Information Flow Experiments
Michael Tschantz*, Amit Datta, Anupam Datta, Jeanette Wing^
*University of California Berkeley, Carnegie Mellon University, ^Microsoft Research

Motivation

Ads are omnipresent on the web.

Statsistics

- Non-parametric statistical tests make no assumptions about the ad distributions.
- Null hypothesis: Both ad sets come from the same distribution.

Goals

- Design experiments to detect information flows.
- Develop a statistical theory that supports our experimental design and allows us to draw useful conclusions.

Experiments

- Permutation Test

 ![Diagram of experiments with user, later ads, Google, and advertisers]

 Cosine Similarity | Keyword Analysis | χ^2
 | | |
 control-experiment | 18/20 | 18/20 | 20/20
 control-control | 1/20 | 1/20 | 12/20
 experiment-experiment | 0/20 | 1/20 | 5/20

Related Work

- Guha et al, 2010: Developed techniques for measuring online advertising systems: cosine similarity, display URL.
- Balebako et al, 2012: Analyzed effects of privacy tools in limiting behavioral advertisements: Ghostery, DoNotTrack, OptOut, etc.
- Wills and Tatar, 2012: Miscellaneous studies on online advertisements: multiple signals, keywords.
- Sweeney, 2013: Discrimination in online ad delivery: correlation in racially stereotypical names and the term ‘arrest’.

- We observed a cross-browser effect among the different instances running together.
- Permutation tests for observing effect does not require lack of cross-unit effects.
- Statistical tests allow us to show interference exists. Coupled with the theorem:
 Interference \iff Causal Effect
 we conclude ‘the signals have a causal effect on the ads’.