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Abstract— Localizing contacts and collisions is an important
aspect of failure detection and recovery for robots and can
aid perception and exploration of the environment. Contrary
to state-of-the-art methods that rely on forces and torques
measured on the robot, this paper proposes a kinematic method
for proprioceptive contact localization on compliant robots
using velocity measurements. The method is validated on two
planar robots, the quadrupedal Minitaur and the two-fingered
Direct Drive (DD) Hand which are compliant due to inherent
transparency from direct drive actuation. Comparisons to
other state-of-the-art proprioceptive methods are shown in
simulation. Preliminary results on further extensions to complex
geometry (through numerical methods) and spatial robots (with
a particle filter) are discussed.

I. INTRODUCTION

Robots are proving to be increasingly useful in unstruc-
tured environments, such as cluttered homes and outdoor
terrain. However, in these environments robots must deal
extensively with the making and breaking of contact with
uncertain or unknown object shapes and poses. This makes
contact localization a vital skill. For example, Fig. 1 shows a
legged robot walking up stairs, with one of its legs in contact
with the edge of a step. In this scenario, noisy estimation of
the height of a stair can lead to unexpected contact between
the edge and the leg causing the robot to trip. Another
example is an industrial robot gripper with planar fingers
approaching an object to grasp or estimate its surface, Fig. 9.

In this paper, we propose a generalized extension to the
method used by Barasuol et. al. [1] for planar velocity-based
contact localization, summarized in Fig. 1. The method is
based on the observation that if a point is in contact with a
rigid body, its velocity in the direction of the surface normal
must be zero, i.e., its velocity is perpendicular to the surface
normal. Calculating the instantaneous velocity at each point
on the surface will yield a set of candidate points.

The main requirement for this method to work is that
the robot be rigid and have accurate position and velocity
measurements on the collision link. Any motion due to
collision is directly transmitted to the link’s position/velocity
sensors. The robots used for this work are transparent in
the conversion of external force to motion due to their
direct drive joints. That is, any external forces are efficiently
relayed to motion at the joints that can be picked up by
joint encoders. Adding mechanical or software compliance
to the articulated joints are alternate ways to achieve high
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Fig. 1: A velocity-based contact localization scheme. Contact
is localized to a set of candidate points (circled) where the
surface normal n is co-linear with the line joining the candi-
date point to the center of rotation (COR). Equivalently, the
velocity at the candidate point v must be perpendicular to the
surface normal. Inset: Example application of a quadruped
robot on a flight of stairs.

transparency. Adding inertial measurement units can also
provide the information needed to compute collisions with
the velocity contact localization method.

We analyse this method and claim that it has the following
properties: 1) the method provides an instantaneous estimate
of contact point locations. 2) The method does not require an
accurate dynamical model of the robot. 3) The method can
be implemented on existing robots without any additional
sensors beyond joint position or velocity measurements. 4)
The method uses a velocity constraint to produce a set of
possible contact points. For general planar systems, including
the legged robot and gripper of interest to us, this is sufficient
to isolate the contact point to a 0-dimensional set (i.e. an
individual point or, if there is ambiguity in shape, a set
of possible points). For spatial systems, this produces a 1-
dimensional set of possible contact points (one or multiple
curves). In general, it produces a codimension 1 set of points,
i.e., an n-dimensional surface in collision should produce
an n-1 dimensional set of possibilities. This can be reduced
down to a single contact point through filtering, assuming
frictional contact, or adding additional dynamic constraints.

We evaluate the performance of the velocity-based method
and compare it with position and torque-based methods in a



simulation of a five-link planar robot. We also demonstrate
the velocity based method in hardware experiments with a
legged robot (Minitaur [2]) and a two-finger gripper (DD
Hand [3]). We then show a proof of concept to extend the
planar method to 3D with the help of a particle filter.

A. Related Work

It is common to localize unknown contacts with ex-
teroceptive sensors such as LIDAR, structured light, and
stereo cameras. However, these sensors often do not give
the accuracy needed to perform precise tasks such as fine
manipulation or maneuvering in a tight space. Furthermore,
in cases with poor lighting, feature starvation, or occlusion,
these sensors may fail to detect obstacles, leaving the robot
unable to anticipate impending collisions. This drives the
need for fast and robust contact sensing and localization.

