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Modeling Online Browsing and Path Analysis 

Using Clickstream Data 

 

 

Abstract: 

 

Clickstream data provides information about the sequence of pages or the path viewed by users 

as they navigate a web site.  We show how path information can be categorized and modeled 

using a dynamic multinomial probit model of web browsing.  We estimate this model using data 

from a major online bookseller.  Our results show that the memory component of the model is 

crucial in accurately predicting a path.  In comparison traditional multinomial probit and first-

order markov models predict paths poorly.  These results suggest that paths may reflect a user’s 

goals, which could be helpful in predicting future movements at a web site.  One potential 

application of our model is to predict purchase conversion.  We find that after only six viewings 

purchasers can be predicted with more than 40% accuracy, which is much better than the 

benchmark 7% purchase conversion prediction rate made without path information.  This 

technique could be used to personalize web designs and product offerings based upon a user’s 

path. 

 

Keywords:  Personalization, Multinomial Probit Model, Hierarchical Bayes Models, Hidden 

Markov Chain Models, Vector Autoregressive Models 
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1. Introduction 

 One of the original promises of the web was that online stores would be able to fully 

realize the potential of interactive marketing (Blattberg and Deighton 1991, Hoffman and Novak 

1996, Alba et al. 1997) through personalization (Pal and Rangaswamy 2003, Ansari and Mela 

2003).  Currently, online stores target visitors (Mena 2001) using many types of information, 

such as demographic characteristics, purchase history (if any), and how the visitor arrives at the 

online store (i.e., did the user find the site through a bookmark, search engine, or link on an 

email promotion).  Another potentially rich—but underutilized—source of information is 

clickstream data, which records the navigation path that a user takes through the web site 

(Montgomery 2001).  Unfortunately marketers have lacked a methodology for analyzing path 

information (Bucklin et al. 2002).  Our paper proposes a new model that draws upon past work 

in choice modeling (Rossi, MuCulloch, and Allenby 1996, Paap and Franses 2000, Haaijer and 

Wedel 2001) to extract information from the path.  In particular, we develop a statistical model 

that analyzes the page-by-page viewings of a visitor as they browse through a web site. 

 Path data may contain information about a user’s goals, knowledge, and interests.  The 

path brings a new facet to predicting consumer behavior that analysts working with scanner data 

have not considered.  Specifically, the path encodes the sequence of events leading up to a 

purchase, as opposed to looking at the purchase occasion alone.  To illustrate this point consider 

a user who visits the Barnes and Noble web site, barnesandnoble.com (B&N).  Suppose the user 

starts at the home page and executes a search for “information rules”, selects the first item in the 

search list which takes them to a product page with detailed information about the book 

Information Rules by Shapiro and Varian (1998).  Alternatively, another user arrives at the home 

page, goes to the business category, surfs through a score of book descriptions, repeatedly 

backing up and reviewing pages, until finally viewing the same Information Rules product page. 

 Which user is more likely to purchase a book: the first or second?  Intuition would 

suggest that the directed search and the lack of information review (e.g., selecting the back 

button) by the first user indicates an experienced user with a distinct purchase goal.  The 

meandering path of the second user suggests a user who had no specific goal and is unlikely to 
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purchase, but was simply surfing or foraging for information (Pirolli and Card 1999).  It would 

appear that a user’s path can inform about a user’s goals and potentially predict future actions. 

 Our proposed statistical model can make probabilistic assessments about future paths 

including whether the user will make a purchase.  Our results show that the first user is more 

likely to purchase.  Moreover, our model can be applied generally to predict any path through 

the web site.  For example, which user is more likely to view another product page or leave the 

web site entirely within the next five clicks?  Potentially this model could be used for web site 

design or setting marketing mix variables.  For example knowing that a user is less likely to 

purchase the site could dynamically change the design of the site by adding links to helpful 

pages, while for those users likely to purchase the site could become more streamlined.  A 

simulation study using our model suggests that purchase conversion rates could be improved 

using the prediction of the model, which could substantially increase operating profits. 

 From a marketing perspective, there has been recent interest in mining web data to 

predict purchase conversion (Moe and Fader 2004, Moe et al 2002, Park and Fader 2004).  These 

studies have focused upon web browsing behavior using session level data.  This aggregate data 

is quite different from the page-level clickstream data we consider.  One criticism of aggregate 

clickstream data is that sequential information is lost, while in our click-by-click level analysis it is 

retained.  Since web sites must interact with users dynamically this sequencing data is crucial. 

 Sismeiro and Bucklin (2003) do consider some sequencing information.  Specifically they 

model the completion of tasks that correspond with groups of web pages.  However, our work is 

much more detailed, since we are modeling page-level movements through a web site and not 

collections of pages that correspond to tasks.  This requires our model to be much more flexible 

since the paths we observe do not have nice, sequential properties as does Sismeiro and Bucklin. 

