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Modeling Category Viewership of Web Users 

with Multivariate Count Models 

 

 

Abstract: 

 

We develop a statistical model of browsing behavior by predicting the number of web pages, in a 

particular category, that are viewed by a user in a single web session.   The purpose of this analysis is 

to better understand web browsing behavior, and to help predict which sessions are likely to result in 

retail visits.  A single record in our database consists of the number of web pages viewed by a user 

during a single session from each of the following categories: portals, services, entertainment, retail, 

auctions, adult, and others.  This dataset can be characterized as multivariate count data, where many 

of the counts are zero.  We consider the use of Poisson and discretized tobit models, and contrast 

both univariate and multivariate versions of these models.  Additionally, as our dataset is 

characterized by a great deal of heterogeneity in usage across users and also a good deal of 

persistence in viewership, we propose a new multivariate tobit model with a mixture process whose 

multiple states are governed by an unobserved (hidden) Markov chain.  We find that users move 

between sessions that are characterized by browsing behavior that is focused in specific categories 

and sessions characterized by a variety of categories being viewed. 

 

Keywords: Multivariate Count Data, Internet Usage, Tobit Models, Hierarchical Bayes   

                    Models, Hidden Markov Chain Models, Markov Switching Models 
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1. Introduction 
 In this study we consider the category of web viewings made by a user during a session.  

Consumer web browsing behavior is quite diverse both in terms of the type of information that can 

be viewed and the diversity of the user base.  For example, a businessman going on a trip may visit a 

portal and search for information about a conference, buy an airline ticket, and reserve a hotel room.  

A student using a laptop with a wireless connection search for their favorite music, download music 

files, and bid at an Ebay auction—all while listening to their professor lecture.  In our example, the 

businessman visited a portal and two retail sites, while the student visited a portal, retail, and auction 

site.  Our goal is to describe the joint distribution of the number of web pages from different 

categories that were viewed during a web session.   In particular, we are interested in reviewing the 

properties of a range of univariate and multivariate statistical models that could be used to model this 

data and in exploring the insights into web browsing behavior that can be gained from these models. 

 Understanding category viewership of web users is of interest to web designers, marketing 

researchers, and cognitive psychologists, as well as many others.  Web designers need to understand 

how consumers use web sites in order to improve their site designs (Nielsen 2000).  For example, do 

consumers tend to focus upon only one topic during a session (e.g., shopping) or do they view 

several (e.g., auctions, entertainment, and shopping)?  Marketing researchers want to predict which 

web sessions are likely to result in shopping behavior, so they can focus their advertising efforts on 

these occasions (Gooley and Lattin 2001).  Cognitive psychologists are interested in determining 

whether consumers are foraging for information or simply gathering it (Pirolli and Card 1999).  

Information foraging makes an analogy between the strategies users have for locating information 

(e.g., surfing the web) and the evolutionary economical explanations for food-foraging strategies 

from anthropology and behavioral ecology. 

 We develop a statistical model of browsing behavior which predicts the number of web 

pages viewed by a user during a single web session in seven categories: portals, services, 

entertainment, retail, auctions, adult and other.  A single record in our database consists of the 

number of viewings by a user during a single session in the each of these categories.  For example, a 

user starts a session at google.com and visits three pages in the course of a search for a book, locates a 

book description at an entertainment site, and follows up with a one-click purchase of the book at 

amazon.com.  The resulting dataset from this visit would be: portal (3), entertainment (1), retail (2), and 

zero for the remaining categories.  Our dataset can be characterized as multivariate counts. 
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 There is an extensive literature on modeling count data.  We refer the reader to Cameron 

and Trivedi (1986) and Patil (1970) for a more extensive review and survey of the literature and to 

Atchison and Ho (1989) for a discussion of multivariate Poisson Log normal models of multivariate 

count data.  Some selected applications of count models include children’s spelling errors (van Duijn 

and Böckenholt, 1995), technological innovation (Blundell, Griffith, and Reenen, 1995), purchases 

for a frequently bought consumer goods (Ramaswamy, Anderson, and Desarbo, 1994), consumer 

purchases of books offered through direct mail (Wedel, et. al., 1993), unemployment spells (Brännäs, 

1992), recreational fishing trips (Grogger and Carson, 1991), premature ventricular contractions 

(Farewell and Sprott, 1988). 

 Statistically there are several interesting aspects to our dataset that contrasts with previous 

work.  First, our data is made up of multivariate counts, where the counts are often zero. As this 

censoring can mask multivariate relationships, we contrast univariate and multivariate versions of 

count models to illustrate these differences.  Second, our dataset is characterized by a great deal of 

heterogeneity in usage across users.  We introduce a hierarchical Bayesian model to accommodate 

this heterogeneity.  Third, there is a time series element to browsing behavior.  We find that users 

exhibit a good deal of persistence in their browsing, that is they tend to have sessions that are either 

focused upon viewings in specific categories or ones that view a large variety of categories.  To 

capture all these elements we develop a new, discretized version of a multivariate tobit model with a 

mixture process whose multiple states are governed by an unobserved (hidden) Markov chain.  To 

motivate the construction of this model we present a series of count models that progressively add 

each of these elements.  Our pedagogical approach is to illustrate the deficiencies of simpler models 

and show how our proposed framework can overcome these weaknesses. 

The study of statistical properties of web browsing behavior has a brief history.  Huberman 

et al (1998) found that the distribution of the number of web pages visited has a long tail and can be 

approximated fairly well with an inverse Gaussian distribution.  Bucklin and Sismeiro (2001) use 

information from the timing between page views to predict whether users will continue browsing.  

Cadez et al (2000) and Deshpande and Karypis (2000) employ Markov Models to study browsing 

patterns.  Moe and Fader (2001) study repeat visit behavior and purchase conversion rates at 

Amazon and CDNow.  These studies focus primarily on browsing behavior within a web site.  Other 

research focuses on browsing behavior across web sites.  Montgomery and Faloutos (2002) found 

that many measures of browsing behavior are stable through time.  Johnson et al. (2002) study 

product search behavior and found that web browsers are engaging in only a limited amount of 
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searches across web sites for products.  For example, the average number of stores visited by book 

buyers in 1998 was 1.1.  Our study contributes to this growing literature by describing usage behavior 

and presenting a compatible model for its study.  It also helps bridge the gap between past research 

by examining session level behavior as opposed to page-by-page level analyses and aggregate level 

usage studies where the browsing behavior is aggregated at a monthly level. 

The outline of our paper is as follows.  In section 2 we define and describe our dataset and 

problem.  We describe various statistical approaches for modeling count data in section 3, starting 

with univariate approaches and generalizing to multivariate ones in section 4.  We discuss our results 

in section 4, and motivate the construction of a new model to deal with the observed discrepancies 

between our data and standard models of count data.  Section 5 concludes the paper with a summary 

and discussion of our findings. 

 
Category Domain Reach (%)
Auction Ebay.com 

Ubid.com 
Auctionwatch.com 

23.1 
16.3 
2.8

Entertainment Real.com 
Snap.com 
About.com 

17.5 
12.5 
12.1

Portals Yahoo.com 
MSN.com 
AOL.com 

62.7 
52.2 
44.6

Retailing Amazon.com 
Americangreetings.com 
Webstakes.com 

18.8 
10.0 
6.9

Service Microsoft.com 
Passport.com 
Hotmail.com 

39.3 
29.0 
26.9

Table 1.  Listing of most frequently visited domains in each category. 

2. Data 
 Our data is derived from a panel of web users constructed by Jupiter Media Metrix (JMM).  

JMM randomly recruits a representative sample of personal computers users and tracks their usage at 

home and/or work (Coffey 1999).  These panelists agree to run a program that runs in the 

background on their computer and monitors computer usage.  It records any URL viewed by the 

user in their browser window.  Since it records the actual pages viewed at the source, it avoids 

caching problems commonly found by recording page requests at their Internet Service Provider 

(ISP) or a web server.  Each page viewing, or more precisely the domain of the page viewing, is 
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classified by JMM into one of seven categories: portals, services, entertainment, retail, auctions, adult 

and other.  Examples of the top three domains in each of these categories are listed in Table 1 along 

with the percentage of individuals who visited the domain at least once during the month (Reach) for 

July 2000.  For example, Amazon is the most popular retail site and was visited by 18.8% of users.  

