contains the Global Planner, which computes collision-free trajectories of the

robot body that guide the system from its current state to the goal state given a map of the terrain

[Norby and Johnson, 2020]. Unlike standard ROS Navigation planners, this system explicitly han-

dles dynamics, constraints, and aerial phases for legged systems as well as 2.5D terrain information

through existing packages [Fankhauser and Hutter, 2016]. This allows the robot to plan ahead to

avoid future failures and enables greater autonomy than direct user-provided twist inputs, although

Quad-SDK supports twist commands as well. The wrapper for this algorithm subscribes to the

newest desired goal state and terrain data, and generates new plans at 10 Hz to quickly respond to

any changes and to converge to more optimal solutions. The current software loads pregenerated

2Available at https://github.com/robomechanics/quad-sdk.
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Figure 14: The hierarchical structure of Quad-SDK is determined by the timescales observed in
legged locomotion. The Global Planner (red, 10 Hz) reacts to updates in goal state or terrain
information, the Local Planner (blue, 100 Hz) closes the loop on the state of the robot body, and
Robot Driver (green, 500 Hz) maintains smooth joint-level control and state updates as well as
communication with the robot (gold, platform dependent frequency).

terrain data but future releases will support perception packages for deployment in unstructured

terrain. The resulting trajectory is then augmented with any motion primitive information (such as

trot or leap) before being passed to the Local Planner for tracking.
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3.2.2 Local Planner

Given this global plan as a reference trajectory or twist commands from a joystick or keyboard, the

Local Planner determines the contact timing, locations, and forces to execute the plan. The Local

Planner is divided into two parts: the Local Body Planner which plans the body motion, and the

Local Footstep Planner which computes the contact sequence, footstep locations, and swing foot

trajectories. While many promising works have combined these two systems [Cleac’h et al., 2021;

Winkler et al., 2018b], keeping them separate and iteratively sharing solutions enables specialized

algorithms that can solve the problem much faster and increase overall system responsiveness.

The Local Body Planner uses NMPC to determine the ground reaction forces to best track the

nominal body trajectory, similar to [Ding et al., 2021]. This NMPC reduces the complete robot to

a single rigid body model, but maintains the nonlinearity of SE(3) dynamics. The system input is

treated as the ground reaction forces ui, and the hybrid system is simplified to a switched system

with a clock-based contact schedule. Given the desired body state trajectory xi,ref , nominal ground

reaction force ui,ref , planned foot position pi, and initial condition xint, the solution of discrete-

time MPC can be formulated as the following optimization problem:

min
x,u

N−1∑
i=0

∥xi+1 − xi+1,ref∥Qi
+ ∥ui − ui,ref∥Ri

s.t. x0 = xint (initial condition)

f (xi, xi+1, ui, pi, ti) = 0 (dynamic model)

xi ∈ X (state bound)

ui ∈ U (control bound)

Ciui ⩽ 0 (friction pyramid)

Diui = 0 (contact selection)

(17)

where i ∈ [0, . . . N − 1], Qi and Ri are the diagonal quadratic cost matrix for state and input,

ti is the finite element duration, function f(·) is the implicit dynamics, X and U are the feasible
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state and control set, Ci is the friction pyramid matrix, and Di is the contact selection matrix.

The nonlinear program is constructed by the automatic differentiation from CasADi [Andersson

et al., In Press, 2018] and solved with IPOPT [Wächter and Biegler, 2006]. Despite this nonlinear

formulation, we achieve update rates over 100 Hz for horizons of two or more gait cycles with 16

elements per period through a novel warm starting approach. In particular, we vary the duration of

the first finite element to allow subsequent knot points to remain stationary in time. This greatly

improves the quality of the warm start and decouples the time scale between the NMPC update

rate and the finite element discretization, allowing faster solves over longer horizons.

The Local Footstep Planner uses the most recent local body plan to update predictions of foot

trajectories. It first computes a contact schedule given a nominal gait or global plan primitive

information. It then selects discrete foothold positions according to this schedule. Similar to

Raibert’s heuristic [Kim et al., 2019; Raibert, 1986], we use the local plan to determine nominal

foothold positions pnominal based on dynamic and kinematic heuristics as

pnominal = pcenter + pvel + pcentrifugal (18)

where

pcenter = argmin
p

(
max
i∈st
∥p− pi∥22

)
pvel =

√
z0
∥g∥

(vtouchdown, ref − vtouchdown)

pcentrifugal =
z0
g
vtouchdown × ωref

(19)

Specifically, a minimum enclosing circle problem is formulated for the leg base positions for each

stance phase and solved by the Welzl’s algorithm [Welzl, 1991] to compute pcenter , which ensures

foothold reachability. Offset terms pvel and pcentrifugal based on velocity and angular velocity [Kim

et al., 2019] tracking are added to the nominal foot position to minimize undesired moments caused

by ground reaction forces during agile motion. This nominal foothold is then refined with a local

traversability search similar to [Fankhauser et al., 2018] to improve robustness to uncertainty in

foot tracking and friction. Finally, these footholds are interpolated with a cubic Hermite spline
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based on desired foot retraction and the terrain heights at liftoff, touchdown, and swing apex to

obtain swing leg trajectories.

3.2.3 Robot Driver

The Robot Driver is in charge of interfacing with the robot to ensure that these plans are executed as

accurately as possible. This is accomplished through a Leg Controller, which parses the local plan

to select the correct joint torques to apply, and a State Estimator, which gathers all the relevant

sensor streams to construct an estimate of the full state of the robot. Since the timescales of

motor and sensor dynamics are quite fast (bandwidths typically over 500 Hz), both systems run

in the same thread to reduce latency and improve communication reliability. This system directly

interfaces with either the simulator or hardware for straightforward sim-to-real transfer.

Leg Controller converts the trajectories and controls from the local planner for stance and swing

legs into joint space commands. The local plan is interpolated and passed through inverse kinemat-

ics to generate generalized coordinate reference positions qref and velocities q̇ref , as well as GRFs

uref for each leg. These are then mapped to feedforward motor commands in joint (generalized)

space by inverse dynamics. This is performed by solving for the feedforward stance torques τff,st

and swing torques τff,sw with

τff,st = −JT
st uref (20)

Mq̈ + h+

[
0 (JT

sturef)
T 0

]T
=

[
0 τTff,st τTff,sw

]T
(21)

Jst q̈ + J̇st q̇ = 0 (22)

where q is the system states in articulated body generalized coordinates, M is the inertia matrix, h

is the sum of Coriolis and potential terms, and Jst is the block of the kinematic Jacobian matrix for
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the stance legs. These terms are combined with joint space feedback to obtain the control law

τ = τff + τfb (23)

τfb = Kp (qref − q) +Kd (q̇ref − q̇) (24)

τff =

[
τTff,st τTff,sw

]T
(25)

where Kp and Kd are proportional and derivative gains.

The State Estimator is responsible for parsing sensor streams and maintaining a high-frequency

estimate of the full state of the robot. Currently this class performs sensor fusion of motion capture,

IMU, and encoder data to generate this estimate. The body position and orientation are obtained

directly from motion capture, while angular velocity and joint information are read from the IMU

and motor encoders. Linear body velocity is computed with a complementary filter which fuses

the differentiated body position and integrated IMU linear acceleration. This complementary filter

high-passes the IMU estimate and low-passes the motion capture estimate at a cutoff frequency of

5 Hz, indicating that the bulk of the estimation required for highly dynamic maneuvers is provided

by the onboard IMU. Future releases will support fully onboard algorithms such as an extended

Kalman filter (EKF) similar to [Bloesch et al., 2013], which will enable outdoor deployment.

In simulation, a Gazebo plugin provides ground truth state and contact information. The body

position, velocity, and orientation as well as joint and foot positions and velocities are then pub-

lished as a robot state topic.

3.2.4 Development Tools

Quad-SDK comes with a number of tools to enable rapid development of algorithms and applica-

tions for legged robots. The Gazebo simulation accompanying Quad-SDK allows users to interface

with one or multiple quadrupeds through teleoperation and point-to-point navigation within a di-

verse set of environments. Online data visualization of the robots, terrain, global and local plans,

foot trajectories, and ground reaction forces is provided through RViz [Hershberger et al.]. Users
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may interact with the visualization interface to select the goal states for navigation. Real-time dis-

play of the data is provided through a Plotjuggler interface [Faconti]. Quad-SDK also comes with

a set of tools to collect and post-process data. Logging scripts enable recording of data via rosbags

for easy playback and debugging. MATLAB scripts are included to produce publication-ready

figures from these logs, as shown in Section 3.3.

3.3 Performance Tests

This section presents the results of several tests of the functionality of Quad-SDK in both simula-

tion and hardware. In each test, the robot was tasked with finding and executing a plan from its

current state to the goal state. In all but the robustness test the robot was provided with a ground-

truth map of the terrain as well as ground-truth state information to isolate the performance of the

planning and control framework. All simulation tests were performed using Gazebo 9 with the

ODE physics engine, and all processes were executed on a machine running Ubuntu 18.04 with

an Intel Core i7-12700K CPU @ 4.9 GHz and 64 GB of RAM. Hardware tests were performed

with a Ghost Robotics Spirit 40 quadruped platform. Global and Local Planner were executed on

a remote laptop running Ubuntu 18.04 with a Intel Core i7-10750H CPU @ 2.6 GHz and 16 GB

of RAM, while the Robot Driver was executed on the onboard Nvidia Jetson TX2. Communica-

tion between the robot and the remote computer was handled via Ethernet to reduce dropout, but

otherwise the robot was untethered and running on its own power.

3.3.1 Local Minima and Leaping Environment

This task tests the ability of Quad-SDK to navigate local minima as well as perform an agile

leaping behavior. A simulated robot is provided with a terrain map that includes infeasible regions

and a 15 cm step which requires a leap. The goal state provided is a few dozen body-lengths away,

and in a location such that greedily navigating towards the goal would cause immediate failure.

The Global Planner takes around 50 milliseconds to find a feasible route around these local

minima to the goal state (Fig. 15), and constantly replans while executing the motion to find shorter
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Figure 15: Local Minima and Leap Environment – Global Planner. The Global Planner efficiently
solves navigation tasks that require long-horizon plans and agile behaviors such as flight phases.
The global plan (shown in red) leads from the start to the goal states, while the local plan (green)
guides the robot along this plan.

paths. The Local Planner is able to accurately track the global plan even through the aerial phase

which requires body accelerations of over 6g and a maximum velocity of 2.55 m/s (Fig. 16).

The Robot Driver is able to accurately produce the desired ground reaction forces (Fig. 17). In

addition, both the visualizations and data logs shown in Figs. 15-17 were generated directly from

the processing scripts that accompany Quad-SDK.

3.3.2 Large Rough Terrain Environment

This task tests the ability of Quad-SDK to reach a goal state extremely far away and over contin-

uously rough terrain. The terrain covers an area measuring 75x75 body lengths (30x30 m) and

contains large obstacles and holes distributed throughout. The terrain also contains random eleva-

tion noise with amplitude up to half the leg length of the robot ( ±20 cm) and characteristic length

as short as twice the body length. The required goal state is located 67 body lengths (26.9 m) away

and behind several of the obstacles.

By leveraging the action parameterization which permits long-range connections of states, the
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Figure 16: Local Minima and Leap Environment – Local Planner. The Local Planner yields state
trajectories (solid) that closely track the global plan (dashed) over the unstructured terrain.
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Figure 17: Local Minima and Leap Environment – Robot Driver. The Robot Driver accurately
produces GRFs (solid) that closely track those requested by the Local Planner (dashed). Data
shown is for the right rear leg while executing the leap.

Global Planner finds a feasible plan to the goal (shown in Fig. 18) in just 17 milliseconds. This

plan measures 27.6 m in length, which is only 2.5 % longer than the (likely infeasible) straight line

path between the start and the goal. The Local Planner is able to execute the entirety of this plan
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Figure 18: Large Rough Terrain Environment – Global Planner. The Global Planner can handle
extremely-long horizon navigation tasks due to its efficient action parameterization.

Figure 19: Large Rough Terrain Environment – Local Planner. The Local Planner handles the
terrain roughness and contact scheduling even at high velocities so that the Global Planner can
focus on finding efficient routes to the goal.

in 29.2 s for an average velocity of 2.4 body lengths per second (0.94 m/s).
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3.3.3 Robustness to Sensor Error

In each of the prior tests the robot was provided with ground truth knowledge of the state and terrain

map to isolate the performance of the planning and control algorithms. However during real-world

deployment ground truth data is never available, and robots much be able to handle sensor data

that is inaccurate. To test the robustness of the Quad-SDK stack to inaccurate sensor data, this

task requires the robot to walk forwards at 1.0 m/s over rough terrain consisting of elevation white

noise with amplitude up to 0.25 times the leg length (±10 cm). The difference between the terrain

maps is illustrated in Fig. 20. Additionally, additive Gaussian white noise with σp = 0.01 m is

applied to the estimated position and σv = 0.2 m/s to the estimated velocity in random but aligned

directions.

The resulting performance is shown in Figs. 21-22. The robot is able to successfully track the

plan despite the imperfect knowledge. Tracking performance is significantly worse than in the

rough terrain locomotion shown in Fig. 19, but sufficient to maintain stability. This is due to the

stable contact dynamics and rapid replanning capabilities which Quad-SDK enables. Since stance

phase control is largely driven by desired forces rather than position tracking, any missed contacts

are quickly resolved by the large vertical GRF the Local Planner requests. Additionally, since the

planner constantly updates the predicted foot trajectories with current foot information, the system

quickly reacts to the discrepancy in terrain height or foot slip, choosing to trust the proprioceptive

foot information rather than the inaccurate terrain data. Figure 22 shows the foot velocities during

the behavior, which demonstrate these principles – instances of missed contact are immediately

followed by large spikes of downward velocity due to the stance controller, and despite numerous

foot slips (shown as spikes in lateral velocity) the system is able to maintain stability.

3.3.4 Hardware Deployment

This example demonstrates the ability of Quad-SDK to perform agile behaviors in hardware. Fig-

ure 23 shows snapshots of a one body-length leap executed on a quadrupedal platform. The frame-

work is able to seamlessly transition from a 1.0 m/s trot into the leap and back again, while sta-
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Figure 20: The robustness to sensor error test shows success despite imperfect knowledge of the
system. Left – the terrain as perceived by the robot causes it to believe its foot is through the floor.
Right – the actual terrain used in the simulation test.
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Figure 21: Despite the imperfect terrain and state knowledge, the stack provided by Quad-SDK is
able to robustly execute the desired motion.

bilizing the behavior through a period of underactuation despite imperfect sensing and control.

This performance demonstrates that the combination of the reduced-order model of the leaping

behavior coupled with a two-gait cycle horizon MPC running over 100 Hz is sufficient to stabilize

this highly dynamic behavior, suggesting that high-dimensional trajectory optimizations are not

required to autonomously perform these motions.
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Figure 22: The foot velocities over time show the foot slip and height mismatch caused by sensor
inaccuracies. The algorithms in Quad-SDK are able to stabilize the dynamic motion despite these
disturbances.

