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Abstract

Many state estimation and control algorithms require knowledge of how probability distributions propagate through dynamical
systems. However, despite hybrid dynamical systems becoming increasingly important in many fields, there has been little
work on how to map probability distributions through hybrid transitions. Here, we derive a propagation law that employs the
saltation matrix (a first-order update to the sensitivity equation) to formally compute how a distribution’s second moment is
mapped through an isolated transition in a hybrid dynamical system. This saltation matrix update for the second moment
of a distribution is compared to both the true distribution and a naive method which utilizes the differential of the reset
map. Using this covariance propagation law, we propose the Salted Kalman Filter (SKF), a natural extension of the Kalman
Filter and Extended Kalman Filter to hybrid dynamical systems. Away from hybrid events, the SKF is a standard Kalman
filter. When a hybrid event occurs, the saltation matrix plays an analogous role as that of the system dynamics, subsequently
inducing a discrete modification to both the prediction and update steps. Simulation results from the SKF show a reduced
mean squared error in state estimation compared to using the differential of the reset map, especially immediately after a
hybrid transition event.
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1 Introduction

From legged robots to manipulator systems, many im-
portant contemporary control problems revolve around
systems that make and break contact with their envi-
ronments. These contact events are often represented
as a discrete change to the system dynamics which in-
troduces complexity for state estimation and control, as
classic methods assume smoothness [6, 7, 16, 31]. These
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“hybrid systems” [2, 15, 26] are systems with both con-
tinuous states (such as the position and velocity of a
robot’s center of mass and joints) and discrete states
(such as whether or not a limb is in contact with the
ground). Lacking out-of-the-box solutions, state estima-
tion for these systems is a frontier with novel difficul-
ties [8, 29], including how to deal with nonlinear dynam-
ics on the continuous phases [5], discrete jumps in the
continuous state [3], and real time computation [33].

In this work we take a step towards creating a Kalman-
like filter compatible with hybrid systems while also
avoiding the apparently-combinatorial effects of con-
sidering multiple modes simultaneously. To do this, we
apply the saltation matrix (a standard tool from non-
smooth analysis [25]) to propagate state uncertainty
distributions through hybrid state transitions. The
saltation matrix provides a first order approximation
of the effects of a hybrid domain change based on the
dynamics in the individual modes, the reset functions,
and the location of the reset. It might be assumed that
the propagation of uncertainty through hybrid transi-
tions could be approximated by simply examining the
first order approximation of the reset map itself, i.e.
the Jacobian of the reset map. However, this naive ap-
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Fig. 1. Flowing an initial distribution (blue dots) with covariance (red solid line) along a nominal trajectory (blue dashed line)
through hybrid dynamical systems with dynamics (gray arrows) and a single guard (black dashed line). The final distribution
(green dots) is overlaid with the actual covariance (black line). Estimated covariance using the Jacobian of the reset map
(red dashed line) is compared against our proposed estimate using the saltation matrix (gold dashed line). Left: constant flow
vector fields. Right: pendulum hitting a torsional spring damper.

proximation does not take into account the differing
dynamics in the distinct modes. The inaccuracy of the
naive approach can be seen in Fig. 1, where each system
has an identity reset and thus the Jacobian would be
an identity matrix, but this does not accurately capture
the effects of the hybrid transition on the distributions.
For example, [7, 16] assumed that the hybrid transition
does not affect the second moment of the distribution;
i.e the reset map is identity and therefore the second
moment is propagated with the identity matrix, with
additional book keeping steps. As such, attempting to
use the Jacobian of the reset map, while a “natural”
idea, is ultimately incorrect in general.

The remainder of this paper is organized in the following
manner. Section 2 provides a brief review of the hybrid
system estimation literature. Section 3 defines the prob-
lem that we seek to solve in this work. Section 4 proves
that using the saltation matrix is the correct first-order
approach for propagating covariance matrices through
state driven hybrid transitions. Section 5 introduces the
“Salted Kalman Filter,” which is a Kalman Filter aug-
mented with the capability to propagate the estimated
first and second moments through hybrid transitions.
Section 6 explains the experiments used to validate the
performance of the saltation matrix on covariance prop-
agation and in a Kalman filter. Section 7 compares re-
sults from using the saltation matrix to results from the
more naive approach of using the Jacobian of the reset
map. Finally, Section 8 provides a discussion of the work
presented and potential future work.

2 Related Work

There has been a variety of work on the topic of state esti-
mation for systems with differing dynamics and discrete
modes, however current approaches either do not con-
sider systems with state-driven mode transitions (e.g.
the “switched system” case has received considerable at-
tention) [4, 8, 9, 13, 19, 29], such as contact systems, or
are computationally expensive and difficult to run in an
online filtering setting [23, 33].

Our work seeks to understand how distributions are
propagated through hybrid systems by applying knowl-
edge from non-smooth systems literature [1, 18, 20] in
order to make simplifying assumptions which retain suf-
ficient information for the purposes of online state esti-
mation.

2.1 Hybrid System Estimators

One approach to filtering on hybrid systems with lin-
ear dynamics is to use a filter bank where a filter is as-
signed to each discrete mode and the output of the fil-
ter with the lowest residual is used as the current state
estimate [4]. Another style of filter bank method mixes
the outputs of individual filters by utilizing a probability
weight calculated based on measurement residuals and
a posteriori estimate likelihoods such as the interacting
multiple model (IMM) [8]. These filtering methods have
been extended to hybrid systems with nonlinear dynam-
ics [5] and hybrid systems with non-identity reset maps
during hybrid transitions [3]. However, these filtering
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bank strategies consider hybrid systems with transitions
that do not depend on continuous state and therefore do
not account for the effect that the continuous state de-
pendent transitions have on the distribution. This is an
issue because the first 2 moments of the distribution are
not guaranteed to be captured after a transition. Par-
ticle filtering approaches such as the manifold particle
filter (MPF) seek to represent uncertainty distributions
directly with a variety of sample points rather than by
representing belief as a parametric (e.g. Gaussian) dis-
tribution [23]. The MPF in particular is deliberate in the
way it samples points when on a constrained surface in
order to ensure proper coverage of possible states. One
of the major drawbacks of the MPF and related methods
is that they are computationally expensive due to com-
binatorial complexity, so it is difficult to utilize them for
high degree of freedom systems in a real-time setting.

Some optimization based methods which seek to circum-
vent this issue of combinatorial complexity simultane-
ously select the continuous and discrete states over all
timesteps to minimize the error associated with the mea-
surements and the dynamics [14, 33]. The resulting opti-
mization problem requires a much higher computational
load compared to filtering methods and as such may be
limited to offline estimation settings.

Online state estimation methods have been created for
complex systems with continuous states and discrete
modes, such as the case for legged robots making and
breaking contact with the ground [7, 16]. In these set-
tings, an extended Kalman filter is used to estimate
the continuous states and the discrete mode is directly
measured through contact sensors. The primary focus
of these works is on the continuous phases rather than
the discrete mode transitions due to the presence of di-
rect mode sensing. Therefore, these estimators do not
directly work for general hybrid systems, because there
might not be a sensor to determine the hybrid event and
there might be discontinuous jumps in the state that
would need to be accounted for.

2.2 Non-smooth systems and the saltation matrix

This work makes extensive use of the saltation matrix [1,
10, 18, 25], which is a discontinuous update to the vari-
ational equation solution [22] and is a key part of lin-
earizing hybrid dynamics around a chosen trajectory.
They have previously been used to analyze stability of
periodic solutions [1], trajectory sensitivity [18], and in-
finitesimal contraction [10]. In this work we utilize the
saltation matrix to update the covariance of an uncer-
tainty distribution.

3 Problem Formulation

The specific problem we seek to address in this work is
the estimation of continuous states of a hybrid dynamical

system given:

(1) A model of the dynamics in each mode.
(2) A model of how the state resets between modes.
(3) The location of the hybrid guards.
(4) Measurements of the system’s continuous state.

