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Convergent Planning
Aaron M. Johnson, Jennifer E. King, and Siddhartha Srinivasa

Abstract—We propose a number of “divergence metrics” to
quantify the robustness of a trajectory to state uncertainty
for under-actuated or under-sensed systems. These metrics are
inspired by contraction analysis and we demonstrate their use to
guide randomized planners towards more convergent trajectories
through three extensions to the kinodynamic RRT. The first
strictly thresholds action selection based on these metrics, forcing
the planner to find a solution that lies within a contraction region
over which all initial conditions converge exponentially to a single
trajectory. However, finding such a monotonically contracting
plan is not always possible. Thus, we propose a second method
that relaxes these strict requirements to find “convergent” (i.e.
low-divergence) plans. The third algorithm uses these metrics
for post-planning path selection. Two examples test the ability of
these metrics to lead the planners to more robust trajectories:
a mobile robot climbing a hill and a manipulator rearranging
objects on a table.

Index Terms—Motion and Path Planning, Manipulation Plan-
ning, Field Robots

I. INTRODUCTION

C
ONSIDER a mobile robot, such as in Fig. 1, tasked with

traversing a hilly terrain to reach a goal configuration

using only local gradient sensors (as in [1]). In red, we see a

simple trajectory consisting of a closed loop uphill controller

run from multiple initial conditions. While the controller has

closed the loop on heading angle relative to the hill, it is

not stable in the unobserved global frame. Small disturbances

in the initial conditions lead to larger disturbances in the

final conditions. In contrast, the blue trajectories (which are

more complicated but still follow a gradient direction feedback

control scheme) naturally converge over the length of the path

reducing any state disturbance. The goal of this work is to

quantify the difference between these trajectories and use a

motion planner to generate solutions like the blue trajectories.

Robustness to this sort of uncertainty has been considered

in contraction analysis, [2], which provides a proof of global

exponential convergence for a controller over a contraction

region (a subset of the configuration space where all states will

converge to a single trajectory). However while contraction

analysis provides conditions for convergence and methods for

choosing controller gains, it does not provide a method of

finding such regions. The strongest conditions of the planning

framework proposed here extends this work with a method

of finding a contracting solution, when one exists. However,

not every problem will admit such a region, nor is such a

strict convergence result always necessary. We relax these
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Fig. 1. Example trajectories from a closed-loop controller with different initial
conditions for a robot (e.g. [1], inset) climbing hilly terrain with only local
sensors. The red (shorter) trajectories are diverging by a factor of Ea = 2.67.
The blue trajectories, while twice as long, are converging by a factor of Ea =

0.25. Photo credit: M. Fogelson and D. Koditschek.

requirements and instead draw inspiration from contraction

analysis to bias search based planning methods towards more

convergent trajectories.

As such, this paper may be summarized by the research

question: How can we incorporate and extend contraction

analysis into path planning in order to generate trajectories

that are more robust to uncertainty?

We present three divergence metrics, partially based on

contraction analysis and extending beyond it, as well as

motion planning methods designed to find convergent (low-

divergence) trajectories. These metrics and methods minimize

uncertainty and improve the reliability of systems that cannot

accurately sense and/or control the full system state.

Specifically, Section II-A introduces metrics that measure

the divergence of an action (among them div, the vector field

divergence). Section II-B defines numerical approximations to

these metrics when a closed form vector field is not available,

and shows that in the limit these are equal to the closed-

form metrics. These single point metrics are extended to

metrics over a path in Section II-C. Then Section III proposes

three planning algorithms that incorporate these metrics to

either guarantee a contraction region or heuristically bias the

solutions towards convergent plans.

We demonstrate the effectiveness of these methods on two

problems: a mobile robot climbing a hill (Section IV-A) and

a manipulator rearranging an object (Section IV-B). These

results show that the planning methods can find strictly con-

tracting paths in some cases, but also that such paths may not

always be possible. In addition, these results show that using

a local divergence metric to bias the planning extension step
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can lead to globally more robust solutions. Finally, we present

limited experimental results supporting the claim that these

metrics predict success of the actual system.

While these planning methods show promising results, they

are simple and based on randomized search. However, the

divergence metrics potentially have broad applications for

finding robust trajectories with other motion control algo-

rithms. In particular trajectory optimization [3, 4] or optimal

anytime planning techniques [5] could use these metrics to

find shorter low-divergence trajectories. Here we focus on state

uncertainty, but the same concepts could be applied to system

uncertainty, e.g. by adding the unknown parameter to the state

and searching for convergent plans in the larger space.

