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Abstract. This paper investigates optimization-based planning meth-
ods for generating trajectories which are robust to state uncertainty in
undersensed and underactuated systems. Specifically, these methods are
applied to an undersensed robotic hill climbing system. In previous work,
divergence metrics based on contraction analysis were used to quantify
robustness of a trajectory to state uncertainty in conjunction with a
kinodynamic RRT planner to guide the planner towards more conver-
gent directions. Resulting trajectories were sub-optimal or needed to be
smoothed prior to implementation. This work proposes an optimization
framework to plan optimally robust and smooth trajectories which can
also be readily implemented on the robotic hill climbing problem. A new
hill climbing controller is also presented which can guarantee for the first
time the strongest result of contraction analysis, global asymptotic con-
vergence, where possible. Trajectories created using the new trajectory
optimization framework and hill controller are shown to be smoother and
more robust than previous methods as well as an asymptotically optimal
versions of previous methods.

Keywords: Path Planning, Field Robotics, Optimization

1 Introduction

Consider a mobile robot on hilly terrain that has precise heading control and
an accurate map. The robot is tasked to traverse from its current state to a
goal region, as in [5, 6]. However, the robot may not be well localized, and has
only a rough understanding of where it is currently located on the hill, e.g. in
GPS-denied settings. If a robot path planner only considers the shortest path to
the goal region, the resulting trajectory may diverge due to continuous growth
of uncertainty, as in the left side of Fig. 1. However, in some regions the shortest
path will lead to convergent behaviors, as in the right side of Fig. 1, where the
uncertainty shrinks over time.

In many robotic applications, state uncertainty growth is dealt with by using
closed-loop feedback. A controller can be used to sense and reduce errors in
the state. However, robotic systems are often undersensed or underactuated and
cannot close the loop on certain state uncertainties. In these cases they must
rely on planning robust behaviors through leveraging the underlying geometry
of their dynamics. This issue is especially prevalent for the hill climbing robot
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Fig. 1. Diverging (left) versus converging (right) trajectories. The nominal trajectory
is shown in (blue), and 4 points of state uncertainty (black) are simulated forwards
(magenta).

example in [6] and planning for robust manipulator pushing motions [11], but
arises in many more general settings.

Contraction analysis [15] considers robustness to state uncertainty through
geometric analysis, and provides a proof for global asymptotic convergence for
dynamical systems with a vector field with a strictly negative Jacobian, a con-
traction region. This states that if all the eigenvalues of the Jacobian are strictly
negative in a region, all trajectories converge to a single trajectory and the re-
sulting behavior is robust to state uncertainty because there is global asymptotic
convergence.

To plan for robust trajectories, convergent planning [7] utilizes a kinodynamic
rapidly-exploring random tree (RRT) [12] which is biased towards behaviors that
are on average convergent. Average convergence is defined in [7] to be trajectories
where the average eigenvalue of the vector field’s Jacobian to be negative instead
of the maximum eigenvalue being negative in the case of strict contraction. This
corresponds to contraction down to a set of zero volume, instead of a single
point [15]. In [7] these trajectories are created for both robotic hill climbing and
manipulator pushing motions. Another RRT method which may be modified to
include directions of divergence to reduce state uncertainty is the Vector Field
RRT (VF-RRT) [10] algorithm which uses the vector field of the system to
minimize upstream cost. However, since these trajectories are created through
an RRT, they are not optimal. Asymptotically near optimal trajectories are
created in [14] by modifying the average divergence metric used in [7] to have
optimality guarantees, and more optimal RRT methods include multiple restarts
RRT (C-MRRT) and stable sparse RRT (C-SSRT) [13].
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One issue with trajectories produced by RRT is that they are often not
smooth. In [14] it is noted that the near optimal trajectories produced by C-
MRRT and C-SRRT can be post-processed to feasibly work on a robot, because
optimal and smooth RRT methods such as RRT* [9] are not suitable in these
contexts. This is because a steering function may not always be available for
kinodynamic planning, which is required for RRT* to rewire the tree to im-
prove solution quality [14]. However, if the near optimal trajectories are post-
processed, they will no longer be optimal and may no longer satisfy contraction
constraints. In this paper, RRT* is implemented and compared against previous
methods because there exists a steering function for this specific problem. Al-
though these trajectories are asymptotically optimal and more directly usable
than RRT methods, optimality is only guaranteed as time approaches infinity.