We should note that these domains represent only a small fraction of the web sites in each category. 

 
  Number of Page Views in Each Category 
Sess
-ion Start Time Auction

Enter-
tainment Portals Retail Service Adult Others

1 04Oct2000: 17:32:54 0 0 0 0 0 0 55 
2 06Oct2000: 00:58:47 0 0 0 0 8 0 7 
3 09Oct2000: 14:09:42 0 0 4 0 8 0 50 
4 10Oct2000: 17:28:23 0 0 0 0 8 0 9 
5 11Oct2000: 10:50:38 0 0 0 0 6 0 9 
6 11Oct2000: 17:18:18 0 0 0 0 5 0 1 
7 16Oct2000: 14:38:32 0 0 0 10 7 0 1 
8 19Oct2000: 22:58:45 0 0 0 0 10 0 14 
9 20Oct2000: 23:10:33 0 0 30 0 7 0 59 
10 23Oct2000: 14:07:07 0 0 0 0 10 0 1 
11 28Oct2000: 12:06:59 0 0 16 0 0 0 21 
12 29Oct2000: 10:16:34 0 0 0 0 0 0 2 
13 29Oct2000: 19:33:41 0 0 2 26 28 0 9 
14 02Nov2000: 14:05:36 0 0 0 3 4 0 19 
15 05Nov2000: 12:20:58 0 0 2 0 5 0 2 
16 05Nov2000: 22:04:06 0 0 7 0 4 0 2 
17 07Nov2000: 22:30:58 0 0 0 51 56 0 71 
18 09Nov2000: 11:26:28 0 0 1 0 15 0 6 
19 09Nov2000: 23:47:26 0 0 0 0 5 0 1 
20 26Nov2000: 17:11:54 0 0 0 0 7 0 52 

Table 2.  Data for a selected panelist (white, male, age 23). 

 Our dataset consists of the browsing behavior of 300 randomly selected users and was 

collected between July 1997 and November 2000.  The average user has an average of 441 sessions, 

which yields a total of 132,368 sessions.  The mean age of our users is 52 years old (standard 

deviation of 17), with a minimum or 7 and maximum of 84.  Also, 68% of users are male and 83% 

are white.  To illustrate, the usage information for one individual is listed in Table 2 for twenty out of 

a total of 140 sessions.  A session is defined as period of sustained web browsing, and ends after 

twenty minutes of inactivity.  There are several characteristics that we would like to point out that are 

illustrated by this example.  First notice the user never visits three of the categories: auction, 

entertainment, and adult.  Also, some sessions can be characterized by their extensive use in a 

particular category like shopping or its absence.  Second, the number of viewings in a category tends 
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to have a distribution with a long tail.  Finally, it is likely that usage in one category may be related to 

usage in another category (e.g., searches at portals should lead to more viewings). 

 We also list the descriptive statistics of the number of page viewings in each category across 

our 300 users in Table 3.  Notice that portals are the most commonly viewed pages, and account for 

15.8% of all viewings, followed by adult and service.  The most frequently visited category in our 

scheme is Other, which accounts for 36.5% of usage.  To measure the relationship between categories 

we compute the sample correlations in Table 4.  A cursory examination of these correlations shows 

only weak relationships, with an average correlation of 0.067, and the largest correlation being .21 

between the portal and other category.  This may lead one to conclude that there is little relationship 

amongst these categories, but as we will show in our subsequent analyses this is a premature 

conclusion. 

 
No. of viewings given that at least one viewed 

Percentiles 

Category Mean 
Std. 
Dev. 25th Median 75th Max 

Probability 
of no 
viewings 
during 
session Mean Variance

Auction 25.16 46.79 2 8 28 710 0.93 1.72 190.44 
Entertainment 16.11 46.56 2 5 14 1848 0.82 2.86 422.30 
Portals 11.03 29.06 2 4 11 2005 0.57 4.70 389.66 
Retailing 12.09 28.23 2 5 13 2501 0.86 1.65 126.34 
Service 12.98 25.55 2 5 14 1314 0.70 3.94 233.78 
Adult 40.17 78.25 2 10 41 1415 0.90 4.07 767.29 
Others 15.49 27.28 3 7 17 1008 0.30 10.89 573.12 

Table 3. Descriptive statistics of the number of page viewings in each category based upon a sample 
of 132,368 sessions. 

 
Auction 

Enter-
tainment Portals Retailing Service Adult Others 

Auction 1  
Entertainment 0.027 1  
Portals 0.014 0.034 1  
Retailing 0.041 0.052 0.021 1  
Service 0.025 0.123 0.054 0.047 1  
Adult 0.023 -0.008 0.118 0.008 0.065 1 
Others 0.019 0.044 0.210 0.045 0.084 0.117 1

Table 4. Sample Correlation of the Number of Page Viewing across Categories based upon a sample 
of 132,368 sessions. 

 



 

 

7  

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

R e ta i l V ie w in g s  P e r  S e s s io n

Fr
eq

ue
nc

y

 
Figure 1. Histogram of Number of Viewings Per Session in the Retail Category. 
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Figure 2. Histogram of Number of Viewings Per Session in the Retail Category on a Log Scale, Zero 
Excluded. 

 

3. Modeling Category Viewing with Univariate Models 
 To motivate our modeling discussion, we summarize our data by plotting the histogram of 

the number of web pages viewed during a session from the retail category; see Figure 1.  (We omit 

one outlier with 2501 viewings from this and subsequent figures.)  The huge spike at zero (86% of 

viewings as reported in Table 3) and a very long tail makes the natural scale quite compressed, so we 

plot the histogram again in Figure 2 using a log scale for the y-axis.  Our first problem is to introduce 

a model that is able to capture the type of marginal distribution exhibited in Figure 2.  In addition to 
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the large number of sessions with zero viewings and the variety in the number of viewings for the 

remaining sessions, there are several aspects of our data that are important to capture: discrete, 

multivariate, heterogeneity across users, and time series behavior.  In the next section we will propose 

a model that incorporates all of these aspects.  To motivate this model we define a series of models 

that become progressively more complicated models as they incorporate selected elements of the full 

model.  Our purpose in following this approach is to better understand the contribution of each of 

these elements and their potential weakness. 

 We begin with the standard Poisson regression model in section 3.1.  Next we introduce a 

univariate tobit model and contrast the results with the Poisson model.  We suggest two 

modifications to the tobit model to improve over the Poisson model, namely an exponential 

transformation and discretization.  Next we show our tobit model can be placed in the context of a 

hierarchical Bayesian framework to capture individual level heterogeneity.  We find that this model is 

a good approximation to the marginal behavior of the underlying phenomena.  In Section 4 we 

extend the modeling framework from univariate to multivariate, by considering a multivariate tobit 

model, and finally we introduce a version of the multivariate tobit model that allows time-varying 

browsing behavior. 

 

3.1. Univariate Poisson Model 
 Perhaps the most popular model of count processes, due to its simplicity, is the Poisson 

regression model.  In our problem we have a large spike at zero and introduce a truncated model 

with a mixture process at 0 to account for the large number of zero values: 

 




c

c

p-1y probabilit with   )(

py probabilit with                   0
~

ict
ict ZPoisson

Z  (1) 

 icict XZ ')ln( γ=  (2) 

Where ictZ  is user i’s number of viewings in domain category c in session t (i = 1, …, I; c = 1, …, C; t 

=  1, …, Ti). ictZ  is the mean of ictZ . iX  is an L × 1 vector that consists of covariates such as 

demographic variables. In our empirical application, iX  includes user i’s age (with log 

transformation), gender and race (whether the user is white or not). icγ  is an L × 1 vector of 

coefficients.  The expectation and variance of ictZ  in (1) conditional upon iX  is: 

 ic X
ictiict epZpXZE ')1()1()|( γ−=⋅−=  (3) 

 Standard maximum likelihood estimation (MLE) techniques are used to estimate the 

parameters in the model using SAS software.  The MLE estimates of the p parameters are the same 
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as the probability of no viewings during a session as reported in Table 3 (e.g., the estimate for p in the 

retail category is 0.86), and the remaining parameter estimates are given in table 5.  Notice that all of 

the parameter estimates appear to be highly statistically significant.  Notably we find that age 

decreases the expected viewings per category, while gender and race have mixed effects.  Men tend to 

view portals and adult sites with greater frequency than women, and white individuals are more likely 

to view auction, portals, service, and adult. 