We are specifically not considering:

(1) The probability of the discrete state
(2) While our formal derivation of the second moment

of a distribution holds for domains of differing di-
mension, estimation is restricted to domains of the
same dimension

(3) Hybrid systems with intersecting guards [28, § 3-4]
e.g. for a walking system, intersecting guards occur
when multiple feet impact simultaneously.

As many of these terms have multiple possible mathe-
matical meanings, in this section we provide the essen-
tial definitions used in this work.

While there are many similar definitions for a hybrid
dynamical system, e.g. [2, 15, 26], in this work we de-
fine a Cr hybrid dynamical system, closely following [20,
Def. 2]:
Definition 1. A Cr hybrid dynamical system, for
continuity class r ∈ N>0 ∪ {∞, ω}, is a tuple H :=
(J , Γ,D,F ,G,R) where the constituent parts are defined
as:

(1) J := {I, J, ...,K} ⊂ N is the finite set of discrete
modes.

(2) Γ ⊂ J ×J is the set of discrete transitions form-
ing a directed graph structure over J .

(3) D := qI∈J DI is the collection of domains where
DI is a Cr manifold with corners [21, 24].

(4) F := qI∈JFI is a collection of Cr time-varying
vector fields, FI : R×DI → T DI .

(5) G := q(I,J)∈Γ G(I,J)(t) is the collection of guards,
where G(I,J)(t) ⊂ DI for each (I, J) ∈ Γ is defined
as a sublevel set of a Cr function, i.e. G(I,J)(t) =
{x ∈ DI |g(I,J)(t, x) ≤ 0}.

(6) R : R × G → D is a Cr map called the reset that
restricts as R(I,J) := R|G(I,J)(t)

: G(I,J)(t) → DJ

for each (I, J) ∈ Γ .

An execution of a hybrid system [20, Def. 4] starts with
initializing a state in some hybrid domain DI , where I
is a discrete mode in J . The dynamics on I, FI , are fol-
lowed until the trajectory reaches a guard G(I,J), where
(I, J) is a discrete transition in Γ . This triggers the hy-
brid transition from mode I to mode J and the reset
map R(I,J) is applied to the state to initialize the new
state in hybrid domainDJ . The execution is defined over
a hybrid time domain [20, Def. 3],
Definition 2. A hybrid time domain is a disjoint
union of intervals qNi=1Ti such that:
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(1) N ∈ N ∪ {∞}.
(2) TI := [ti, t̄i] ⊂ R is a closed interval from the start

of an interval to the end of an interval for all i < N
and if N <∞ then TN ⊂ R is also a closed interval.

(3) Ti ∩ Ti+1 is nonempty and consists of a single ele-
ment, t̄i = ti+1, for all i < N .

A classic result [17, Thm. 1,§ 15.2] for a smooth system
ẋ = f(x) is that we can linearize around a trajectory
φt(x) using the so-called variational equation

d

dt
Dxφ

t(x0) = Dfx(φt(x0))Dxφ
t(x0) (1)

For the type of hybrid systems we consider, an analogous
equation exists, but additional care must be taken to
treat hybrid events consistently. As shown in [1, 18], if
for some time τ the solution φτ (x0) intersects a single
surface of discontinuity, the variational equation must
be updated discontinuously with the saltation matrix
Ξ(I,J)(t̄i, x(t̄i)), which is defined at time t̄i at the end of
hybrid time interval i with state x(t̄i) ∈ G(I,J).
Definition 3 ( [10, Prop. 2]). The saltation matrix,

Ξ := DxR+
(FJ −DxR · FI −DtR)Dxg

Dtg +Dxg · FI
(2)

where

Ξ := Ξ(I,J)(t̄i, x(t̄i)), FI := FI(t̄i, x(t̄i))

DxR := DxR(I,J)(t̄i, x(t̄i)), DtR := DtR(I,J)(t̄i, x(t̄i))

Dxg := Dxg(I,J)(t̄i, x(t̄i)), Dtg := Dtg(I,J)(t̄i, x(t̄i))

FJ := FJ(ti+1, R(I,J)(x(t̄i))

is the first order approximation of variations at hybrid
transitions from mode I to J and maps perturbations to
first order from pre-transition δx(t̄i) to post-transition
δx(ti+1) during the ith transition in the following way,

δx(ti+1) = Ξ(I,J)

(
t̄i, x(t̄i)

)
δx(t̄i) + h.o.t. (3)

where h.o.t. represents higher order terms, i.e, o(||δx||).

To ensure that the saltation matrix is well defined for
all transitions and to avoid degenerate cases, such as
Zeno behavior, we accept the assumptions (Assumption
1) from [10] to limit the class of hybrid dynamic systems
under consideration.
Assumption 1. Consider a hybrid dynamical system,
H = (J , Γ,D,F ,G,R), with the following local proper-
ties,

(1) Each vector field FI is Lipschitz continuous and con-
tinuously differentiable for all I ∈ J .

(2) Discrete transitions are isolated,R(t,G(t))∩G(t) =
∅ for all t ∈ [0,∞).

(3) Guards and resets are differentiable.

(4) The vector field is transverse to the guards,
d
dtg(I,J)(t, x(t)) = Dtg(I,J)(t, x) + Dxg(I,J)(t, x) ·
FI(t, x) < 0,
for all I, J ∈ J , t ≥ 0 and x ∈ G(I,J)(t).

(5) No trajectory undergoes an infinite number of resets
in finite time (there are no Zeno events).

(6) Hybrid system flows are continuous.

For full technical detail refer to [10]. Note that Assump-
tion 1.4 restricts the definition of the guard from Defini-
tion 1 to be both a sublevel set and only exist when the
vector field is transverse to it at the boundary. Equiva-
lently, we can write each guard set G(I,J) as the follow-
ing, where g := g(I,J), and x(t) is a trajectory in DI

G(I,J) :=

{
x ∈ DI

∣∣∣∣ g(t, x) ≤ 0,
d

dt
g(t, x(t)) < 0

}
(4)

This assumption also ensures the denominator in (2)
does not approach zero.

In this paper, we start by considering linear systems
before extending to the full nonlinear case. As such,
through a slight abuse of notation,
Definition 4. ACr linear hybrid dynamical system
is a Cr hybrid dynamical system (Definition 1) with the
following restrictions:

• The flow follows linear dynamics, ẋ = FI(t, x) =
AI(t)x + BI(t)u(t), for some input function t 7→
u(t) ∈ RmI , where AI ∈ RnI×nI , BI ∈ RnI×mI ,
nI = dimDI , and mI = dimu.

• Each guard set is given by a sublevel set of a linear
function g(I,J)(x, t) = gij(t) · x, where gij(t) ∈ RnI ,
so that G(I,J)(t) = {x ∈ DI |g(t) · x ≤ 0}.

• The reset is a linear function, mapping,
xJ = R(I,J)(t, x) = R(I,J)(t) · xI for xI ∈ G(I,J),

xJ ∈ DJ , and R(I,J) ∈ RnJ×nI .
• All functions of t are Cr-smooth in t.

Note that where DxR(I,J) is used in the text, it refers
to the Jacobian of the map R(I,J)(·), which in the linear
case is simply the matrix R(I,J).

The goal of this work is to understand how distribu-
tions are mapped through hybrid transitions and to ul-
timately apply this knowledge to estimation algorithms
that operate in discrete time,
Definition 5. The discrete time K := {tk}k∈N is a (pos-
sibly infinite) set of times with discrete index k ∈ N de-
fined for a fixed time step ∆ such that the corresponding
time tk is the product k∆.