This paper presents a new trajectory optimization (T-OPT) framework based
on [3] that can produce optimally convergent and smooth trajectories which can
readily be implemented on a robot and converge to an optimal solution in finite
time. The framework uses analytical calculations of divergence and also includes
options to create trajectories which guarantee asymptotic convergence or av-
erage convergence. In addition to independently creating optimal trajectories
which can satisfy constraints, the proposed T-OPT framework can post-process
trajectories generated using RRT methods while maintaining optimality and
specified constraints.

In the context of the hill climbing example, both [7] and [14] do not con-
sider the case of strict contraction, and only considers an estimate of average
convergence. In fact, the hill climbing controller used can never guarantee strict
convergence and at best only guarantee average convergence to a set of zero
volume. To resolve this issue, a new hill climbing controller that varies speed as
a function of local hill steepness is proposed in this paper. This change allows
the guarantee of strict convergence, and ultimately increases the robustness of
the controller to state uncertainty.

1.1 Related Work

This work focuses on planning trajectories where state uncertainty is expected.
One popular method of planning under state uncertainty is to formulate the
planning problem as a partially observable Markov decision process (POMDP)
[8]. However, POMDP solvers do not perform well when the action space is
continuous and do not scale well in higher dimensions.

Probabilistic conformant planning is another method to plan for state un-
certainty. The goal of the planner is to maximize the likelihood of success given
an expectation of state uncertainty [4,16]. Although conformant planning is use-
ful to plan robust trajectories in some contexts, it requires an accurate model
of state uncertainty and doesn’t utilize sensor feedback to increase robustness.
The methods proposed here do not require a model of the state uncertainty, and
instead try to continually reduce whatever uncertainty there is.

The hill climbing problem used in this paper is also used in [5–7,14], where a
robot is tasked to navigate from a start position to a goal region using the gra-
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dient of the hill as feedback. The hill gradient controller in these examples were
inspired by [1]. This paper analyzes contraction properties of this controller and
proposes modifications to create a contraction region, satisfying the strongest
results from contraction analysis [15].

2 Methods

2.1 Contraction Analysis and Divergence Metrics

Converging behaviors of a dynamical system can be analyzed through contrac-
tion analysis [15]. Consider a dynamical system with state x ∈ X ⊆ R

n, control
input u ∈ U ⊆ R

m, and a continuously differentiable vector field f(x, u, t) such
that f : X × U × R → TX . Define F as the symmetric part of the Jacobian of
f [15, Definition 1],

F (x, u, t) =
1

2

(

∂f(x, u, t)

∂x
+

∂f(x, u, t)

∂x

T
)

(1)

Now consider two neighboring trajectories in the vector field f . Define δx to be
the virtual displacement between the neighboring trajectories, and the squared
distance to be δxT δx. The rate of change of δxT δx is bounded by the max
eigenvalue λmax(x, u, t) of the symmetric part of the Jacobian F ,

δ

δt
(δxT δx) ≤ 2λmax(x, u, t)δx

T δx (2)

This implies that the magnitude of the virtual displacement δx can also be
bounded by the max eigenvalue λmax(x, u, t) [15, Eqn. 3],

‖δx‖ ≤ ‖δx0‖e
∫

t

0
λmax(x,u,t)dt (3)

If λmax is uniformly negative definite (∃β > 0, ∀t ≥ 0, λmax(x, u, t) ≤ −β < 0),
then any infinitesimal length ‖δx‖ converges exponentially to zero [15, Thm. 1].
Similarly, consider a differential volume δV around the trajectory, and the evo-
lution of δV is defined as [15, Sec. 3.9],

‖δV ‖ = ‖δV (t0)‖e
∫

t

0
divf(x,u,t)dt (4)

As a relaxation to the maximum eigenvalue λmax being uniformly negative def-
inite, [15] considers the case where the average eigenvalue λavg is uniformly
negative definite. Since the divergence of f is just the sum of the eigenvalues in
F [15], then if the average eigenvalue λavg is uniformly negative definite then so
is the divergence of f . This implies that the magnitude of a differential volume
δV converges exponentially to zero if λavg is uniformly negative definite.

These results motivated the creation of two divergence metrics in [7]: the
maximal divergence metric Dm := λmax and the average divergence metric
Da := λavg. If Dm is uniformly negative definite for an entire trajectory, then all
neighboring trajectories converge to a single trajectory [15, Thm. 1]. If Da is uni-
formly negative definite for an entire trajectory, then on average all neighboring
trajectories converge to a set of zero volume [15, Sec. 3.9].
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2.2 Hill Climbing Problem

The well established hill climbing problem [5–7, 14] considers a mobile robot
navigating hilly terrain as shown in Fig. 1. Since contraction analysis [15] requires
a smooth system, the hill is modeled as a smooth height function, h(x, y).