  
Dependent 
Variable Intercept Log(Age) Gender White 

Expected 
Mean 

Auction 5.29 
(0.029) 

-0.65 
(0.007) 

-0.05 
(0.004) 

0.42 
(0.007) 

1.57 
(0.48) 

Entertainment 4.78 
(0.015) 

-0.46 
(0.004) 

-0.12 
(0.004) 

-0.29 
(0.004) 

2.66 
(0.67) 

Portals 3.39 
(0.013) 

-0.35 
(0.003) 

0.22 
(0.003) 

0.12 
(0.004) 

4.27 
(0.69) 

Retailing 4.25 
(0.024) 

-0.48 
(0.006) 

-0.01 
(0.005) 

-0.02 
(0.006) 

1.52 
(0.29) 

Service 4.28 
(0.014) 

-0.48 
(0.003) 

-0.27 
(0.003) 

0.23 
(0.004) 

3.47 
(0.89) 

Adult 2.67 
(0.015) 

-0.14 
(0.004) 

1.11 
(0.007) 

0.55 
(0.006) 

3.28 
(1.45) 

Others 3.99 
(0.009) 

-0.34 
(0.002) 

-0.08 
(0.002) 

0.09 
(0.002) 

10.27 
(1.51) 

Table 5. Estimation Results for Poisson Models.  The standard errors are given in parenthesis below 
the estimate. 

 The mean, which is the same as the variance in the Poisson model, and their standard errors 

are included in the final column.  For example, the expected value of retailing in our panel is 1.5 

viewings per session.  To illustrate the distribution of these predictions we overlay the predicted 

marginal distribution against the realized data in Figure 3.  A major deficiency of the Poisson model, 

as commonly happens in practice, is the problem of over-dispersion.  Most of the mass of the 

Poisson models is over small values (between 0 and 8 viewings per session).  However, the data has a 

long tail that the Poisson model is not able to capture since it has only a single parameter to capture 

both the mean and variance. 
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Figure 3. Histogram plot of observed and predicted distribution of the viewings in the retail 
category on a log scale. 

3.2. Univariate Tobit Models 
There are many potential methods for compensating for the over-dispersion problem of our 

Poisson model.  Researchers have proposed Compound Poisson Models (Cameron and Trivedi, 

1986), Negative Binomial Models (Boswell and Patil, 1970, Ramaswamy, Anderson, and Desarbo, 

1994), mixture models (van Duijn and Böckenholt, 1995, Wedel, et. al., 1993, Aitchison and Ho, 

1989, Farewell and Sprott, 1988), and Ordered Probit Models (Cameron and Trivedi, 1986) to 

overcome over-dispersion. We propose another alternative, the tobit model.  In addition to providing 

a variance parameter that can capture the over-dispersion problem, the tobit model naturally models 

the zero values in the data without using a mixture component.  Our primary reasons for choosing 

the tobit model are that the properties of the Guassian distribution have been thoroughly studied, it 

is easy to incorporate covariates, and it can be easily generalized to a multivariate model.  As our 

primary purpose is to motivate the multivariate model we propose in section 4, we do not provide an 

exhaustive comparison of alternative univariate specifications.   The basic problem with the tobit 

model is that it is a continuous model and not a discrete count model.  After introducing the tobit 

model, we will address the discretization of the tobit model in the next subsection. 

A continuous Type I Tobit (Amemiya 1985) model is specified as follows: 
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

 >

=
otherwise               0

0 if           **
ictict

ict
ZZ

Z  (4) 

 )  ,0(~,' 2*
cicticticict NXZ σεεγ +=  (5) 

Where *
ictZ  is a latent variable.  The expectation of ictZ  in (5) conditional upon Xi is: 

 )
)/'(
)/'(')('()|(

cic

cic
cic

c

ic
iict X

XXXXZE
σγ
σγφσγ

σ
γ

Φ
+Φ=  (6) 

 Our concern is that tobit model may not be able to capture the long tail in the observed 

distribution.  Therefore we introduce a log transformation of the dependent variable: 

 


 >

=
 otherwise                     0
   0 if         )exp( **  ZZ

Z ictict
ict  (7) 

 )  ,0(~,' 2*
cicticticict NXZ σεεγ +=  (8) 

The expectation of ictZ  in (7) conditional upon 
iX  is: 

 )/'(/)'(}
2

'exp{)|(
2

cic
c

ic
c

c
iciict XXXXZE σγ

σ
γσσγ Φ+Φ+=  (9) 

 The estimates for the continuous univariate tobit models without and with log 

transformation of the dependent variable using MLE using the SAS LIFEREG procedure are given 

in Tables 6 and 7, respectively. Comparing the estimates in Tables 6 and 7 to those of the Poisson 

model in Table 5 notice that the continuous univariate tobit models have higher variance estimates 

and higher estimated standard errors.  Substantively the same story emerges when we consider the 

impact of the covariates on viewings.  Given the over-dispersion of the Poisson model it is most 

likely that the standard errors of the Poisson parameters (Table 5) are understated since they do not 

take into account potential model misspecification (Cameron and Trivedi 1986). 

 
Dependent 

Variable Intercept Log(Age) Gender White σ 
Expected 

Mean 
Auction 17.12 

(4.016) 
-35.10 
(1.081) 

-6.07 
(0.829) 

10.78 
(1.089) 

74.4 
(0.64) 

1.00 
(0.36) 

Entertainment -15.87 
(2.396) 

-9.96 
(0.625) 

-3.01 
(0.502) 

-3.22 
(0.6112) 

57.94 
(0.29) 

2.19 
(0.48) 

Portals 20.76 
(1.119) 

-9.29 
(0.292) 

0.56 
(0.234) 

1.27 
(0.288) 

33.34 
(0.10) 

6.93 
(1.26) 

Retailing -4.95 
(1.735) 

-9.27 
(0.454) 

-4.92 
(0.350) 

-0.33 
(0.433) 

38.29 
(0.22) 

1.04 
(0.30) 

Service 8.68 
(1.186) 

-7.81 
(0.309) 

-5.77 
(0.245) 

5.92 
(0.313) 

32.68 
(0.13) 

2.64 
(0.73) 

Adult -130.86 
(5.60) 

-23.51 
(1.44) 

76.25 
(1.525) 

15.54 
(1.589) 

114.6 
(0.79) 

1.45 
(0.58) 
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Others -0.72 
(0.949) 

0.47 
(0.246) 

3.59 
(0.196) 

0.608 
(0.238) 

30.34 
(0.07) 

9.06 
(3.01) 

Table 6. Estimation Results for Continuous Univariate Tobit Models without Log Transformation 

Dependent 
Variable Intercept Log(Age) Gender White σ 

 
Mean 

Auction 1.20 
(0.24) 

-2.14 
(0.07) 

-0.39 
(0.05) 

0.65 
(0.07) 

4.55 
(0.04) 

2.22 
(0.272) 

Entertainment 0.69 
(0.09) 

-0.64 
(0.03) 

-0.19 
(0.02) 

0.004 
(0.02) 

2.50 
(0.01) 

2.95 
(0.251) 

Portals 2.13 
(0.06) 

-0.62 
(0.02) 

-0.05 
(0.01) 

0.09 
(0.02) 

1.97 
(0.006) 

4.41 
(0.585) 

Retailing 1.15 
(0.10) 

-0.83 
(0.03) 

-0.38 
(0.02) 

0.07 
(0.03) 

2.44 
(0.01) 

2.62 
(0.280) 

Service 1.63 
(0.08) 

-0.70 
(0.02) 

-0.39 
(0.02) 

0.47 
(0.02) 

2.33 
(0.009) 

3.82 
(0.624) 

Adult -0.79 
(0.13) 

-1.02 
(0.03) 

1.37 
(0.03) 

0.67 
(0.04) 

3.12 
(0.02) 

2.70 
(0.433) 

Others 0.14 
(0.347) 

0.19 
(0.090) 

0.28 
(0.071) 

-0.02 
(0.087) 

1.78 
(0.03) 

8.83 
(1.013) 

Table 7. Estimation Results for Continuous Univariate Tobit Models with Log Transformation 

 In Figures 3 we have included the predicted marginal distribution for both versions of the 

tobit model.  Notice that the tobit model on the continuous transformation does a poor job of 

capturing the exponential nature of the series.  On the otherhand the tobit model with the log 

transformation of the dependent variable does a reasonable job of representing the distribution; 

however, by properly modeling the discrete nature of the data, we can fit the data even better. 