3.3.5 Multi-robot Support

The examples in Fig. 24 demonstrate multi-robot support for multiple platforms. The robots are

able to independently plan and execute long-horizon trajectories within a shared environment.

Future releases will support multi-robot coordination that allows real-time inter-agent collision

avoidance.
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Figure 23: Quad-SDK executing a one body-length running leap on a hardware platform.

3.4 Conclusion

This section presents a high-level overview of Quad-SDK, an open source ROS-based full-stack

software framework for agile quadrupedal locomotion. The package provides an extensible frame-

work for developers to focus on high-level autonomy while enabling changes to low-level im-

plementation of planning, control, estimation, and simulation components. The validity of the

stack and its core features were demonstrated through experiments highlighting agile autonomy

of multiple platforms for single and multi-robot scenarios. Future releases of the software will

include onboard state estimation and perception-based terrain estimation for outdoor operation, as

well as Python bindings and PyBullet simulation support for developing reinforcement learning

algorithms.

Although this software is released via an open source license to promote collaboration within

the community, we urge developers to consider the ethical impacts of their work in such a nascent

field. We do not condone the use of this software in any use-of-force applications, as we believe

quadrupeds – like all robots – should aid humans rather than harm them.
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(a) Ghost Robotics Spirit 40

(b) Unitree Robotics A1

Figure 24: Quad-SDK supports multi-agent unstructured locomotion for multiple quadrupedal
platforms, with independent planning and control stacks for each robot.
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4 Adaptive Complexity Model Predictive Control

4.1 Introduction

As demand for robotic systems increases in industries like environmental monitoring, industrial

inspection, disaster recovery, and material handling [Bellicoso et al., 2018; Hutter et al., 2017;

Kolvenbach et al., 2020], so too has the need for motion planning and control algorithms that effi-

ciently handle the complexity of their dynamics and constraints. Legged systems in particular are

well suited for these applications due to their ability to traverse unstructured terrains with behaviors

such as that shown in Fig. 25, yet they are so far largely restricted to conservative behaviors due

to this complexity. A common approach to overcome these challenges is to break up the problem

into a hierarchy of sub-problems which reason over progressively shorter horizons with increasing

model complexity. This hierarchy improves computational efficiency which can be used to detect

obstacles further away, react more quickly to disturbances, or reduce energy costs. However, this

hierarchy is vulnerable to failures caused by omitting portions of the underlying model, raising a

fundamental question of how to balance model fidelity and computational efficiency.

Inspiration for answering this question can be drawn from other scientific fields, in particular

behavioral economics and neuromechanics. The famous “Thinking: Fast and Slow” framework

theorizes that human cognitive function can be described with two systems which respectively

handle rapid, simple processing and slow, deliberative reasoning such that “[the complex, slow

system] is activated when an event is detected that violates the model of the world that [the simple,

fast system] maintains” [Kahneman, 2011]. Extending this concept to the field of motion planning

yields meta-planning methods which change their structure to leverage simple, fast models where

possible and complex, slow ones where the simple model is inaccurate [Fridovich-Keil et al., 2018;

Gochev et al., 2011]. However, it is not well understood under what exact conditions a given

dynamical system may leverage a simple model without sacrificing stability and feasibility, nor is

it clear when a more complex model should be used without making the computational overhead

intractable.
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Figure 25: Adaptive complexity model predictive control selectively simplifies the model to pro-
mote efficiency without sacrificing stability. For example, during a legged leaping task joint infor-
mation may be required during takeoff and landing but can be omitted elsewhere without affecting
the behavior.

To investigate these questions, we employ the templates and anchors approach for analyz-

ing model hierarchies [Full and Koditschek, 1999]. This framework describes relations between

dynamical systems where complex behaviors (anchors) can be captured by simpler models (tem-

plates), and its connections to legged locomotion are well-studied in both animals and robots. From

these observations we draw three hypotheses:

1. From the templates and anchors relationship we can derive sufficient conditions which iden-

tify regions of a behavior where complex dynamics and constraints can be safely simplified

without compromising stability and feasibility (i.e. regions where the robot is following the

template model).

2. Legged systems often operate in environments where these conditions are satisfied during the

majority of behaviors and therefore stability and feasibility guarantees can often be retained

even with simplified models.

3. During behaviors in which these conditions are not met, a controller which leverages adap-
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tive complexity online can improve performance over fixed-complexity formulations by en-

abling more efficient motion planning while retaining stability guarantees.

We evaluate these hypotheses by constructing a formulation of model predictive control (MPC)

that actively adapts the model complexity to the task. This is achieved by iteratively identifying

regions of the horizon where the behavior can be safely expressed with a simpler model. This for-

mulation is most efficient when the two models satisfy a relationship known as “exact anchoring”

[Libby et al., 2016b], and in the worst case converges to the standard all-complex MPC formu-

lation. We evaluate Hypothesis 1 by showing that this algorithm provides formal stability and

feasibility properties with respect to the complex system. We evaluate Hypotheses 2 and 3 by

applying this algorithm to a quadrupedal system and conducting simulation experiments on com-

mon environments which legged platforms may encounter. These results show that the majority of

the behaviors in these environments admit feasible simplifications and that the resulting improve-

ment in computational efficiency enables an increase in top speed and decrease in task duration

compared to a system without these reductions. We also show that retaining knowledge of the

dynamics and constraints in the complex system expands the range of executable tasks compared

to a system which uniformly applies these reductions. In the particular case of legged leaping, this

approach enables receding horizon execution of a body-length leaping behavior while considering

joint constraints, which expands the leaping ability over prior methods which do not consider these

constraints.

The organization of this paper is as follows: Section 4.2 covers related work in greater detail,

and Section 4.3 formulates the problem and introduces notation. Section 4.4 provides an overview

of the algorithm, whose formal properties are explored in Section 4.5. This algorithm is applied

to legged locomotion models in Section 4.6, and performance for these systems is quantified in

Section 4.7. Section 4.8 discusses limitations and future extensions enabled by this work, followed

by a short Appendix in Section 4.9 with some proofs of the theories presented.
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4.2 Related Work

Dynamic motion planning and control for systems with intermittent contact is inherently difficult.

However, enabling agile autonomy for such systems is critical for real-world applications that

require the robot to touch the world. In particular, legged robots have significant potential for

real-world deployment. But, they often suffer from difficulties arising from hybrid dynamics,

high state dimensionality, and non-convex constraints on their kinematics and dynamics. Such

problems render even basic motion planning problems PSPACE-complete [Reif, 1979], and as a

result existing algorithms to solve them globally for dynamic legged systems cannot operate in

real-time [Dai et al., 2014; Hauser et al., 2008; Mombaur, 2009; Posa et al., 2014].

In general, the most common approach used to address the planning and control challenges of

legged locomotion has been through leveraging some kind of model reduction, wherein the prob-

lem is solved with a reduced subset of the state and dynamics. The solution of this simpler problem

is then passed to another system with a more complex model which fills in the additional details.

The hierarchical nature of this approach enables optimization of each algorithm based on salient

features of the problem such as the timescales of the dynamics or rates of sensor information. Ex-

amples of this approach include efficient global planners focused on exploration [Bartoszyk et al.,

2017; Fernbach et al., 2017; Norby and Johnson, 2020; Tonneau et al., 2018] to local planners that

plan contact phases over a few gait cycles [Winkler et al., 2018a] to whole-body controllers with

full-order representations over very small horizons [Kuindersma et al., 2016; Neunert et al., 2018;

Sentis and Khatib, 2006]. While these hierarchies have been shown to be capable of producing dy-

namic locomotion, they face a fundamental problem in that dynamics or constraints in the omitted

space can render the desired motion sub-optimal or even infeasible. Conservative assumptions in

the simple model may fail to produce solutions in difficult environments, and optimistic assump-

tions may lead to infeasible behaviors that the more myopic complex system may not recognize

until too late.

Several methods have been explored to resolve the interface between these layers. One straight-

forward approach is to use the complex model to assess the simple solution, either by providing a
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boolean feasible/infeasible classification, computing some value function, or indicating new search

directions [Carpentier et al., 2017; McConachie et al., 2020; Plaku et al., 2010; Zucker et al., 2011].

This can be efficient since checking a solution in a higher-order space is easier than searching for

one, although it does not allow the simple model to directly reason about the dynamics or con-

straints in the complex space.

Another promising way to resolve this is to employ an adaptive planning framework to reason

over different models based on the task and constraints. One flavor of this approach plans over a

mixture of models of varying degrees of fidelity with some pre-defined rules that guide when to

use each and how to transition between them [Brandao et al., 2019; Kapadia et al., 2013; Norby

and Johnson, 2020]. Other approaches leverage an adaptive composition of models with different

safety bounds to trade between performance and robustness or expand the problem dimensionality

as needed to find collision-free paths. [Dornbush et al., 2018; Fridovich-Keil et al., 2018; Gochev

et al., 2011; Styler and Simmons, 2017; Zhang et al., 2012]. Our approach is more similar to

the latter in terms of the underlying adaptation mechanism, but differs in that we derive the ex-

act conditions under which transitioning between models of varying fidelity can be done without

sacrificing stability and feasibility. Furthermore, we demonstrate how such a mechanism can be

applied to a receding horizon framework for online planning and control.

Similar planning and control problems can also be solved online using receding horizon meth-

ods. In particular, model predictive control (MPC) is an iterative receding-horizon optimization

framework that has been commonly used to solve constrained optimal control problems [Allgöwer

and Zheng, 2012]. In the context of dynamic legged locomotion, MPC often computes feasible

body and/or joint trajectories in order to track a higher level reference plan while respecting dy-

namic, state, and control constraints. Works such as [Di Carlo et al., 2018; Laurenzi et al., 2018;

Shi et al., 2019] compute the desired ground reaction forces using a single rigid body model, which

are realized as joint torques using a whole-body controller. Although computationally efficient, this

approach typically uses a single simplified model under the assumption that motions of the legs

have minimal effects on the body. This can be limiting in performing more aggressive motions
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such as those that require flight phases or on robots with high “Centroidal Inertia Isotropy” [?].

While simplified model MPC approaches assume a representative reduced-order model (tem-

plate) exists that fairly approximates the full-order model (anchor), they often do not examine the

validity of this approximation. Some approaches have studied safe controller synthesis for the

template model while ensuring constraint satisfaction of the anchor model through bounding the

differences of the two models using reachability analysis [Liu et al., 2020], approximate simulation

properties [Kurtz et al., 2019], or learning any unmodeled differences [?]. Another approach uses

pre-defined ratios to mix the complex model for the immediate future with the simple model for

longer horizon planning, which results in more robust locomotion compared to fixed-complexity

formulations [Li et al., 2021]. Our approach takes inspiration from these in that it defines the ex-

act conditions under which the higher order model can be simplified without violation of formal

guarantees, but critically differs in that we adaptively mix models of varying fidelity within any

planning horizon based on local feasibility. This allows us to leverage the fidelity of the complex

model when necessary while taking advantage of the computation speed enabled by the simple

model for planning longer horizon motions.

Many of these hierarchical planning and control approaches have been shown to effectively

perform agile and dynamic motions in simulation and hardware. However, they often struggle in

generating and executing motions that require the robot to operate at its kinematic and dynamic

limits. These motions are critical in enabling behaviours like stepping and leaping over gaps,

stairs, and non-traversable obstacles, which are essential in navigating unstructured terrains. Pre-

vious approaches have relied on executing trajectories that have been optimized offline or prior to

execution, lack longer horizon planning, or do not consider joint kinematics or constraints [Johnson

and Koditschek, 2013a; Kolvenbach et al., 2019; Nguyen et al., 2019; Ponton et al., 2021; ?]. Our

approach allows the robot to plan for these agile behaviours in a receding-horizon manner while

reasoning about constraints over a significantly long horizon, which is shown to expand leaping

capabilities in simulation.
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4.3 Preliminaries

To clarify the operation of adaptive complexity MPC and its properties, we define a formulation

for model predictive control and the closed-loop system it yields following [Rawlings et al., 2017].

Consider a nonlinear, discrete-time, dynamical system which evolves on state manifold X under

admissible controls U and with dynamics f ,

xk+1 = f(xk, uk) (26)

where xk ∈ X, uk ∈ U are the current state and control at time k, and xk+1 ∈ X is the successor

state. Let X be the set of all feasible states within manifold X . Let zk := (xk, uk) define a state-

control pair such that xk+1 = f(zk), and let feasible states and controls be defined by the set

Z = X × U . Let the set XN denote the basin of attraction of the controller parameterized by N .

We list a few standard assumptions on the system in (26) and the set XN :

Assumption 1. (A) f(0, 0) = 0 (the origin is an equilibrium point).

(B) ∃u ∈ U | f(x, u) ∈ XN ∀x ∈ XN (XN is control positive invariant).

(C) X and U are compact and contain the origin in their interiors.

To formalize model predictive control, first define a predicted control trajectory with horizonN

as u = [u0, u1, . . . , uN−1] and a predicted state trajectory as x = [x0, x1, . . . , xN ]. For simplicity

we define the resulting predicted state-control pair trajectory as z = [z0, z1, . . . , zN−1] such that

zi = (xi, ui), where i denotes the index within the horizon defined at time k. The optimal control

problem (OCP) solved in the standard NMPC formulation with terminal cost and region is thus
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P(xk),

P(xk) : V ∗
N(xk) = min

u

N−1∑
i=0

L(zi) + Vt(xN) (27a)

s.t. xi+1 = f(zi) ∀i = 0, . . . , N − 1 (27b)

zi ∈ Z ∀i = 0, . . . , N − 1 (27c)

x0 = xk (27d)

xN ∈ Xt (27e)

where L(·), Vt(·) are the stage and terminal costs, Z is the set of feasible state-control pairs, and

Xt is a terminal set. Let u∗ be the control trajectory corresponding to the optimal solution of (27).

The control law defined by NMPC is determined by solving (27) at each time k and applying the

first control, i.e. uk = u∗0|k . This defines the state feedback policy h(xk) and resulting closed loop

system fh(xk),

h(xk) := u∗0|k (28)

fh(xk) := f(xk, h(xk)) (29)

Standard stability proofs for NMPC formulations typically rely on showing that the closed-loop

system admits a Lyapunov function which is upper and lower bounded by strictly increasing func-

tions of state and is strictly decreasing in time (for asymptotic stability) or bounded in magnitude

by the control input (for Input-to-State Stability). We borrow the standard definitions of strictly in-

creasing functions K and K∞ as well as Lyapunov functions and asymptotic stability from [Limon

et al., 2009].

For the closed-loop system in (29) to yield provable stability, assume the following properties

on L(·), Vt(·), and Xt.

Assumption 2. (A) ∃αL, αU , αL,f , αU,f ∈ K∞ | αU(|x|) ≤ L(x, u) ≤ αL(|x|)∀x ∈ X , u ∈ U and

αU,t(|x|) ≤ Vt(x) ≤ αL,t(|x|)∀x ∈ Xt (stage and terminal cost are upper and lower bounded by
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K∞ functions).