The hill gradient controller from [7] follows a constant speed α while choosing
any arbitrary angle θ relative to the hill gradient ∇h,

f(x, y, θ) = αR(θ)
∇h(x, y)

‖∇h(x, y)‖ , (5)

where R(θ) is a rotation matrix. In [7], it is stated that one eigenvalue of the
vector field Jacobian is zero. Therefore, the maximum divergence is equal to
the average divergence, Dm = Da, or equal to 0, Dm = 0. However, this is
not entirely correct. While it is true that there is always some direction that is
neither converging or diverging, it is possible that one eigenvalue is positive and
one eigenvalue is negative. The controller can never have eigenvalues with the
same sign, and thus the main conclusion that the controller can never have a
negative max eigenvalue is still valid.

Lemma 1. Given a vector field f defined by (5) and obtaining F through (1),
the maximum eigenvalue of F , λmax, is non-negative, λmax ≥ 0.

The proof is included in Lemma 2.

2.3 Power Controller

Define a new controller where the gradient is scaled by its norm to the pth-power,

f(x, y, θ, p) = αR(θ)
∇h

‖∇h‖p , p ∈ R (6)

This new controller changes speed with the local steepness of the hill, and fol-
lowing it there can exist a negative maximum eigenvalue for certain choices of p
with respect to the local curvature of the hill.

Lemma 2. Given a vector field f defined by (6) and obtaining F through (1),
there exists a heading θ such that the maximum eigenvalue of F is negative,

λmax < 0, if one of the following condition is true: p < 1 for regions with

positive hill curvature or p > 1 for regions with negative hill curvature.

Proof. Define G to be the un-rotated part of the controller in (6),

G =
∇h

‖∇h‖p =

[

Gx

Gy

]

(7)

Set θ to be piecewise constant, and thus there is no gradient of theta with respect
to the states (x, y). Furthermore, because the speed scaling term α does not affect
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the analysis, it is set to be unity. Therefore, the symmetric part of the Jacobian
F of the vector field f is,

F =

[

a c

c b

]

:=
1

2
(Df +DT

f )

a =
∂Gx

∂x
cos θ − ∂Gy

∂x
sin θ, b =

∂Gy

∂y
cos θ +

∂Gx

∂y
sin θ

c =
1

2

(

(
∂Gx

∂y
+

∂Gy

∂x
) cos θ + (

∂Gx

∂x
− ∂Gy

∂y
) sin θ

)

(8)

The characteristic equation of F is given by

λ1,2 =
a+ b±

√
a2 − 2 a b+ b2 + 4 c2

2
(9)

By (9), the maximum eigenvalue of F is defined as,

λmax =
e cos θ+g sin θ+d

2
(10)

where d, e and g are defined as,

d =

√

∂Gx

∂x

2

+
∂Gy

∂y

2

+

[

∂Gy

∂x

2

+2
∂Gy

∂x

∂Gx

∂y
+
∂Gx

∂y

2]

-2
∂Gx

∂x

∂Gy

∂y
(11)

e =
∂Gx

∂x
+

∂Gy

∂y
, g =

∂Gx

∂y
− ∂Gy

∂x
(12)

Then solve for θ when the maximum eigenvalue is zero and define φ = tan−1
(

g
e

)

,

0 = tan−1
(g

e

)

± cos−1

(

− d
√

e2 + g2

)

(13)

In (13), the ± term describes the range of diverging directions, and the first
component φ is in the direction of max(λmax). A negative maximum eigenvalue
exists when the term in the inverse cosine is within the open set from −1 to 1
and so,

d2 − (e2 + g2) < 0 (14)

By substituting values of d, e, and g and plugging in the derivatives of G (7)
for the power controller (6) into the constraint (14), the existence of a negative
λmax can be evaluated using constraint,

(

∂2h

∂x2

∂2h

∂y2
− ∂2h

∂x∂y

2
)

(p− 1) < 0 (15)

The original controller (5) has a p value of 1, and never satisfies (15). There-
fore, there does not exist a θ which results in a negative λmax for any position
(x, y) on any hill h(x, y) with p = 1.
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The Gaussian curvature for a hill function h(x, y) is,

K =

∂2h
∂x2

∂2h
∂y2 − ∂2h

∂x∂y

2

(

1 + ∂h
∂x

2
+ ∂h

∂y

2
)2 (16)

The numerator in (16) determines the sign of the Gaussian curvature at a point
(x, y) on a hill. By using the constraint in (15), it is clear that there exists a
negative λmax for regions in positive curvature with a p value less than 1, and
for regions of negative curvature with a p value greater than 1, that is,