A. Related Work

This work is closely related to the control and motion

planning literature. From the controls side, we present a

method of generating trajectories that in the best cases meet

the conditions of [2], i.e. that a contraction region exists over

which any state will converge to a single trajectory. This is

in some sense a smooth version of the ideas of preimage

backchaining [6] or sequential composition [7], wherein each

discrete step “prepares” the next over it’s entire local domain.

While the contraction analysis of [2] provides strong guar-

antees of convergence to a trajectory, it does not prescribe

a method of finding such a trajectory or suggest what to do

when a contraction cannot be found.

One method of addressing the more general question of

generating plans that are robust to uncertainty is to formulate

the planning problem as a partially observable Markov deci-

sion process (POMDP) [8]. POMDP solvers can reason about

uncertainty and incorporate closed-loop feedback from local

or global sensors, but do not easily generalize to continuous

spaces and are limited to low-dimensional problems.

An alternative approach is to frame the problem as an in-

stance of probabilistic conformant planning. There, the goal is

to find an open-loop trajectory that maximizes the probability

of success under uncertainty [6, 9]. These methods are useful

for part alignment [10, 11], manipulation in clutter [12] and

navigation planning [13]. These ideas are similar to those

presented here, but only consider trajectories that are agnostic

to sensor feedback.

Our method falls between these two extremes. We aim to

select closed-loop plans achievable with execution-time sensor

data. Other works have presented similar methods for linear

systems and/or Gaussian uncertainty [14–16]. We consider

problems outside of this domain, such as the problem in

Section IV-B, and avoid explicit uncertainty models.

The particle RRT [17] (pRRT) relaxes the linearity assump-

tion, representing uncertainty as a set of state particles. Growth

of the search tree on branches of low probability is discouraged

by a heuristic method for node selection [18] – the planner

presented in Section III-C has some similar properties but

removes the reliance on this heuristic. Meanwhile, [19] offers

a related RRT-based method for incorporating uncertainty, but

explicitly thresholds low probability extensions. Section III-B

presents a similar algorithm using our divergence metrics, but

we note that this can lead to failures when no paths exist that

meet the threshold.

Some approaches track the expected uncertainty and con-

strain the plan to have an acceptably low chance of failure.

These “chance-constrained” methods have been applied in

predictive controls [20, 21], receding horizon control [22],

and randomized planning [23, 24]. Related predictive controls

results bound the uncertainty to a set and show input-to-state

stability of the system [25, 26]. Of the planning results, the

Safe-RRT [23] and CC-RRT [24] are similar to some of the

methods presented here in that they prune possible extension

actions based on the uncertainty. These methods are best

suited to settings where a running model of the uncertainty

is available and the probability of failure may be explicitly

checked based on that uncertainty. Here, we do not require

any knowledge of the magnitude of uncertainty and instead

aim at each time step to reduce the uncertainty, whatever it

may be.

Finally, some approaches handle uncertainty in post-

processing rather than during planning [16, 27]. In these

approaches, a randomized planner generates candidate trajec-

tories and scores them according to some metric in order to

select a single trajectory for execution. Our work is comple-

mentary to these approaches – we prove some theoretical re-

sults for the empirically-motivated numerical approximations

in [27] (Section II-B) and also implement a similar post-

processing method (Section III-D).

II. CONTRACTION ANALYSIS AND DIVERGENCE METRICS

In this section we review the main results from contraction

analysis [2]. We then define the divergence metrics, Di,

partially based on this analysis, as well as corresponding

numerical approximations and path metrics. These metrics are

key contributions of this paper, and provide a way to quantify

the convergence of a path as well as guide the search for a

convergent plan.

A. Contraction Analysis

Consider a system with state x ∈ X ⊆ R
n, control input

u ∈ U ⊆ R
m, and a (possibly time-varying) vector field f :

X × U × R → TX . Define F as the symmetric part of the

Jacobian of f , i.e.,

F(x,u, t) :=
1

2

(

∂f(x,u, t)

∂x
+

∂f(x,u, t)

∂x

T
)

(1)

The magnitude of a virtual displacement (an infinitesimal

displacement at a fixed time t), δx(t), is bounded by the

magnitude of the initial displacement, δx(t0), and the integral

of λmax(x,u, t), the maximum eigenvalue of F at x at time

t, [2, Eqn. 3],

‖δx(t)‖ ≤ ‖δx(t0)‖e
∫

t

t0
λmax(x,u,τ)dτ . (2)