One popular method to achieve this employs tactile sen-
sors, e.g. [4,5]. A sensitive skin is applied to the surface
of the robot that can then measure contact forces and/or lo-
cations. Unfortunately, the implementation of tactile sensors
leads to undesired design constraints, higher cost, and limited
material choices. In fact, most robots utilize sensorized skin
only on areas with high probability of contact, such as
fingertips and feet, leaving the rest of their body uncovered
(with some notable exceptions, e.g. [6–8]). Tactile sensors
are also limited in their sensitivity and spatial resolution.

Methods based on proprioceptive sensing can overcome
some limitations of local tactile sensing. Proprioceptive sen-
sors measure the internal state of the robot (joint positions,
velocities, and torques) and can ideally detect contact any-
where on the robot structure. Fortunately, most robots already
measure their internal state for control using joint encoders
and torque sensors so no additional hardware is required.
Position, velocity, and torque signals can all be used to
localize contacts. Torque-based contact localization methods
are the most popular [9,10]. However, a major drawback
is that they require accurate dynamics to estimate external
forces. Uncertainty in parameters such as weight distribution,
friction, and damping limit the accuracy of these methods.

For a suitable subset of robot problems, just posi-
tion [11,12] or velocity [1] can be sufficient to localize con-
tact. Position-based methods require position measurements
to be spaced out in time and assume stationary point contacts.
This makes them unfavorable for moving contacts such as
when the contact is rolling or sliding. Velocity-based contact
localization methods are less common, but recent work on
the HyQ robot [1] suggests they hold merit.

II. PROBLEM SETUP & NOTATION

The paper follows modified notations from [13]. All
vectors are denoted with lowercase boldface fonts (e.g. a
or c), all matrices are uppercase boldface font (e.g. J or
Ad), all sets are written in uppercase font (e.g. B or C),
and all frames are written in roman typestyle (e.g. P or L.)
The terms defined in this section are shown in Fig. 2.

We consider a robot with m actuators and n rigid links.
We assume that the robot motion is constrained to be
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Fig. 2: Schematic of a generic robot with m actuators
showing the notation used in this paper.

planar (although we relax this assumption in Section VI-
B). We assume that the robot has an accurate knowledge
of its geometry, and can measure its actuator positions and
velocities, which are denoted as q = (q1, . . . , qm)T and
q̇ = (q̇1, . . . , ˙qm)T .

We also assume that the robot has an accurate estimate
of its body velocity twist vb

S,P, where S is a frame fixed to
the world, and P is a frame fixed to the robot’s body. We
define n frames L1,L2, ...,Ln that are fixed to each link of
the robot (such that the transformation between P and Li is
described entirely by q). At time t0 the ith link of the robot
collides with a stationary foreign object and is sliding along
the object until time tf > t0. We assume that the robot is
compliant enough that it does not come to a complete rest
after colliding with the object, but continues to roll or slide
along the object (‖q̇(t)‖ + ‖vb

S,P‖ 6= 0 ∀t ∈ [t0, tf ]). We
define B as the set of all points on the surface of link i at
which contact could have occurred. Note that these could be
on any surface of the link. It is also possible to pre-filter
this set for surface points that are not expected to be in
contact. For a point c ∈ B, the vector rLi,c is defined as
the coordinates of point c in the Li frame. The vector nLi,c

is defined as the unit vector normal to link i’s surface and
pointed outwards at point c, also in the Li frame.

We define Ji as the body Jacobian that maps actuator
velocities, q̇, to the body velocity twist vb

P,Li
of frame Li

relative to frame P,

vb
P,Li

= Jiq̇. (1)

Ji only explains the internal motion of the frame Li in the
robot’s base frame. To account for it’s spatial motion, we
also need to consider vb

S,P.
Given the homogeneous transformation matrix H1,2 be-

tween two frames 1 and 2, with rotation matrix R1,2 and
translation vector r1,2, define the adjoint matrix AdH1,2

as,

AdH1,2
=

[
R1,2 r̂1,2R1,2

0 R1,2

]
, (2)

where r̂1,2 is the skew symmetric matrix of vector r1,2. For
more information on the adjoint operator in screw theory, the
reader is referred to [13].