 

Observed Value 
Observed 
Frequency 

Continuous Tobit 
Models 

Discretized Tobit 
Models 

0 0.863 0.915 0.892 
1 0.029 0.051 0.045 
2 0.016 0.019 0.017 
3 0.012 0.013 0.013 
Over 3 0.080 0.002 0.033 

Table 8. Observed Frequency vs. Predicted Probabilities Based on Different Univariate Models 

3.3. Discretized Univariate Tobit Model with Log Transformation 
 A fundamental problem with the tobit models presented in the previous section is that it 

assumes that the data take continuous values, while our data is discrete.  For large values the 

rounding error is not likely to be severe.  For example, if our model predicts a value of 100.1 and we 
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round to 100, the rounding difference is not substantial.  However, for small values this rounding 

error could be quite problematic.  To illustrate the potential rounding problem we compute the 

probability of observing a value of 0, 1, 2, 3, or more than 3 in Table 8 for the observed data and the 

continuous tobit model. 

 Instead of rounding the predicted values after the fact we can improve the model by 

properly discretizing the model in the following manner: 

 


 +<≤>=

=
 otherwise                                         0

  1ln ln and 0 if           ))(exp( *** ) (kZkZZFloork
Z ictictict

ict  (10) 

 )  ,0(~,' 2*
cicticticict NXZ σεεγ +=  (11) 

Where *
ictZ  is a latent variable, k is a positive integer, and Floor(Y) is the integer component of Y.  

This discretized tobit can also be thought of as an ordered probit model in which the orderings occur 
on the natural numbers.  The expectation of ictZ  conditional upon iX  is: 
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 This model could be estimated through MLE or using an Monte Carlo Markov Chain 

approach (MCMC).  We choose an MCMC approach as it is the approach that was used for  the 

multivariate model, which is introduced in section 4. (Readers who are interested in the setup and 

estimation procedure may consult with Appendix B.  This algorithm was coded using a C++ 

program.) 

 
Dependent 

Variable Intercept Log(Age) Gender White σ 
Expected 

Mean 
Auction 1.17 

(0.044) 
-0.58 

(0.012) 
-0.09 

(0.009) 
0.22 

(0.013) 
1.32 

(0.006) 
2.31 

(0.187) 
Entertainment 0.69 

(0.023) 
-0.23 

(0.005) 
-0.07 

(0.009) 
-0.06 

(0.011) 
1.52 

(0.007) 
3.29 

(0.159) 
Portals 1.89 

(0.037) 
-0.38 

(0.009) 
0.01 

(0.008) 
0.04 

(0.013) 
1.74 

(0.007) 
5.67 

(0.538) 
Retailing 0.73 

(0.044) 
-0.31 

(0.011) 
-0.17 

(0.010) 
0.01 

(0.012) 
1.38 

(0.006) 
2.71 

(0.166) 
Service 1.62 

(0.035) 
-0.39 

(0.008) 
-0.21 

(0.008) 
0.26 

(0.012) 
1.72 

(0.007) 
4.76 

(0.577) 
Adult -0.19 

(0.032) 
-0.34 

(0.009) 
0.88 

(0.012) 
0.32 

(0.014) 
1.54 

(0.007) 
2.97 

(0.465) 
Others 0.71 

(0.036) 
0.13 

(0.009) 
0.22 

(0.009) 
-0.01 

(0.011) 
2.07 

(0.008) 
13.2 

(1.252) 

Table 9. Estimation Results for Discretized Univariate Tobit Models with Log Transformation 
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 The predicted values from the discretized tobit model of observing 0, 1, 2, 3, or more than 3 

retail viewings in a session are given in Table 8 along with the observed and continuous tobit model.  

Notice that the discretized model represents a better approximation to the observed values.  

Additionally, we list the estimates for this discretized tobit model in Table 9.  As with the earlier 

models, the effects of age, gender, and race follow a similar pattern, although the magnitude of their 

effects is diminished.  Specifically, we find that older individuals tend to access auctions less 

frequently than younger users, men tend to have a higher usage of adult sites, while whites tend to 

view auction, adult, and service sites more frequently than non-whites.  Notice that the estimated 

standard errors and variance of the discretized univariate tobit models tend to be smaller than those 

of the continuous univariate tobit models. 

 

3.4. Heterogeneity in Viewership across Users 
 A recent trend in many marketing research studies is incorporating heterogeneity in usage or 

purchases across users into statistical models (Rossi and Allenby 2000).  Failure to account for 

consumer heterogeneity may lead to biased and inconsistent estimates (Allenby, Arora, and Ginter, 

1998, Gonul and Srinivasan 1993).  In our problem we can also expect individual users to behave 

quite differently.  As mentioned in the introduction a student may browse differently than a 

businessperson or a mother may surf differently than a child.  To incorporate consumer 

heterogeneity in our discretized univariate tobit model we frame our model in the context of a 

random coefficients model where each user is assumed to have a separate parameter vector.  We 

assume a standard multivariate normal prior that is exchangeable across individuals.  This yields the 

usual hierarchical Bayesian formulation, which is known to introduce shrinkage in the user estimates 

towards the central tendency.  Formally, our model can be written as: 
 ) ,(~),  ,0(~,' c

2* Σ+= ciccictictiicict NNXZ γγσεεγ  (13) 

The observational equation is the same as equation (10).  Also, we note that our covariates are fixed 

for each user (age, gender, and race) and hence the ability to estimate the corresponding parameters 

comes from the variability across users and not from variation within a user.  It is possible to create 

another level in the hierarchy and regress the variation in coefficients against these covariates, but we 

choose to express the model in this reduced form for simplicity.  Those readers who are interested in 

the prior setup and estimation procedure may consult Appendix B. 
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Dependent 
Variable Intercept Log(Age) Gender White σ Expected 

Mean 
Auction 1.71 

(0.20) 
-1.19 
(0.03) 

-0.20 
(0.15) 

0.54 
(0.09) 

1.19 
(0.005) 

1.56 
(0.119) 

Entertainment 2.40 
(0.11) 

-0.80 
(0.03) 

0.08 
(0.09) 

0.04 
(0.15) 

1.37 
(0.006) 

2.68 
(0.365) 

Portals 8.42 
(0.08) 

-2.08 
(0.03) 

-0.46 
(0.10) 

-0.18 
(0.10) 

1.49 
(0.006) 

4.45 
(0.552) 

Retailing 2.13 
(0.07) 

-0.77 
(0.03) 

-0.12 
(0.08) 

0.005 
(0.07) 

1.32 
(0.006) 

2.34 
(0.266) 

Service 4.63 
(0.11) 

-1.17 
(0.04) 

-0.39 
(0.09) 

-0.16 
(0.11) 

1.54 
(0.006) 

3.48 
(1.123) 

Adult -0.11 
(0.12) 

-0.57 
(0.03) 

0.56 
(0.19) 

0.87 
(0.09) 

1.34 
(0.006) 

2.19 
(0.265) 

Others -5.49 
(0.16) 

1.63 
(0.03) 

0.68 
(0.12) 

0.67 
(0.09) 

1.83 
(0.007) 

12.48 
(1.291) 

Table 10.  Estimation Results for Discretized Univariate Tobit Models with Log Transformation and 
Heterogeneity. The estimates are for the grand mean of the coefficients, i.e., γ  in the models. 