Define the maximal divergence metric Dm := λmax. In

particular if Dm (and therefore also F) is uniformly negative

definite everywhere in a region around a nominal trajectory,

any differential length at the start of a trajectory will vanish

exponentially along its length, [2, Thm. 1],
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Theorem 1: Given a nominal trajectory, x0(t), that is the

solution to a vector field, ẋ0(t) = f(x0(t),u0(t), t), under

control u0(t), any other trajectory that begins within region

defined by a ball of radius r around the nominal trajectory will

converge exponentially to that trajectory so long as F, (1), is

uniformly negative definite over that region, i.e. if,

∃β > 0,∀t ≥ t0,x ∈ R(t), Dm(x,u0(t), t) ≤ −β < 0,

where R(t) := {x : ‖x − x0(t)‖ < r}. By bounding Dm we

conclude that all neighboring trajectories converge to a single

trajectory.

Consider now the evolution of a differential volume, δV ,

around the trajectory,

‖δV (t)‖ = ‖δV (t0)‖e
∫

t

t0
div f(x,u,τ)dτ

. (3)

Define the average divergence metric, Da := div f . As a

relaxation of Theorem 1, consider [2, Sec. 3.9],

Theorem 2: Given a nominal trajectory, x0(t), that is the

solution to a vector field, ẋ0(t) = f(x0(t),u0(t), t), under

control u0(t), any other trajectory that begins within a vol-

ume element δV around the nominal trajectory will converge

exponentially to a set of measure zero around that trajectory

so long as div f is uniformly negative definite at every point

of the nominal trajectory, i.e. if,

∃β > 0,∀t ≥ t0 Da(x0(t),u0(t), t) ≤ −β < 0.

This theorem says that if the average eigenvalue of F is

negative (since div f = trF =
∑

λF) then a volume around

a given trajectory will collapse on average. There may still

be some differential directions which do not collapse down

to the nominal trajectory (and, indeed, may diverge), however

the differential volume will shrink to zero and the trajectories

will lie on some set of measure zero.

Extending beyond the results of contraction analysis, con-

sider the evolution of the expected value of a virtual displace-

ment, E
[

‖δx(t)‖
]

, taken over some distribution,

E
[

‖δx(t)‖
]

=E
[

‖δx(t0)‖
]

e
∫

t

t0
De(x,u,τ)dτ , (4)

De(x,u, t) :=
d

dt
lnE

[

‖δx(t)‖
]

. (5)

The form of the expected divergence metric, De, may not seem

particularly useful however we will show in the next section

that it is easy to compute numerically.

B. Numerical Approximation

The contraction analysis of [2] assumes a closed form

differentiable vector field that may not be available in prac-

tice. Instead, to approximate Dm, Da, and De we introduce

numerical divergence metrics that approximate the virtual

displacement, δx, with finite samples.

Given a nominal trajectory, x0(t), generated by applying

some action u0(t) to a system with dynamics f , a per-

turbed trajectory (or noisy rollout), xi(t), is the solution

to the same system and action as the nominal trajectory,

ẋi(t) = f(xi(t),u0(t), t), but with a different initial condition,

xi(t0) = x0(t0) + δxi. Thus (2) may be modified as,

‖xi(t)− x0(t)‖ ≤ ‖xi(t0)− x0(t0)‖e
∫

t

t0
Dm(x0,u,τ)dτ, (6)

which holds in the limit as δxi goes to zero. Thus if Dm < 0,

the ratio, ‖xi(t) − x0(t)‖/‖xi(t0) − x0(t0)‖, goes to zero

exponentially. To get the closest approximation, consider the

largest such ratio, each of which abides by the bound in (6),

max
i

‖xi(t)− x0(t)‖

‖xi(t0)− x0(t0)‖
≤e

∫
t

t0
Dm(x0,u0,τ)dτ (7)

For a small time step δt, we have that,

D̂m(x0,u0, t) :=
1

δt
lnmax

i

‖xi(t+ δt)− x0(t+ δt)‖

‖xi(t)− x0(t)‖
(8)

and we arrive at the numerical approximation, D̂m ≈ Dm.

Similarly, for the average divergence Da, we will approx-

imate the differential volume by taking the volume spanned

by a finite set of points. Let V (x) define such a volume, then

D̂a ≈ Da is a numerical approximation where,

D̂a(x0,u0, t) :=
1

δt
ln

V (x(t+ δt))

V (x(t))
(9)

Finally, to estimate the divergence of expectation D̂e ≈ De,

consider the ratio of the average displacements,

D̂e(x0,u0, t) :=
1

δt
ln

1
N

∑N
i=0 ‖xi(t+ δt)− x0(t+ δt)‖
1
N

∑N
i=0 ‖xi(t)− x0(t)‖

.