Upon contact with the foreign object, the robot must
localize the point of contact, that is, compute rLi,c.

III. REVIEW OF PROPRIOCEPTIVE METHODS

In this paper, we compare our method of contact localiza-
tion against two other proprioceptive methods. A brief review
of these methods follows.

A. Position-based Contact Localization

Position-based methods depend on self-posture changing
motions [11]. The robot is assumed to have collided with a
stationary wedged-shaped object. Hence, the point of contact
remains stationary in the world frame S. To estimate the
location of contact, joint positions at two instances [t−∆, t]
during the contact time window [t0, tf ] are recorded. The
method is generally accompanied by an exploratory motion
to space out the two measurements. The intersection of the
surface of link i at these positions localizes the contact.

If the object breaks the assumption that it is a wedge
(a curved object, for example) the estimated contact loca-
tion will have some error and may be off of the object
as the contact location will have moved between the two
measurements. To improve the accuracy for such cases, the
measurements can be moved closer together in time which
will approach the proposed velocity-based method. Note that
as the measurements become closer, the estimated contact
location will become increasingly noisy.

B. Torque-based Contact Localization

This method, also known as intrinsic tactile sensing [14],
assumes that an unknown linear force, fext, and zero moment
is applied at the contact point due to collision with the
foreign object. This results in the wrench, [fText,0

T ]T , in
frame Li, applied at the point c. Applying this wrench at
the point c is equivalent to applying the wrench fi at frame
Li, where fi is given by,

fi =

[
fext

rLi,c × fext

]
. (3)

It is also equivalent to an external torque, τ ext ∈ Rm

applied to the robot’s actuators,

τ ext = JT
i fi. (4)

With a momentum observer, velocity observer, or another
collision monitoring method (as in [15]), the external torque,
τ ext can be estimated.

For this method, it is required that the robot can measure
these actuator torques for which an accurate dynamical
model of the robot might be required. With the estimate of
the external torques τ ext, equations (3) and (4) can be solved
for rLi,c, and fext.

For a robot in the plane, the surface of link i is one
dimensional. Since the contact point lies on this one dimen-
sional surface, rLi,c can be reduced to one unknown variable.
As fext has unknown magnitude and direction, τ ext needs
to be at least 3 elements long for the problem to have a
unique solution. This implies the robot must have at least

three degrees of freedom (DOF). If a further assumption of
frictionless contact can be made, fext can be reduced to one
unknown variable and this method can generate a unique
solution on a 2 DOF robot. Similarly a spatial robot must
have at least 5 DOF, or 3 DOF in the frictionless case, to
generate a unique solution.

IV. PROPOSED VELOCITY-BASED METHOD

The torque-based method uses the transpose of the Ja-
cobian to relate end-effector force to joint torques. Here,
we propose a method that utilises its dual relationship: use
the Jacobian to map joint velocities to end-effector velocity.
That, combined with the velocity constraint enforced by a
collision, can localize the contact point.

We begin by summarizing the assumptions that need to
hold to use velocity for accurate contact localization.

1) The robot must be compliant and have at least one
degree of freedom after applying the constraint. That
implies that the robot does not come to a complete
stop after collision.

2) Contact detection is solved, i.e., we know the time of
collision and which link has collided with the external
constraint.

3) A good estimate of body position and velocity of the
collision link is available. The better this estimate, the
more accurate the contact localization.

To derive the location of the contact point, we need to find
the linear velocity of a point c on the surface of the link Li.
Let us first express the body velocity twist of frame Li in
terms of the generalized coordinates,

vb
S,Li

= AdH−1
P,Li

vb
S,P + Jiq̇. (5)

With this, we can express the linear velocity of point c, in
terms of the velocity of frame Li at time t as,

ċ(t) =
[
I −r̂Li,c

]
vb
S,Li

(t). (6)

Based on this, the scalar velocity in the normal direction,
ċn(t), of a point c at time t is,

ċn(t) = nLi,c · ċ(t), (7)

where nLi,c is the surface normal of link Li at c.