(sign(K) > 0 ∧ p < 1) → ∃ θ s.t λmax < 0

(sign(K) < 0 ∧ p > 1) → ∃ θ s.t λmax < 0
(17)

⊓⊔

2.4 Trajectory Optimization Framework

This section presents a method of automatically finding optimally convergent
and smooth trajectories through trajectory optimization (T-OPT) using direct
collocation [3]. The resulting trajectories approximate a smooth trajectory with
N piecewise-smooth trajectories. The trajectory optimization framework uses a
cost function which seeks to maximize convergence and smoothness of a trajec-
tory. The first order dynamics of the mobile robot are enforced through linear
collocation constraints. The trajectory’s start and end positions are bounded
to match the problems specifications. Nonlinear constraints are used to enforce
uniformly negative definite divergence metrics Dm < 0 or Da < 0.

The trajectories consist of N waypoints and 5 decision variables per way-
point i: the position (x(i), y(i)), velocity (ẋ(i), ẏ(i)), and controller power p(i).
The heading angle θ(i) and forward speed are encoded as a velocity vector (ẋ, ẏ)
to avoid using nonlinear constraints for collocation. The velocity is calculated in
a global frame and converted to a hill-relative angle θ as a post processing step. In
this paper MathWorks MATLAB’s nonlinear programming solver fmincon [17]
is used with the sequential quadratic programming (SQP) algorithm. The tra-
jectory optimization framework is initialized with a straight line trajectory from
the starting point to the center of the goal region.

Cost Function The cost is defined as,

J(x, y, ẋ, ẏ, p) =
1

N − 1

N−1
∑

i=1

(

J
(i)
Da

+ J
(i)
Dm

+ J
(i)
accel + J

(i)
path

)

(18)

where
J
(i)
Da

= σDa(x
(i), y(i), ẋ(i), ẏ(i), p(i))

J
(i)
Dm

= υmax(Dm(x(i), y(i), ẋ(i), ẏ(i), p(i)),−ǫ)

J
(i)
accel = γ[(ẋ(i+1) − ẋ(i))2 + (ẏ(i+1) − ẏ(i))2]

J
(i)
path = ρ[(ẋ(i))2 + (ẏ(i))2]

(19)
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The cost function is designed to minimize average divergence JDa
, encourage

negative maximum eigenvalues JDm
, smooth the trajectory by adding cost to

big changes in velocity Jaccel, and to minimize path length Jpath, based on some
user desired weighting (σ, υ, γ, ρ, ǫ). The sum is evaluated up to N − 1, because
the cost associated to the Nth waypoint does not affect the trajectory.

Linear Constraints and Bounds Linear equality constraints are used to
ensure first order dynamics.

x(i+1) − x(i) − ẋ(i)dt = 0

y(i+1) − y(i) − ẏ(i)dt = 0
(20)

In addition, upper and lower bounds are defined to be:

xinitial ≤ x(0) ≤ xinitial

yinitial ≤ y(0) ≤ yinitial

xend − η ≤ x(n) ≤ xend + η

yend − η ≤ x(n) ≤ yend + η

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

pmin ≤ p ≤ pmax

(21)

Initial and ending positions are bounded instead of using linear equality con-
straints to help the solver find solutions. The initial position is bounded to be
the exact desired starting position, and the end position is bounded to be within
a square with side length 2η around the desired end location. All positions are
bounded to be within the limits of the defined map. Bounds on the power variable
p are placed to ensure stable and realistic values.

Nonlinear constraints Nonlinear constraints are used to enforce the strict
convergence results of [15, Thm. 1] and [15, Sec. 3.9]. The three different methods
considered are:

1. Applying [15, Thm. 1] to ensure strict convergence at each waypoint:

D(i)
m < 0 ∀ 1 ≤ i ≤ N − 1 (22)

2. Applying [15, Sec 3.9] to ensure average convergence at each waypoint:

D(i)
a < 0 ∀ 1 ≤ i ≤ N − 1 (23)

3. No nonlinear constraints (unconstrained)

Trajectories where Dm are uniformly negative definite are resilient to uncer-
tainty in all directions at all times and are guaranteed to exponentially converge
to the nominal trajectory. In the case that Da is uniformly negative definite, the
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trajectories are on average robust to uncertainties, but may suffer from uncer-
tainty in the direction of maximum divergence. Lastly, the unconstrained case is
considered because there will more often be a feasible solution and the average
divergence is minimized by the cost function, while in the constrained cases,
feasible solution may often not exist due to the harshness of the constraints.
The analytical solutions of Dm and Da were calculated using the eigenvalues
from (9) as well as their associated gradients with respect to the states. Due to
the strictness and complexity of satisfying these constraints, the gradient played
a crucial role in finding solutions and naively calling eig [17] did not find any
feasible solutions for the (Dm < 0) constrained case.