4 Mapping Covariance through Hybrid Transi-
tions

In this section, we show how the saltation matrix can be
used to approximately map the second moment of a dis-
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tribution through hybrid transitions on hybrid dynami-
cal systems (Def. 1) and prove that this idea is exact for
linear hybrid systems (Def. 4). Note that the proposed
method does not predict the final distribution but rather
just the first two moments. We introduce this method
in Sec. 4.1 and compare it to a naive approach using the
Jacobian of the reset map in Sec. 4.2.

4.1 Proposed approach to mapping covariances through
hybrid transitions

Without loss of generality, consider the unforced case
where ∀t u(t) = 0. The linearization about x̃ of the dy-
namics FI(t, x̃, 0) are captured by the dynamic matrix:

ÂI(t, x̃) := DxFI(t, x̃, 0) (5)

Assume a discrete update law of the nonlinear dynamics
FI(t, x(t), 0) with timestep ∆ is given to be fI,∆(x(t))

and the discretization of ÂI(t, x̄) to be ÂI,∆. 1 . Note
that time t and input u(t) are dropped for brevity.

Define a random variable X(tk) which is drawn from a
distribution at time tk with mean µ(tk) := x(tk)

X(tk) := µ(tk) + δx(tk) (6)

where perturbations, δx(tk), are in the tangent space of
DI and are sampled from a distribution with zero mean
and covariance Σ(tk),

Σ(tk) = E[δx(tk)δx(tk)T ] (7)

The dynamic update [32, Eqns. 2.14–2.15] for the first
two moments in the case where the hybrid system does
not switch modes is given by,

µ(tk+1) = fI,∆(µ(tk)) (8)

Σ(tk+1) = ÂI,∆Σ(tk)ÂTI,∆ + h.o.t. (9)

where again h.o.t. represents higher order terms, i.e.
o(tk). In the linear hybrid systems case (Def. 4), there
are no higher order terms and the dynamic update is
exactly,

µ(tk+1) = AI,∆µ(tk) (10)

Σ(tk+1) = AI,∆Σ(tk)ATI,∆ (11)

Next, consider the update when the hybrid system does
transition modes. Assume for simplicity that only a sin-
gle transition occurs during a timestep, i.e. tk ∈ Ti and
tk+1 ∈ Ti+1 are in consecutive intervals of the hybrid

1 Since there are many ways of discretizing a system, we are
merely assuming that one has been chosen.

time domain (though the derivation may be easily ex-
tended to the multiple isolated transition case). The
time periods from [tk, t̄i] and [ti+1, tk+1] each follow the
smooth case and the update to the mean and covari-
ance are the same as (8)–(9) with the appropriate hy-
brid modes and time steps. To derive the updates to the
mean and covariance during the transition [t̄i, ti+1], the
post-impact mean state µ(ti+1) is mapped from the pre-
impact mean state µ(t̄i) through the reset map

µ(ti+1) = R(I,J)(t̄i, µ(t̄i)) (12)

and the perturbations are mapped using the saltation
matrix as in (3),

µ(ti+1) + δx(ti+1) =R(I,J)

(
t̄i, µ(t̄i)

)
+ Ξ(I,J)

(
t̄i, µ(t̄i)

)
δx(t̄i)

+ h.o.t. (13)

The state just after the transition, X(ti+1) :=
µ(ti+1) + δx(ti+1), is a multivariate distribution with
mean µ(ti+1) and covariance Σ(ti+1) with an update
analogous to (10)–(11), which we summarize in Propo-
sition 1.
Proposition 1. When the higher order terms are zero,
the dynamic update to the mean and covariance of a hy-
brid system at the time of a reset is, defining µ∗ := µ(t̄i),

µ(ti+1) = R(I,J)(t̄i, µ
∗) (14)

Σ(ti+1) = Ξ(I,J)(t̄i, µ
∗)Σ(t̄i, µ

∗)Ξ(I,J)(t̄i, µ
∗)T (15)

See Appendix A for the proof. Note that this update
holds as an approximation when higher order terms are
small.

Now that the dynamic update for the first and second
moments at the time of transition are known, the full up-
date for a timestep ∆ during a hybrid transition can be
constructed. At a high level, the smooth update start-
ing at tk, (10)–(11), is applied up until transition at
time t̄i, then the transition update using the saltation
matrix, (14)–(15), is applied, and then the smooth up-
date resumes in the new domain at time t̄i until tk+1.
Specifically, we divide the interval ∆ into two regions,
∆1 = t̄i−tk, and ∆2 = tk+1−t̄i. The update to the mean
and the covariance during the transition case is then,

µ(tk+1) =fJ,∆2

(
R(I,J)

(
t̄i, fI,∆1

(
µ(tk)

)))
(16)

Σ(tk+1) =ÂJ,∆2
Ξ(I,J)ÂI,∆1

Σ(tk)ÂTI,∆1
ΞT(I,J)Â

T
J,∆2

+ h.o.t. (17)

and is exactly in the linear hybrid systems case (Def. 4),

µ(tk+1) = AJ,∆2R(I,J)AI,∆1µ(tk) (18)

Σ(tk+1) = AJ,∆2
Ξ(I,J)AI,∆1

Σ(tk)ATI,∆1
ΞT(I,J)A

T
J,∆2

(19)
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The saltation matrix is evaluated at Ξ(I,J)(t̄i, AI,∆1
µ(tk)).

In the case of multiple hybrid transitions within a time
period, the update equations can similarly be built by
successively composing (10)–(11) and (14)–(15).

4.2 Naive approach to mapping covariances through hy-
brid transitions

One naive approach to updating mean and covariance
through a hybrid transition is to simply use the Jacobian
of the reset function. This idea is particularly interesting
because the update to the mean is just to apply to reset
map, so intuitively the Jacobian of the reset map might
properly map deviations from the mean. This is because
if we consider only the effect of the reset map and apply
a first order approximation (Taylor expansion) we get,

X(ti+1) =R(I,J)

(
t̄i, X(t̄i)

)
= R(I,J)

(
t̄i, µ(t̄i) + δx(t̄i)

)
=R(I,J)

(
t̄i, µ(t̄i)

)
+DxR(I,J)

(
t̄i, µ(t̄i)

)
δx(t̄i)

+ h.o.t. (20)

We would then expect the propagation of covariances to
follow as,

Σ(ti+1) = DxR(I,J)Σ(t̄i)(DxR(I,J))
T + h.o.t. (21)

However, this approach is not correct because it only
considers variations about the reset map and not in the
state of both domains and in the guard surface whereas
the saltation matrix encompasses all variations, i.e. an
expansion needs to account for the flow away from the
guards, as well as the reset map. The basic reason for this
requirement is that even though in a hybrid dynamical
system we may have µ(t̄i) ∈ G(I,J), we do not automat-
ically have that µ(t̄i) + δx(t̄i) ∈ G(I,J). For example, if
δx is in the opposite direction of the flow then the state
needs to continue flowing along the prior dynamics for
some time before applying the reset function. The salta-
tion matrix captures this phenomenon, and the approx-
imation becomes

X(ti+1) =R(I,J)

(
t̄i, µ(t̄i)

)
+ Ξ(I,J)

(
t̄i, µ(t̄i)

)
δx(t̄i)

+ h.o.t. (22)

Note that the difference between the Jacobian of the
reset map and the saltation matrix is a rank one update
as shown in (2) – the right hand side consists of DxR
plus an outer product. Therefore, using the Jacobian
of the reset map captures a portion of the distribution
mapping but not all of it.

To illustrate the difference between this naive approach
and the proposed, we compare using the Jacobian of the
reset map instead of the saltation matrix in all experi-
ments.