A. The Method

There are two velocity constraints that must hold at the
true contact point (c∗). First, during contact, c∗ must have
zero velocity in the direction normal to the link surface,

ċ∗n(t) = 0 ∀t ∈ [t0, tf ]. (8)

This is necessary for persistent contact between the link and
the object. For the planar case, this constraint is equivalent
to having the line from the center of rotation to the point c∗

be perpendicular to the robot’s surface, as shown in Fig. 1.
Second, at the instant before contact, denoted as t−0 , the

point of initial contact must have a positive velocity along
the surface normal of the link,

ċ∗n(t−0 ) > 0. (9)



Fig. 3: The portion of the link that is expected to make
contact (B) is shown in green. Any point in this one
dimensional set can be characterized by the parameter l.
Using the velocity-based method, the robot can find l∗, which
characterizes the true contact point.

Thus, to localize a contact, the proposed method simply
identifies the set of possible contact points, denoted C, which
contains candidate points that satisfy both constraints. An
example of computing the set C for a case with simple link
geometry is given below. An algorithm to compute C when
there is complex link geometry is shown in Section VI-A.

The codimension of C in B is one. For the planar case,
since the set B is one dimensional, the set C is zero dimen-
sional. In many planar cases, C will contain a unique possible
contact point at time t0. For a spatial robot, the set B is
two dimensional, so the set C is one dimensional. Reducing
contact location ambiguity in cases where C contains more
than one point is discussed in Section VI-B.

B. Simple Geometry Example
We now apply this method to an example robot with

simple link geometry. Consider a Minitaur robot that has
collided with the edge of a stair, Fig. 1. Using one of
the methods described in [15], the robot has detected that
the collision occurred at time t0 and lasts until time tf .
Fig. 3 shows the link of the robot that has made contact.
The portion of this link’s surface that is expected to make
contact, B, is highlighted in green. Any arbitrary point c on
this highlighted region can be characterized by the variable
l ∈ R, where |l| is the distance away from the frame Li, and
sgn(l) denotes which side of the link the point is on. If d is
the width of the link, then

c =
[
|l| d

2sgn(l)
]T
. (10)

The normal velocity of the point c(l), can be written explic-
itly as a function of l. If vb

S,Li
(t) = [vx, vy, ωz]T , then

ċn(t) = sgn(l)(vy + |l|ωz). (11)

At time t (t0 > t > tf ), the values of l that satisfies the
constraint in (8) is,

ċn(t) = 0⇒ l = ±vy/ωz (12)

The set of possible contact points, C can then be found by
mapping these values of l to points using (10).

For t0 < t < tf , the set C contains two possible contact
points. However, at time t0, the candidate contact points also
need to satisfy ċn(t−0 ) > 0, due to the constraint in (9). Given
that l = ±vy/ωz for the two points in C and (11), one of
the points in C violates the constraint in (9) and is removed
from C. This results in a unique point at which contact could
have occurred.

V. IMPLEMENTATION RESULTS

A. Contact Localization in Simulation

In ideal conditions, the position, velocity, and torque based
solutions all provide accurate contact localization. However,
they differ in their sensitivity to noise. To evaluate this,
we simulate the frictionless collision of a five-bar linkage
with a point constraint. We assume that the collision link is
fixed and known. We derive the kinematics and differential
kinematics of the five-bar linkage as described in [16]
and the dynamics using a constrained Lagrangian approach
[13]. The dynamics are then projected onto the reduced
coordinate space of the actuated joints. A constraint is added
to this system for a frictionless point contact. This system
is simulated in an event-driven framework using ode45
in MATLAB. The linkage is actuated with a Proportional-
Derivative position controller computed at 500 Hz outputting
joint torques. The parameters for the simulation are shown in
Table I. A trace of the simulation is shown in Fig. 5 with the
start configuration (green) and the commanded configuration
(dashed black). The constraint and the predicted contact
location under ideal conditions are shown in red.

Using this simulation environment, we can test the sen-
sitivity of the three algorithms described in this paper to
injected noise in the process parameters. The velocity and
torque methods were tested twice: once with only encoder
position as input and again with both encoder position and
velocity as input. For the first case, labeled “Velocity(q)” and
“Torque(q)”, the velocity was computed by finite difference
of the encoder position at the same dt (0.02 s) as the
time window of the position-based method. In this case,
the velocity method was indiscernible from the position
method and are shown together. For the second case, labeled
“Velocity(q, q̇)”, and “Torque(q, q̇)”, a velocity was com-
puted at a higher frequency (4000 Hz) and then low pass
filtered (3 dB cutoff frequency of 142 Hz.) The simulation
executed nominally with a 16 bit encoder resolution as
baseline noise.