2.5 RRT methods

The proposed trajectory optimization (T-OPT) methods are compared against
the rapidly-exploring random tree (RRT) methods as shown in [7]. Specifically,
biased RRT (B-RRT) and contraction region RRT (CR-RRT) are implemented.
The T-OPT methods were also compared against asymptotic optimal variants
of the RRT methods by utilizing (RRT*) [9]. Since both B-RRT and CR-RRT
are extensions of Kinodynamic RRT (KD-RRT) [12], an RRT* version of each
method was developed: B-RRT* and CR-RRT*.

Kinodynamic RRT (KD-RRT) KD-RRT for the hill climbing problem
follows the same collocation constraints (20) and bounds on start position and
goal position set (21) as for trajectory optimization. The planner builds a tree
which starts at the desired starting position. At each iteration the planner sam-
ples a random position and finds the nearest neighbor in the RRT using the
Euclidean distance metric. Random directions and powers p are sampled to gen-
erate a set of candidate actions. Each action is evaluated by finding the end
point of a trajectory that follows that direction for a fixed distance. An action a

is selected and a new node is added to the RRT based on which action reaches
closest to the sampled point, using the same Euclidian distance metric. This is
repeated until a node is within the goal position set (21).

Biased RRT (B-RRT) B-RRT attempts to minimize divergence by scaling
the Euclidean distance metric used for action selection by ebDi , where b ∈ R

is a bias term and Di is the specified divergence metric to minimize. In our
implementation, average divergence Da is used.

Contraction Region RRT (CR-RRT) CR-RRT applies the same con-
straint as (22) at the action selection step to ensure a trajectory that meets the
contraction region requirements at every step. However, in [7] there can never
exist a true contraction region because a constant velocity controller was used
(as proven in Lemma 2). Here, both Dm (22) and Da (23) are used.

Biased RRT* (B-RRT*) and Contraction Region RRT* (CR-RRT*)
RRT* follows the same algorithm as KD-RRT except that the goal was ran-
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domly sampled 5% of the time and before adding the node to the RRT, there
is a rewiring step which optimizes which node in the tree should connect to the
candidate node. Nodes that are within a distance of r away from the candidate
node are considered for rewiring. Branches are grown from all neighboring nodes
to the candidate node, and the entire path length for each branch is calculated.
The power variable p for each branch is chosen from the set {0, 1, 2} to minimize
the cost of the branch. The branch that leads to the minimum path length from
the candidate node to the beginning node is added to the tree. Once a node
is within the goal position set (21), the algorithm is iterated k more times to
continue rewiring. B-RRT* uses the same biased distance metric as B-RRT in
the rewiring step and CR-RRT* can apply either constraint (22) or (23) during
the rewire step.

2.6 Simulation

To evaluate convergence of the generated trajectories (from either the trajec-
tory optimization or RRT methods), a circle of 40 points of uncertainty with
radius r = η (half the side length of the desired goal region) was added to the
trajectories’ starting positions and simulated forwards by integrating the power
controller’s (6) dynamics using MathWorks MATLAB’s ode45 [17]. To ensure
heading and velocity were nominally constant between each waypoint, heading
angles θ and velocity scaling variable α were calculated in between each way-
point. The starting area of the circle and radius of the circle is compared against
the convex hull of the particles at the end of the trajectory and the particle
furthest from the nominal trajectories end position. Define two metrics of path
convergence to be the ratio between the end particle area and the starting circle
area Ea and the ratio between the maximum end particle and the starting circle
radius Em [7]. The area ratio Ea corresponds to average divergence Da and the
maximum distance ratio corresponds to the maximum divergence Dm. An exam-
ple output of the simulation for a trajectory optimized using the unconstrained
trajectory optimization method is shown in Fig. 2.

3 Experiments

This section demonstrates the effectiveness of the proposed trajectory optimiza-
tion framework and the new power controller (6) for a mobile robot traversing
hilly terrain. The hill function is chosen to be consistent with [7, 14],

h(x, y) := 3y + sin (x+ xy) s.t. (x, y) ∈ [−2, 2]× [0, 2.5] (24)

This hill contains a range of curvature content. Therefore, sampling random
starting and ending positions evaluates the efficacy of each planner and controller
on a collection of diverse landscapes.
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Fig. 2. Topographic map of a hill showing elevation lines and hill gradient (blue ar-
rows). Left: Simulating forward a circle of uncertainty (black) around the nominal tra-
jectory (red). An optimal trajectory (red solid) converged to a line (black solid) with
an area ratio of Ea = 0.02 and an max of distance ratio Em = 0.88 and a straight line
method (red dashed) diverged to an end distribution (black dashed) with Ea = 11.32
and Em = 11.66. Top Right: T-OPT (blue line) trajectory, 5 B-RRT (red line) tra-
jectories, and the goal region (black square). Bottom Right: Hill power controller’s (6)
power value p at each waypoint for T-OPT (blue) and the 5 B-RRT (red).