5 Kalman filtering for hybrid systems

In this section, we present the Salted Kalman Filter
(SKF) by applying the prior result on the mapping of
second moments to Kalman filters which enables their
use on hybrid dynamical systems. To simplify expres-
sions, we abuse notation and use a(k) := a(tk) for any
relevant function a. Again, without loss of generality, we
assume the autonomous case u(k) = 0 ∀ k. To start, the
stochastic dynamics considered for the standard Kalman
filter [32, Eqn. 1.1] on domain I of a linear hybrid dy-
namical system are given by

x(k + 1) := AI,∆x(k) + ωI,∆(k) (23)

where ωI,∆ is the process noise that is sampled from a
zero mean Gaussian distribution with covariance WI,∆.
The stochastic measurement equation [32, Eqn. 1.2] is
defined to be

y(k) := CIx(k) + vI(k) (24)

where CI is the measurement matrix, and vI is the mea-
surement noise that is sampled from a zero mean Gaus-
sian distribution with covariance VI . The a priori up-
date equations are,

x̂(k + 1|k) = AI,∆x̂(k) (25)

Σ̂(k + 1|k) = AI,∆Σ̂(k)ATI,∆ +WI,∆ (26)

and the a posteriori update is:

Kk+1 = Σ̂(k + 1|k)CTI

[
CIΣ̂(k + 1|k)CTI + VI

]−1

(27)

x̂(k + 1|k + 1) = x̂(k + 1|k) (28)

+Kk+1 [y(k + 1)− CI x̂(k + 1|k)]

Σ̂(k + 1|k + 1) = Σ̂(k + 1|k)−Kk+1CIΣ̂(k + 1|k)
(29)

where Kk+1 is the Kalman gain [32, Eqns. 1.9–1.13].
These merely amount to the conventional Kalman filter
equations in discrete time.

While the standard Kalman filter is adequate when a
trajectory is confined to a single domain, we must also
account for hybrid events. In this setting, we assume that
the true time of impact to the guard t̄i is unknown to
the filter and is estimated by determining when a hybrid
transition occurs for the mean. In this filter, we allow
both the a priori and a posteriori update to trigger a
hybrid transition. Therefore, both updates are modified
such that the mean and covariance are properly trans-
formed during the hybrid transition. Recall, the condi-
tions for hybrid transition are that the state needs to be
within the guard set and the vector field evaluated at
that state needs to be transverse to the guard (4). Since

6



these conditions define the guard locations, we can use
them as testable statements in discrete time to assess if
a hybrid event has occurred.

In this section we first show these changes for a Kalman
filter on a linear hybrid dynamical systems (Sec. 5.1–
5.2), then the same changes are similarly applied for
the Extended Kalman filter on general hybrid dynamical
systems (Sec. 5.3).

5.1 Hybrid transition during a priori update

For the a priori update, the state is propagated from the
previous estimate for a single timestep ∆. If the guard
and transversality conditions (4) are not met during the
propagation, no hybrid transition is considered and the
standard Kalman filter a priori update is used (25)–(26).
If the conditions are met, then the forward simulation
is stopped, a hybrid transition is assumed, and the time
of impact t̄i = tk + ∆1 is estimated to be the stopping
time. Because we assume that a finite number of isolated
transitions occur, this process can be repeated until the
entire timestep is simulated. Without loss of generality,
in this section we only consider the case where a single
transition occurs, but appending additional transitions
can be computed in a similar fashion.

If a transition occurs, the stochastic dynamics (23) are
defined to be,

x(k + 1) :=AJ,∆2

(
R(I,J) [AI,∆1x(k) + ωI,∆1(k)]

+ωR(I,J)
(k)
)

+ ωJ,∆2
(k) (30)

where ωR(I,J)
is the reset process noise, sampled from

a zero mean Gaussian distribution with covariance
WR(I,J)

, ωI,∆1
is the process noise in domain I with

timestep ∆1, and ωJ,∆2 is the process noise in domain
J with timestep ∆2. The dynamic update at transition
(14)–(15) augmented with the reset process noise is,

x(ti+1) =R(I,J)x(t̄i) (31)

Σ(ti+1) =Ξ(I,J)Σ(t̄i)Ξ
T
(I,J) +WR(I,J)

(32)

where the saltation matrix is evaluated at Ξ(I,J) =
Ξ(I,J)(t̄i, x(t̄i)). Combined with the continuous a priori
updates before and after transition, (25)–(26), the a
priori update over a full timestep is,

x̂(k + 1|k) =AJ,∆2R(I,J)AI,∆1 x̂(k) (33)

Σ̂(k + 1|k) =AJ,∆2 [Ξ(I,J)(AI,∆1Σ(k)ATI,∆1
(34)

+WI,∆1
)ΞT(I,J) +WR(I,J)

]ATJ,∆2
+WJ,∆2

where the saltation matrix is evaluated at Ξ(I,J) =
Ξ(I,J)(t̄i, AI,∆1

x̂(k)).

5.2 Hybrid transition during a posteriori update

Next, we consider the case where the measurement up-
date pulls the mean estimate into a guard set (4), i.e. if
∃J s.t. x̂(k + 1|k + 1) ∈ G(I,J). In that case, the a pos-
teriori update is modified by applying the reset to the
mean and the saltation update to the covariance,

x̃(k + 1|k) = R(I,J)x̂(k + 1|k) (35)

Σ̃(k + 1|k) = Ξ(I,J)Σ̂(k + 1|k)ΞT(I,J) +WR(I,J)
(36)

where the saltation matrix is evaluated at Ξ(I,J) =

Ξ(I,J)(t̄i, x̂(k + 1|k)). These x̃(k + 1|k) and Σ̃(k + 1|k)
are the updated a posteriori mean and covariance in
the new hybrid domain, J . Note that this update is
identical to (31)–(32).

5.3 Extended Kalman Filter

Similar to the Kalman filter, the standard Extended
Kalman Filter (EKF) [32, Eqn. 2.1] can be directly ap-
plied for nonlinear hybrid systems when no transition
occurs. The nonlinear stochastic dynamics are given by

x(k + 1) = fI,∆(x(k), u(k), ω(k)) (37)

ÂI,∆ = DxfI,∆(x(k), u(k), ω(k)) (38)

ŴI,∆ = DωfI,∆(x(k), u(k), ω(k)) (39)

y(k) = hI(x(k)) + vI(k) (40)

ĈI = DxhI(x(k)) (41)

where fI,∆ is the discrete nonlinear update for the con-

tinuous dynamics FI , ÂI,∆ is the linear approximation

of the dynamic matrix, B̂I,∆ is the linear approximation
of the process noise input matrix, hI is the measurement
function and ĈI is the linear approximation of the mea-
surement matrix.

When there is a hybrid transition during the a priori
update, the dynamic updates for the nonlinear transi-
tion case (16)–(17) are substituted in the same manner
as the linear case into (33)–(32). When there is a hybrid
transition during the a posteriori update, the mean up-
date equation (35) is applied with the full nonlinear reset
map, while the covariance update (36) is the same for
both the linear and nonlinear hybrid systems because the
saltation matrix is already a linearization. With these
updates, the nonlinear extension to the Salted Kalman
Filter follows naturally.