Parameter Value
Link Masses (m1,m2,m3,m4) 0.1 kg
Link Lengths (l1, l2, l3, l4, l5) 0.08,0.15,0.15,0.08,0 m
Gravity 9.81m s−2

Contact Location 0.05m, 0.09m
Control Frequency 500Hz
Position time window 0.02 s
Proportional Gain Kp 0.5 kg s−2

Derivative Gain Kd 0.04 kg s−1

TABLE I: Parameters used for simulation experiments.



Start

Goal

Constraint

Fig. 5: A sample trace of the simulation of the collision of a
five-bar mechanism (one link is of length zero) with a point
constraint(red) used to gauge the sensitivity of the discussed
algorithms to model and process noise. The green trace is
the initial state of the linkage which is commanded to align
it’s major axis with the x-axis. The darker blue trace is the
resting position of the linkage after contact.

For all sensitivity analyses, the performance is evaluated
using the error over a 100 ms window starting 100 ms after
contact is detected. Root-Mean-Squared (RMS) error over
100 trials of each condition is reported in Fig. 4. The results
described below are all statistically significant with a p
value of less than 0.05. The z-statistic was used to compare
the distribution of error computed at the extremes of the
parameter sweep.

1) Sensitivity to Encoder noise: Gaussian noise was added
to the generalized position coordinates from the simulation
to emulate encoders with 8 to 20 bits of resolution with
the standard deviation as 1 encoder count in radians. This
proved to be the most important parameter tested, with
all methods showing a large increase in RMS error with
decreasing encoder resolution (Fig. 4a). The velocity-method
with position and velocity input, Velocity(q, q̇), was the best
method at low to moderate encoder resolutions, while all
methods had sub-mm error for higher resolutions.

2) Sensitivity to Torque Noise: The torque based con-
tact localization method requires the measurement of the
generalized torques (joint torques in this case) to compute
the external torques. Uniform torque noise of 0 to 0.2 N m
was added to the measured torque. The torque method with
position and velocity input, Torque(q, q̇), shows a significant
increase in RMS error with increase in torque noise (while
Torque(q) had uniformly higher error).

3) Sensitivity to Geometric Noise: Noise in measured
dimensions are possible due to errors in design and man-
ufacturing. We analyze the effect of up to 20% noise in
the geometric parameters of the linkage. All methods except
Torque(q) showed a statistically significant rise in error with
increasing geometric noise, although the magnitude of the
increase was less than for the other parameters tested. We
attribute this to the weak signal to noise output of this method
due too its dependence on a clean velocity signal.

4) Sensitivity to Inertial Noise: Careful calibration of
geometric and inertial properties of each link and its con-
tribution to the dynamic response can be tedious [17,18]. To
analyze the effect of errors in the dynamic robot model, we
simulate up to 100 percent noise in the mass parameters of
the linkage. As expected, both torque-based methods showed
a statistically significant rise in error.

B. Contact Localization on the Minitaur Leg

The three contact localization methods were implemented
and compared on a Minitaur robot. During contact localiza-
tion, motor positions were measured using encoders mounted
on the motors and velocities were estimated by taking the
first order numerical differentiation of motor position. Motor
torques were estimated from measured motor currents. For
all three methods, it was assumed that contact occurred on
the last link of the robot’s leg.

A 100 ms time window was chosen for both the time
window of the position-based method and the dt of the
velocity estimate. The effects of varying this time window
and the dt value are discussed below.

As discussed in Section III-B, the torque-based method is
dependent on an accurate dynamic model of the robot. This
model was derived from link and motor mass distributions
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Fig. 4: Effect of process and parametric noise on the accuracy of contact localization methods in simulation. All methods
are highly sensitive to changes in position accuracy. The position and velocity contact localization outperform torque-based
under all perturbations.



Contact Point

Fig. 6: An experiment localizing contact on a Minitaur robot.
A video of the experiment is attached.

as measured from CAD models and actual link weights.
Aerodynamic effects and frictional forces were ignored.
Motor constants vary between individual motors and as such
they were calibrated separately for each motor. Furthermore,
as mentioned in Section III-B, it is necessary to make a
frictionless contact assumption to find a single solution.