(B) A solution to (27) exists for all xk ∈ XN .

(C) The functions L(x, u), Vt(x), and f are all twice differentiable with respect to x and u.

(D) ∃αVt ∈ K∞, ht(x) | Vt(f(x, ht(x))) − Vt(x) ≤ −αVt(|x|) ∀x ∈ Xt (terminal control law

decreases cost).

(E) The control law defined in (28) satisfies Assumption 1A.

It is a known result that under these conditions, the system defined in (29) is asymptotically

stable for all x0 ∈ XN [Allgöwer and Zheng, 2012; Limon et al., 2009].

4.4 Adaptive Complexity MPC

4.4.1 Algorithm Overview

The core idea of adaptive complexity is to leverage models of differing complexity to simplify the

model in regions where feasibility is assured and only increase complexity as needed to guarantee

feasibility and stability properties. Our approach is to define a simplicity set Sk at each time k

which indicates whether state-action pairs at a given time in the horizon after k can be simplified,

and piece-wise dynamics that can propagate the state both into and out of this set. Conditions on

this set Sk can be directly drawn from the literature on templates and anchors [Full and Koditschek,

1999] – elements of Sk represent times corresponding to state-action pairs that follow a feasible,

attracting, invariant submanifold within the complex (“anchor”) space, i.e. follow the “template”

dynamics. In other words, membership in Sk implies that the system remains on the manifold

after applying the complex dynamics and without violating constraints. This knowledge allows

the system to optimize directly on the manifold in these regions, omitting the lifted component of

the system and thus improving efficiency, while retaining these components when the feasibility

or invariant properties are no longer satisfied. Note that while this work assumes one template per

anchor, it could be further extended to include multiple templates describing different reductions

of the anchor dynamics.
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4.4.2 Complex and Simple System Definitions

Let the original system defined in (26) be “complex” which is clarified by the superscript (·)c. Let

the “simple” system be denoted with the superscript (·)s such that the state xs lies on the manifold

Xs, where dimXs < dimXc. These states are related by the state reduction ψx : Xc → Xs

defined as xs = ψx(x
c). Let each system have controls uc and us defined over manifolds U c and

U s which are related by the control reduction ψu : U c × Xc → U s defined as us = ψu(u
c, xc).

Define the state-control pairs as zc = (xc, uc) and zs = (xs, us) which lie on manifolds Zc :=

Xc × U c and Zs := Xs × U s. This permits the definition of the reduction ψ : Zc → Zs defined

as zs = ψ(zc) = (ψx(x
c), ψu(u

c, xc)). Note that these many-to-one projection defines which

components of the complex system are retained in the simple system.

Define the mapping ψ† such that ψ ◦ψ† = I , where I is the identity matrix. Let ψ†
x and ψ†

u give

the outputs of ψ† corresponding to state and control variables respectively. This choice defines a

particular heuristic – among many possible operators – for how states and controls in the null-space

of ψ(·) should correspond to the simple system. For stability purposes we choose that this maps to

the origin (i.e. the reference) for variables contained in the null space of ψ.

The dynamics and constraints for the complex system have already been defined in Section 4.3.

Define the dynamics f s and constraints of the simple system Zs,

xsk+1 = f s(zsk) (30)

zsk ∈ Zs. (31)

Let the basin of attraction of the complex system be denoted XNc under horizon length N c.

4.4.3 Adaptive System Definition

We seek an adaptive control law which leverages the simple system when the system can feasibly

remain on the manifold Zs and the complex system when it cannot. Define another set of state and

control variables xai , uai , and zai which represent the adaptive mixed system which is used to solve
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the OCP. We use Sk to assign these quantities at a time i in the horizon to a particular manifold,

zai =


zci ∈ Zc, i /∈ Sk

zsi ∈ Zs, i ∈ Sk

(32)

The adaptive states and controls can be either lifted to the complex manifold zl ∈ Zc or reduced

(projected) to the simple manifold zr ∈ Zs by leveraging ψ and ψ† at time i,

zli =


zai , i /∈ Sk

ψ†(zai ), i ∈ Sk

(33)

zri =


ψ(zai ), i /∈ Sk

zai , i ∈ Sk

(34)

Next we define the dynamics of the adaptive system which are used to solve the OCP,

xai+1 = fa(zai ) :=



f c(zai ) i, i+ 1 /∈ Sk

ψ ◦ f c(zai ) i /∈ Sk, i+ 1 ∈ Sk

f c ◦ ψ†(zai ) i ∈ Sk, i+ 1 /∈ Sk

f s(zai ) i, i+ 1 ∈ Sk

(35)

where xai+1 is the successor state in the adaptive system. The OCP for the adaptive system uses

these dynamics to construct feasible motions over a prediction horizon Na ≥ N c.

Denote a predicted adaptive control sequence over horizon Na as ua = [ua0, u
a
1, . . . , u

a
Na−1], a

predicted adaptive state sequence as xa = [xa0, x
a
1, . . . , x

a
Na ], and a predicted adaptive state-control

pair sequence as za = [za0 , z
a
1 , . . . , z

a
Na−1]. Let the lifted and reduced forms of these trajectories be
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denoted as zl and zr. We define the constraints Za
i in the adaptive system,

Za
i :=


Zc i /∈ Sk

Zs i ∈ Sk

. (36)

With these definitions in place we now state the OCP Pa(xck) which is solved to determine the

control input uck,

Pa(xck) : V ∗a
Na(xck) = min

ua

Na−1∑
i=0

La(zai ) + Vt(x
a
Na) (37a)

s.t. xai+1 = fa(zai ) ∀i = 0, . . . , Na − 1 (37b)

zai ∈ Za
i ∀i = 0, . . . , Na − 1 (37c)

xa0 = xck (37d)

xaNa ∈ X c
t (37e)

where the adaptive cost function is equal to the complex system cost evaluated on the lifted state-

control pair,

La(zai ) =


Lc(zai ) i /∈ Sk

Lc(ψ†(zai )) i ∈ Sk

(38)

Let XNa be the set of states for which the solution to (37) exists. Let the optimal value function

found in (37) correspond to the control trajectory u∗a = [u∗a0 , u
∗a
1 , . . . , u

∗a
Na−1] and corresponding

lifted trajectory u∗l. The control law defined by adaptive complexity MPC is determined by solving

(37) at each time k and applying the first control, i.e. uck = u∗l0|k . Define the state feedback policy
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ha(xck) and resulting closed loop system f c
ha(xck),

ha(xck) := u∗l0|k (39)

f c
ha(xck) := f c(xck, h

a(xck)) (40)

Note that each term in the OCP defined in (37) converges to its complex counterpart if Sk = {},

so the behavior of the original MPC closed-loop system defined in (26) can always be retained.

However, we seek to find the minimal complexity required to still ensure stability of the closed-

loop system.

4.4.4 Conditions on the Complexity Set

The set Sk clearly cannot be arbitrary in order to maintain stability, as ignoring some uncontrolled

component of the system dynamics could easily cause undesired behavior. To avoid this we define

a notion of the admissibility of Sk which is needed to show that the state and control trajectory in

the adaptive space matches their realizations in the complex system.

Definition 1. (Admissibility of Sk) The simplicity set Sk defined at time k is admissible if the

following conditions hold for all i ∈ Sk,

i ∈ 1, 2, . . . , Na − 1 (41a)

ψ† ◦ ψ(zli) ∈ Zc (41b)

ψ†
x ◦ f s ◦ ψ(zli) = f c(zli) (41c)

ψ†
x ◦ ψ ◦ f c(zli−1) = f c(zli−1). (41d)

The condition (41a) requires that the first and last state be complex, which ensures the predicted

trajectory matches the actual dynamics and that the system is able to reach the (possibly complex)

terminal state. The conditions (41b) require that the state and control on the manifold at i are

feasible in the complex space, (41d) requires the dynamics from the prior state and control lead to
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Figure 26: Elements in the horizon i are in the set Sk if they are feasible and stay on the manifold
Zs (illustrated as a blue dashed 1D curve). The adaptive system allows zli to leave this submanifold
while remaining in the manifold Zc (the surrounding white 2D space). Elements in the set Sk are
denoted in blue, elements not in this set are denoted in red and labeled with the condition of (41)
they satisfy or violate.

the manifold, and (41c) requires that the dynamics applied to the current state yields a successor

state on the manifold, i.e. the complex space “exactly anchors” the simple space (in the sense

of [Libby et al., 2016b, Appendix A]). These concepts are illustrated in Fig. 26. To codify the

admissibility of a simplicity set Sk, define the set of possible simplicity sets as S , and the set of

all admissible sets as Sa. Membership in Sa can be determined by computing the lifted prediction

trajectory zl and checking the conditions in (41) for each i ∈ Sk. Also note that removing any

element from an admissible simplicity set does not invalidate the admissibility property.

In order to show the stability of adaptive complexity MPC, we require that Sk be admissible

for all k.

Assumption 3. Sk ∈ Sa ∀k ≥ 0.

The remaining challenge is ensuring the admissibility of Sk, which is inductively handled by

Algorithm 1 and for which recursive admissibility is proven in Sec. 4.5.3. There are multiple

methods to ensure the initial S0 is admissible, such as initializing with S0 = {}which is guaranteed

to be admissible, or iteratively solving (37) and updating S0 until an admissible set is found. After
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Algorithm 1 Adaptive Complexity Model Predictive Control

Given xc0, S0, S
f , Na

k ← 0
Sa
0 ← S0

repeat
Sk ← Sa

k ∩ Sf

z∗a ← Pa(xck)|Na,Sk
▷ (37)

z∗l ← ψ†(z∗a) ▷ (33)
uck ← u∗l0|k ▷ (39)
xck+1 ← f c(xck, u

c
k) ▷ (40)

Sa
k+1 ← {i− 1 | i ∈ Sa

k ∧ zli satisfies (41)}
k ← k + 1

until finished

an initial set is found, successor sets can be found by combining two simplicity sets, Sa
k and Sf .

The set Sa
k adaptively identifies regions that can be safely simplified, while Sf requires that certain

elements always remain complex for stability and admissibility, in particular the first and last

element. After a solve, Sa
k is updated by checking (41) to determine which states can be simplified.

Its elements are then shifted in time, i.e. Sa
k+1 = {i− 1 | i ∈ Sa

k}, and combined with the fixed set

to yield the successor simplicity set Sk+1 = Sa
k+1 ∩ Sf . This approach is sufficient to guarantee

admissibility in the nominal case with a perfect model, where the only new portion of the optimal

trajectory is the last element which is always covered by Sf . Robustness can be improved at the

expense of computational effort by expanding Sf to include more elements to ensure Sk remains

admissible under disturbances. This is similar to the MPC formulation in [Li et al., 2021], but

includes the adaptive term Sa
k to ensure feasibility across the entire horizon.

4.4.5 Formal Definition of Adaptive Complexity MPC Algorithm

With the control law we can now summarize adaptive complexity MPC as an iterative algorithm

shown in Algorithm 1. This procedure combines the fixed and adaptive simplicity sets, solves the

OCP, updates the adaptive simplicity set from its solution, then applies the first element of the

control trajectory. Note that this algorithm is no different from standard MPC formulations with

the exception of the definition of the simplicity set and lifting of the resulting trajectory.
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4.5 Theoretical Analysis

This section describes the theoretical properties of adaptive complexity MPC. We first show that

constraints of the original OCP in (27) are satisfied by solutions of the adaptive OCP in (37)

under assumptions on the admissibility of Sk (Sec. 4.5.1). We use this result to show recursive

feasibility of the adaptive OCP and thus asymptotic stability of the origin of the closed loop system

(Sec. 4.5.2). We show that Algorithm 1 satisfies the assumption on admissibility of Sk (Sec. 4.5.3),

and that the basin of attraction of the resulting system is no smaller than the original complex

MPC system and possibly larger since the horizon length could be expanded with the additional

computational capabilities (Sec. 4.5.4).

4.5.1 Optimal Control Problem Constraint Satisfaction

We begin by showing that admissibility of Sk results in a lifted trajectory which matches the so-

lution to the closed-loop dynamics of the actual complex system, and therefore the constraints of

the original OCP in (27) are satisfied by solutions of the adaptive OCP in (37). Let the solutions of

the closed-loop dynamics starting at state xck under a given control trajectory uc for duration i be

expressed by the function ϕ defined as ϕ(i, xck,u
c) := xck+i.

Proposition 1. Suppose Assumption 3 is satisfied. The predicted state at time i is equal to the

solution to the complex dynamical system under the lifted predicted controls, i.e. xli = ϕ(i, xc0,u
l).

Proof. We prove this by induction. For the base case i = 0, since 0 /∈ Sk, xl0 = xc0 = ϕ(0, xc0,u
l).

For the induction step we need to show that xli = ϕ(i, xc0,u
l) implies xli+1 = ϕ(i + 1, xc0,u

l).

We obtain ϕ(i + 1, xc0,u
l) by applying the closed-loop complex dynamics to ϕ(i, xc0,u

l) with the

control determined by ul to both sides,

xli = ϕ(i, xc0,u
l) (42)

f c(xli,u
l
i) = f c(ϕ(i, xc0,u

l),ul
i) (43)

f c(zli) = ϕ(i+ 1, xc0,u
l) (44)
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Thus we need to show that xli+1 = f c(zli) which would show that zli would satisfy. We proceed by

cases based on inclusion in Sk.

Case 1. i /∈ Sk, i + 1 /∈ Sk. This case corresponds to a portion of the trajectory entirely in the

complex space. By the definition of the adaptive system dynamics in (35),

xli+1 = xai+1 = f c(zai ) = f c(zli) (45)

Case 2. i /∈ Sk, i+1 ∈ Sk. This case corresponds to a portion of the trajectory which decreases in

complexity. By the definition of the adaptive system dynamics in (35) and the construction of Sk

in (41),

xli+1 = ψ†
x(x

a
i+1) = ψ†

x ◦ ψ ◦ f c(zai ) = f c(zai ) = f c(zli) (46)

Case 3. i ∈ Sk, i+ 1 /∈ Sk. This case corresponds to a portion of the trajectory which increases in

complexity. By the definition of the adaptive system dynamics in (35) and the construction of Sk

in (41),

xli+1 = xai+1 = f c ◦ ψ†(zai ) = f c(zli) (47)

Case 4. i ∈ Sk, i + 1 ∈ Sk. This case corresponds to a portion of the trajectory entirely in the

simple space. By the definition of the adaptive system dynamics in (35) and the construction of Sk

in (41),

xli+1 = ψ†
x(x

a
k+1) = ψ†

x ◦ f s(zai ) = ψ†
x ◦ f s ◦ ψ(zli) = f c(zli) (48)

Thus the induction step holds, completing the proof.

We must also show that state and control trajectories which satisfy the adaptive state and control

constraints Za also satisfy the complex equivalent Zc by nature of the admissibility of set Sk.
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Proposition 2. Suppose Assumption 3 is satisfied. If zai ∈ Za, then zli ∈ Zc.