(10)

The approximation holds exactly in the limit as N goes to

infinity and δt goes to zero, as can be derived from (10)

or from standard results in Monte Carlo estimation, e.g. [28,

Sec. 1.3.1]. Note that the condition in (4) will hold over the

length of a path if the set of noisy samples, {δxi}, is drawn

once at time t0 and not independently at each time step.

C. Path Metrics

Define for each metric Di the exponential of the integral of

that metric along a trajectory,

Ei := e
∫

t

0
Di(x,u,τ)dτ (11)

where note that some of the divergence metrics admit the

following simplifications,

Ea = exp

(
∫ t

t0

div f(x(τ),u(τ), τ)dτ

)

=
‖δV (x(t))‖

‖δV (x(t0))‖

Êa = exp

(

lim
δt→0

∑

τ

ln
V (x(τ + δt))

V (x(τ))

)

=
V (x(t))

V (x(t0))

Ee = exp

(
∫ t

t0

d

dτ
lnE

[

‖δx(τ)‖
]

dτ

)

=
E
[

‖δx(t)‖
]

E
[

‖δx(t0)‖
]

Êe = exp lim
δt→0

(

t
∑

τ=t0

ln
1
N

∑N
i=0 ‖δxi(τ + δt)‖

1
N

∑N
i=0 ‖δxi(τ)‖

)

=
1
N

∑N
i=0 ‖δxi(t)‖

1
N

∑N
i=0 ‖δxi(t0)‖

.
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Fig. 2. Topographic map of a hill showing elevation lines, with a KD-RRT
overlayed in red and the solution path in green connecting the start and goal.

III. CONVERGENT PLANNING METHODS

This section presents methods of automatically finding paths

that respect the dynamics of the system, f , and are robust

to state uncertainty. We first define the kinodynamic RRT

(KD-RRT) and then propose three extensions that aim to

find convergent (low-divergence) plans. The CR-RRT sets

a threshold on divergence in order to find a monotonically

converging trajectory (e.g. to meet the requirements of [2]).

The B-RRT uses the divergence as a heuristic bias in order

to find more robust trajectories even when a monotonically

converging trajectory is impossible. Finally, the AMD-RRT

builds off of the other planners in order to find progressively

improving solutions if given sufficient time.

A. Kinodynamic RRT (KD-RRT)

Given a known initial state, xs ∈ X , and a goal region

XG ⊆ X , traditional planning problems search for a trajectory,

(x,u) : R → X × U subject to three constraints,

x(t0) = xs (12)

x(tf ) ∈ XG (13)

ẋ(t) = f(x(t),u(t), t) for all t0 ≤ t ≤ tf . (14)

Constraints (12) and (13) ensure the trajectory meets the

planning goals, while (14) guarantees a feasible trajectory.

One method of path planning for systems with a constraint

like (14) is to use a kinodynamic RRT [29]. At each iteration,

sample a random configuration and find the nearest neighbor

in the RRT under some cost-to-go metric (typically Euclidean

distance). From this configuration generate a candidate action

by running a set of controllers. Add a new node to the RRT

with the endpoint of the candidate action that is closest to the

sampled point, typically under the same metric. The search

finishes when a node is within the goal set. Fig. 2 shows an

example KD-RRT for the hill climbing problem (Sec. IV-A).

B. Contraction Region RRT (CR-RRT)

To find a motion plan that meets the requirements of

Theorem 1 (or Theorem 2), we must modify the extension

step of the KD-RRT to only consider actions such that,

Dm(x(t),u(t), t) < 0 for all t0 ≤ t ≤ tf , (15)

(respectively, Da < 0). If no such actions are sampled, the

tree is not extended. If one or more such actions are sampled,

then add a node in the same way as the KD-RRT extend step.

Not every problem will have a solution that meets the re-

quirement of Theorem 1, and in such cases this algorithm will

never terminate with a solution. We can relax the requirement

by altering the constraint,

Dm(x(t),u(t), t) < dm for all t0 ≤ t ≤ tf , (16)

where dm ∈ R is a parameter that corresponds to the

maximum admissible divergence value.