Unfortunately, we were unable to obtain sensible results
using the torque-based method. While the estimated external
torque values (τext) from the momentum-observer seemed to
be realistic, the contact locations were not. We believe that
this is due to the high sensitivity of contact location to any
noise in the τext estimates. This difficulty in achieving an
accurate torque-based estimate provides further motivation
for the method developed in this work.

To compare the velocity-based method and position-based
method, one of the robot’s legs was swept into a stationary
object and the two methods were used to estimate the contact
locations. These estimated contact locations were then com-
pared to ground truth contact location measurements. To get
these accurate ground truth measurements, the obstacle was
rigidly attached to the body of the robot, and the dimensions
of the rig connecting the obstacle to the robot were measured.
This experiment provides a scenario similar to a legged robot
on stairs (Fig. 1), but provides ground truth contact locations,
which was used to evaluate contact location estimates, within
1 cm of the true contact location. The experiment setup is
shown if Fig. 6. Six different contact positions were used.
At each position, 100 estimations of the contact location were
made using the three different methods. The actual contact
locations are shown as the dots in Fig. 7 and the estimated
contact locations from the position-based, and velocity-based
methods are shown as the crosses.

With a 100 ms time window for the position-based method
and dt for the velocity estimate, the accuracy of the position-
based and velocity-based methods was comparable. The
position-based method had an average error of 0.57 cm, with
a variance of 0.14 cm. The velocity-based method had an
average error of 0.48 cm, with a variance of 0.12 cm.

The time window of the position-based method and the dt
of the velocity estimates were simultaneously varied from
10 ms to 100 ms to analyse their effects on the contact
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Fig. 7: Estimated contact locations from the Minitaur experi-
ment using the velocity-based method (left) and the position-
based (right). The circles represent the actual contact loca-
tions, and the crosses represent the estimations made using
either method. With the same time window, both methods
result in similar contact location estimates.
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Fig. 8: Average error of estimated contact point position
from the Minitaur experiment using both the position-based
method and the velocity-based method with a varying time
window and velocity estimate dt size.

location estimates. The results of this experiment is shown
in Fig. 8. As expected, with a shorter time window and
dt, both method resulted in higher error. Throughout the
range of tested time windows and dt values, both methods of
contact localization had indistinguishable error. However, as
shown in Section V-A, the velocity-based method could have
performed better than the position-based method if other
methods of velocity estimation were used.

C. Contact Localization on the DD Hand

The DD Hand [3] is a direct drive gripper with two five-
bar linkages as fingers. To demonstrate the velocity-based
method with a non-point contact, we collide one of the
fingers with a cylinder and continuously track the estimated
contact location. Fig. 9 shows the evolution of the linkage
during the experiment along with the estimated contact points
overlaid. The estimated contact location is seen tracking the
curved surface of the cylinder. The small deviation at the
start can be attributed to the lag due to the velocity filter
running on board the DD Hand.



Fig. 9: A snapshot from the experiment to detect contact
of the DDHand with a cylindrical object. A video of the
experiment is attached.

Algorithm 1: Numerical Contact Localization
B̄ ← discretized surface
C ← ∅
for c ∈ B̄ do

if |ċn(t)| < ε then
C = C ∪ c

end
end
if t = t0 then

for c ∈ C do
if ċn(t−0 ) < 0 then

C = C \ c
end

end
end

VI. EXTENDING VELOCITY CONTACT LOCALIZATION

In this section, we present preliminary extensions to the
method discussed in this paper to robots with non-trivial
geometries and robots with 2D link surfaces moving in space.

A. Numerical Methods for Complex Geometries

For links with complex surface geometry, using a similar
approach to section IV to solve for C explicitly may be hard.
Algorithm 1 can be used to numerically solve for C. In this
algorithm, the continuous set B is discretized into the set
B̄ = {c1, c2, ..., ck}. This discretization must be done in a
fashion such that the set B̄ provides good spatial coverage of
the set B. Then at time t, ċn(t) is evaluated for every point
c in B̄. If the magnitude of ċn(t) is under a set threshold ε,
then the point is added to the set C. Since the initial contact
point, c∗0, also needs to satisfy the constraint in (9), at time
t = t0, points in C are additionally checked for compliance
to the constraint ċn(t−0 ) < 0 and removed if in violation.