Proof. Proceed by cases based on inclusion in Sk.

Case 1. i /∈ Sk. In this case, zli = zai . By the definition of Za in (36), zli ∈ Zc.

Case 2. i ∈ S. In this case, zli = ψ†(zai ). Since Sk ∈ Sa, zli ∈ Zc by (41b).

Next we show that satisfying the initial and terminal state constraints in the adaptive system

implies satisfaction of the same constraints in the complex space.

Proposition 3. Suppose Assumption 3 is satisfied. If xa0 = xck then xl0 = xck, and if xaNa ∈ X c
t , then

xlNa ∈ X c
t .

Proof. Since i = 0 /∈ Sk, xl0 = xa0 = xck. Since i = Na /∈ Sk, x
l
Na = xaNa ∈ X c

t .

4.5.2 Adaptive Complexity Feasibility and Stability

With these propositions in place we can now prove that the OCP defined in (37) is recursively fea-

sible for states inXNa and that this set is invariant in the complex system. This is done by following

the form of the proofs in [Allgöwer and Zheng, 2012], which constructs a feasible solution (in the

absence of modeling errors) to the OCP at the successor state by combining the current solution

with the terminal set feedback policy ut(xc). This approach is illustrated in Fig. 27. Define this

control sequence as ũa and its lifted counterpart ũl,

ũa(xck) =
[
u∗a1 , . . . , u

∗a
Na−1, ut(x̂)

]
(49)

ũl(xck) = ψ†
u(ũ

a(xck)) (50)

where x̂ = ϕ(Na, xck,u
∗l) is the terminal state at time Na resulting from initial state xck and con-

trol u∗l(xck) (under Proposition 1). We now show that this control satisfies the requirements for

recursive feasibility.
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a c b b db a

Figure 27: Adaptive complexity MPC retains recursive feasibility and admissibility by updating
the simplicity set and solution at time k+1 with the corresponding terms from time k along with the
new state and control determined from the terminal policy ut which is applied with the terminal set
X c

t . Letters at bottom indicate the condition of (41) that element satisfies or violates. The complex
manifold X c is the 2D space while X s is the embedded 1D submanifold.

Proposition 4. Suppose Assumptions 1 – 3 are satisfied. Let xck ∈ XNa and let xck+1 := f c
ha(xck)

denote the successor state (under adaptive complexity model predictive control) to xck. Then ũa(xck)

defined in (49) is feasible for Pa
N(f

c
ha(xck)) and XNa is positively invariant (for the system xck+1 =

f c
ha(xck)).

Proof. This proof follows standard methods for demonstrating recursive feasibility [Allgöwer and

Zheng, 2012], see Appendix 4.9.1 for the complete proof.

We must also show that the cost function decreases along any solution of xck+1 = f c
ha(xck) given
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these previous assumptions as this is necessary for the stability proof:

Proposition 5. Suppose Assumptions 1 – 3 are satisfied. Then

V ∗a
N (f c

ha(xck))− V ∗a
N (xck) ≤ −Lc(xck, h

a(xck)) (51)

Proof. See Appendix 4.9.1.

We can now prove asymptotic stability of the origin of the closed loop system using standard

Lyapunov-based methods. This supports Hypothesis 1 which states that adaptive complexity MPC

yields provable stability properties reliant on template and anchor conditions.

Theorem 6. Suppose Assumptions 1 – 3 are satisfied. Then there exists functions α1, α2, α3 ∈ K∞

which upper and lower bound the cost, i.e.,

α1(|xck|) ≥ V ∗a
Na(xck) ≥ α2(|xck|) (52a)

V ∗a
Na(xck+1)− V ∗a

Na(xck) ≤ −α3(|xck|) (52b)

and thus the origin of the system,

xck+1 = f c
ha(xck) (53)

is asymptotically stable with a region of attraction XNa .

Proof. See Appendix 4.9.1.

4.5.3 Recursive Admissibility of Sk

Theorem 6 shows that adaptive complexity MPC is stable under Assumption 3 which states that

Sk is admissible. Next we prove that this holds for all time under Algorithm 1, again assuming no

modeling errors. Robustness considerations remain an intriguing area for future investigation.

Lemma 7. Let xc0 ∈ XNa . Then Sk ∈ Sa ∀k ≥ 0 under Algorithm 1.
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Proof. We proceed by induction. The base case k = 0 is met by the assumption that S0 ∈ Sa. For

the induction step we must show that Sk ∈ Sa implies Sk+1 ∈ Sa. By Proposition 4, z∗lk+1 consists

of each of the last Na − 1 elements of z∗lk , plus the new terminal state-control pair (x̂, ut(x̂)).

Since under Algorithm 1 elements of Sa
k+1 are the time-shifted elements of Sa

k which satisfy the

admissibility conditions (41), these conditions are satisfied for all i ∈ Sa
k+1. Since by the definition

of Sk+1 = Sa
k+1 ∩ Sf where i = Na /∈ Sf , the new terminal state-action pair is always in the

complex space, and hence (41) are satisfied for all i ∈ Sk+1 and thus Sk+1 ∈ Sa.

Note that the terminal state-control pair may not meet the reduction conditions in (41), meaning

that it must remain in the complex space. This is handled by assuming the last finite element in the

horizon is complex, and checking (41) after solving the OCP to determine if the new index can be

allowed into Sk or must remain complex.

4.5.4 Basin of Attraction Comparison

We have shown that both the original MPC formulation for the complex system in (29) and the

adaptive complexity MPC system in (40) are asymptotically stable about the origin with basins of

attraction XNc and XNa , respectively. We now show that the size of their basins of attraction is

dependent on the horizon lengths N c and Na.

Lemma 8. If N c ≤ Na then XNc ⊆ XNa , and if N c < Na then XNc ⊂ XNa .

Proof. Let xc0 ∈ XNc , thus the OCP PNc(xc0) has a solution u∗ satisfying the constraints in (27).

Let S0 be the initial admissibility set of this solution determined by evaluating the conditions in

(41). Construct an adaptive control trajectory ua,

uai =


u∗i i /∈ S0

ψu(u
∗
i ) i ∈ S0

(54)

for all i = 0, 1, . . . , N c − 1, which implies ul = u∗. By Propositions 1 – 3 the constraints on

the OCPs (27) and (37) are equivalent, and thus ua is a valid solution of (37) which implies that
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xc0 ∈ XNa and thus XNc ⊆ XNa .

To show that N c < Na → XNc ⊂ XNa , consider a point xc0 /∈ XNc and some feasible control

uc0 ∈ U such that zc0 := (xc0, u
c
0) ∈ Zc and xc1 = f c(zc0) ∈ XNc . Let u∗1 be the control sequence

yielded by solving the OCP PNc(xc1). Let the control sequence ua
0 = [uc0,u

a
1], and letNa = N c+1.

Since the state xc1 ∈ XNa , by Propositions 1 – 3 the state, control and terminal constraints of (37)

are satisfied for zai ∀i = 1, 2, . . . , N c, and since zc0 ∈ Zc, the state and control constraints are

satisfied for i = 0. Thus all the constraints of (37) are satisfied, and therefore xc0 ∈ XNa . The

property XNc ⊂ XNa follows.

The property that longer horizon lengths yield larger basins of attraction is a known result of

MPC theory – as horizon lengths go to infinity, MPC converges to infinite-horizon optimal control

[Allgöwer and Zheng, 2012]. Horizon lengths are generally limited by computational effort, so if

simplifying the problem allows for longer horizons under equal computational capabilities without

violating system constraints, the resulting controller has a larger basin of attraction. We note

this theoretical result, although in the following experiments we leave horizon length fixed and

allow solve time variations rather than the reverse as this yields a more consistent representation of

computational constraints. Also note that since membership in the basin of attraction implies that a

solution to the OCP exists, Lemma 8 implies that adaptive complexity maintains the completeness

properties of the original MPC formulation in the complex system (assuming a suitable algorithm

which can solve the OCP in (37)).

Additionally, it should be noted that although feasible solutions of the adaptive OCP are also

feasible solutions of original complex OCP, they may not be optimal with respect to the original

OCP cost function. Reducing the system at a particular time is in essence constraining it to the

simple manifold at that time. The conditions stated above require that doing so be feasible and

yield a decreasing cost, yet it is possible that doing so could yield a trajectory of higher cost across

the whole trajectory than if this constraint were lifted. As such this approach may result in a slight

sacrifice in cost optimality in favor of a simpler problem.
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4.6 Application to Legged Systems

To demonstrate the validity of the proposed adaptive complexity MPC in controlling dynamical

systems and to provide examples for the quantities defined above, we apply the approach for a

legged robot systems. This section defines the complex and simple models which are used for

implementing the algorithm, as well as the mappings between them. The complex model includes

states and constraints on both the body and feet of the robot (and thus also joint information through

kinematics calculations) whereas the simple model only considers body motion.

4.6.1 Definition of Complex Legged System

The complex system represents a model of the robot that includes body and foot states as shown

in Fig. 28. This formulation permits the calculation of joint kinematic data via known kinematics

functions while maintaining some level of decoupling between body and leg dynamics. We define

the states of the complex system xc ∈ R12+6n with n denoting the number of legs,

xc =



qlin

qang

qfoot

q̇lin

ω

q̇foot


(55)

where qlin defines the body linear position, qang defines the body orientation through a vector pa-

rameterization such as Euler angles, qfoot defines the foot positions, and ω is the angular velocity

(with ω̂ its skew-symmetric equivalent).
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(a) Complex system (b) Simple system

Figure 28: The complex model includes body and foot states which together define joint states,
while the simple model only consists of body states.

Define the control inputs uc ∈ R6n,

uc =

 ubody

ufoot

 (56)

where ubody ∈ R3n are the desired ground reaction forces at each foot in the world frame coordi-

nates, and ufoot ∈ R3n denote the forces which accelerate the feet during swing, but do not act on

the robot body. This parameterization decouples the effects of the body and leg dynamics, which

amounts to a massless leg assumption for the body dynamics [?, Sec. 2.3] while still capturing

kinematic constraints and second-order dynamics of the leg motion during swing. Note that these

forces on the physical system correspond to the same actuators as any given leg is either in stance

or swing – this separation is primarily to distinguish between control authority available in the

simple and complex systems. Let ubody,i ∈ R3 and pi ∈ R3 be the ground reaction forces and foot

positions respectively for stance leg i. Following the standard formulation for single rigid body

dynamics models, e.g. as in [Chignoli and Wensing, 2020], define the continuous time dynamics
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of this system f c(xc, uc),

f c(xc, uc) =



q̇lin

R(qang)ω

q̇foot

1
m

∑n
i ubody,i − g

W (qlin, qfoot, ω, ubody)

ufoot



(57)

where R(qang) ∈ SO(3) is the rotation matrix corresponding to orientation parameterization qang,

m is the body mass, g is the gravity vector, and the shorthand function W (·) maps the state and

control to the angular acceleration,

W (qlin,qfoot, ω, ubody) =

I−1
(
RT

n∑
j

((qfoot,j − qlin)× ubody,j)− ω̂Iω
)

(58)

where I is the inertia matrix in the body frame. The discrete time formulation of the dynamics in

(57) can be obtained with a suitable integration scheme such as forward Euler.

Next, we define the constraints of the complex system Zc. Kinematic constraints for legged

systems are generally functions of joint limits rather than body or foot variables. As a result, we

add the joint information to the optimization as slack variables and use them to define constraints.

Let θ, θ̇, τ ∈ Rn·nj be the joint positions, velocities, and torques, respectively, where nj is the
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number of joints per leg. These slack variables are constrained,

FK(q, θ) = qfoot (59a)

J(q, θ)[q̇Tlin, ω
T , θ̇T ]T = q̇foot (59b)

τ = −Jbody(q, θ)
Tubody (59c)

where FK(q, θ) is the forward kinematics function of the system and J(q, θ) is the leg Jacobian

which relates motion of the body and joints to foot motion in the world frame, and Jbody are the

columns of this matrix corresponding to joint motion.

With these variables in place we can now state the constraints in the complex system,

θmin ≤ θ ≤ θmax (60a)

θ̇min ≤ θ̇ ≤ θ̇max (60b)

τmin ≤ τ ≤ τmax (60c)

ubody,min ≤ ubody ≤ ubody,max (60d)

Dubody = 0 (60e)

ubody ∈ FC (60f)

−τmax

(
1 +

θ̇

θ̇max

)
≤ τ ≤ τmax

(
1− θ̇

θ̇max

)
(60g)

h(qfoot) ≥ 0 (60h)

where (·)min and (·)max represent variable bounds, (60e) enforces a contact schedule with selection

matrix D, (60f) enforces that the GRF at each foot lies within the non-adhesive friction cone FC,

(60g) enforces a linear motor model, and (60h) enforces non-penetration of the terrain via the

ground clearance h(qfoot). Together the constraints in (60) define the set Zc.
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The stage and terminal costs for the OCP of the complex system can then be defined,

Lc(xc, uc) = xcTQxc + ucTRuc (61)

V c
f (x

c) = xcTQtx
c (62)

where Q,Qt, and R are positive definite matrices.

4.6.2 Definition of Simple Legged System

The simple system represents the reduced-order model of the robot that uses only the body states

and ignores the foot and joint states, as shown in Fig. 28. This is a commonly used model reduction

technique in the legged locomotion literature. The state of the simple system is defined as xs ∈ R12.

The control inputs u ∈ R3n of the simple system consists of only the GRFs from the complex

system, such that us = ubody. The dynamics in the simple system are the components of the

complex dynamics corresponding to the simple system states defined as f s(xs, us). The constraints

in the simple space are only constraint bounds on the input ubody, identical to equations (60d)–(60f).

Note that the introduction of the torque constraints in (60c) and (60g) accurately capture actuation

limits, and thus the heuristic GRF limits in (60d) can be selected optimistically in the simple case

as the system will adaptively apply the more accurate constraints as needed to ensure feasibility.

Although the cost in the adaptive OCP is based on the cost function defined for the complex

system, we define the stage and terminal costs of the simple system as Ls and V s
t which are used

in the following experiments for the non-adaptive configurations. Note that the cost for the simple

system is structurally identical to the complex system with the difference in the states, controls, Q,

R, and Qt matrices representing the simple system variables instead.
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4.6.3 Relations Between Complex and Simple Legged Systems

With these systems defined, we can now relate the two with the projections ψx, ψu and define our

heuristic lifts ψ†
x, ψ

†
u. The projections select components to retain within the simple system,

ψx(x
c) =



qlin

qang

q̇lin

ω


= xs (63)

ψu(u
c) = [ubody] = us (64)

In order to define the lifting functions, assume that we have a reference x̄ck, ū
c
k in the complex sys-

tem space which is dynamically consistent, i.e. x̄ck+1 = f c(x̄ck, ū
c
k). Although Section 4.5 assumes

a time-invariant system (and thus a constant reference) for simplicity of the analysis, the results

could be applied to time-varying systems and thus the tracking of a trajectory. We leave the for-

mal extension to these systems as future work, but note that the stability of MPC for time-varying

systems is well established [Rawlings et al., 2017]. Dropping the index k for clarity, this reference

allows the definition of the lifting operator ψ†,

ψ†
x(x

s) =



qlin

qang

q̄foot

q̇lin

ω

˙̄qfoot


(65)

ψ†
u(u

s) =

 ubody

ūfoot

 (66)
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Note that when tracking a reference, the state is typically mapped to tracking error such that sta-

bility of the origin corresponds to stability of the reference trajectory, i.e. x̂c = xc − x̄c. We can

now state the conditions for admissibility for this system, which require the that variables in the

null space of ψ lie on the reference and are feasible.