5.4 Summary and psuedocode

The Salted Kalman Filter (SKF) as presented above
is summarized in Algorithm 1. Note that the only dif-
ference from the standard Kalman Filter algorithm is
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Algorithm 1 Salted Kalman Filter (SKF)

1: input (tk, xk, Σk, mk, yk+1)

2: t̂← tk, x̂← xk, Σ̂← Σk, I ← mk

3: while (t̂ < tk + ∆) do
4: (t̂+, x̂)← integrate FI(t̂, x̂)

until (t̂+ = tk + ∆) or (∃J s.t. x̂ ∈ G(I,J))

5: ∆1 ← t̂+ − t̂, t̂← t̂+

6: Σk ← AI,∆1Σ̂ATI,∆1
+WI,∆1 . (26)

7: if ∃J s.t. x̂ ∈ G(I,J) then

8: x̂← R(I,J)(t̂, x̂) . (31)

9: Σ̂← Ξ(I,J)Σ̂ ΞT(I,J) +WR(I,J)
. (32)

10: I ← J
11: end if
12: end while

13: K ← Σ̂CTI

[
CIΣ̂C

T
I + VI

]−1

. (27)

14: x̂← x̂+K [yk+1 − CI x̂] . (28)

15: Σ̂← Σ̂−KCIΣ̂ . (29)
16: if ∃J s.t. x̂ ∈ G(I,J) then

17: x̂← R(I,J)(t̂, x̂) . (35)

18: Σ̂← Ξ(I,J)Σ̂ ΞT(I,J) +WR(I,J)
. (36)

19: I ← J
20: end if
21: tk+1 ← t̂, xk+1 ← x̂, Σk+1 ← Σ̂, mk+1 ← I
22: return (tk+1, xk+1, Σk+1, mk+1)

applying the proposed moment updates when the esti-
mated state satisfies the guard condition (lines 7–11 and
16–20). The SKF is in many ways similar to the EKF
because the saltation matrix is a linearization about the
hybrid transition – if the transition is linear or the pre-
diction is close to the actual then the filter performs well.
This property holds for the nonlinear Extended SKF as
well, and in general this filter suffers from the same pit-
falls as the EKF. Furthermore, like the EKF this lin-
earization means that the optimal belief may not remain
Gaussian, and thus that the filter may fail to have the
optimally properties we obtain in the linear case.

For the measurement update, if a hybrid transition is
triggered, the approach presented here simply trans-
forms the already updated estimates. However, a more
accurate approach might include breaking up the mea-
surement update into sub-updates over each domain. In
this work, we assume the updates are small enough such
that this isn’t an issue, but as the measurement update
magnitude increases, this may be worth investigating.
While the filter is not optimal, like the EKF, we ex-
pect that it will perform well when the covariances and
timesteps are relatively small so that the local lineariza-
tions hold.

6 Experiments

We present two sets of experiments: the mapping of the
second moments of uncertainty distributions (Sec. 6.1)

and Kalman filtering of sensor feedback (Sec. 6.2). In
each experiment, the proper mapping of second mo-
ments of distributions through hybrid transitions us-
ing the saltation matrix (Sec. 4.1) is compared against
a naive mapping using the Jacobian of the reset map
(Sec. 4.2). Experiments are performed in simulation to
ensure consistency and accurate model knowledge. The
first set of experiments compares the resulting distribu-
tions to the ground truth distribution using divergence
metrics. The second set of experiments compares the
utility of the saltation matrix as a dynamic update in a
Kalman filtering setting by comparing the mean squared
error of the two propagation methods in a series of Monte
Carlo tests.

6.1 Covariance Propagation Experiments

This experiment seeks to validate the claim that the
saltation matrix correctly maps the second moment of
distributions that experience hybrid transitions by an-
alyzing the distributions of particles simulated through
hybrid transitions. Distributions are created by ran-
domly sampling 1000 particles from a known mean and
covariance. The particles are then simulated forwards
through the hybrid dynamical system using Matlab’s
ODE45. The starting mean and covariance of the popu-
lation are calculated then propagated for each timestep
using the update rules shown in Section 4 both with
our proposed solution (using the saltation matrix Ξ)
and with the naive solution (using the Jacobian of the
reset map DxR). The final covariance of the population
and the estimated covariances are compared using Kull-
back–Leibler (KL) divergence [30] – where the output is
a natural unit of information (nat) therefore, the smaller
the KL divergence, the more closely the distributions
match.

KL(Σ0‖Σ1) =
1

2

(
Σ−1

1 Σ0 − dim (Σ0) + ln
|Σ1|
|Σ0|

)
(42)

Each hybrid system example is tested with two different
initial covariances – a higher and lower value – to capture
any nonlinearities.

6.2 Kalman Filter Experiments

To test the Salted Kalman Filter (SKF) as defined in
Sec. 5, we ran a Monte Carlo simulation showing im-
provement compared to a Kalman filter that uses the Ja-
cobian of the reset to propagate uncertainty. We call this
comparison algorithm the Jacobian of the Reset Kalman
Filter (JRKF), and it follows the same code as Algo-
rithm 1 but with the saltation matrix Ξ replaced by the
Jacobian of the reset map DxR. Tests were run with a
range of measurement noise, process noise, and differing
time steps. The starting covariance, starting mean, reset
covariance, chosen measurements, and simulation time
were held constant between trials.
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The effectiveness of the filter for each trial is evaluated
by calculating the mean squared error (MSE) along a
simulated trajectory,

MSE =
1

K

K∑
k=1

(
(x(tk)− x̂(tk))T (x(tk)− x̂(tk)

)
(43)

where K is the number of time steps, x̂(tk) is the state
estimate at time tk, and x(tk) is the true state at time
tk. For each measurement noise, process noise, and time
step combination, the filter is run on 1000 randomly sam-
pled starting conditions with randomly sampled process
noise and randomly sampled measurements. The same
random trials are then passed to each filter for compari-
son. Each set of trials with the SKF and JRKF are com-
pared using the sign test [12]. The null hypothesis is that
the median difference between the pairs is zero,

H0 : M1 −M2 = 0 (44)

The sign test is chosen because the data are not normally
distributed, which rules out the paired t-test, and are
not necessarily symmetric, which rules out the Wilcoxon
Signed Rank test.

7 Results

In this section we present the results of the experiments
detailed in the previous section on a series of hybrid
systems.

7.1 Hybrid System Definitions and Covariance Propa-
gation Results

7.1.1 Constant Flow

The simplest hybrid system we examine is the case where
there are two hybrid modes that are linearly separated
and which have constant, but distinct, dynamics in each
mode. The dynamics in the hybrid modes are defined:

F1 = [1,−1]T , F2 = [1, 1]T (45)

The guard sets are defined at x1 = 0, such that the
domain of F1 is the left half plane and the domain of F2

is the right half plane (Fig. 1). The reset is an identity
map.

For the propagation experiment, the starting mean was
x = [−2.5, 0]T , the total simulation time was 5 seconds,
and the time steps were 0.01 seconds as shown in Fig. 1.
The high covariance level was 0.1I and the low covari-
ance level was 0.005I. All samples from the system be-
gan in hybrid mode 1 and ended in hybrid mode 2.

This scenario is interesting because the covariance does
not change in either hybrid mode as the flow is simply

translation in those regions – the only covariance changes
are a result of the hybrid transition. The results, listed
in Table 1 and apparent in Fig. 1, show that this change
in covariance is captured well using the saltation matrix
(as the KL-divergence is almost zero) but not well using
the Jacobian of the reset map. Note that, as expected for
a linear system, the KL-divergence does not significantly
depend on the initial covariance and in this case the
difference is practically zero.

7.1.2 Bouncing Ball

The bouncing ball is a hybrid dynamical system [15]
which consists of 2 hybrid domains in the [y, ẏ]T plane,
where the first domain is defined when the ball has
negative velocity ẏ < 0 and the second domain is de-
fined when the ball has non-negative velocity ẏ ≥ 0.
The guard sets are defined to be when the ball hits the
ground g1,2(t, y, ẏ) := y and when the velocity changes
sign g2,1(t, y, ẏ) := ẏ. Note that this could equivalently
be defined as a single domain with a self-reset, however
to match our definition of a hybrid dynamical system
(Definition 1) we treat it as a system with separate do-
mains. The dynamics are standard ballistic dynamics in
both domains

F1 = F2 = [ẏ,−ag]T (46)

where ag is the acceleration from gravity. The reset from
1 to 2 is defined by elastic impact

R1,2 = [y,−αẏ]T (47)

where α is the coefficient of restitution. The reset from 2
to 1 is an identity transformation. For the experiments,
the gravitational acceleration is ag = 9.8 and the coeffi-
cient of restitution is α = 0.75. This system is an exam-
ple of a system with linear dynamics, guards, and linear
but non-identity resets.