C. Biased RRT (B-RRT)

A less strict method of incorporating the divergence metrics

is to include them as a cost in an optimization,

x
∗,u∗ = argmin

x,u
Ei(x,u) s.t. (12)–(14). (17)

Solving this optimization exactly is difficult, but we can

approximate the optimization by incorporating one of the

metrics Di into the selection criteria at each extension. Rather

than selecting the best action based on a Euclidean distance

metric, this biased RRT (B-RRT) algorithm scales the original

distance by a factor of s = ebDi . Here b ∈ R is a bias

and Di is the chosen divergence metric. With this, actions

that perform well with respect to the divergence metric are

preferred even if they are not the most direct path. Thus, the

B-RRT heuristically tries to reduce the divergence, without

enforcing the strict conditions of the CR-RRT. Note that when

b = 0 this algorithm is identical to the KD-RRT.

D. Anytime Minimal Divergence RRT (AMD-RRT)

The third extension to the KD-RRT takes advantage of the

fact that with a randomized planner, identical calls for the same

query will generate different solutions. Here we use multiple

calls to either the KD-RRT or the B-RRT to generate a set of

candidate paths, and then we select the best path with respect

to a chosen path metric, Ei. This process can use a fixed

number of trials or a termination condition such as a threshold

on the metric. Alternatively, it can be an anytime algorithm

and simply return the best trajectory found when stopped. This

AMD-RRT implicitly assumes that the trajectory generator is

capable of finding good candidates with non-zero probability,

and if so, with enough time, the AMD-RRT will return one

such good trajectory.

IV. EXPERIMENTS

We demonstrate the algorithms from Section III in two

scenarios: a mobile robot traversing hilly terrain, and a ma-

nipulator rearranging objects on a table.

A. Hill Climbing Example

1) Problem Specification: Suppose you have a mobile robot

that is navigating hilly terrain, such as in the contour plot

in Fig. 1 or Fig. 2. We model the hill as a height function,

z = h(x, y) := 3y+sin(x+xy) for (x, y) ∈ [−2, 2]× [0, 2.5].
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TABLE I
HILL CLIMBING PLANNING RESULTS FOR THE KD-RRT (top), B-RRT

(middle), AND CR-RRT(bottom), INCLUDING SUCCESS RATE (S),
EXPONENTIAL DIVERGENCE (Ea AND Êa), AND PLANNING TIME. MEAN

± ONE STANDARD DEVIATION LISTED. NON-GRAY RESULTS ARE

STATISTICALLY DIFFERENT FROM THE BASELINE WITH p < 0.005.

Test S Ea Êa Planning Time

KD 100 1.48 (±2.03) 1.72 (±3.24) 31.2 (±28.0)

b =

-0.25 100 10.86 (±21.72) 74.53 (±399.08) 32.7 (±23.5)
0.25 100 0.47 (±0.43) 0.47 (±0.43) 39.2 (±32.1)
0.50 100 0.25 (±0.29) 0.25 (±0.29) 48.2 (±52.2)
0.75 100 0.26 (±0.29) 0.26 (±0.29) 59.7 (±69.3)
1.00 99 0.23 (±0.31) 0.23 (±0.31) 67.1 (±90.0)
1.25 97 0.23 (±0.28) 0.24 (±0.28) 72.3 (±108.4)
1.50 98 0.16 (±0.22) 0.16 (±0.22) 72.3 (±96.7)

CR 30 0.56 (±0.27) 0.57 (±0.27) 247.1 (±146.0)

The robot uses a controller that allows it to follow a constant

forward velocity at any arbitrary angle θ relative to the hill

gradient ∇h. Thus the closed loop vector field of the system

is f(x, y, θ) = R(θ)∇h(x, y)/‖∇h(x, y)‖, where R(θ) is a

rotation matrix. Note that such a controller uses only local

sensors, as done in [1] for the uphill direction. For a two

dimensional problem like this with fixed forward velocity,

one eigenvalue of the vector field Jacobian will be zero and

therefore either λmax = 0 or λmax = div f = trF = λ1+λ2.

As such we will consider Da and related metrics, since either

Dm = Da or Dm = 0.

The task is to find a trajectory from a start location to a

goal location using the hill-relative controller. Fig. 2 shows

one example trajectory and final tree generated with the KD-

RRT. In this section, the planner extension samples 8 fixed-

length actions (i.e. it samples a value of θ and applies the

hill-relative controller for a fixed amount of time). A planning

call is successful if it returns a path to the goal after adding

fewer than 10,000 nodes to the tree.

2) B-RRT: We use the B-RRT to test whether using a local

metric as a heuristic bias results in solutions that are globally

more robust to uncertainty. The overall integral divergence,

Ea, scores the solution generated by the planner. To see the

effect of the bias term, we ran 100 trials at different values of

b with randomized start and goal location.