 The estimates for the discretized univariate tobit models with consumer heterogeneity are 

given in Table 10.  Incorporating individual level heterogeneity allows the predicted marginal 

distribution to better accommodate the long tail of the empirical distribution; see Figure 3.    
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Figure 4. Posterior of the Intercepts for the Retailing Category for 10 Selected Users 

To help illustrate the variability in usage across individuals we show the posterior 

distribution of the intercepts for retailing viewing for ten selected users in Figure 4.  For each user we 

create a boxplot (the whiskers denote the 10th and 90th percentiles, and the box denotes the 25th and 

75th percentiles, the line within the box is the 50th percentile, and the dot is the mean) of expected 
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number of retail viewings for one session.  Clearly, there is good deal of heterogeneity across users 

and the differences in the means are statistically significant.  We conclude that is important to 

account for consumer heterogeneity. 

 

3.5. Discussion of Univariate Models 
We have estimated a sequence of univariate models, each one progressively building upon 

the other.  The Poisson model is a simple model that does a poor job because of the over-dispersion 

in our dataset.  We have presented several formulations of the tobit model.  The usual tobit model 

does a poor job in capturing the long-tail in our observed data.  However, a tobit model with the 

dependent variable exponential transformed seems adequate.  To improve the fit of the tobit model 

to the data we discretize it properly.  Finally, we have added a hierarchical Bayesian formulation to 

account for heterogeneity in individual usage.  The progressive improvement in model fit  can  be 

summarized by considering the log-likelihood and Bayesian Information Criterion (BIC) in Table 11. 

Clearly, Poisson models perform the worst, even worse than the continuous tobit models without log 

transformation.  The best model is the hierarchical Bayesian, discretized tobit model with log 

transformation of the dependent variable. 

 

Categories 
 

Poisson 
Models 

Continuous 
Tobit Model 
Without Log 
Transform 

-ation 

Continuous 
Tobit Model 

With Log 
Transform 

-ation 

Discretized 
Tobit Model 

With Log 
Transform 

-ation 

Discretized 
Tobit Model 

With Log Trans-
formation and 
Heterogeneity 

Log-Likelihood 
Auction -93170.1 -92449.8 -88027.7 -84498.1 -77698.6
Entertainment -156450.1 -162223.1 -111178.7 -93927.4 -87316.9
Portals -238745.6 -317767.7 -174041.9 -102758.3 -92831.5
Retailing -96706.5 -121901.3 -92179.5 -87237.5 -84770.7
Service -194032.9 -238002.9 -147642.3 -102219.7 -94807.2
Adult -231619.9 -107693.9 -96399.9 -94964.9 -85403.9
Others -488211.3 -478456.2 -225339.9 -114346.6 -106371.3
BIC 

Auction 186365.8 184925.2 176081.0 169021.8 161589.4
Entertainment 312925.8 324471.8 222383.0 187880.4 180826.0
Portals 477516.8 635561.0 348109.4 205542.2 191855.2
Retailing 193438.6 243828.2 184384.6 174500.6 175733.6
Service 388091.4 476031.4 295310.2 204465.0 195806.6
Adult 463265.4 215413.4 192825.4 189955.4 177000.0
Others 976448.2 956938.0 450705.4 228718.8 218934.8

Table 11. Log-Likelihood and BIC for Different Univariate Count Models 
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4. Modeling Category Viewing with Multivariate Count Models 
In the previous section we assume that viewership across categories within a session are 

independent of one another.  However, this assumption is suspect.  There are some categories such 

as portals that should encourage users to find other sites.  Hence we would expect portal usage to be 

positively correlated with usage in other categories.  Additionally, auction sites like Ebay.com serve 

both a shopping and entertainment function.  If auctions are substitutes for other shopping visits, 

then their use may be negatively correlated with shopping and entertainment.  Alternatively, they may 

be complements and be positively correlated.  The point is that while we cannot be certain of the 

type of correlation patterns we will find, we are reasonably confident that there should be some 

dependence of viewings across categories.  In this section we continue the discussion of the previous 

section by generalizing our best univariate count model to a multivariate one.  Finally, we propose a 

new model that can account for a potential deficiency of this model.  Namely, that there appears to 

be some persistence in user browsing behavior. 

 

4.1. Multivariate Count Model 
To account for possible correlation between category viewing we propose the following 

discretized multivariate tobit model: 
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Notice that equation (15) is formulated as a multivariate model instead of the univariate model of 

equation (11).  We discuss the priors and estimation procedure for this model using an MCMC 

estimator in Appendix B. 

The parameter estimates for the discretized multivariate tobit model are given in Table 12.  

The posterior estimates for coefficients and demographics are quite different than the univariate 

estimates. For example, the age parameter of the retailing category is –0.77 for the univariate tobit 

model, while it is 0.16 for the multivariate tobit model. Hence the intercepts of the multivariate 

model give different predictions about Internet user’s intrinsic preferences. For example, with the 

univariate tobit models, auction sites are the fifth preferable and Others sites are the least preferable, 

while auction sites become the least preferable sites and Others sites become the most preferred sites 

with the multivariate tobit model. 
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Dependent 

Variable Intercept Age Gender White 
Expected 

Mean 
Auction -5.93 

(0.26) 
-0.05 
(0.07) 

0.21 
(0.29) 

-0.05 
(0.16) 1.76 

Entertainment -0.03 
(0.10) 

-0.45 
(0.03) 

0.13 
(0.10) 

0.21 
(0.06) 2.94 

Portals 1.11 
(0.06) 

-0.19 
(0.02) 

0.07 
(0.09) 

-0.07 
(0.08) 4.90 

Retailing -2.64 
(0.21) 

0.16 
(0.06) 

-0.35 
(0.14) 

0.04 
(0.11) 1.72 

Service 0.19 
(0.13) 

-0.18 
(0.05) 

-0.19 
(0.13) 

0.28 
(0.11) 4.08 

Adult -2.97 
(0.25) 

-0.34 
(0.05) 

1.23 
(0.18) 

0.13 
(0.15) 4.12 

Others 0.27 
(0.10) 

0.20 
(0.03) 

0.20 
(0.07) 

0.05 
(0.06) 11.22 

Table 12. Estimation Results for Discretized Multivariate Tobit Model.  The estimates are for the 
grand mean of the coefficients, i.e., γ  in the model. The numbers in the parentheses are posterior 
standard deviations.  

Category Auction 
Entert 

-ainment Portals Retailing Service Adult Others 
Auction 8.21 

(0.13) 
-1.38 
(0.04) 

0.86 
(0.03) 

2.82 
(0.07) 

1.96 
(0.04) 

3.32 
(0.07) 

0.04 
(0.02) 

Entertainment -0.25 3.72 
(0.05) 

0.49 
(0.01) 

0.61 
(0.03) 

0.79 
(0.02) 

0.66 
(0.03) 

0.32 
(0.01) 

Portals 0.23 0.20 1.66 
(0.01) 

0.43 
(0.01) 

0.52 
(0.01) 

0.64 
(0.02) 

0.37 
(0.01) 

Retailing 0.46 0.15 0.15 4.64 
(0.08) 

0.54 
(0.02) 

-0.82 
(0.03) 

0.46 
(0.01) 

Service 0.44 0.26 0.26 0.16 2.48 
(0.03) 

1.06 
(0.02) 

0.34 
(0.01) 

Adult 0.51 0.15 0.22 -0.17 0.30 5.18 
(0.07) 

0.90 
(0.02) 

Others 0.01 0.11 0.19 0.14 0.14 0.27 2.20 
(0.01) 

Table 13. Estimated Error Correlation (lower triangle) and Covariance Matrix (upper triangle matrix) 
Across Categories from Multivariate Count Model. 