3.1 Experiment Methods

To evaluate the convergence and smoothness of the trajectories generated using
T-OPT, B-RRT, CR-RRT, B-RRT*, and CR-RRT*, 200 random start and end
points were used to calculate an average area ratio Ea, max distance ratio Em,
and acceleration cost Jaccel. Eleven different trajectory planning methods with
different algorithms, power controller bounds, constraints on divergence metrics
(22)-(23), and cost functions were tested:

1. (T-OPT), p = 1, unconstrained, minimize path length
2. (T-OPT), p ∈ [0, 2], unconstrained, minimize cost function (19)
3. (B-RRT), p ∈ [0, 2], unconstrained, bias b = 1.5 action size a = 0.025
4. (B-RRT*), p ∈ [0, 2], bias b = 1.5 action size a = 0.005 rewire size r = 0.025
5. (T-OPT), p ∈ [0, 2], Dm < 0, minimize cost function (19)
6. (CR-RRT), p ∈ [0, 2], Dm < 0, b = 1.5, a = 0.025
7. (CR-RRT*), p ∈ [0, 2], Dm < 0, b = 1.5, a = 0.005, r = 0.025
8. (T-OPT), p ∈ [0, 2], Da < 0, minimize cost function (19)
9. (T-OPT), p = 1, Da < 0, minimize cost function (19)

10. (CR-RRT), p ∈ [0, 2], Da < 0, b = 1.5, a = 0.025
11. (CR-RRT*), p ∈ [0, 2], Da < 0, b = 1.5, a = 0.005, r = 0.025

The constants in the cost function (19) were heuristically tuned to be σ = 30,
υ = 2, γ = 105, ρ = 104, and ǫ = 1. In the upper and lower bounds, the square
goal region’s side length η = 0.05 was set to be half of the acceptable goal region
in [7]. Powers were bounded to allow a change of ±1 from the nominal p = 1
since higher powers lead to instability, pmin = 0 and pmax = 2.
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Table 1. Results for trajectory optimization (T-OPT), biased RRT (B-RRT), and
contraction region RRT (CR-RRT) path planning methods over 200 random trials
where the power of the controller was either p = 1 or in the closed set p ∈ [0, 2]. Results
include success rate (S), log area ratio (Ea), log distance ratio (Em), acceleration cost
(Jaccel), and planning time (T) in seconds. Mean ± one standard deviation are listed.

Method p S log(Ea) log(Em) Jaccel T

shortest
1 T-OPT 1 100 0.09± 1.12 0.685± 0.686 0.406± 0.325 0.741± 0.478

uncon
2 T-OPT [0, 2] 100 −3.26± 2.66 0.425± 0.736 5.89± 2.66 219± 37.8
3 B-RRT [0, 2] 96.5 −3.03± 1.67 −0.00146± 0.170 31.8± 7.62 73± 108
4 B-RRT* [0, 2] 94 −3.08± 1.55 0.133± 0.243 7.96± 1.79 181± 259

Dm < 0
5 T-OPT [0, 2] 4.5 −5.17± 1.52 −0.221± 0.167 76.3± 95.8 244± 81.3
6 CR-RRT [0, 2] 7.5 −1.78± 1.89 −0.124± 0.116 20± 10.4 32.3± 65
7 CR-RRT* [0, 2] 1 −0.20± 0.13 −0.005± 0.033 5.55± 2.63 2160± 3060

Da < 0
8 T-OPT [0, 2] 92.5 −4.2± 1.67 0.0633± 0.168 6.52± 3.28 714± 440
9 T-OPT 1 84 −3.06± 1.74 0.0921± 0.156 6.37± 12.7 121± 35.5
10 CR-RRT [0, 2] 93 −3.17± 1.69 −0.0176± 0.174 29.2± 8.28 96.6± 151
11 CR-RRT* [0, 2] 83.5 −3.01± 1.5 0.028± 0.278 9.2± 2.27 708± 939

3.2 Results

The success rate S, average log area ratio Ea, average log max distance ratio
Em, and planning time for each tested method is shown in Table 1. As expected,
planning for the shortest path led to an average positive log area ratio Ea, and
using converging planning methods led to negative log area ratio Ea averages. A
paired difference test is used for mean comparisons. All comparisons discussed
are significant (p < 0.05) unless noted.