Lemma 9. For a given state-control pair zli which lie on a trajectory of the system defined in (57), a

reduction at i ∈ [1, . . . , N − 1] is admissible (Definition 1) if qfoot = q̄foot, q̇foot = ˙̄qfoot, ufoot = ūfoot,

and zli satisfies the constraints in (60).

Proof. See Appendix 4.9.2.

4.7 Experimental Evaluation

This section presents experiments deploying adaptive complexity MPC on a simulated quadrupedal

robot to quantify its performance and benchmark against other formulations of MPC. In particu-

lar we compare against three other model configurations – “Simple” and “Complex” respectively

employ only the simple and complex model dynamics and constraints, and “Mixed” employs the

complex model for the first one-quarter of the horizon and the simple model for remainder, similar

to [Li et al., 2021]. The “Adaptive” configuration follows Algorithm 1 with Sf = {2, ...Na − 2}

so that the first and last finite elements are always complex. This meets the terminal state admissi-

bility condition in (41a) and also ensures that new elements entering the horizon will be complex

to meet Assumption 3 in lieu of a hard-to-find terminal controller ht(x) that meets the conditions

in Assumption 2.

In each experiment, the robot is provided a reference trajectory which defines the required task

over the given environment. We use three environments to evaluate the algorithm performance in

the presence of varying constraints. The “Acceleration” environment requires the robot to rapidly

accelerate and decelerate over 7.5 body lengths (3 m) of flat terrain to measure the ability of the

configuration to stabilize the system during agile motions. The “Step” environment consists of a

one-half leg length (20 cm) step which requires navigating state constraints such as joint limits
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to traverse. The “Gap” environment consists of a body-length (40 cm) gap which the robot must

leap across, testing the controller’s ability to handle these kinematic constraints in addition to input

constraints such as actuator limits and friction.

We quantify performance in the Acceleration environment by measuring the average comple-

tion time and resulting top speed achievable with a 100% success rate over ten trials. Success is

defined as reaching the goal within a one-half body length (20 cm) and zero velocity without the

body contacting the ground. Performance in the Step and Gap environments is measured via the

success rate over ten trials, as well as average solve time and norm of the total control input (sum

of ground reaction forces) averaged over the successful trials. For the Step and Gap environments,

the robot is initialized to a random position within one-half body length in the transverse plane

from a nominal position.

In each environment a fixed reference trajectory for the body is provided from the global plan-

ner described in [Norby and Johnson, 2020], and the reference foot trajectories are chosen on-

line before each MPC iteration with a Raibert-like heuristic [Raibert, 1986] and a threshold on

traversability, as described in [Norby et al., 2022b]. We fix the prediction horizon at two gait cy-

cles (N c = Na = 24) with a timestep of ∆t = 0.03 s and measure the relative solve times as

discussed in Sec. 4.5.4, although future work could implement an adaptive horizon approach to

keep solve time fixed.

Once the reference information has been obtained, we construct the NLP with the appropriate

complexity structure and solve it with IPOPT [Wächter and Biegler, 2006]. We configure IPOPT

to enable warm start initialization and provide it the primal and dual variables from the prior solve

(appropriately shifted) for rapid convergence. Once the problem is solved, the MPC control output

is then mapped from ground reaction forces to joint torques via the Jacobian-transpose method,

and the resulting swing foot trajectories are tracked with PD control. See [Norby et al., 2022b] for

more details on the implementation of the low-level controller. All experiments were performed

using Gazebo 9 with the ODE physics engine, and all processes were executed on a machine

running Ubuntu 18.04 with an Intel Core i7-12700K CPU at 4.9 GHz and with 64 GB of RAM.
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Figure 29: The Acceleration environment requires the robot to rapidly move forwards 3 m and
come to a rest. Snapshots are equally distributed in time, with increasing opacity corresponding to
progression forwards in time.
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Figure 30: The position and velocity trajectories for the Acceleration experiment show that the ad-
ditional computation required by the Complex configuration significantly reduces its performance.
Each curve corresponds to one trial at the maximum feasible commanded acceleration.

The Acceleration environment is simulated in real-time to measure the effect of solve time on

stability. The simulations were slowed down by a factor of 2x for the Step environment and 5x for

the Gap environment (with a maximum solve time of 4∆t = 0.12 s) since resolving the constraints

in these tasks are still computationally intensive.

4.7.1 Acceleration Environment

A series of snapshots of the Adaptive configuration performing the Acceleration task are shown in

Fig. 29. Since the peak acceleration of the system occurs at the beginning and end of the trajectory,

rapidly converging on a feasible solution to the OCP is essential. Crucially, performing this task

does not require exact knowledge of the joint constraints and thus computational efficiency is key.
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Table 3: Experimental data for the Acceleration environment

Config
% Horizon
Simplified

Completion
Time (s)

Max Velocity
(m/s)

Simple 100 2.0 3.0

Complex 0 3.5 1.5

Mixed 75 2.2 2.7

Adaptive 86 2.4 2.3

Results for each configuration are shown in Table 3 with state trajectories of candidate trials

in Fig. 30. The Simple configuration exhibits the best performance with a 100% increase in top

speed over Complex and a 43% reduction in completion time. Mixed performs next best at an

80% increase in top speed and 37% reduction in completion time, followed by Adaptive at a 50%

increase in top speed and 31% reduction in completion time. These reflect the relative complexity

of each configuration – since the Complex system must reason about extraneous constraints over

the entire horizon, it takes longer to solve the problem and is thus less capable of stabilizing high-

acceleration behaviors. The Simple configuration conversely excels since it is solving a reduced

problem. The Mixed and Adaptive systems consist mostly of simple finite elements and thus re-

tain this benefit, although the Adaptive configuration performance is slightly degraded since more

complex elements are added at the beginning of the behavior during the period of high accelera-

tion. These results support Hypothesis 3 which states that the reducing the model yields improved

locomotion performance through more efficient computation.

4.7.2 Step Environment

A series of snapshots of the Adaptive configuration navigating the Step environment are shown in

the top row of Fig. 31a. The key constraints which must be resolved are the joint limits of the robot

and the height of the toe, as the system must ensure the toe clears the step while also ensuring the

rear legs can still reach the terrain for support.

Results from each MPC configuration are shown in Fig. 31 and quantitatively summarized in

Table 31f. The state trajectories are shown in Fig. 31b. The Simple, Mixed, and Adaptive configu-
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(a) The Step environment requires navigating kinematic constraints. Snapshots are shown of the trajectories
under the Adaptive configuration. Non-steppable regions are indicated with darker shading.
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(b) Step environment state trajectories. Complex
(red) and Adaptive (green) show changes to pitch
and yaw (indicated by the arrows) before the Sim-
ple (blue) and Mixed (gold) configurations.
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(c) Step environment solve times. The increase four
seconds into the behavior corresponds to navigating
the step.
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(d) Step environment horizon simplification percent-
age. The Adaptive configuration is able to simplify
the problem for most of the behavior, and quickly
recover these simplifications once the difficult be-
havior is resolved.
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(e) Step environment prediction horizons. Hori-
zons at each time are indicated by horizontal slices
of finite elements (dots), where dot color indicates
model complexity. The vertical bands of increased
complexity correspond to joint singularities.

Config Success Rate
Mean Solve
Time (ms)

Slow Solve
Rate (%)

Mean
Control (N)

Simple 10/10 2.2 0.039 43
Complex 9/10 11 16 16

Mixed 7/10 4.3 3.9 22
Adaptive 10/10 4.3 2.6 17

(f) Experimental data for the Step environment.

Figure 31: Data for Step environment. The Adaptive configuration is able to leverage admissible
reductions for the majority of the behavior while retaining the ability to react quickly to the kine-
matic constraints required to navigate the step.
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rations are able to complete the task and reach the goal, while the Complex configuration fails due

to excessive solve times. However, the lack of constraint information in the Simple configuration

and the myopia of the Mixed configuration result in large control actions when crossing the step

which nearly destabilize the system. Meanwhile, the Complex and Adaptive configurations are

able to see the step sooner and react by increasing the walking height and rotating the body to

more safely navigate the step (arrows in Fig. 31b), although only the Adaptive framework does so

while respecting solve time constraints.

The computational effort of each configuration is shown in Fig. 31c. Unsurprisingly the Sim-

ple configuration is consistently the fastest since its model is the most sparse and it is unaware

of the nonlinear joint kinematic constraints, while the Complex configuration consistently takes

the longest, especially to find an initial solution and also once it sees the step. Both the Mixed

and Adaptive configurations have intermediate nominal solve times, but differ when the step ap-

proaches. The Adaptive configuration immediately takes much longer to solve the problem as it

needs to reason about this new information, but once a valid solution is found it settles back to

its nominal solve time as more complex elements are converted back to simple ones. Meanwhile

the Mixed formulation only increases in solve time when the step is within its shorter window of

complex elements, and planning the large control forces required to navigate the step on such short

notice causes a large and sustained increase in solve time.

The degree of horizon simplification is shown in Fig. 31d. While the fixed-complexity config-

urations remain uniform for the entire task, the Adaptive configuration clearly leverages additional

complexity when encountering the step. However, even in the worst case around half of the hori-

zon remains simplified, the effects of which are seen in the lower solve times compared to the

Complex configuration. These horizons are visually shown in Fig. 31e, which shows the predic-

tion horizon at each time with complex and simple elements distinguished by different colors. The

Adaptive configuration clearly changes around k = 2.5s as the step comes into view. As elements

in the terminal region require leaving the simple manifold, adaptive complexity MPC fills in new

elements with additional complexity. When the terminal region returns to the simple manifold, the
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algorithm recognizes this and allows simple elements back into the horizon. Together, these results

support Hypothesis 2 which states that reductions are frequently admissible for candidate terrains,

and Hypothesis 3 which states that capturing the complex dynamics and constraints expands the

range of executable tasks.

4.7.3 Gap Environment

A series of snapshots of the Adaptive configuration navigating the Gap environment are shown in

Fig. 32a. Due to the state-dependent actuator limits which reduces peak torque as joint velocity

increases, the system must accelerate early to ensure enough velocity to land safely on the other

side. Joint kinematics also limit how far forward the legs can reach to prepare for landing, so the

system must be aware of these constraints before takeoff to ensure sufficient controllability.

Results for each configuration in the Gap environment are shown in Figs. 32 and quantitatively

summarized in Table 32f. Only the Adaptive configuration has both the efficiency and model

fidelity required to solve this task reliably. The Complex configuration fails in the majority of the

trials due to its excessive computational effort, while the Simple and Mixed configurations never

succeed because they lack the requisite constraint knowledge and thus do not leap far enough. Like

in the Step environment, the configurations which are able to recognize constraints near the end of

the horizon (Adaptive and Complex) do so immediately by lowering towards the ground to obtain

a longer leaping stroke and accelerating forwards to ensure enough velocity to reach the other side

of the gap, as shown in Fig. 32b.

The solve times for the Gap environment shown in Fig. 32c demonstrate similar trends as dur-

ing the Step environment. Both Simple and Mixed formulations maintain their performance until

they fail to cross the gap, which quickly causes failed solves. Both Complex and Adaptive con-

figurations have periods of longer solves to plan the leaping and landing phase, but the Adaptive

formation is able to recover faster solve times sooner due to its ability to convert complex element

to simple ones near the end of the leap. This is further supported by the data in Table 32f which

shows a threefold reduction in Adaptive solve times exceeding one timestep compared to the Com-
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(a) The Gap environment requires navigating both kinematic and dynamic constraints. Snapshots are shown
of the trajectories under the Adaptive configuration.
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(b) Gap environment state trajectories. Complex
(red) and Adaptive (green) show changes to horizon-
tal velocity and vertical position (indicated by the ar-
rows) before Simple (blue) and Mixed (gold).

1 2 3 4 5 6

Time (s)

10!3

10!2

10!1

S
o
lv

e
T
im

e
(s

)

Simple
Complex
Mixed
Adaptive

(c) Gap environment solve times. The increase four
seconds into the behavior corresponds to navigat-
ing the gap. The sustained increases for Simple and
Mixed correspond to failed solves after a short land-
ing.
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(d) Gap environment horizon simplification percent-
age. Similarly to the Step environment, the Adaptive
configuration is able to simplify most of the horizon,
with the most complexity occurring when both take-
off and touchdown are within the horizon.
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(e) Gap environment prediction horizons. Hori-
zons at each time are indicated by horizontal slices
of finite elements (dots), where dot color indicates
model complexity. The vertical bands of increased
complexity correspond to takeoff and touchdown.

Config Success Rate
Mean Solve
Time (ms)

Slow Solve
Rate (%)

Mean
Control (N)

Simple 0/10 – – –
Complex 9/10 13 13 33

Mixed 0/10 – – –
Adaptive 10/10 7.5 4.3 31

(f) Experimental data for the Gap environment.

Figure 32: Data for Gap environment. The Adaptive and Complex configurations are able to reason
about constraints at the end of the horizon, allowing them to alter the leap to increase forward
velocity and successfully land.

85



plex configuration. The mechanism for this reduction is further illustrated in the simplification

percentages shown in Fig. 32d and the prediction horizons shown in Fig. 32e. Even in the worst-

case portion of the behavior, the Adaptive configuration retains 25% simplification of the horizon,

and once more feasible elements begin entering the horizon the Adaptive configuration can take

advantage of the reduced complexity to improve solve times. These results support Hypotheses 2

and 3.

4.8 Conclusion

This work presents a formulation of adaptive complexity MPC which actively identifies regions

where dynamics and constraints can be simplified without compromising the feasibility or stability

of the original system. Analysis of the proposed approach demonstrates that under key conditions

these simplifications do not compromise the stability properties of the original system, and can

enable new behaviors by acting quickly to perform agile motions or looking further into the future

to execute behaviors. These advantages are demonstrated on a simulated quadrupedal robot per-

forming agile behaviors with challenging environmental constraints, and in particular expanding

the leaping capability through receding horizon execution with knowledge of joint constraints.

While the MPC formulation presented here was primarily evaluated in locomotion applications,

future work could investigate its applicability to other domains that employ hierarchical structures,

such as manipulation. For example, often in manipulation settings the internal joints of the ma-

nipulator are neglected and planning is primarily conducted in the space of object motions and

forces. Adaptive complexity MPC would enable an efficient handling of manipulator kinematics

only when necessary so that the system can respect these constraints while largely retaining the

benefits of improved efficiency, including faster reactions to unexpected object motion or longer

planning horizons.