For the propagation experiment, the starting mean was
x = [3,−2]T , the total simulation time was 1 second,
and the time steps were 0.001 seconds as shown in Fig. 2.
The high covariance level was 0.05I and the low covari-
ance level was 0.001I. Most of the samples from the sys-
tem began in hybrid mode 1 and ended in hybrid mode
2, while some samples ended back in hybrid mode 1 (af-
ter a (2,1) transition). There is no effect on the mean or
covariance through the (2,1) transition as R(2,1) is iden-
tity and F1 = F2 which means that Ξ(2,1) = DxR+ 0 is
also identity.

The results are listed in Table 1 and an example trial
is shown in Fig. 2. Interestingly, even though the final
distribution is no longer Gaussian, the second moment
(covariance) is still tracked accurately through the im-
pact using the saltation matrix (as the KL-divergence is
small) but poorly with the Jacobian of the reset map.
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Fig. 2. Flowing an initial distribution (blue dots) with co-
variance (red solid line) along a nominal trajectory (blue
dashed line) through the bouncing ball hybrid system’s dy-
namics (gray arrows) with guards (black dashed line and la-
beled). The final distribution (green dots) is overlaid with
the actual covariance (black line). Estimated covariance us-
ing the Jacobian of the reset map (red dashed line) is com-
pared against our proposed estimate using the saltation ma-
trix (gold dashed line).

Again, as this is a linear system, the KL-divergence is
independent of the initial covariance.

7.1.3 Pendulum hitting a spring damper

The pendulum hitting a spring damper, as shown in Fig.
3, is a hybrid system which consists of 2 hybrid domains
over the [θ, θ̇]T state space. The first domain is defined
when the pendulum’s angular position is positive θ > 0
and the second domain is defined when the angular po-
sition is non-positive θ ≤ 0, such that the guard func-
tions are g1,2(t, θ, θ̇) = g2,1(t, θ, θ̇) = θ. The dynamics
are standard pendulum dynamics while in domain 1 and
while in domain 2, the pendulum is in contact with a tor-
sional spring and damper. The resulting dynamics are,

F1 =

[
θ̇,−ag

l
sin(θ)

]T
(48)

F2 =

[
θ̇,
−(kθ + cθ̇ +magl sin(θ))

ml2

]T
(49)

where ag is the acceleration from gravity, l is the length
of the pendulum’s center of mass along the arm, and
m is the mass of the pendulum. In the experiment, the
constants were set to ag = 9.8, l = 1,m = 1, k = 10, and
c = 10. Both resets are identity transformations because
there are no instantaneous changes in state during mode

Fig. 3. Pendulum hitting a spring damper hybrid system
where the pendulum engages a spring damper at the θ = 0.

transition. This system is nonlinear but with identity
resets.

For the propagation experiment, the starting mean was
x = [π4 ,−3.7]T , the total simulation time was 0.3 sec-
onds, and the time steps were 0.001 seconds as shown in
Fig. 1. The high covariance level was 0.05I and the low
covariance level was 0.001I. All samples from the sys-
tem began in hybrid mode 1 and ended in hybrid mode
2. This example demonstrates the validity of the linear
approximations when the higher order terms are small
and as expected, using the saltation update decreases
KL-divergence when compared against the Jacobian of
the reset map as shown in Table 1.

7.1.4 Asymmetric Spring Loaded Inverted Pendulum
(ASLIP)

The asymmetric spring loaded inverted pendulum
(ASLIP) system consists of a spring leg, torsional spring
hip, and a body with inertia in the sagittal plane as
shown in Fig. 4. This system is similar to the one
in [27] and a full derivation for the system dynamics
can be found in Appendix B. In this system, the body
configuration space is defined to be the position and
orientation of the body qb := [xb, yb, θb]

T ∈ R× R× S1.
The leg configuration space is defined to be the angle
between the toe and the ground, the angle of the hip,
and the length of the leg ql := [θt, θh, ll]

T ∈ S1×S1×R,
where impact location of the toe defines a pin joint for
the body to pivot around. Once the location of the toe,
qt = [xt, yt]

T ∈ R × R, is fixed to a ground location,
either configuration can be used to define the full con-
figuration space of the system. When the toe position
is known, the transformation from the leg configuration
to the body configuration Tlb : (ql, qt) 7→ qb. The inverse
mapping can also be calculated which maps the body
configuration to the leg configuration Tbl : (qb, qt) 7→ ql.

Hybrid mode 1 is defined to be when the toe is not in
contact with the ground. The resulting domain D1 is
chosen to be parameterized by the body’s configuration,
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Fig. 4. Asymmetric Spring Loaded Inverted Pendulum
(ASLIP) diagram showing the aerial phase hybrid mode on
the left and the stance phase hybrid mode on the right and
their corresponding configuration variables.

toe position, and body’s velocity.

[xb, yb, θb, xt, yt, ẋb, ẏb, θ̇b]
T ∈ D1 (50)

When the toe is in contact with the ground, the hybrid
mode is 2. The domain D2 is chosen to be parameterized
by the toe angle with the ground, hip angle, the leg
extension, toe position, the time derivative of the toe
angle, hip angle, and leg extension.

[θt, θh, ll, xt, yt, θ̇t, θ̇h, l̇l]
T ∈ D2 (51)

Note that the toe position is augmenting the state rather
than being treated as an external parameter because
variations in the toe placement affect the other configu-
ration states. Because of this, the toe dynamics are con-
strained relative to the body in domain 1 and relative to
the ground contact in domain 2. These dynamics F1, F2

are derived using a Lagrangian approach (see Appendix
B). The system parameters and their experimental val-
ues are body massmb = 1, body inertia Ib = 1, leg spring
constant kl = 1000, hip spring constant kθ = 400, body
length lb = 0.5, acceleration due to gravity ag = 9.8,
resting leg length ll0 = 1, and resting angle of the hip
spring θh0 = −π8 .

The guard for mode 1 is defined to be when the toe
touches the ground, g(1,2)(t, q, q̇) = yt, and the guard
for mode 2 is defined to be when the normal force of
the toe reaches zero, i.e when the leg spring reaches the
resting length, g(2,1)(t, q, q̇) = ll − ll0. The reset maps
are defined to be the coordinate changes from the body

states to the leg states.

R1,2 =


Tbl(qb)

qt

DxTbl(qb, qt)q̇b

 (52)

R2,1 =


Tlb(ql)

qt

DxTlb(ql, qt)q̇l

 (53)

This hybrid system is especially useful to analyze be-
cause it includes both nonlinear dynamics and non-
identity resets, wherein the switch from Cartesian to
polar coordinates must be accounted for.

For the propagation experiment, the starting mean was
x = [0, 1.8, 5pi

12 , 0.0011, 0.3256, 0 − 10]T , the total simu-
lation time was 0.55 seconds, and the time steps were
0.0001 seconds. The high covariance level was 0.001 and
the low covariance level was 0.00005 for the non toe
states. There was no additional noise injected into the
toe states, because they are constrained to the body
states. The system started in hybrid mode 1 and ended
in hybrid mode 2. This scenario is the most complex out
of all the considered hybrid systems because it includes
both nonlinear dynamics and nonidentity resets. Nev-
ertheless, the change in covariance is still captured well
using the saltation matrix and is not captured well when
using the Jacobian of the reset, Table 1. Similar to the
pendulum example, as the initial covariance increases,
the saltation update approximation gets worse due to
the inaccuracies in the linearization.