The results of Fig. 3 and Table I show that increasing the

bias term does indeed lead to a lower exponential integral

divergence (Ea) on average (all are statistically different from

b = 0.0 with p < 0.0001). This added bias does slightly

increase the planning time – see Table I. It appears that b = 0.5
achieves most of the improvement for this problem.

3) Numerical Approximations: To confirm the accuracy

of the numerical approximations given in Section II-B, we

compare Ea, the integral of the analytic divergence, with

Êa, the numerically computed ratio of initial volume to final

volume of N perturbed initial conditions, over all of the trials

from the previous section. Fig. 4 shows that these metrics are

highly correlated, even with a relatively small N = 4. The

correlation (in log-log) is linear with R2 = 0.98, with most of

the deviations coming from very large and very small values of

E
x
p
.

D
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Fig. 3. Average exponential divergence, Ea, for the hill climbing problem,
calculated from 100 trials each at different values of the bias terms, b, and
for the CR-RRT. The mean (green triangle) and median (red square) are also
shown for each b.

Analytic (Ea)
10-4 10-2 100 102

10-4

10-2

100

102

104

N
u
m

er
ic

al
(Ê
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Fig. 4. Correlation between Ea and Êa for the hill climbing B-RRT.

Ea. We suspect that improved numerical methods and smaller

displacements would reduce the remaining differences.

4) AMD-RRT: We test the AMD-RRT on both the KD-RRT

(b = 0) and the B-RRT (b = 0.25) with fixed start and goal

locations. Fig. 5 reports the best-so-far from up to 100 calls,

showing the mean and standard deviation over 100 trials of

each AMD-RRT conditions (and therefore represents a total

of 100× 100 calls to each underlying planner).

First, consider the problem of finding a trajectory with Ea <
1 using only the KD-RRT, as done in [27] (for a different

objective function). While only about 11% (1053/10000) of

individual KD-RRT runs results in a candidate trajectory with

Ea < 1, if we allow the AMD-RRT to pick from 7 candidates

more than half (51%, 51/100) of the AMD-RRT trials succeed

with Ea < 1. If we allow 32 runs, then all 100 trials succeeded.

Thus the AMD-RRT can find low divergence paths without

modifying the motion planner at all.

Biasing the search by using a B-RRT can find a good

trajectory much faster, with 92% (9194/10000) of individual

runs succeeding with Ea < 1. In this case all 100 trials of

the AMD-RRT succeeded by the 3rd run of the B-RRT. These

results show that even though the unbiased search (KD-RRT)

can find low-divergence paths, using a local bias (B-RRT) will

find better paths faster.

5) CR-RRT: The above methods were able to find trajecto-

ries that had low divergence, however they did not guarantee

monotonic contraction as required for the strongest of the

theoretical results in Section II-A. For example, the solid lines

of Fig. 6 show the evolution of Ea over the length of the

trajectory for eight different B-RRT solutions – note that none
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Fig. 6. Exponential divergence, Ea, over the length of sample solution paths
for the B-RRT with different bias terms, b, as well as one solution from a
CR-RRT, the only example that is monotonically decreasing in Ea.

are monotonically decreasing (i.e. they all have at least one

point with Da > 0). One way to generate trajectories that

meet the requirements of, e.g., Theorem 2 is to use the CR-

RRT. As shown in Table I, a successful contraction region

(monotonically contracting) path was found S = 30% of the

time (30/100). The dashed line in Fig. 6 shows an example of

a successful monotonically decreasing trajectory.

B. Rearrangement Planning

1) Problem Specification: Next we consider a rearrange-

ment planning problem [12, 30]. We task a manipulator to

push an object to a goal region, as seen in Fig. 7. The robot

is not endowed with sensors that can detect the object’s state.

However, prior work has shown that some pushing actions are

inherently uncertainty reducing [31], and we would like to

guide our planners to select such actions.

The vector field, f , of the system describes the motion of the

manipulator and the object and is defined by the physics of the

contact between the manipulator and the object. This vector

field is not smooth – contact is inherently discontinuous – and

lacks an analytic representation (although for simple problems

this is theoretically possible [32]). Prior work has shown that

f can be effectively approximated by a physics simulator [33,

34], however analytic divergence measures are unavailable.

The state space is the joint configuration of the manipulator

and the pushed object, each in SE(2). Computing the volume

of a set of points in this high-dimensional space is challenging,

and so we will use only D̂m and D̂e. For a potential motion,

Fig. 7. Two pushing examples. Top: Exponential divergence Ee = 11.14,
NG = 5% of rollouts reaching the goal. Bottom: Ee = 1.84, NG = 100%.

u0(t), applied to a state, x0(t), these metrics are calculated

by rolling out a set of N noisy samples using the physics

simulator. The samples are drawn from a Gaussian distribution

around x0(t) with a standard deviation of 4cm for both the

object and the manipulator pose.