A primary limitation of adaptive complexity MPC is its reliance on the formulation of the ad-

ditional constraints and dynamics of the complex system. Introducing additional numerical com-

plexity such as non-convexity can make solving the OCP more susceptible to local minima or poor
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convergence rates, which are then transferred to the adaptive configuration. This is most notable

in the Step environment, in which the Simple configuration demonstrated remarkable ability to

complete the task without constraint knowledge due to its numerical robustness. Ongoing work

into well-conditioned OCP formulations or methods which identify which constraints are most

necessary would benefit the approaches discussed here.

Another current drawback of adaptive complexity is robustness to unexpected errors in the

simplicity set caused by model mismatch or disturbances. In particular, introducing additional

complexity in the interior of the horizon can degrade the initialization of the OCP – this could be

alleviated by recent approaches which warm-start the OCP with experiential data [Mansard et al.,

2018], or possibly avoided by applying robust MPC techniques [Bemporad and Morari, 1999]. In

addition, many hierarchical systems leverage reduced-order models to generate reference trajecto-

ries entirely in the simple system, making infeasible references highly relevant. Investigations into

adapting model complexity to handle infeasible references such as [Batkovic et al., 2021] would

be crucial to expand this work to a broader class of systems.

4.9 Appendix

4.9.1 Proofs Required for Adaptive Complexity MPC Stability

The proof of Proposition 4 shows recursive feasibility by finding a feasible solution to the adaptive

OCP at the successor state.

Proof (Proposition 4). Since xck ∈ XNa , there exists a solution u∗a(xck) to Pa
N(x

c
k). Because

u∗a(xck) is a solution of (37), by Proposition 3 the corresponding predicted terminal state x̂ ∈ X c
t .

Let the successor control sequence ũa(xck) be defined by (49). We claim this sequence is feasible

for the OCP Pa
N(x

c
k+1) solved at successor state xck+1 := f c

ha(xc).

Firstly, the controls u∗l1 , . . . , u
∗l
Na−1 which are elements of u∗l(xck) which was a solution to (37),

all lie in Zc by Proposition 2. It follows from Assumption 2 (since x̂ ∈ X c
t ) that ut(x̂) ∈ Zc, and

thus every element of ũl(xc) satisfies the control constraint of (37).
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Next we consider the state constraint. By Proposition 1 the state sequence resulting from initial

state xck and control sequence ũl(xck) is x̃c := [x̃c0, x̃
c
1, . . . , x̃

c
Na ] where,

x̃cj = x∗lj+1, j = 0, . . . , Na − 1 (67)

x̃cNa = f c
ut
(x̂) (68)

and x̃c0 = x∗l1 = f c(xc, u∗lxc(0)) = f c
ha(xc). By Proposition 2, the states x∗l1 , . . . , x̂ satisfy the state

constraint. Since x̂ ∈ X c
t , Assumption 2 implies that f c

ut
(x̂) ∈ X c

t ⊂ XNc , so that every element

of the state sequence x̃c = [x̃c0, x̃
c
1, . . . , x̃

c
Na ] satisfies the state constraint, and the new terminal

state x̃cNa = f c
ut
(x̂) satisfies the stability constraint. Hence ũl(xc) is feasible for Pa

N(f
c
ha(xck)) and

f c
ha(xck) ∈ XNa .

The proof of Proposition 5 shows that the OCP cost function decreases along the closed loop

system by leveraging shared terms in the solutions along with the observation that the cost of a

state in the simple system is equal to the cost of that state lifted into the complex system.

Proof (Proposition 5). The sequence pairs (u∗a(xck), ũ
a(xck)) and (x∗a, x̃a) have common elements

and thus the cost sequence can be simplified,

V ∗a
Na(f c

ha(xck))−V ∗a
Na(xck)

≤V a
Na(xck+1, ũ

a(xc))− V a
Na(xc,u∗a(xc))

=
(
Lc(x̂, ut(x̂)) + Vt(fut(x̂))

)
−
(
Lc(xc, ha(xc)) + Vt(x̂)

)
+
(
Lc(xck+1, u

∗a
1 )− La(xck+1, u

∗a
1 )
)

=− Lc(xc, ha(xc)) + Lc(x̂, ut(x̂))

+ Vt(fut(x̂))− Vt(x̂) (69)

where the property Lc(xck+1, u
∗a
1 ) − La(xck+1, u

∗a
1 ) = 0 comes from the definition of the adaptive
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cost in (38) and the observation that ψ† maps to the origin for variables in the null space of ψ.

Since x̂ ∈ X c
t , Assumption 2 implies,

Vt(fuc(x̂))− Vt(x̂) ≤ −Lc(x̂, ut(x̂)) (70)

Hence (51) is satisfied for every xck ∈ XNa .

The proof of Theorem 6 follows from the prior propositions:

Proof (Theorem 6). The inequalities in (52a) follow from the structure of the value function de-

fined in Assumption 2. The descent inequality in (52b) is given by the structure of the value

function along with Proposition 5. Asymptotic stability of the origin with region of attraction XNa

follows from standard Lyapunov theory [Rawlings et al., 2017, Appendix B].

4.9.2 Proof of admissibility conditions for legged system

Proof (Lemma 9). The conditions under which the legged system described in Section 4.6 can

be admissibly simplified rely on the feasibility of the reference trajectory. Lemma 9 states that

an index within a lifted trajectory of the legged system can be admissibly reduced if the lifted

components of the state-control pair qfoot, q̇foot, and ufoot all lie on the trajectory and satisfy the

constraints in (60). We proceed by each condition for admissibility defined in (41), noting that

(41a) is trivially satisfied by the assumptions of the lemma.

The condition in (41b) requires that constraints would be satisfied if the system were reduced,

i.e. ψ† ◦ ψ(zli) ∈ Zc. By the conditions given on the values of zli in the null space of ψ and the

definition of ψ†, it follows that ψ† ◦ ψ(zli) = zli. Since zli ∈ Zc, it follows that ψ† ◦ ψ(zli) ∈ Zc.

The condition in (41c) requires that the complex system is exactly anchored by the simple

system at that index in the trajectory, i.e. ψ†
x ◦ f s ◦ ψ(zli) = f c(zli). We show this by directly
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applying the dynamics and mappings in Section 4.6, dropping the index i for simplicity,

ψ†
x ◦ f s ◦ ψ(zl) = ψ†

x ◦



q̇lin

R(qang)ω

1
m

∑n
j ubody,j − g

W (qlin, q̄foot, ω, ubody)



=



q̇lin

R(qang)ω

˙̄qfoot

1
m

∑n
j ubody,j − g

W (qlin, q̄foot, ω, ubody)

ūfoot


= f c(zl)

Lastly, the condition in (41d) requires that the dynamics at the prior state lead to the manifold,

i.e. ψ†
x◦ψ◦f c(zli−1) = f c(zli−1). Since the trajectory zl is valid for the system in (57), xli = f c(zli−1).

Additionally, since ψ† ◦ ψ(zli) = zli, it follows that ψ†
x ◦ ψ(zli) = xli. Thus ψ†

x ◦ ψ ◦ f c(zli−1) =

f c(zli−1).
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5 Aerodynamic Tail Design

While motion planning and control algorithms are important for completing successful legged lo-

comotion tasks, deviations from those plans are inevitable. Whether caused by errors in modeling,

inaccurate sensor data, unpredicted changes in the environment, or a literal disturbance such as un-

expected collision with the environment, a legged robot will inevitably need to react to unplanned

phenomena. If these unexpected disturbances occur when legs are on the ground, a reactive con-

troller like that discussed in Section 3 can partially mitigate errors. However, these disturbances

could occur when few or no feet are on the ground, making rapid momentum regulation difficult.

This underactuation can be fought by introducing additional actuation that does not rely on contact

with the environment, such as that provided by a tail. This section explores the effectiveness of a

novel tail design that harnesses aerodynamic drag to regulate angular momentum, rendering them

lighter and more practical than standard inertial tails [Norby et al., 2021].

5.1 Introduction

Terrestrial animals often use tails to help a wide variety of behaviors that are traditionally chal-

lenging for robots. Agama lizards use their long, heavy tails to reorient in mid-air after unexpected

foot slip, a failure mode which is often fatal for legged robots [Atkeson et al., 2018; Libby et al.,

2012]. Kangaroos use their tails for stability when hopping and even support themselves with their

tails while walking [Alexander, 1975; Donelan et al., 2014]. Although humans do not have tails,

we swing our arms to the same effect while walking and running, increasing both lateral balance

and energy efficiency [Arellano and Kram, 2011].

While these animals exhibit impressive behaviors, none approach cheetahs in terms of speed

and agility. A cheetah chasing prey can reach a top speed of 29 m/s and accelerate, decelerate,

or turn at rates almost double that of horses [Wilson et al., 2013]. These dynamic maneuvers

require very precise regulation of angular momentum to maintain balance, avoid foot slip, and

accommodate the large reaction forces and moments generated by the legs. Cheetahs have been
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observed to flick their tails to aid this angular momentum regulation, particularly while decelerating

and turning, as shown in Fig. 33 and in [Patel and Braae, 2013, 2014].

Inspired by the ability of these and other tailed animals, researchers have replicated similar

tasks on robotic systems. The first known application of a tail in robotics was the Uniroo [Zeglin,

1991], a running robot that employed a tail to stabilize pitch. This example has since inspired

orientation stabilization tails in many legged robots [Briggs et al., 2012; Haldane et al., 2017;

Liu et al., 2014]. Platforms such as the Berkeley Tailbot, the MSU Tailbot, and Penn RHex have

employed tails to successfully perform aerial self-righting maneuvers similar to the Agama lizard

[Chang-Siu et al., 2011; Libby et al., 2016a; Zhao et al., 2015]. Some robots employ tails for

aiding more dynamic tasks similar to those perfected by the cheetah, including accelerating and

decelerating [Patel and Braae, 2014] or turning [Casarez et al., 2013; Kohut et al., 2013a; Patel

and Braae, 2013]. Tails have also been used in other platforms as the primary mechanism for

injecting energy into a gait rather than simply augmenting locomotion [Balasubramanian et al.,

2008; Berenguer and Monasterio-Huelin, 2008; De and Koditschek, 2015].

Despite these achievements, few robots are equipped with tails outside of research focused on

the dynamics of tailed locomotion. This is largely due to the added mass and system complexity

associated with the tail. Each of the robots highlighted above employ their tails for inertial reorien-

tation [Libby et al., 2016a] – leveraging the high inertia of the tail to allow the motor to do work to

reorient the body before the tail exhausts its range of motion. This means that effective tails must

have high inertia, which often does not comply with the tight payload budgets of mobile robots. In

contrast, cheetah tails weigh roughly 2% of their body mass, with most of the mass in muscle at

the base of the tail resulting in low inertia [Hudson, 2011; Patel et al., 2016].

One hypothesis for the utility of cheetah tails suggests they perform aerodynamic rather than

inertial reorientation [Patel et al., 2016]. Most mammal tails are covered in fur, including those

shown in Fig. 33, which increases their aerodynamic drag. When flicked or when moving through a

steady airstream, the drag force resists the motion and allows for the application of wrenches to the

body. Since this mechanism does not depend on mass, an aerodynamic drag tail can be extremely
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Figure 33: Examples of biological and robotic systems with long aerodynamic tails. The cheetah,
the giant Indian squirrel, and the jerboa have tails ranging from 75% to nearly 200% of their body
length, motivating the aerodynamic tail presented here. Top left: Cheetah (Acinonyx jubatus).
Bottom left: Greater Egyptian jerboa (Jaculus orientalis), photo credit: Elias Neideck/CC BY-SA
3.0. Middle: Giant Indian squirrel (Ratufa indica), photo credit: VinodBhattu/CC BY-SA 4.0.
Right: The Ghost Robotics Minitaur [Kenneally et al., 2016], equipped with a 2x body length
aerodynamic tail.

lightweight compared to an inertial tail. Aerodynamic drag tails have been shown to enable rapid

turning on centimeter scale robots [Kohut et al., 2013b], although this turning was achieved by

fixing the tail at an angle to act as a rudder, or dynamically actuated with all effects attributed to

inertial reorientation rather than aerodynamic effects. To the knowledge of the authors, no other

studies have investigated actuated aerodynamic effects or offered any comparative analysis for

terrestrial tails.

This work investigates the extent to which aerodynamic drag affects the utility of tails in per-

forming dynamic tasks. We present a model (Section 5.2) that captures the dynamics of aerody-

namic tails. Then we use that model to show when aerodynamic drag is a significant contribution

to control affordance compared to just inertial effects (Section 5.3). Leveraging this model, we

constructed a tail (Section 5.4) to maximize aerodynamic drag while minimizing inertia, shown
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in Fig. 33 along with several of the animals inspiring its design. Using this tail we demonstrate

two biologically motivated behaviors on a robot, aerial self-righting and forward acceleration (Sec-

tion 5.5) to show applications of this control affordance. Finally, we highlight the practical advan-

tages aerodynamic drag tails exhibit over inertial tails (Section 5.6).

5.2 Aerodynamic Reorientation Model

Investigating the utility of aerodynamic drag forces in reorientation tasks requires a model to isolate

and compare the aerodynamic and inertial effects. Such a model has been thoroughly researched

for inertial reorientation [Libby et al., 2016a] but has not been developed for aerodynamic reorien-

tation. The main result of this work is a model for aerodynamic reorientation and an accompanying

metric for effectiveness, from which several insights into the dynamics and utility of aerodynamic

drag tails are gleaned.

We model the tail as a non-porous rigid body moving at a relatively high velocity through a

fluid, which applies a quadratic drag force [Landau and Lifschitz, 1959] according to the relation-

ship

FD =
1

2
ρCDAv

2 (71)

where FD is the aerodynamic drag force acting in the opposite direction of motion, ρ is the density

of the fluid, CD is the drag coefficient that captures the surface interaction between the fluid and

the body, A is the surface area of the body, and v is the component of the velocity of the body

orthogonal to the surface area.

The tail is pinned to a second rigid body (hereafter referred to as “the body”) with no other ex-

ternal wrenches, such that the aerodynamic drag force applies a moment to the body. For simplicity

we assume the tail velocity is purely determined by its angular velocity and that the aerodynamic

drag force FD is defined in the coordinate frame of the tail such that it is orthogonal to tail motion

and therefore independent of the angular position of the tail. These modeling decisions serve to
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isolate rotation and ignore any translational motion for the sake of clarity, although translational

effects would benefit high speed systems as described in[Patel et al., 2016] and further discussed

in Section 5.6. Integrating this moment along the length of the tail yields a net aerodynamic torque

of

|τD| =
∫
A

FDl dA

=

∫ L

L0

1

2
ρCDw((θ̇b + θ̇t)l)

2l dl

=
1

8
ρCDw(θ̇b + θ̇t)

2(L4 − L4
0) (72)

where τD is the aerodynamic torque applied in the opposite direction of the tail rotation, w is the

width of the tail (assumed constant over the length of the tail), L is the length of the tail, L0 is

the distance from the pin joint to the segment of the tail that generates drag, θb is the angle of the

body with respect to the world frame, and θt is the angle of the tail with respect to the body. These

parameters are shown in Fig. 34 for an example tail geometry, although this model can apply to

other tail geometries so long as the corresponding drag coefficient is known.