 We also contrast our work with that of Ansari and Mela (2003), who consider the 

personalization of e-mail messages—but whose work could potentially be applied in a 

clickstream environment.  Again the basic difference is the type of data that we consider which 

dictates many modeling differences.  Their data is derived from user clicks on hyperlinks to 

personalized e-mails.  These emails may be separated by many days; hence modeling the 

dependence between choices is not crucial.  Their choice model assumes independence both 
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within a page and across time.  In contrast, our goal is to focus on the sequence of the choices 

made, which tend to occur within seconds of one another.  Hence we find it critical to introduce 

correlation across choices as well as time series elements to capture the timing of the choices. 

 

2. Clickstream Data 

 Given that clickstream data may be unfamiliar to many readers we first explain our data, 

how it is collected, and conduct an exploratory data analysis to motivate the model we introduce 

in §3.  Our data is derived from a panel of web users maintained by Jupiter Media Metrix, which 

is now known as Comscore Media Metrix (CMM).  CMM randomly recruits a representative 

sample of personal computers users and tracks their usage at home (Coffey 1999).  These 

panelists agree to install a computer program (or PC meter) that runs in the background and 

monitors computer usage.  It records any URL viewed by the user in their browser window.  

Since it records the actual pages viewed in the browser window, it avoids the caching problems 

commonly found by recording page requests at an Internet Service Provider (ISP) or a web 

server.  However, the meter does not distinguish how the user navigates between pages (e.g., 

does the user select a hyperlink, a bookmark, or directly type in the URL to navigate to a page).  

Nor does the meter record the content of the page, only the URL. 

 

2.1. Descriptive Analysis and Defining the Path 

 Our dataset consists of 1,160 users who visited barnesandnoble.com (or also books.com 

or bn.com) between April 1, 2002 and April 30, 2002. (We abbreviate references to 

barnesandnoble.com as B&N.)  This dataset represents all users in the full CMM panel who 

visited B&N for April 2002, or almost 6% of the full panel.  We selected B&N for our analysis 

because it is a popular online bookstore and has a relatively clean and stable site structure 

compared to other online stores.  Although we use clickstream data collected by CMM, our 

methodology could be applied directly to clickstream data collected from B&N’s web servers.  

Again, our reason for using CMM clickstream data is that it is available to the authors; also it is 

more complete and has a cleaner format than web server logs (Pitkow 1997). 
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 First, we define the following terms to describe web browsing: page request, page 

viewing, and session.  A page request refers to a user’s requesting a URL through their browser 

program.  In turn this page request will appear as a hit in the server’s log file.  A page viewing 

refers to the actual rendering of a page request in the user’s browser window.  A user may hit the 

back button in their browser window to review a page, which will generate another page viewing 

but not a page request.  (Instead the browser program will render the page from a previously 

stored or cached copy.)  Often pages are viewed multiple times, so page viewings generally 

exceed page requests.  Finally, a session is defined as a period of sustained web browsing or a 

sequence of page viewings.  If a user has not viewed any pages for 20 minutes we assume that 

the viewing session has ended and that the next page viewing marks the beginning of a new 

session.  Sessions include all of a user’s page viewings both at B&N and other sites. 

 Our 1,160 users requested 9,180 unique URLs or pages at B&N on 14,512 viewing 

occasions over the course of 1,659 sessions.  The average B&N page was viewed 1.5 times.  The 

average number of B&N pages viewed during a session was 8.75.  The number of B&N viewings 

during a session ranged in length from 2 to 239, with the median of 5 viewings.  Most users have 

only one or two sessions that included activity at B&N; fewer than 25% of our users have more 

than two sessions.  Out of these 1,659 sessions, 114 of these sessions had a purchase (two 

sessions had two purchases), which yields a purchase conversion rate of 7%.  (This rate is higher 

than the industry average, either due to B&N’s success or the fact that our estimate is not 

contaminated by automated traffic from search engines and robots, as is commonly the case.) 

 The descriptive statistics for the demographic information about our user sample is 

given in Table 1.  All of our demographic variables, except age, are coded as dummy variables.  

Notice that the average user is 46 years old with a range from 9 to 89, slightly more than half are 

female, most are white, have some college education, and have higher than average incomes.  

While it is unlikely that B&N would have such detailed information, we include this information 

to assess its predictive power; in the future it is possible that online retailers could purchase this 

data from online vendors.  
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Variable Mean Std Dev Min Median Max 
Age 45.89 14.62 9 46 89 
Age2 (square of Age) 2326.48 1331.68 81 2209 7921 
Male .47 .50 0 0 1 
White .77 .42 0 1 1 
Children under 18 in the house .40 .49 0 0 1 
Married .29 .45 0 0 1 
Some college education .82 .39 0 1 1 
High Income (>$50,000) .32 .47 0 0 1 
Medium Income ($25,000-$50,000) .35 .48 0 0 1 

Table 1. Demographic characteristics of 1,160 panelists, all of the means are proportions except 
age and age2 which are continuous variates. 