We plan for a hand pushing a 5cm×5cm box in the plane.

The planner samples 8 actions and uses separate threads to

evaluate each in parallel. An action is a linear and angular

velocity of the hand and a duration. Each component of a

sampled action is drawn uniformly from a bounded interval.

A planning call is successful if it returns a path within 480

seconds that moves the box to a 10cm radius goal region.

Plans are evaluated using Êe calculated using N = 100
and sampling the initial object and manipulator poses from

a Gaussian distribution with standard deviation of 1cm.

2) B-RRT: For this rearrangement planning problem, we

implemented the B-RRT using D̂e as the divergence metric,

i.e. the numerical approximation to the expected value diver-

gence. As with the hill climbing problem, we ran 100 trials

of the B-RRT for different values of the bias b and the results

are in Table II and Fig. 8, including success rate (S) from 100

trials, exponential divergence Êe, percent of trials better than

the KD-RRT (K), percent of rollouts that reach the goal (NG),

and planning time. These trials used N = 4 samples at each

extension step to calculate D̂e, which appears to be a very

small number of samples for this high dimensional problem,

but is sufficient to bias the results towards lower values of Êe.

Results from an additional set of trials with N = 10 were not

statistically different from those of Table II, with the exception

of the planning time which was, unsurprisingly, about twice

as long.

Overall the B-RRT was able to find more reliable tra-

jectories, with lower values of Êe on average. As with the

results from Section IV-A2, b = 0.5 achieves most of the

improvement in Êe. In addition for each condition we list the

percent of the noisy samples used to calculate Êe that reach the

goal region, NG, which [27] anecdotally shows correlates with

the success of actual experiments. Similar to the Êe metric,

NG is higher for the B-RRT, but further increasing the value
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TABLE II
REARRANGEMENT PLANNING RESULTS FOR THE KD-RRT (top), B-RRT

(middle), AND CR-RRT(bottom), INCLUDING SUCCESS RATE (S),
EXPONENTIAL DIVERGENCE (Êe), % OF RUNS BETTER THAN KD (K),
NUMBER OF SAMPLES THAT REACH THE GOAL (NG), AND PLANNING

TIME. MEAN ± ONE STANDARD DEVIATION LISTED. ALL RESULTS

STATISTICALLY DIFFERENT FROM THE BASELINE WITH p < 0.005.

Test S Êe K NG Planning Time

KD 100 11.39 (±8.45) - 44.2 (±33.0) 4.8 (±8.3)

b =

0.25 100 8.33 (±6.07) 4.00 59.0 (±31.9) 31.3 (±42.7)
0.50 97 8.06 (±7.81) 7.22 58.8 (±29.2) 55.4 (±83.3)
0.75 97 7.63 (±7.40) 14.43 63.3 (±29.2) 62.3 (±88.9)
1.00 97 7.38 (±6.60) 10.31 64.2 (±26.3) 51.0 (±67.9)
1.25 95 8.07 (±7.25) 9.47 59.9 (±27.5) 65.1 (±83.0)
1.50 100 8.27 (±7.69) 11.00 58.6 (±29.7) 78.7 (±106.9)
1.75 99 6.87 (±6.50) 11.11 68.7 (±25.5) 54.8 (±78.3)
2.00 99 6.79 (±7.39) 12.12 64.6 (±26.2) 62.6 (±89.3)

dm=

2.00 94 6.95 (±6.05) 10.64 63.0 (±27.7) 85.8 (±106.8)
1.50 78 3.39 (±2.64) 20.51 69.5 (±23.0) 116.9 (±93.6)
1.00 70 4.24 (±4.07) 17.14 70.0 (±21.5) 129.2 (±113.9)
0.75 66 4.38 (±3.38) 15.15 74.9 (±19.9) 159.0 (±119.1)
0.50 21 3.06 (±1.89) 28.57 66.4 (±27.5) 303.7 (±105.8)
0.25 0 - - - -
0.00 0 - - - -

of b had little effect. These improvements do come at the cost

of higher planning times.

3) CR-RRT: In this more complex problem with non-

smooth dynamics, finding a solution trajectory that lies in a

contraction region is quite difficult. To test this, we used the

CR-RRT with D̂m computed with N = 10 samples. After 100

trials with a timeout of 480s each, we found no successful

contracting solutions (with D̂m < 0 everywhere). To relax

this requirement, we consider higher thresholds for D̂m < dm;

these results are also in Table II and Fig. 8.