This equation highlights the favorable scaling of aerodynamic drag tails, as the drag torque

scales with L4, or L5 if tail width is assumed to scale with length. This favorable scaling is reflected

in nature through animals like the cheetah, the giant Indian squirrel, or the jerboa, all of which have

furry tails ranging from 75% to nearly twice body length, shown in Fig. 33 [Happold, 1967; Patel

et al., 2016; Sushma and Singh, 2008]. Quartic length scaling underscores the importance of drag

near the tail tip rather than the base, which is particularly notable in the jerboa’s tuft of fur at the tip

of its relatively thin tail. This equation also highlights favorable quadratic scaling with tail angular

velocity, and linear scaling with width and drag coefficient. Mass and inertia are notably absent in

this equation, suggesting that effective tails should be long yet lightweight and employed at high

speeds. These factors are again consistent with many agile animals, particularly the cheetah [Patel

and Braae, 2013].
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Figure 34: Schematic of tail system parameters. These parameters describe the tail geometry and
model variables used to calculate effectiveness. Not labeled is tail width, w, which is into the page.
The geometry of this particular tail is a half cylinder with diameter w, but the model in (72) is not
restricted to any one tail shape.

5.3 Comparison of Inertial and Aerodynamic Effectiveness

Equation (72) highlights the important characteristics of aerodynamic drag tails, but does not im-

mediately prescribe the magnitude of the control authority these tails provide. For purely inertial

tails, this control authority has been quantified via tail effectiveness ξ, which is defined as the ratio

of body rotation to tail rotation under the assumption of constant total angular momentum [Libby

et al., 2016a]. For inertial tails, effectiveness is a straightforward function of the tail and body

inertias. However, the nonlinearities of the aerodynamics in (72) necessitate numerical methods

to quantify effectiveness for an aerodynamic drag tail. We investigate this by constructing the
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equations of motion of the system in Fig. 34,

 Ib + It It

It It


 θ̈b

θ̈t

 =

 τD

Gτ + τD

 (73)

 θ̈b

θ̈t

 =

 −Gτ
Ib

Ib+It
IbIt

Gτ + 1
It
τD

 (74)

where Ib and It are the body and tail inertias respectively and both defined with respect to the

rotational joint, τ is the torque provided by the motor, and G is the gear ratio. We neglect the rotor

reflected inertia since optimal gearing for the systems considered here result in reflected inertias

much less than that of the tail. Numerically integrating these equations with initial conditions at

rest yields the time evolution of the body and tail angles. Together, these quantities define the same

tail effectiveness metric as in [Libby et al., 2016a] – the ratio of the body angle achieved to the tail

angle swept – but here based on a particular behavior and control input.

We define a baseline task of aerial reorientation similar to that studied in [Libby et al., 2016a]

which provides a particular measure of effectiveness. The task is to maximize body rotation in the

time it would take for the system to fall one body length, motivated by recovering in mid-air from

a fall off a ledge or a leap onto a surface. In addition to the task, aerodynamic tail effectiveness

is a function of the gear ratio, actuator, and the tail geometry, as well as the body and tail inertias.

To explore these relationships we select a body scale of a common quadrupedal robot, the Ghost

Robotics Minitaur [Kenneally et al., 2016], and highlight 1x, 1.5x, and 2x body length tails. All

tails are modeled as half cylinders with closed ends to maximize the drag coefficient [Hoerner,

1965], with width w equal to half of the robot body width. The parameters used for this simulation

are shown in Table 4.

The equations of motion in (74) are integrated from rest with ode45 in MATLAB R2018b to

calculate the effectiveness metric. The tail is allowed to rotate freely for the specified duration or

until θt = 180◦ at which point the simulation is paused and a plastic impact is applied between

the tail and the robot such that the tail is brought to rest and angular momentum is instantaneously
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conserved. The system is then resumed until the end of the duration.

For each tail length, the optimal gear ratio is found by performing an integer line search, sim-

ulating the behavior with each gear ratio from one to 50 then choosing that which produced the

highest resulting effectiveness. The torque τ is calculated at each instant with the following motor

model:

i =
V − ktGθ̇t

R
(75)

τ = f(i) (76)

f−1(τ) = 0.539τ 3 + 8.93τ (77)

where i is the current through the motor armature, V is the battery voltage, kt is the motor torque

constant, R is the resistance of the motor, and f(i) is a function that maps current to torque. The

values of these parameters are shown in Table 4. The inverse of f shown in (77) is obtained by

fitting a cubic polynomial to the empirical torque-current relationship given in [De and Koditschek,

2015] for the motor (T-motor U8 KV100). This nonlinearity is included to approximate the signif-

icant magnetic saturation these motors experience at high currents. This motor model reflects the

chosen platform but also captures the general torque-speed relationship of a DC motor.

Specifying the body inertia, tail geometry, and actuation model along with the optimal gear

ratio allows for exploration of the relative effect of tail inertia and aerodynamics on effectiveness.

We normalize the tail inertia It by the total inertia Ib + It and sweep across a range of inertias to

find the resulting body angle displacements. For each inertia, the effectiveness is calculated both

with and without aerodynamic drag to obtain the pure inertial effectiveness and the combined ef-

fectiveness, such that the difference between the two defines the aerodynamic contribution. Fig. 35

shows these results.

At low tail inertia, most of the effectiveness of the tail comes from aerodynamic drag. As the

inertia increases, the the impact caused by the finite range of motion of the tail increases enough

to decrease overall effectiveness – this is quite different from inertial tails that always benefit from
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Figure 35: Aerodynamic effectiveness for various tail lengths and inertias. Aerodynamic drag
yields highly effective tails for low inertia. When aerodynamics are not considered, effectiveness
(dash-dotted line) is a function of only normalized tail inertia and independent of tail geometry.
When enabled, effectiveness of the tail increases significantly (solid line). The aerodynamic com-
ponent (dotted line) is equal to the total effectiveness minus the inertial effectiveness. Each plot
indicates the tail length used to calculate effectiveness.

increasing inertia. As the inertia increases further, the tail acceleration and velocity decrease which

allows for larger torques to be applied for a longer duration. This effect eventually outweighs the

reduced aerodynamic component and the induced impact cost, causing the total effectiveness to

increase again but only for significantly higher inertias. A purely inertial tail would require almost

twice the inertia of the body itself to match the effectiveness of the longest massless aerodynamic

drag tail.

The importance of tail length in aerodynamic effectiveness is highlighted in Fig. 35. The short

tail maintains a notable improvement in effectiveness for relatively low inertias, but the long tail

maintains a significant margin of improvement for a wide range of inertias, yielding a 50% or

greater improvement in effectiveness up to a tail normalized inertia of 0.37, or roughly half the

body inertia. The long tail is almost four times as effective as the short tail in the massless case.

This underscores the importance of length over mass in aerodynamic tail design. Both lighter and

longer tails allow for increased tail tip velocities and improved effectiveness. This is a favorable

trend for both biology and robotics, as lighter appendages allow for more agile behaviors and

increase the allowable payload of the system.
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Figure 36: The effect of tail shaft length on the aerodynamic drag torque for a constant overall tail
length L. The applied torque decreases with increasing tail shaft length L0, but the quartic scaling
results in a significant reduction only for values of L0 close to L. The x-axis here shows the ratio
of the tail shaft L0 to the total length L, and is equivalent to the fraction of the tail that produces
no aerodynamic drag. The y-axis describes the ratio of the torque τL0 produced by a tail of length
L with shaft length L0 to the torque τL produced by a tail of length L with L0 = 0.

Other properties of the tail such as width w, tail shaft length L0, and the tail geometry (i.e.

the corresponding drag coefficient) all affect aerodynamic effectiveness in addition to tail length.

Equation (72) also exposes the effects of these additional properties. Aerodynamic torque scales

linearly with width and drag coefficient, so these quantities should be maximized subject to relevant

design constraints. Tail shaft length is optimal at L0 = 0 m, but due to its quartic scaling the

aerodynamic torque is only significantly reduced for values of L0 close to L, as shown in Fig. 36.

Other design factors such as the weight of the tail material or the tail rigidity may encourage larger

values of L0, so a designer must strike a balance between these design choices and optimality.

5.4 Hardware Implementation

Verifying the model results above in hardware requires a highly effective tail to maximize drag. As

previously discussed, aerodynamic effectiveness is dependent on tail geometry and in particular

the drag coefficient, Cd. The drag coefficient is a dimensionless measure of resistance of a body to

transverse fluid flow. In biological tails, fur increases this resistance substantially without adding

significant mass to the tail [Patel et al., 2016]. Engineered tails have more flexibility in their design,
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and can employ other geometries and materials to maximize drag and minimize mass.

The tail constructed for the aerial self-righting and forward acceleration tasks presented here

features a 1 m long (2x body length), 1 cm diameter carbon fiber shaft (2159T85 McMaster-Carr)

fitted with a 18 cm wide UHMW polyethylene film (85655K13 McMaster-Carr) half cylinder

scoop at the end. These materials were selected for their high strength-to-weight ratios. The

ends of the scoop were sealed to prevent air from escaping radially. The whole tail weighs 110 g

with an inertia of 0.058 kg·m2, which when normalized for the tested hardware platform yields a

normalized tail inertia of 0.204. The tail is rigidly mounted to the output of a planetary geartrain

driven by a U8 motor, which in turn is fixed to the robot chassis. The optimality of the gear ratio

was determined by the process outlined in Section 5.3. These and other hardware parameters are

listed in Table 4, and the tail can be seen in Figs. 33 and 34.

It should be reiterated that these values for L, L0, and w are not optimal for aerodynamic effec-

tiveness, as optimality would be achieved with L =∞, L0 = 0, and w =∞. These parameters are

bounded by other design constraints which a roboticist may select for a particular application. In

this case we prioritize a reasonable motion envelope and tail rigidity, and therefore restrict the tail

length as inspired by the animals in Fig. 33, and the tail width and shaft length to maintain rigidity

in the UHMW film.

To calculate the drag coefficient of this tail, a smaller tail with the same shape was fixed to the

motor used in the above experiments, and spun freely with different voltages to produce steady

state angular velocities. The resulting aerodynamic torque was then calculated by measuring the

current and voltage supplied to the motor and equating the electrical power input to the sum of

the resistive losses in the motor and the mechanical power output to yield the aerodynamic torque.

This resulted in a torque-angular velocity curve which was fit to a quadratic as shown in Fig. 37,

with R2 = 0.977 indicating good quadratic fit. Matching this curve to that in (72) and accounting

for the tail dimensions yields a drag coefficient of 2.0, slightly less than the theoretical value of 2.3

[Hoerner, 1965].
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Table 4: Minitaur, Tail, and Actuator Parameters.

Parameter Symbol Value Units
Body mass – 7.3 kg
Body length – 0.50 m
Body inertia Ib 0.23 kg·m2

Tail framing mass – 0.706 kg
Tail mass – 0.110 kg
Tail length L 1.0 m
Tail shaft length L0 0.60 m
Tail width w 0.18 m
Tail inertia It 0.058 kg·m2

Tail normalized inertia It
It+Ib

0.204 -
Tail gear ratio G 4:1 -
Tail drag coefficient CD 2.0 -
Motor torque constant kt 0.0954 N·m

A
Motor winding resistance R 0.186 Ω
Motor voltage V 16 V

5.5 Experimental Results

To verify these model results and highlight practical applications for aerodynamic reorientation, we

demonstrate two tail-assisted tasks: aerial self-righting and forward acceleration. The aerial self-

righting task corresponds to the model analysis and shows the utility of expanded control authority,

whereas the forward acceleration task tests the ability of the tail to apply this control authority to a

dynamic task that requires both linear and rotational motion.

5.5.1 Aerial Self-Righting

To verify these model results and highlight practical applications for aerodynamic reorientation, we

first demonstrate the use of an aerodynamic drag tail in an aerial self-righting task. This task cor-

responds directly to the model analysis and shows both the utility and the magnitude of expanded

control authority such a tail offers.

The aerial self-righting task was executed by dropping the system from a height and providing

a step input to the actuator of a 2x body length tail so that the system rotates 90 degrees and lands

on its feet. This task was previously tested for robots with inertial tails in [Libby et al., 2012,
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Figure 37: Experimental validation of drag coefficient and quadratic torque to velocity relation-
ship. Aerodynamic torque produced by a half cylinder aerodynamic drag tail was measured while
rotating the tail at various angular velocities. The red dots represent experimental data, and the
black line is a quadratic fit given by τD = 0.00514 θ̇2t , with an R2 = 0.977 indicating good fit.

2016a], which were able to successfully land on their feet but required a tail with more inertia than

the body to do so. This experiment directly tests the ability of a system to aggressively reorient, as

failure to reorient quickly can result in severe damage to the system if it cannot land on its feet.

To perform this experiment, a Ghost Robotics Minitaur was equipped with the previously de-

scribed aerodynamic drag tail, oriented vertically and dropped from a height of one body length

(0.5 m). The drop height was defined as the vertical displacement of the center of mass from the

beginning of the drop to the final resting position. The robot was held aloft by a quick release

clip activated by pulling a pin that holds the clip in place. This pin was pulled at the same time

that the robot was commanded to begin the reorientation behavior. High speed camera footage

confirmed that the robot consistently began the reorientation a few milliseconds after the clip was

released. Body pitch data was recorded with an Optitrack motion capture system. The resulting
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pitch trajectory is shown in Fig. 38, and a time sequence of the behavior is shown in Fig. 39. The

simulation data in Fig. 38 was synchronized with the experimental data at the last instant before

the motion capture data showed a body pitch displacement. This instant occurs a few milliseconds

after the step input is provided at t = 0 due to backlash in the geartrain and tail deflection. This

experiment consisted of four trials to reduce any noise in the data, although Fig. 38 shows that the

standard deviation between these trials was very small (σ = 1.5◦ on average over the course of the

fall).

The robot tracks the model-predicted trajectory well, rotating 90 degrees in 302 ms on average

(standard deviation of 4 ms). The slight delay in body pitch tracking is likely due to the deflection

in the carbon fiber tail shaft, which slows the acceleration of the tail. This rapid reorientation

allows the robot to land safely and absorb the impact with its legs rather than its chassis. Without

the tail, the robot simply falls straight to the ground, which for falls exceeding a body length can

easily damage the robot. Notably, this resulting effectiveness matches that of the inertial tail tested

in [Libby et al., 2016a], but with a normalized tail inertia of 0.204 rather than 0.558, a reduction

of 63%. A tail of the same inertia as tested but with no drag was simulated, with the resulting

trajectory in Fig. 38 indicating only 37 degrees of rotation. Note that in the purely inertial case this

effectiveness can be calculated directly from the normalized inertia using the relationship derived

in [Libby et al., 2016a] without integration.