B. Particle Filtering for Spatial Contact Localization

As mentioned in Section IV, the velocity-based method
may not always return a unique point possible contact point.
This could be due to either ambiguities in linkage geometry
or the nature of spatial motions. For example, Fig. 10 shows
a cylindrical robot link impacting the edge of a box. Using
the proposed velocity-based method at the time of impact
(0 ms) leads to uncertainty about the contact point location.
The black line in the top left subfigure in Fig. 10 shows the
set of possible contact points according to the velocity-based
method. The position-based contact localization method also
suffers from the same problem, and results in a similar set
of possible contact points. In such situations, a particle filter
is a useful tool to collapse uncertainty [9,19].

We propose a particle filtering method that uses a motion
model that assumes stationary contact and a measurement
model that weighs particles based on the set of possible
contact points calculated using the velocity-based method.

With the motion model, each particle’s position is updated
by sampling from a normal distribution centered around the
particle’s previous position with a covariance matrix Σmo,

x
[j]
t+1 ∼ N(x

[j]
t ,Σmo). (13)

This corresponds to a stationary contact point assumption in
the world frame. Note that particles are defined in the world
frame and not fixed to the robot’s link frame.

The measurement model assumes that the true contact
point location plus some noise η ∼ N(0,Σme) lies in the
set of possible contact points (c∗ + η ∈ C). Based on this
assumption, the weight of each particle, which characterizes
how well the particle matches the measurements and is used
for importance resampling, can be defined as,

w(x
[j]
t ) =min

c∈C
exp

(
−1

2
(c− x

[j]
t )T Σme(c− x

[j]
t )

)
. (14)

This proposed particle filter was implemented in the simu-
lation of a cylindrical robot link colliding with the edge of an
obstacle, Fig. 10. At the time of impact, t = 0, the particles
give a good representation of the set of possible contact
points given by the velocity-based method. As time evolves,
the particles start to converge reducing the uncertainty of the
contact location. At 50 ms, the particles have converged to a
point that is near the actual contact location.

Although the proposed particle filter performs well in this
scenario, it may fail in others. In situations where there
is sliding or rolling contact, the stationary contact point
assumption made by the motion model will not hold and
the particle filter will perform poorly. In the future, a better
motion model for the contact location could be created to
relax this assumption and allow for situation where the
contact point may move in the world frame.

VII. CONCLUSION

In this paper, we propose a velocity-based method of
contact localization. Using velocity constraints, this method
provides a codimension 1 set of possible contact points.
The advantage of this method over previous methods is that
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Fig. 10: Left: A cylinder in freefall (grey) interacting with a
fixed block(blue). Right: the unrolled surface of the cylinder.
A particle filter used to reduce ambiguity of contact location
from the velocity-based method. Each particle is shown in
black. The actual contact location is shown in blue.

it provides an instantaneous estimate of contact location,
does not require a dynamical model of the robot, and
only requires robot position and velocity measurements. We
validate the performance of this method for planar robots
both in simulation and the real world. In the plane, we show
that kinematic methods of contact localization are superior
to dynamic methods in the presence of noise.

Note that the velocity-based method is equivalent to a
position-based method when the velocity is computed as
a first order numerical differentiation over the same time
window. For small time windows, the velocity and position-
based methods produce similar results. This is shown in both
the simulation and real-world experiments in Fig. 4 and 8,
respectively. However, one advantage of the velocity-based
method over the position-based method is that the accuracy
of the velocity method improves when a better velocity
estimate is provided. This can be achieved with either better
numerical differentiation of position data [20] or by fusing
other sensor data like acceleration [21].

For spatial robots, this contact localization method results
in a one dimensional set of possible contact points leading to
ambiguity in the location. To reduce this, we propose the use
of a particle filter with a stationary contact point assumption.
The capabilities of this particle filter are shown in simulation.

In the future, improvements to state-estimation techniques
could allow for more accurate velocity estimates, and thus
contact location estimates. Also, development of more intel-
ligent particle filter motion models could extend the method
to localizing non-stationary contact points on spatial robots.
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