Unconstrained Problems Method 2 (unconstrained T-OPT) on average
created trajectories with lower log area ratios Ea than method 3 (unconstrained
B-RRT) and method 4 (unconstrained B-RRT*) as shown in Table 2. However,
methods 3 and 4 had a lower mean log area ratio Ea than method 2 when
using paired differences. This resulted from the few divergent paths created from
method 2 dominating the comparisons. Divergent paths occurred because in
some rare cases, T-OPT picked an early divergent step in a trajectory to gain
access to more convergent steps later in the trajectory. B-RRT and B-RRT* are
not affected by this issue because it they are inherently greedy search algorithms,
and are biased towards the most convergent direction at each waypoint. To avoid
this issue for T-OPT, a saturation limit can be placed on the average divergence
cost JDa

or the Da < 0 constraint can be applied. Method 2 was able to find
a feasible solution for all 200 random trials while methods 3 and 4 could not.
Methods 3 and 4 also had a lower mean log Em than method 2, likely because
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Table 2. Comparing the percentage of trials that the end area ratio Ea is smaller using
the method on the vertical axis compared to the method on the horizontal axis.

Compared Method Number

8 2 4 9 1
1

1
0

3

M
et

h
o
d

8 T-OPT, p ∈ [0, 2], Da < 0 0 0.66 0.67 0.9 0.73 0.67 0.72

2 T-OPT, p ∈ [0, 2], uncon 0.34 0 0.6 0.72 0.63 0.6 0.63

4 B-RRT*, p ∈ [0, 2], uncon 0.33 0.4 0 0.5 0.66 0.64 0.64

9 T-OPT, p = 1, Da < 0 0.099 0.28 0.5 0 0.59 0.57 0.57

11 CR-RRT*, p ∈ [0, 2], Da < 0 0.27 0.37 0.34 0.41 0 0.51 0.53

10 CR-RRT, p ∈ [0, 2], Da < 0 0.33 0.4 0.36 0.43 0.49 0 0.57

3 B-RRT, p ∈ [0, 2], uncon 0.28 0.37 0.36 0.42 0.47 0.43 0

RRT inherently randomizes the direction of max divergence, while the optimal
solution tends to keep the worst direction aligned in a similar direction. Because
this hill is smooth, and the hill gradient does not rapidly change, resulting T-
OPT solutions tend to grow uncertainty in the same direction. Method 4 is
smoother than method 3 when comparing acceleration cost Jaccel which in turn
likely made method 4 have a greater mean log Em than method 3.

Constrained Maximum Convergence For this hill climbing problem,
these are the first results where trajectories can be produced with a contraction
region. Method 6 (CR-RRT, Dm < 0) found 15 feasible solutions while method
5 (T-OPT, Dm < 0) only found 9 and method 7 (CR-RRT*, Dm < 0) found 2.
However, all but one trajectory has a negative log maximum distance ratio Em

for method 5 and all trajectories for method 7 have a negative log maximum
distance ratio Em, while 3 of the 15 trajectories produced by method 6 have a
positive log maximum distance ratio Em. The resulting positive log maximum
distance ratio Em is due to the action size a being too large in comparison to
the geometry of the hill. Since planning time grew exponentially with increasing
tree size, the action size could not be further reduced. In the single case that
method 4 had a positive log distance ratio Em, the maximum action size was
also large (a = 0.4518 on average).

Constrained Average Convergence In the case of constraining the aver-
age divergence to be negative (Da < 0), method 8 (T-OPT, p ∈ [0, 2], Dm < 0)
was able to find 9 % more feasible solutions than method 9 (T-OPT, p = 1,
Dm < 0), 9.5 % more feasible solutions than method 11 (CR-RRT*, Dm < 0),
and 0.5 % fewer feasible solutions than method 10 (CR-RRT, Dm < 0). Method
8 has a lower mean log area ratio Ea than methods 9, 10, and 11. However,
methods 8 and 11 took about 7 times longer to compute than methods 9 and 10,
and like the unconstrained problems, the RRT methods have a lower maximum
distance ratio Em, Table 1.