The estimates of the error covariance matrix (Σ) are given in Table 13.  (The upper triangular 

portion of the matrix contains the estimates of the covariance matrix, and the lower triangular 

portion has the correlation estimates.)  We point out to the reader that these correlations are based 

upon the dependent variable that is on a logarithmic scale.  Consistent with our prior expectations 

the off-diagonal covariance estimates are significantly different than zero, which shows that the 



 

 

19  

independence assumption of the univariate model is indeed too strong. Also we find that the 

variance estimates of the discretized multivariate tobit model tends to be larger than those of the 

discretized, univariate tobit in section 3.4.  More substantially we find that auction viewings tend to 

occur with retailing, service, and adult viewings indicating some complementary in usage, while 

auction viewings tend to substitute for entertainment viewings.  This indicates auctions might serve 

an entertainment purpose for users.  There is also some evidence that retailing and adult viewings 

tend to occur in different sessions.   For the most part viewing in one category tends to be positively 

correlated with unexplained usage in other categories, indicating that during longer sessions 

individuals tend to view more viewings from all categories. 

 

4.2. Multivariate Count Model with Mixture Process  
A final characteristic of our data is that users may exhibit persistence in their viewings. For 

example, a user may repeatedly search for price and product information on a retailer site across a 

number of sessions. Another user may search for several session for new content and information 

until she finds it, and then focuses her attention on the new content that is found.  The model 

proposed in section 4.1 assumes that each of the sessions are independent of one another.  In order 

to introduce some dependency across sessions, we propose that user sessions will be drawn from a 

mixture process where the transitions between these states follow a markov process.  Formally we 

can write our model as: 
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Where s  denotes the state of hidden Markov chain Di.  We assume that this hidden Markov chain 

follows a continuous-time Markov chain with S  states. 

We assume that the hidden Markov process Di has the same transition probability matrix P 

and the same starting probabilities v  across all the users and categories.  
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The hidden Markov chain has waiting times that are exponentially distributed with intensity 
),...,1 S (ss =λ . 

 In order to identify the states of icsγ , we place a restriction on the means of the latent 

variable *
ictsZ . Specifically, we introduce a variety score, itsR , which is meant to capture the diversity 

of the content viewed during the session: 

 s tci,ZZR iktskictsits  and ,  for   ,|))(maxmax(| ** −=  (19) 

Where *
ictsZ  is the mean of *

ictsZ . We assume state 1 is the state that exhibits the highest variety-

browsing behavior (lowest value of itsR ) and state S  is the state that exhibits the most focus-

browsing behavior (highest value of itsR ): 1)1( itSititS RRR ≥⋅⋅⋅≥≥ − , for i and t. 

 Given the nature of portals and other sites, users visiting sites in these two categories are more 

likely to search for information in other categories and more likely to be in a variety-browsing state. 

Therefore, we add another identification condition that is *
1'

*
)1('

*
' ticStictSic ZZZ ≥⋅⋅⋅≥≥ − for i and t, 

where c’ = portals or other.  We can compute the variety scores from the rest of five categories and 
apply the restriction, 1)1( itSititS RRR ≥⋅⋅⋅≥≥ − , for i and t, accordingly. 

The prior for the continuous-time hidden Markov chain iD  is given by: 
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Where v  is the density of the starting values of D, where islN  is the number of times that Di jumps 

from state s  to l  and where Mis is the number of times that Di jumps to state s , and )( sDI i = is 

an indicator function.  We refer the reader to Appendices A and B for a discussion of our estimation 

procedure. 

 To better illustrate the movement of our hidden Markov chain, we plot the predicted 

probability of being in the focus-browsing state (i.e., state 2) and compare it to an estimate of the 

movement based on an ad hoc rule.  We select a user with 140 sessions (see Figure 5).  Our ad hoc 

rule computes the variety score using the function defined in equation (19), but instead of using the 

mean of the latent variable we replace it with the observed usage. The ad hoc rule works as follows, if 

the variety score for a particular user at a particular time is less than the grand mean of all the variety 

scores across users and across time, then the state for that particular user at the particular time is 

assigned as state 1—the variety-browsing state; otherwise, the session is assigned to state 2—the 

focus-browsing state.  Notice in Figure 5 the light user starts with a focus-browsing state and stays in 

this state for quite a while, only occasionally switching to the variety-browsing state.  Looking at the 

data we find that this user normally focuses on adult sites when he is in the focused-browsing state 
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and only occasionally looks at portal sites, retailing sites and other sites. In general, the prediction of the 

chain movement is similar to that based on the ad hoc rule.  The major difference is in predicting 

when the switches occur. Overall, the ad hoc rule tends to over-predict the switching times. 
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Figure 5. Hidden State Movement for One User with 140 Sessions, ‘the light user’.  

4.3. Discussion of the Model with Hidden State Movements 
 The first question in model specification is what is the appropriate number of states for our 

model.  We compute the Bayes factors following Kass and Raferty (1995) for a three different 

models: a one state, two state and three state version of the hidden Markov chain model.   The two 

state model is favored over the one state model by odds of 128243.8.  Also, the two state model is 

favored over the three state model by odds of 1265.5.  Since the two-state Markov process is strongly 

favored, we only present the results for this model. 

 The estimates for the parameters of the two-state model are given in Table 14 and the error 

covariance matrix for the two states is given in Table 15.  If we look at the intercepts across the 

seven categories, which are related to the average tendency to view a page within each category, we 

find that in the variety-browsing state portals and other sites are the most likely to be visited.  As we 

compare these estimates with those in the second state what is most striking is the drop in values for 

viewings in the auction, adult, and retail categories.  It is important to remember that the expectation 

is a function of both the intercept and variance parameters since our latent values have a log 
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transform (see equation (9) for the univariate tobit model).  Notice that intercept of auctions in the 

first state is small and this decreases substantially in the second state.  At the same time the variance 

also increases dramatically.  This implies that although a user is less likely to view auction pages (i.e., 

smaller mean), there is also a greater chance that a large number of auction viewings will occur (i.e., 

higher variance).  Hence, while the mean decreases slightly from the variety to the focused state, what 

is more important is the thicker tails in the focused state. 

 

State 
Dependent 

Variable Intercept Age Gender White 
Expected 

Mean 
Auction -1.840 

(0.103) 
-0.016 
(0.019) 

0.00003 
(0.013) 

-0.0007 
(0.010) 

2.67 

Entertainment -1.168 
(0.067) 

0.047 
(0.017) 

0.002 
(0.014) 

0.0003 
(0.010) 

4.47 

Portals 0.244 
(0.053) 

0.071 
(0.018) 

0.004 
(0.013) 

0.0008 
(0.010) 

7.46 

Retailing -1.275 
(0.085) 

-0.021 
(0.019) 

-0.005 
(0.013) 

-0.0022 
(0.010) 

2.61 

Service -0.449 
(0.121) 

-0.030 
(0.032) 

-0.002 
(0.013) 

0.0006 
(0.010) 

6.21 

Adult -1.112 
(0.125) 

-0.161 
(0.037) 

0.003 
(0.012) 

-0.0031 
(0.009) 

6.26 

State 1 
(Variety 
Browsing) 

Others 1.089 
(0.064) 

0.013 
(0.017) 

0.007 
(0.014) 

0.0033 
(0.010) 

17.07 

Auction -12.62 
(0.499) 

-0.054 
(0.023) 

-0.0005 
(0.012) 

-0.0012 
(0.010) 

1.31 

Entertainment -1.735 
(0.127) 

-0.016 
(0.020) 

0.0004 
(0.013) 

0.0003 
(0.010) 

2.19 

Portals -0.234 
(0.069) 

-0.109 
(0.025) 

0.0004 
(0.011) 

-0.0009 
(0.010) 

3.65 

Retailing -3.497 
(0.176) 

0.033 
(0.034) 

-0.0030 
(0.013) 

0.0001 
(0.010) 

1.28 

Service -0.804 
(0.085) 

0.030 
(0.016) 

-0.0013 
(0.013) 

0.0010 
(0.010) 

3.04 

Adult -6.390 
(0.290) 

0.019 
(0.022) 

0.0025 
(0.012) 

0.0003 
(0.010) 

3.06 

State 2 
(Focused 
Browsing) 

Others 0.237 
(0.076) 

0.079 
(0.025) 

0.0077 
(0.012) 

0.0020 
(0.011) 

8.36 

Table 14. Estimation Results for Multivariate, two-state hidden Markov chain Tobit Model. The 
estimates are for the grand mean of the coefficients, i.e., γ  in the model. The numbers in the 
parentheses are posterior standard deviations. 