5.5.2 Forward Acceleration

Lightweight aerodynamic tails are effective at reorientation tasks, but successful biological or

robotic locomotion involves a broad range of agile behaviors, such as running, jumping, or turn-

ing. Often these behaviors require precise application of large forces into the ground in order to

accelerate the body in a desired direction. Equipping a robot with a tail adds mass to the system,

which reduces the acceleration a given force produces. However, aerodynamic drag tails provide

additional control authority which could be employed to increase the agility of the system.

We leverage trajectory optimization to investigate the effect of aerodynamic drag tails on the
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Figure 38: Aerial self-righting pitch trajectory. Motion capture orientation data during the aerial-
self righting task (solid line) show the robot tracking the model predicted trajectory (dashed line)
until ground impact, with a slight delay due to unmodeled tail shaft deflection. A simulation of
the tail with no aerodynamic drag is included for comparison (dash-dotted line). The discontinuity
in the velocity of each tail simulation is caused by the modeled plastic impact between the tail
and the robot body, which is significantly more problematic without aerodynamic effects. This
discontinuity is not observed in the experimental data as the shaft deflection delayed this impact
until just before touchdown and reduced its plasticity. The shaded region represents 1σ variance
(N=4).

forward acceleration of a legged robot. This method represents the motion of the robot with a

parameterized trajectory, defines the desired task through constraint functions evaluated on that

trajectory, and determines optimality with respect to a cost function. This is a well-studied method

in optimal control so we refer to prior literature for details [Nguyen et al., 2019; Schultz and

Mombaur, 2009; Witkin and Kass, 1988].

The task encoded here is very similar to the quadruped leaping behavior described in [Nguyen

et al., 2019], and shares the same constraints on dynamic feasibility, contact schedule, joint and

torque limits, friction cones, and initial resting configuration. Unlike [Nguyen et al., 2019], we op-
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t = 0 ms t = 75 ms t = 150 ms t = 225 ms t = 300 ms

Figure 39: Aerial self-righting time sequence. The robot rotates from vertical to horizontal in one
body length of travel. The first frame shows the moment the robot was released, and the last frame
shows the feet of the robot just above the ground. The second frame shows the deflection visible
in the tail shaft – despite the deviations from the model induced by this deflection, the robot is still
able to rotate a full 90 degrees in one body length of free fall.

timize for the forward velocity of the system at liftoff divided by the behavior duration to maximize

acceleration. We do not constrain the duration of each contact phase as in [Nguyen et al., 2019],

although we do apply a lower bound of 1.3 m/s – the average running speed of the robot – to the

final forward velocity to replicate a stand-to-run gait transition. Dynamic and kinematic constraint

bounds are derived from the Minitaur robot parameters in Table 4, the motor model in (75)–(77),

and [Kenneally et al., 2016]. Separate trajectories are optimized both with and without a tail, which

starts at rest. The trajectories are transcribed into a direct collocation hybrid trajectory optimiza-

tion framework in FROST [Hereid and Ames, 2017a] and solved with IPOPT [Biegler and Zavala,

2009]. Each optimization is seeded with an initial trajectory of the average of the upper and lower

bounds on each variable.

The outputs of this process are time-parameterized trajectories of the robot state, joint trajec-

tories and torques (for both the leg and tail motors), and contact forces. These trajectories were

tracked on the hardware by replaying the open loop joint torques and applying joint level PD feed-

back to track the trajectory of each individual joint. Each trajectory was executed six times, and the

resulting velocity of each trajectory was measured by recording position with an OptiTrack motion

capture system and differentiating the signal with respect to time. The final velocity was defined

as the forward velocity of the system after the feet left the ground, and the duration of the behavior
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t = 0 ms t = 50 ms t = 100 ms

t = 150 ms t = 196 ms t = 250 ms

Figure 40: Forward acceleration behavior time sequence. The time sequence of the acceleration
behavior shows the tail swinging backwards, shifting the robot forwards into a position to extend
its legs. The behavior ends as the robot’s feet lift of the ground at 196 ms. The final frame shows
the forward motion after liftoff, although this is not considered in calculating average acceleration.

was given by the trajectory. Prior to each round of testing, the battery was charged to full voltage

and the motors were allowed to cool to ensure external conditions remained consistent. The time

sequence of the behavior is shown in Fig. 40, and the resulting velocity trajectories and average

accelerations are shown in Fig. 41.

With the long aerodynamic tail, the robot accelerates at 6.3 m/s2, 12% faster than the 5.6 m/s2

without a tail despite a 10% increase in robot mass. The robot accelerates 18% faster than the 5.3

m/s2 if the tail were installed but inactive. This increase is achieved by swinging the tail backwards

as the legs prepare for and then execute the forward leap, aided in part by a small amount of forward

impulse exerted on the tail (5% of the total change in momentum of the system). Swinging the

tail backwards provides forward thrust on the robot, which allows the legs to extend earlier than

without the tail, reducing the time required to reach top speed by 11%.

5.6 Discussion

The results presented above show that the utility of aerodynamic tails matches and in some cases

exceeds that of inertial tails, and in doing so can provide a meaningful contribution to overall sys-
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Figure 41: Forward acceleration behavior trajectories. Experimentally measured robot velocities
over time show the robot reaching the same velocity faster with the tail. The shaded region repre-
sents 1σ variance (N=6). The dashed lines show the average acceleration to achieve a final velocity
over a given duration.

tem agility. Aerodynamic tails also overcome several shortcomings that often plague inertial tails.

Based on the quantitative results shown above and from our experience working with aerodynamic

tails, we highlight a few of these key properties.

Mass and Inertia

The most evident advantage of aerodynamic tails is their low mass. Since producing aerodynamic

drag is independent of mass (unlike inertial reorientation), aerodynamic tails can be extremely

lightweight. This increases the available payload of a system, and enables leg forces to produce

higher accelerations. Lower tail inertia also reduces the impulse required to arrest tail motion.

Inertial tails are capable of rejecting disturbances rapidly by transmitting energy into the tail, but

shortly thereafter this energy must be removed, either by applying a counter-torque to slow the tail

or from an impact between the tail and the body. This presents a challenging planning problem to

precisely regulate the flow of energy from the tail to the body over time. Aerodynamic tails mitigate

this issue by providing large amounts of control authority for significantly less tail momentum.
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Lower mass also reduces the gravitational moment on the tail, requiring less torque to hold the tail

in a static position when active control is not required.

External Work

Aerodynamic tails also have a distinct advantage over inertial tails in that they can do work on the

environment. This ability allows them to apply continuous torque even at zero acceleration, unlike

inertial tails which produce no torque at zero acceleration. This ability also enables non-zero net

impulses. Since inertial tails transfer momentum internally between the tail and the body, once

the tail sweeps its full range of motion both tail and body return to their initial angular velocity.

Lightweight aerodynamic tails can come to rest given a small internal impulse, but due to the net

impulse from the environment the body can continue to rotate. This is apparent in the simulation

data in Fig. 38. When the purely inertial tail collides with the body all rotation ceases, whereas

the impact between the body and the aerodynamic tail (which occurs roughly 180 ms into the

simulated self-righting behavior) is much smaller in magnitude, allowing further body rotation.

Effectiveness at High Speeds

Aerodynamic tails also benefit from favorable scaling at high speeds. Since both the aerodynamic

force and generated moment scale with velocity squared, any tail motions executed while the robot

is moving rapidly are amplified. The model derived in (72) can be adjusted to account for these

translational effects, producing

|τD| =
∫
A

FDl dA

=

∫ L

L0

1

2
ρCDw((θ̇b + θ̇t)l + . . .

· · · − vx sin(θb + θt) + vy cos(θb + θt))
2l dl, (78)

where vx and vy are the components of the body velocity expressed in the same spatial coordinate

frame that defines body rotation. We omit the closed-form solution of (78) due to its length, but
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the integrand still highlights how the applied torque scales quadratically with the linear velocity of

the body. This phenomenon has been explored for cheetahs in [Patel et al., 2016], which showed a

28% improvement to angular impulse while turning at 30 m/s compared to a static airstream. This

is useful for legged systems as the high speeds that enable this expanded control authority often

require larger magnitudes of actuation for stability.

Scaling with Body Length

The scaling analysis offered here has largely been focused on the scaling of the tail length for a

fixed body length to highlight the importance of a long and lightweight tail. Isometrically scaling

the tail with the body length would also change the tail width, resulting in an aerodynamic torque

that scales with L5. Interestingly, this matches the scaling of inertia with body length, as inertia

scales with mL2, where m is the mass of the system and scales with L3. This differs from the

conclusion in [Kohut et al., 2013b] that aerodynamic drag scales with L3 – here we assume that the

tail velocity is determined by angular rotation rather than simply forward velocity. This suggests

that aerodynamic drag tails can be effective at any scale, although the additional translational

effects may be primarily useful at smaller scales, provided that the Reynolds number remains high

enough to induce turbulent flow.

Limitations

The favorable scaling of aerodynamic drag tails does not come without limitation. Often robots that

operate in close quarters have tight restrictions on their workspace, and for such systems a body

length or longer tail may be infeasible. Aerodynamic tails also benefit from length and low mass,

which induces a design tradeoff between effectiveness and durability – a highly effective tail may

not be able to withstand large interaction forces with the environment. These remain open design

challenges, although many biological systems employ lightweight, flexible structures to reduce

impacts, modify the tail workspace, and increase durability. It should also be emphasized that

studying the nonlinear nature of aerodynamic drag requires a prespecified task, actuation model,
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geometry, and scale, all of which affect the utility of the tail. Despite an effort to isolate each of

these components and offer insight into each in turn, the synthesis of these components remains a

behavior-specific challenge.

5.7 Conclusions

The favorable scaling of aerodynamic tails make them lightweight yet effective tools to increase the

control affordance of a system. This paper presents a model and a corresponding metric to analyze

these aerodynamic effects, shows that the magnitude of control affordance can be substantial for

long and lightweight tails, and demonstrates this utility in two dynamic behaviors on relevant hard-

ware. A roboticist seeking to overcome underactuation of a system without adding large amounts

of mass can thus employ an aerodynamic drag tail by maximizing the components of (72) subject

to applicable design constraints. The ability of the aerodynamic drag tail to exert forces directly

on the environment coupled with its low momentum compared to the body also makes planning

stable motions much simpler. Together, these factors improve the practical implementation of the

tail, enabling its application to a wide variety of systems where control authority is critical.
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6 Conclusion

Attaining autonomous and agile legged locomotion in unstructured terrain remains a difficult task

due to the complicated underlying dynamics and kinematics. A robot tasked with point-to-point

navigation must consider which route to take to get to the goal, where to step in order to move

as desired, and apply the right forces to the ground to execute that motion, all while rejecting

disturbances and handling inaccurate and delayed information. Planning the entire motion all at

once with full-order expressions for the kinematic and dynamic constraints is computationally

infeasible and prone to yielding highly myopic and brittle behavior. Likewise, locomoting blindly

and relying on reactive behaviors or simple models quickly fails when confronted with infeasible

regions of the state space.

This work has presented novel methods to handle these challenges by adapting the complexity

of the solution to the task. The hierarchical planning and control framework presented in Section 3

introduces a breakdown of the motion planning problem with an explicit focus on agility and auton-

omy through its support of high kinetic energy motion, terrain awareness, and real-time operation.

The high-level motion planner presented in this work provides the system with real-time routes

through the terrain that account for the capabilities of the platform and guide the system towards

the goal, and several demonstrations of this system showed both its efficacy in planning long hori-

zon behaviors and executing agile motions. The model predictive control formulation presented in

Section 4 provided a method for establishing communication between layers of such a hierarchy by

adapting the model used for predictive control to account for constraints in the higher-dimensional

system. This method was shown to be provably stable provided conditions regarding a template

and anchor relationship were met, and its performance improvement over fixed complexity formu-

lations was demonstrated over candidate environments for a quadrupedal system. This work also

presents a novel aerodynamic tail design that can be employed to expand control authority and

reject disturbances when leg planning and control are insufficient. The presented design greatly

decreases the mass and improves the practicality of such tails, rendering them more favorable for

deployment.
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These methods directly improve the utility of legged robots in industrial settings. By improving

the speed and range of terrain over which the legged robot can navigate, these platforms can carry

out applications more quickly and reliably. These qualities will enable their use in a wider range of

applications, particularly those with unstructured terrain where other mobile robots struggle. One

particularly promising domain for legged robotics is environmental monitoring. The author has

directly contributed to work on robotic soil sampling for contaminant mapping and remediation,

which often must be conducted in environments where large obstacles and uneven terrain block

the passage of wheeled or tracked platforms. Despite the potential of legged platforms to succeed

in these environments, a tracked platform was selected due to concerns over the reliability and

autonomy of legged platforms in traversing such terrain. Successful deployment of the methods

presented here could permit the usage of legged platforms and provide access to a much larger set

of data. This trend could apply similarly to other applications such as delivery, inspection, public

health, and space exploration.

It should be reiterated that many of the strategies employed to achieve real-time algorithm per-

formance rely on heuristics and model reductions specific to legged locomotion. It is an intentional

decision to restrict the domain of interest to this specific class of systems rather than generalizing

to other forms of multi-contact dynamical systems such as those commonly found in manipulation.

This framework could theoretically be generalized to apply to such systems, but that generalization

remains outside the scope of this work as many of the heuristics introduced here would no longer

apply. Similarly, aerodynamic tail designs are investigated specifically with relation to reorienta-

tion tasks for locomotion. Although they could be deployed in other systems where stabilizing

torques are desirable, we leave their application to such domains for future work.

Although the methods presented here show technological advances in planning and control,

there is still much progress to be made in fully realizing the potential of legged robots. Environ-

ments with extremely tight tolerances on acceptable error or allowable configurations will likely

not support the model reductions or approximations presented here and will likely require more

rigorous notions of feasibility, or employ learning-based approaches which are able to handle con-
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straints in a robust way without learning overly conservative behaviors. Such improvements would

increase the range with which navigation could be planned and the quality of the resulting motion.

In a similar vein, advancements that relax the physical constraints on possible robot motions –

such as expanding the friction cone through intelligent foot design or increasing actuation limits

either through better actuators or transmission mechanisms – would aid any motion generation.

Finally, this work has focused on improving performance in point-to-point navigation tasks, but

those waypoints still must be specified by a user and over a terrain with which it understands how

to interact. To truly unlock legged robot locomotion as a force for automation applications, robots

much be able to adapt to entirely new scenarios while also making high-level decisions about how

to best execute the task at hand.
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A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algo-

rithm for large-scale nonlinear programming. Mathematical programming, 106(1):25–57, 2006.

E. Welzl. Smallest enclosing disks (balls and ellipsoids). In New results and new trends in computer

science, pages 359–370. Springer, 1991.

M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi, R. Siegwart, and M. Hutter. Navigation
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