Log Area Ratio Ea Direct comparisons For a more fair comparison
between methods, direct trial comparisons for log area ratio Ea are made between
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the unconstrained and the average divergence constrained (Da < 0) methods
as shown in Table 2. Only runs where both methods had a feasible solution
were compared. Because constraining (Dm < 0) led to few solutions, the strict
convergence case was not directly compared against the other methods. For
all problems, method 8 (T-OPT, p ∈ [0, 2], Da < 0) has on average a lower
log area ratio Ea for each direct comparison. In second place, method 2 (T-
OPT, p ∈ [0, 2], unconstrained) has a lower log area ratio Ea for the majority of
problems except when compared to method 8. Method 9 (T-OPT, p = 1, Da < 0)
is worse than all other T-OPT cases, but is slightly better than or equal to the
RRT and RRT* cases methods (3,4,10,11). When directly comparing the power
controller (6), method 8, versus the constant speed controller (5), method 9, the
power controller is more convergent 90.1% of the time.

Trajectory Smoothness Trajectories generated by trajectory optimization
were smoother than both RRT* and RRT methods in both position choices
and power choices. An example run shown in the top side of Fig. 2 compares
trajectories generated using T-OPT and B-RRT. The bottom side of Fig. 2
shows that the powers chosen by T-OPT are smoother and more consistent
than the powers chosen by the B-RRT runs. The acceleration cost Jaccel was
imposed to the trajectory optimization framework to reduce sudden changes in
linear and rotational velocity. When comparing the acceleration cost over the
200 trials between the unconstrained (methods 2, 3, and 4), and constrained
(Da < 0, methods 8, 9, 10, and 11), T-OPT had a smaller mean acceleration
cost Jaccel than B-RRT and B-RRT*. There were not enough successful trials for
the (Dm < 0) constrained cases to draw meaningful conclusions on smoothness.

4 Conclusion

Planning trajectories which are robust to uncertainty is critical for creating
reliable robotic systems. Typically, uncertainty is reduced by using closed-loop
feedback which can sense and reduce errors. However, in situations like the hill
climbing problem, the robot is under-sensed and cannot reduce error by using
closed-loop feedback. Instead it must rely on reducing error by leveraging the
geometry of the underlying vector field.

Prior work [7, 14] to create robust trajectories using convergent rapidly-
exploring random trees. However, the resulting trajectories are not smooth and
at best could only enforce average convergence. The work in this paper creates a
new convergent optimization framework which generates optimally smooth and
convergent trajectories.

This work also introduces a new hill navigation controller (6) which enables
the possibility for strictly convergent trajectories while a constant speed con-
troller (5) can only produce average convergent trajectories. The new power
controller was also more convergent 90% of the time and found 9% more feasible
solutions than the constant speed controller when solving for average convergent
trajectories using T-OPT. Although a low number of trials emitted a feasible
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solution when applying the strict convergence constraint, the work in this paper
is the first example of finding contraction regions for this hill climbing problem.
The low number of solutions is due to the specifics of the problem and how strict
this requirement is. Problems that more readily admit such solutions would see
higher success rate.

Trajectories generated through the trajectory optimization framework on
average are more convergent and smoother than the ones produced using RRT
and RRT* methods. However, RRT and RRT* methods produced trajectories
with smaller max distance ratios Em than the T-OPT methods when not con-
straining maximum divergence to be negative. We believe the randomness when
picking heading directions from RRT methods help shrink the maximum dis-
tance ratio, because the maximum divergence direction is rapidly changing at
each waypoint, while the optimal solution keeps the direction of maximum diver-
gence aligned in a similar direction throughout the trajectory. However, solutions
produced by RRT methods would need to first be smoothed out before imple-
mentation, and may lose the benefits of randomized alignment. Post-processing
these trajectories may lead to less optimal solutions or violation of the conver-
gence constraints. These 2 drawbacks are apparent in the RRT* trajectories.
The trajectories produced by RRT* are smoother than the ones produced by
RRT, but in the process, it is likely that the trajectories aligned the maximum
divergence direction in one direction more and worsened the max distance ratio
Em. In the constrained RRT* cases, RRT* could not exploit creating jagged
paths to satisfy the constraints, and ultimately emitted few or poor convergence
trajectories. On the other hand, trajectories generated from T-OPT can readily
be implemented on a robot with simple unicycle dynamics while guaranteeing
optimality and constraints on divergence.

In general, optimizing for convergence is a useful tool for tasks where robots
are undersensed or underactuated. The presented trajectory optimization frame-
work and convergent controller analysis can also be expanded to more dynamic
path planning problems. The framework will directly translate to other 2 dimen-
sional state space problems. Modifications to eigenvalue analytical calculations
must be made for higher dimensions because they are trivial in the 2D case.
In the future, we plan to analyze the uncertainty growth in non-smooth sys-
tems such as hybrid dynamical systems [2], and to utilize a similar optimization
framework to plan robust walking behaviors for legged robots.
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