The results from these trials have lower Êe on average, and

are more likely to reach the goal region (NG). However this

higher performance does come at the cost of a lower planning

success rate S (i.e. more trials reached the timeout of 480s),

and the successful trials took much longer.

4) AMD-RRT: Individual planning calls from the B-RRT

and CR-RRT provided better results than the KD-RRT, but

took much longer to do so (due to the time needed to compute

D̂e or D̂m). To level the playing field, consider applying the

AMD-RRT to find the best Êe possible in a given amount of

time. Running a single trial of this problem takes much longer

than the hill climbing problem, and so evaluating the AMD-

RRT with 20000 total trials is infeasible. Instead, we estimate

the AMD-RRT performance based only on Table II.

For each condition we list the percent, K, of the successful

trials that finished with an Êe less than the best Êe over all

100 KD-RRT trials. These trials of the KD-RRT took a total

of 1542s to plan and evaluate Êe, and in that time found a

min Êe = 1.66. Compare that to the b = 0.25 for example,

which took 4193s but found a better Êe in 4% of trials (K), for

an average of once every 1048s. Therefore we would expect

to find a better Êe with the B-RRT in less time than all 100

trials of the KD-RRT would take. This result is encouraging
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Fig. 8. Expected exponential divergence, Êe, for the rearrangement problem
under the test conditions from Table II. The mean (green triangle) and median
(red square) are also shown for each b.

E
x
ec

u
ti

o
n

su
cc

es
s

%
2520151050

Exponential Divergence, (Êe)
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Fig. 9. Measured success rate over 10 executions on HERB [35] (inset) of

trajectories as a function of exponential divergence, Êe. Most trials (shaded)
demonstrate a negative correlation between success rate and exponential
divergence. Outliers (open) are likely due to errors in the physics model.

although not as conclusive as the result from the hill climbing

example and more experiments are needed.

5) Real Robot Experiments: In this section, we demonstrate

that trajectories with lower Êe succeed more often in execution

than trajectories with high Êe values. We use the KD-RRT to

find solutions to the rearrangement planning problem, however

here we plan for the full 7-DOF right arm of the HERB

robot [35] rather than only a hand. We use AprilTags [36]

to detect the pose of the box. Plans are evaluated using Êe

calculated with N = 100 and sampling the object poses

from a Gaussian distribution with standard deviation of 2cm

(computed from AprilTag measurements).

Figure 9 shows the results of 11 plans with varying Êe

each executed 10 times on HERB. An execution is a success

if the final pose of the box is within 15cm of the planned

final pose. The trials shaded in blue demonstrate a negative

correlation between success rate and Êe, i.e. trajectories with

lower Êe, like those generated by the convergent planners, are

more likely to succeed. Two trials, not shaded, do not follow

the expected trend. A closer look at these paths attributes the

discrepancy to unrealistic behavior in the physics simulator

used to calculate Êe. As the focus of this paper is not the

realism of the physical model, we have left these outliers.

V. CONCLUSION

The problem of uncertainty is pervasive in robotics, and

must be carefully considered in order to have reliable systems.
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The most common way to reduce uncertainty is to use a

closed-loop feedback controller to measure and correct errors

that may accumulate. However there are many settings where

a closed-loop trajectory is not enough, as there is insufficient

sensor information or control authority to correct all of the

uncertainty. We propose new convergent path planning meth-

ods that can search for closed-loop trajectories that are inher-

ently robust to state uncertainty despite sensor or actuation

limitations. We introduce analytic and numerical divergence

metrics that the convergent planners seek to minimize. Using

the strongest of these planners and metrics, we show the first

planning based method to find contraction regions where all

states converge to a single trajectory.

The convergent planning methods presented here are rela-

tively simple, but there are many ways to use the divergence

metrics to guide planning. In the future we plan to apply

these metrics to trajectory optimization techniques, e.g. [3,

4], that can locally search for the lowest-divergence path. The

examples in this paper were all quasi-static but these ideas can

also be applied to dynamic problems [34]. Furthermore, the

divergence metrics provide a nice compliment to the ideas of

geometric mechanics, e.g. [37], which aims to extract feasible

trajectories from the geometry of the system’s vector field.

The divergence metrics are fundamental properties of the

underlying vector field, and motion planning will be most ef-

fective when it considers these properties. Convergent motion

planners, like those presented here, provide a new way to

generate behaviors that are robust to the uncertainty that is

always present when running robots in the real world.
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