 It is the truncation of the tobit model at zero that drives these results.  This effect is most 

pronounced for auctions, retail, and adult.  But the decrease in intercepts and increase in variances 

occurs for all of the categories.  Again this indicates that the tails of the distribution become thicker 
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(i.e., if a user views the category, it is likely the user will view more pages in this category).  Previously 

it appeared that there might be a negative relationship between retail and adult viewings (see Table 

13).  However, if we separate out the variety and focused browsing states it appears that what is 

happening is that there are sessions with quite a few retail viewings, they are either likely to be quite a 

few adult viewings or none at all. 

 

State Category Auction 
Entert 

-ainment Portals 
Retail 
-ing 

Serv 
-ice Adult Others 

Auction 2.03 
(0.03) 

0.81 
(0.02) 

0.05 
(0.02) 

1.26 
(0.03) 

0.72 
(0.03) 

1.18 
(0.03) 

-0.53 
(0.02) 

Entertain 
-ment 0.42 1.82 

(0.03) 
0.10 

(0.01) 
1.08 

(0.04) 
0.69 

(0.03) 
1.06 

(0.05) 
-0.58 
(0.02) 

Portals 0.03 0.06 1.68 
(0.01) 

-0.04 
(0.02) 

0.36 
(0.01) 

-0.06 
(0.02) 

0.51 
(0.01) 

Retailing 0.59 0.53 -0.02 2.28 
(0.05) 

0.83 
(0.04) 

1.41 
(0.06) 

-0.62 
(0.02) 

Service 0.37 0.38 0.21 0.41 1.83 
(0.02) 

0.88 
(0.04) 

-0.01 
(0.02) 

Adult 0.55 0.52 -0.03 0.62 0.43 2.28 
(0.05) 

-0.83 
(0.03) 

State 1 
Variety- 
Browsing 

Others -0.22 -0.26 0.24 -0.25 -0.004 -0.33 2.77 
(0.02) 

Auction 63.20 
(1.68) 

11.26 
(0.40) 

0.81 
(0.14) 

19.73 
(0.75) 

6.47 
(0.18) 

25.53 
(0.77) 

-7.49 
(0.11) 

Entertain 
-ment 0.55 6.74 

(0.22) 
1.07 

(0.05) 
3.14 

(0.15) 
1.27 

(0.04) 
2.35 

(0.13) 
-0.61 
(0.04) 

Portals 0.04 0.18 5.56 
(0.14) 

1.83 
(0.12) 

1.13 
(0.04) 

2.76 
(0.12) 

-0.04 
(0.03) 

Retailing 0.71 0.35 0.22 12.28 
(0.49) 

1.49 
(0.06) 

5.33 
(0.26) 

-1.66 
(0.06) 

Service 0.40 0.24 0.24 0.21 4.08 
(0.07) 

2.24 
(0.07) 

0.09 
(0.02) 

Adult 0.74 0.21 0.27 0.35 0.26 18.84 
(0.50) 

-2.03 
(0.06) 

State 2 
Focus- 
Browsing 

Others -0.45 -0.11 -0.01 -0.23 0.02 -0.22 4.38 
(0.03) 

Table 15. Estimated Correlation/Covariance Matrix Across Categories for the Multivariate two-state 
hidden Markov chain Tobit Model. 

 Notice that in contrast to the previous models, the demographic variables of gender and race 

do not seem to have a significant impact on user’s viewings.  In summary, the inability of the 

previous models to account for persistence in user’s browsing may lead biased estimates and 

erroneous inferences. 
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 The estimates for the two-state hidden Markov chain are given in Table 16.  Notice that the 

user has a high probability of starting in a variety browsing state (89%).  These sessions tend to have 

a smaller number of viewings in many categories.  On average the user will stay in this variety-

browsing state for about two sessions (i.e., the inverse of waiting time is 0.56).  In contrast the 

focused browsing states tend to carry over a longer period time of about four sessions (i.e., the 

inverse of waiting time is 0.25).  The transition probability matrix is trivial for the two-state model, 

since there are only two states and the switching behavior is captured by the waiting time in each 

state. 

 
 State 1 (Variety-Browsing) State 2 (Focus-Browsing) 
λ (Inverse of Waiting Time) 0.56 

(0.005) 
0.25 

(0.007) 
ν (Starting Probabilities) 0.89 

(0.018) 
0.11 

(0.018) 
0 1 P (Transition Probabilities) 
1 0 

Table 16. Estimation Results for the Two-State Hidden Markov Chain 

 A final analysis was preformed  to understand the contribution in terms of predictive ability 

of our final model using various information sets.  The results are provided in Table 17.  First we  

calculate the sample variance of the original dataset as given in Table 3.  Next we estimate our one-

state model (which is the same as the model presented in section 4.1) using the demographic 

information.  For example, the sample variance of retailing viewings is 126.34, but by using the one-

state model estimates and the demographics this is reduced by 6% to 118.2.  In the next column we 

predict the number of retail viewings in a session using the one-state model estimates and assuming 

that we know the demographics and the viewings in all the other categories.  For the retailing 

category we find that the variance is reduced by 18% if we know the viewings in the other categories.  

We then repeat these calculations using our two-state model, and find that with demographics and 

the other categories we can reduce the variance by 40%.  To help understand these gains we show 

the variability in each of the states in the final four columns.  Much of the gain comes from being 

able to know if the user is in a focused or variety seeking state.  The gains in the other categories are 

even more dramatic.  On average our one state model reduces the variance by 26%, and the two state 

model by 41%.   If we have information about the viewings in the other categories we can reduce the 

variance by about half (50%). 
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Two-State Model One-State Model 

Conditional on  
Two-State Model 
(Average) 
Conditional on 

State 1 
Conditional on 

State 2 
Conditional on 

Category Sample 
Variance 

Demo-
graphics 

Demo-
graphics 
And 
Other* 
 

Demo-
graphics

Demo-
graphics 
And 
Other 
 

Demo-
graphics

Demo-
graphics 
And 
Other 
 

Demo-
graphics 

Demo-
graphics 
And 
Other 
 

Auction 190.44 112.9 91.2 83.7 71.3 127.4 108.5 62.3 53.1 
Entertainment 422.30 330.4 299.5 254.9 210.5 387.9 320.3 189.8 156.7 
Portals 389.66 289.7 277.9 252.2 232.3 383.8 353.5 187.8 172.9 
Retailing 126.34 118.2 103.2 92.9 76.4 141.4 116.3 69.2 56.9 
Service 233.78 134.5 123.2 115.1 87.5 175.2 133.2 85.7 65.2 
Adult 767.29 565.5 520.1 436.3 395.0 663.9 601.1 324.9 294.1 
Others 573.12 478.4 400.3 371.1 311.9 564.7 474.6 276.3 232.3 

Table 17. Mean of the Squared Error for Discretized Multivariate Tobit Models, *Other refers to all 
the other contemporaneous categories. 

5. Summary and Conclusions 
 In this paper we have presented a case study of the number of web viewings that a 

representative sample of web users make in seven different categories.  Statistically this dataset can be 

described as a multivariate, time series count dataset.  We have presented an analysis of a sequence of 

progressive more complicated models to show the importance of the multivariate and time series 

elements of our model.  First we started with a Poisson model, and found that the equivalence of the 

mean and variance was too limiting of an assumption.  Second we proposed using a tobit model, and 

found that if the latent variable is measured on a logarithmic scale that this provides a good 

approximation to the true series.  Since our original tobit model was continuous and we were 

concerned that rounding errors might be very problematic for small values, we also considered a 

discretized the tobit model.  Given that we had multiple sessions across each user we introduced 

heterogeneity through a hierarchical Bayesian framework.  We found significant differences in usage 

across individuals.  We showed how our model could be generalized to a multivariate framework, 

and finally, we introduced a mixture model to future account for within person heterogeneity in 

usage.  To allow for time series effects we used a Markov process to describe the state transitions.  

On average our final model was able to reduce the variability by 41% over the sample variance. 