7.1.5 Propagation experiment discussion

Overall, using the saltation update estimates the covari-
ance very well for the linear cases as shown by the KL-
divergence. For the non-linear cases, the saltation update
is a good linear approximation. This is especially appar-
ent in the linear cases where increasing the initial co-
variance did not have much affect on the KL-divergence
while in the nonlinear cases the increase in initial co-
variance increased the resulting KL-divergence; this is
unsurprising, as the linearization is local and will gener-
ally increasingly fail to predict the correct dynamics as
the domain is enlarged. These results motivate the use
of the saltation update in a Kalman filtering framework.

7.2 Kalman Filter Results

7.2.1 Constant Flow

The first Kalman filtering experiment uses the same con-
stant flow system defined in Sec. 7.1.1 and shown in
Fig. 1. The system was simulated for 5 seconds with 4
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Table 1
KL-divergence comparison between the ground truth and estimated second moment of distributions that undergo hybrid
transitions for the 4 hybrid system test cases using the saltation matrix Ξ(I,J) and the Jacobian of the reset map DxR(I,J).

System Nonlinear Non-identity Reset Initial Covariance KL-div DxR(I,J) KL-div Ξ(I,J)

1 Constant Flow No No
Low 1.9193 1.8419× 10−6

High 1.9219 2.2574× 10−7

2 Bouncing Ball No Yes
Low 32.2253 0.0035

High 32.2253 0.0035

3 Pendulum Yes No
Low 29.2477 0.0011

High 32.3330 0.2058

4 ASLIP Yes Yes
Low 26.8931 0.0011

High 24.8121 0.0867

different time steps: ∆ = 5, 1, 0.1, and 0.05 seconds. The
process covariance levels ranged from ‖WI,∆‖ = 0.1∆2

to 0.0001∆2 and the measurement covariance was swept
from ‖VI‖ = 1 to 0.0001 in powers of 10, for a total of
4 process covariance levels and 5 measurement covari-
ance levels. There was no noise added to reset because
the reset map is an identity transformation. The initial
covariance was set to Σ(0) = 0.1I. Lastly, the measure-
ments for this system were chosen to be both states, i.e

hI(x) =

[
1 0

0 1

]
x = Cx (54)

In total, 80 Monte Carlo simulations were tested with
1000 trials each.

Both filters perform well for the given noise levels and
timesteps because they both have relatively low mean
squared error for each Monte Carlo simulation. An exam-
ple Monte Carlo simulation trial is shown in Fig. 5 where
both filters seem to perform similarly, but the difference
is seen when comparing the absolute mean error, and up-
per and lower quartiles – where the Kalman filter using
the saltation update has a lower mean error. When com-
paring the mean squared error for each batch of Monte
Carlo simulations, the saltation updated Kalman filter
performed better than or as well as the Jacobian of the
reset map. The saltation updated filter improved per-
formance with statistical significance (p < 0.05) for 68
of the 80 combinations. In the 12 remaining cases they
failed to reject the null hypothesis (44) and are statis-
tically indistinguishable. For these cases, the time steps
are high, the measurement noises are low, and the pro-
cess noises are high. In these cases the filter depends
mostly on the sensors and therefore the dynamic update
becomes less important.

7.2.2 ASLIP

The Kalman filtering experiments were also run on the
ASLIP system, defined in Sec. 7.1.4. For these tests, we
simulated the dynamics for 2.5 seconds which resulted in
4 jumps (8 hybrid transitions). Timesteps were chosen
to be ∆ = 0.03, 0.01, 0.005, 0.001 seconds. The process
noise covariance levels were ‖WI,∆‖ = 0.01∆2, 0.001∆2,
and 0.0001∆2 (which were applied as wrenches), and the
measurement noise covariance levels were ‖VI‖ = 0.005,
0.001, and 0.0001. The initial covariance was set to be
0.1I, where the covariance in the toe position was set
to match the constraint between the body configuration
and the toe – this is necessary because the noise in the
toe position is correlated to the noise in the body states.
Again, reset noise is not applied because there isn’t un-
certainty in the coordinate transformation. For this sys-
tem, only measurements of the body states are given.
This is more realistic, because it is assumed that the hy-
brid mode is unknown. Therefore, in the aerial phase,
hybrid mode 1, the measurement function is simply.

h1(x) =

[
qb

q̇b

]
(55)

However, in the stance phase, hybrid mode 2, the states
are the leg states and the toes positions and cannot be di-
rectly compared against the body measurements. There-
fore, the measurement function in hybrid mode 2 is the
transformation from leg states to body states

h2(x) =

[
Tlb(ql)

Tlb(ql, qt, q̇l)

]
(56)

Both estimators have relatively low mean squared error
for each Monte Carlo Simulation indicating that each
filter performs well for these noise levels and timesteps.
When comparing the two filters, the saltation updated
Kalman filter outperformed the Jacobian of the reset
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Fig. 5. Kalman filter results on the constant flow system com-
paring the SKF to the JRKF where the two methods differ
only at the moment of transition. Note that the main differ-
ences are just after the transition because Kalman Filters are
stable, these differences disappear as time goes on. Testing
conditions for this example are timestep ∆ = 0.05s, process
noise ‖WI,∆‖ = 0.1∆2, and measurement noise ‖VI‖ = 1.
Top: For a single trial, the SKF estimated trajectory (blue
dashed), the JRKF estimated trajectory (red dashed), and
the ground truth trajectory (black solid) are shown with the
measurements (green dots) and highlighting (gray shaded)
when the system is in D2. Bottom: Absolute mean error is
plotted for the SKF (blue) and JRKF (red) with 0.25 and
0.75 quantiles over 1000 trials, highlighting (gray shaded)
the mean transition time to D2.

map update for all 36 combination of (∆,WI,∆, VI), with
statistical significance (p < 0.001). We again expect the
SKF to perform better than or equal to the JRKF be-
cause as the quality of measurements increase, the less
we use the knowledge of the dynamics. An example run
of one of the Monte Carlo simulations is shown in Fig. 6,
where both filters again perform similarly for each state
except for the vertical body position yb. The deviation
from the ground truth vertical body position yb are more
pronounced for the naive solution than our proposed so-
lution.

This effect is magnified when comparing the absolute
error mean and quartiles for the 1000 trials as shown
in Fig. 6. It is clear that most of the improvement is in
the body vertical position yb. The difference between the
saltation matrix and the Jacobian of the reset map on im-
pact is in the column associated with the vertical height
yb. Therefore, the improvements in yb are expected be-

cause the dynamics along this axis are accounted for.
Similarly on lift off, the difference was in the column
associated with the leg length. As the leg was close to
vertical, most of the error was shifted into the vertical
height of the body yb.

7.2.3 Kalman Filter Experiment Discussion

The Kalman Filter experiments span from simple lin-
ear (even constant) dynamics to more complex nonlin-
ear and nonidentity dynamics. The constant flow case
is beneficial to analyze because the linearization is ex-
act for the hybrid transition as well as the dynamics.
Therefore, the initial conditions as well as noise param-
eters should not affect the fundamental quality of the
estimator. The ASLIP example validates the extended
Kalman filter variant through analyzing a nominal tra-
jectory with several hybrid transitions with non-identity
resets and highly nonlinear dynamics.

Both the naive solution, using the Jacobian of the re-
set map, and our proposed solution, using the saltation
matrix, have low mean squared error for both examples.
Since the naive solution and our proposed method have
the same mean update and algorithm structure, the fact
that they both perform well highlights the importance
of having an accurate update for the mean as well as
handling each transition case in the algorithm. However,
for both examples using the saltation covariance update
improves the mean squared error and is directly visible
in the absolute error distribution plots, Figs. 5 and 6.

8 Conclusion

In this paper, we introduced the concept of utilizing
saltation matrices for mapping the second moment of
probability distributions through hybrid transitions.
The mapping was validated through a variety of hybrid
dynamical system cases and compared against a naive
method of using the Jacobian of the reset map. We also
apply this approach to create a new Kalman filtering
algorithm which allows estimation on hybrid dynamical
systems with state based transitions, including an ex-
tended Kalman filter variant which can handle nonlin-
ear dynamics with non-identity reset maps. This Salted
Kalman Filter was validated on both a linear and non-
linear system and then compared against the Jacobian
of the reset map counterpart. The results show that
using our proposed method is statistically better than
or equivalent to the naive method in all tested cases.