 Our final model represents a new contribution to the statistical literature and has the four 

characteristics: 

1. Discretized tobit model that is able to handle counts with long tailed distributions. 

2. Hierarchical Bayesian formulation that can measure heterogeneity across users. 
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3. Multivariate formulation that is useful when the underlying counts are interdependent. 

4. Mixture model with Markov process that can describe within person heterogeneity and 

persistence or time series effects in the underlying process. 

Although we have reserved the discussion of the estimation procedure for the Appendix, we have 

employed several recent advances in the statistical literature: Markov Chain Monte Carlo estimation 

algorithm, slice sampler for truncated distributions, and reversible jump for estimating the switching 

model.  Without these new techniques it would have been quite difficult to estimate our new 

proposed model. 

 Besides the methodological contribution, we have also learned about web browsing 

behavior: 

1. The marginal distribution of web viewing during a session has a long-tail.  This distribution 

also has many observations that are zeroes (See Figure 3). 

2. If an analyst only looks naively at the sample correlation matrix (Table 4) it may appear that 

the counts of viewings in each category are independent of one another.  However, this 

is not the case.  In our analysis we found that the long-tail, high frequency of censored 

observations, and heterogeneity masked the correlations amongst the counts (see Table 

13 and 15). 

3. Our final model can explain about half the sample variance if we know the viewings in the 

other categories and the user’s demographics. 

4. Users tend to have sessions that are focused on viewing a variety of information, and then 

switch to sessions that are more narrowly focused on viewing information from fewer 

categories. 

We believe these findings will be of interest to web designers, marketing researchers, and cognitive 

psychologists.  First, for web designers it implies that knowing the context of a visit (what else did 

the user do during their session) could potentially be very useful in understanding how long a user 

will stay at a site.  Marketing researchers should be interested to know that 40% of the variability of 

retail visits can be explained by user demographics and viewings in other categories.  This could 

potentially help marketers better target users who are interested in shopping, and help eliminate some 

of the unwanted advertising of those users who are not interested in shopping.  Finally, our results 

support the foraging model of information search proposed by cognitive psychologists.  It appears 

that users graze across many sites (or information sources), and then narrowly browse fewer 
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categories but in more depth.  For information rich environments like the web, foraging models may 

be efficient strategies for users in locating and using information. 

 
 

Appendix A: Estimation Notes 
 

Discretized Tobit Model 

 We use a standard Bayesian approach (Gibbs Sampler) to estimate our discretized tobit 

model by assuming the following diffuse priors: 
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Hierarchical Bayesian Formulation of the Discretized Univarite Tobit Model with Log 

Transformation 

 In the last univariate count model that we add heterogeneity to the discretized Type I Tobit 

model with log transformation.  We employ an exchangeable prior to induce shrinkage across users 

with the following prior setup: 
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 Since the full conditional distributions for the parameters in the two discretized tobit models 

are relatively straightforward, we do not include them in this paper. Those who are interested in them 

may consult with Appendix B where the full conditional distributions for the multivariate tobit model 

with mixture process are specified. 
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Hierarchical Bayesian Formulation of the Discretized Multivariate Tobit Model with Log 

Transformation and Markov Mixture Process 
 We assume a priori that the densities of the starting values for Di, )( 0iDv , and the density of 

each row of the hidden chain transition matrix are Dirichlet densities. In addition, we assume a priori 
that the intensity parameters, sλ , for Di follow a Gamma density. That is, 

P of row j  theis   vector,C1 a is  ],[~

),(~
)(~

th
jjjj

priorpriors

PDirichletP

scaleshapeGamma
Dirichletv

×ττ

λ
α

 

We complete the rest of the model with the following priors. 

],[~

l. and sfor  ],,[~

l. and sfor  ],1,0[~

l. and s i,for  ,L ..., 1,  l           
 covariate, l for the tscoefficien of vector l  thedenotes l  where],,[ ~

1

1

thth

ΣΣ
−

−

Σ

Ω

⋅

=

VWishart
WishartV

IMVN

VMVN

s

vsl

sl

slslisl

ρ
ρ

δ
γ

γγ

 

Notice that a Bayesian shrinkage approach is used to account for consumer heterogeneity. 

We apply data augmentation and MCMC method (Gibbs Sampler and Reversible Jump Algorithms) 

based on the following full conditional distributions. 

 

                                                                                       },{},{|
                                                                                            },{|

                                                                          ,},{,},{},{|

                                                          },{| 
                                                                    ,},{},{},{| 

                                                             ,},{},{|

     one    the          

except  covariates allfor  denotes    where,,,},{},{},{|

,},{|

},{},{},{|

*

s

*1-

1

*

*

jij

i

jislsiiti

priorpriori

iislits

vslislsl

th

-
sslsliislitisl

slislsl

siislitit

vDP
Dv

PvXZD

 , scale shapeD
VXZ

V

 l

lVXZ

V

XZZ

τ
α

γ

λ
ργ

ργγ

γγγ

δγγ

γ

Σ

Σ

Ω

Σ

Σ

ΣΣ

−

−

 

The multivariate draws of *
itZ  are generated from truncated normal distribution using a Slice 

Sampler.  The multivariate draws of slγ  and islγ  are generated from conjugate multivariate normal 

distributions given the identifiability restrictions. The random draws of -1
sΣ  and 1−

slV  are generated 

from conjugate Wishart distributions. The random draws of sλ  are generated from a conjugate 
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Gamma distribution. We generate the draws of iD  using a reversible jump algorithm. The 

multivariate draws of v  and jP  are generated from conjugate Dirichlet distributions.  The 

estimation procedure was coded using a C++ program. The first 10,000 iterations are discarded as a 

“burn-in” period after convergence of the chains was observed, and the last 5,000 iterations are used 

to compute the posterior moments. 

 

 

Appendix B: Monte Carlo Markov Chain for Estimating the Model 
 

The full conditional distributions are given as follows. 
(1). Data augmentation step: The full conditional density for *Zict

 can be sampled from using a slice 

sampler algorithm, see Damian and Walker (1999) for a general discussion of the slice sampler 

algorithm.  
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Where 111 )'( −−− +Σ= ∑ sl
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where ns is the number of times Di was in state s and Ts is the amount of time that Di was in state s. 

(7). 

 ,},{,},{},*{| jislsii PvXitZD γΣ ~ Reversible Jump Algorithm: independence sampler, 

refinement sampler, and birth-and-death sampler. We use the reversible jump Hasting Metropolis 

(HM) algorithms proposed by Liechty and Roberts (2001) to generate samples of each hidden 

Markov chain Di. The difference between their algorithm and ours is based on the distribution of Z 

in this paper versus the likelihood functions in theirs.  We used three different algorithms for 

updating Di.  The first algorithm is an independence algorithm, which ignores the current realization 

of Di and proposes realizations of Di by drawing from the prior density of Di.  This results in 

proposed realizations that are considerably different, in terms of the posterior density, and as a 

consequence this algorithm tends to result in large but infrequent moves.  The other two algorithms 

create proposed realizations of Di by making small modifications to the current realization of Di.  

The second algorithm is a refinement algorithm where the proposed realization of Di is created by 

modifying one of the jump times of the current realization of Di.   The third algorithm is a birth-

death algorithm where the proposed realization of Di is created by either inserting a new interval into 

the current realization of Di – a birth – or removing an interval from the current realization of Di – a 

death.  The independence algorithm has obvious advantages when the posterior distribution is multi-

modal or when a poor initial value of Di has been chosen, where as the refinement algorithm and the 

birth-death algorithm have the advantage of more efficiently exploring the modes of the posterior 
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distribution. In order to take advantage of the properties of these three algorithms, one of these three 

algorithms is randomly chosen at each iteration of the MCMC algorithm to update each hidden 

Markov chain. Although our model itself is different from theirs, we apply the algorithms proposed 

by Liechty and Roberts (2001) and refer to their description of the algorithms and the formulas for 

calculating the acceptance probabilities. 

(8). 
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The draws of Pj can be sampled from Gamma distribution with ∑+=
i

ijkjk mshape τ  and scale = 

1 for all k. Then normalize each draw using the sum of all of the draws. 
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