The proposed method, similar to the Extended Kalman
Filter, suffers when model uncertainty is added to the
hybrid dynamical system, when the local approximation
is violated, or when the noise is non-Gaussian as stated
in Sec. 3. Furthermore, as noted in the bouncing ball
example (Sec. 7.1.2), even in the case of a linear hy-
brid dynamical system an uncertainty distribution that
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Fig. 6. ASLIP Kalman filter results comparing the SKF to the JRKF. Note that the main differences between the methods are
at the transitions and also that the improvement is in one direction (here, mostly in the vertical body position yb) because the
saltation matrix is different from the Jacobian of the reset map by a rank 1 update. Testing conditions for this example are
timestep ∆ = 0.03s, measurement noise ‖VI‖ = 0.005, and process noise ‖WI,∆‖ = 0.01∆2. Top: For a single trial, the SKF
estimated trajectory (blue dashed), the JRKF estimated trajectory (red dashed), and the ground truth trajectory (black solid)
are shown with the measurements (green dots) and highlighting (gray shaded) when the system is in D2. Bottom: Absolute
mean error is plotted for the SKF (blue) and JRKF (red) with 0.25 and 0.75 quantiles over 1000 trials, highlighting (gray
shaded) the mean transition times to D2.

is initially Gaussian may not remain so (unlike a con-
ventional linear system), which is assumed in the classi-
cal Kalman filter. The reset map and the saltation ma-
trix still map the first two moments of the distribution
correctly, but those two alone do not describe the en-
tire distribution. In cases where the non-linearity, non-
localness, or non-Gaussianness are significant, a particle
filtering approach may be more appropriate.

Note that while using the saltation matrix captures the
update for the covariance to first order, the saltation

matrix is model-dependent, and may require significant
effort to obtain in practice in order to use (2) directly.
However, as the saltation matrix is a linear map relat-
ing pre- and post-transition states, regression techniques
may be able to approximate it with measured data with-
out the need for complete (and differentiable) models of
the hybrid system.

While this is a good start to developing an online hy-
brid state estimation system, there is still further work
needed to improve the estimation. Our method does not
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explicitly reason about the probability of a state or mea-
surement being in a particular hybrid mode or guard,
and an extension that reasons about this probability
will be covered in future work. Additionally, we are also
looking into the behaviors of distributions which pass
through multiple intersections, in which case an exten-
sion based on the Bouligand derivative [11, 28] might be
used to capture the propagation of uncertainty.

A Proof for Proposition 1

Proof: To find the mean of X(ti+1), we take the expec-
tation of X(ti+1)

µ(ti+1) =E[X(ti+1)] = E[x(ti+1) + δx(ti+1)] (A.1)

=E[x(ti+1)] + E[δx(ti+1)] (A.2)

where the two terms are separable because the expecta-
tion is a linear operator, and the expectation post impact
state is just its value, E[x(ti+1)] = x(ti+1). Substituting
in δx(ti+1) = Ξ(I,J)(t̄i, x(t̄i))δx(t̄i).

µ(ti+1) = x(ti+1) + E[Ξ(I,J)(t̄i, x(t̄i))δx(t̄i)] (A.3)

Again, because of the linear properties of the expectation
we can pull out Ξ(I,J)(t̄i, x(t̄i)) and because δx(t̄i) is
centered about zero, E[δx(t̄i)] = 0

µ(ti+1) = x(ti+1) + Ξ(I,J)(t̄i, x(t̄i)) · 0 = x(ti+1) (A.4)

By applying the reset map from (12), the mean is thus,

µ(ti+1) = x(ti+1) = R(I,J)x(t̄i) (A.5)

Using the definition of covariance,

COV[X] = E[(X − E[X])(X − E[X])] (A.6)

the post-impact covariance Σ(ti+1) is

Σ(ti+1) =COV[X(ti+1)]

=COV[x(ti+1) + δx(ti+1)] (A.7)

=E[((x(ti+1) + δx(ti+1)− µ(ti+1))

(x(ti+1) + δx(ti+1)− µ(ti+1))T ] (A.8)

Since µ(ti+1) = x(ti+1), this simplifies to

Σ(ti+1) = E[δx(ti+1)δx(ti+1)T ] (A.9)

Using (3), δx(ti+1) can be substituted with Ξ(I,J) =
Ξ(I,J)(t̄i, x(t̄i)) which results in

Σ(ti+1) = E[(Ξ(I,J)δx(t̄i))(Ξ(I,J)δx(t̄i))
T ] (A.10)

= Ξ(I,J)Σ(t̄i)(Ξ(I,J))
T (A.11)

B Derivation of the ASLIP system

The change of coordinate functions are,

Tlb(qb, qt) =


ll cos(θt) + lb cos(θt + θh) + xt

ll sin(θt) + lb sin(θt + θh) + yt

θt + θh

 (B.1)

Tbl(qb, qt) = (B.2)
atan

(
yb−(lb sin(θb)+yt)
xb−(lb cos(θb)+xt)

)
θb − atan

(
yb−(lb sin(θb)+yt)
xb−(lb cos(θb)+xt)

)
√

(yb − lb sin(θb)− yt)2 + (xb − lb cos(θb)− xt)2



The differential mappings are defined via chain rule

[
q̇b

q̇t

]
= Dqb,qtTlb(qb, qt)

[
q̇l

q̇t

]
(B.3)

[
q̇l

q̇t

]
= Dql,qtTbl(ql, qt)

[
q̇b

q̇t

]
(B.4)

Since the toe is massless, the velocity of the toe is as-
sumed to be zero when mapping velocities and is there-
fore removed from the differential mapping.

q̇l = DqbTlb(qb, qt)q̇b, q̇b = DqlTbl(ql, qt)q̇l (B.5)

The dynamics for mode 1 are ballistic dynamics for the
center of mass and because the toe is massless, both the
hip and leg springs are kept at their resting locations θh0

and ll0 respectively. Therefore, while in mode 1, the toe
is kinematically constrained by the body configuration.
Define Tbt : qb 7→ qt to be the transformation from the
body configuration to the toe configuration

Tbt(qb) =

[
xb − lb cos(θ)− ll0 cos(θh0 − θb)
yb − lb sin(θ) + ll0 sin(θh0 − θb)

]
(B.6)

The velocity constraint is enforced through the differen-
tial mapping of Tbt

q̇t = DTbt(qb)q̇b =

[
ẋb + θ̇b(lb sin θ − ll0 sin(θh0 − θb))
ẏb − θ̇b(lb cos θ + ll0 cos(θh0 − θb))

]
(B.7)
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Therefore, the dynamics for mode 1 are

F1 =



ẋb

ẏb

θ̇b

ẋb + θ̇b(lb sin(θ)− ll0 sin(θh0 − θb))
ẏb − θ̇b(lb cos(θ) + ll0 cos(θh0 − θb))

0

−ag
0


(B.8)

The dynamics for mode 2 are derived using Lagrangian
dynamics where the Lagrangian is defined to be the dif-
ference between the kinetic and potential energy.

L =
1

2
(mbẋ

2
b +mbẏ

2
b + Ibθ̇

2
b )

−mbag(ll sin(θt)− lb sin(θt + θh))

− 1

2
(k(ll0 − ll)2 + kh(θh0 − θh)2) (B.9)

The body states are transformed to the leg states us-
ing Tbl and DTbl. Also, in this example, the toe cannot
penetrate the ground and a no slip condition is added.
Therefore, the dynamics for the toe are calculated sep-
arately.
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