 Potentially the clickstream is a very rich data source since the full text and HTML 

content of each URL is known (or can be recaptured).  Practically, however, without some 

structure it is difficult to analyze this free-format and textual data.  We choose to do so by 

focusing on the category that corresponds with each page viewed.  Every page is classified into 

one of seven categories: Home, Account, Category, Product, Information, Shopping Cart, 

Order, and Enter/Exit pages.  (See Technical Report Appendix C for our text matching 

algorithm to categorize pages and an example session.) 

 Redish (2002) proposed this categorization scheme as a common taxonomy across e-

commerce sites based upon a task analysis of what users want to do on an e-commerce sites 

from a human computer interaction standpoint.  Moe et al (2002) also employed a similar 

classification scheme.  The home page is a common starting point for new tasks.  Account pages 

are used for logins, address changes, and to review order status.  Category pages present lists of 

items, categories, or search results.  Product pages contain detailed product information, item 

description, price information, availability, and product reviews.  Shopping cart pages are used to 

add or delete products and enter purchase information.  Order pages are confirmation pages that 

denote an order has been placed.  The enter/exit category is used to denote a non-B&N page 

and denotes either the beginning or end of a B&N session. 

 We augment our data by writing a perl script that queries B&N to reconstruct the page 

content viewed since this data is not collected by CMM.  The text of the page was parsed and 

scanned for information about the presence of price information, promotion images, banner ads, 

and the numbers and types of hypertext links on the page.  (Some variables like the number of 
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links to the shopping cart or pictures on a page are omitted due to multicollinearity.)  

Additionally, we include a variable that measures whether or not a purchase was made at B&N 

during the user’s last session and whether or not the visit occurred during a weekend.  To 

capture timing information we compute the time between page viewings in seconds.  Finally, we 

have three measures of the cumulative number of pages viewed up to that point during the 

session: pages viewed at B&N, other sites, and other bookstores.  Again B&N may not have 

access to these measures of external activity, but we include them to understand how helpful this 

data could be in predicting paths.  Descriptive statistics for these variables are given in Table 2. 
 
Variable Mean StdDev Min Med Max
Presence of price information on page (Proportion) .45 .50 0 0 1
Promotional image present (Proportion) .83 .37 0 1 1
Presence of banner advertisement (Proportion) .03 .16 0 0 1
Number of links to a home page 2.4 1.0 0 3 5
Number of links to a product page 10.1 18.1 0 0 110
Number of links to an account page 2.0 1.1 0 2 9
Number of links to an information page 28.8 33.9 0 17 303
Whether made a B&N purchase during last session .03 .18 0 0 1
Time Since Last Viewing (Seconds) 7.2 66.3 1 1 1193
Whether the Visit is on Weekend (Proportion) .28 .45 0 0 1
Cum. no. of viewings at B&N during session (visit depth) 8.8 16.4 1 5 238
Cum. no. of viewings at other sites during session 44.3 84.6 0 17 891
Cum. no. of viewings at other bookstores during session 4.3 17.3 0 0 174
Table 2. Descriptive Statistics for the 9,180 unique B&N pages requested. 

 Notice that in Table 2 we find that 45% of the pages viewed in our data have price 

information, while 83% of the pages have promotion information (e.g., free shipping or 

discounts).  Only about 3% of the pages have banner ads provided by Double Click Inc.  These 

banner ads only redirect a user within the B&N site and do not take them to other web sites.  

For example, a book publisher may wish to promote their book with a link to a corresponding 

B&N product page.  We find many hypertext links to category pages, product pages and 

information pages, while there are few links to the home, shopping cart, or account pages 

(although these links tend to be prominently displayed at the top of the page.)  The average time 

duration between page viewings is 7.2 seconds; although this average is highly influenced by 

many repeat viewings that last for only a second.  Notice that during an average viewing users 

have cumulatively viewed 44.3 pages at other sites during their session, and 4.3 pages at 
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competing online bookstores (such as amazon.com, borders.com, booksamillion.com, and 

a1books.com, etc.).  The cumulative variables are reset to zero whenever a session starts.  Notice 

that the cumulative variables may not be zero when the user starts at B&N since pages may have 

already been viewed at other sites during the session but preceding the first B&N page viewed. 
 
Group User Session 
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Table 3. Listing of category of viewings for selected user sessions. (Types of pages: H=Home; 
A=Account; C=Category; P=Product; I=Information; S=Shopping Cart; O=Order; E=Exit.) 

 

2.2. Describing Page Transitions with a Markov Model 

 We can compactly represent paths using the first initial of our categories as an 

abbreviation.  For example, the string “HCPE” would denote a user who starts at a home page 

to search for a book, moves to a category page to review the results, and concludes their session 

at a product page after considering an individual item.  To illustrate our data we list the sessions 

of ten selected users in Table 3.  Notice the first five users do not make a purchase, while the 

second five do (notice the O or order page in the path).  To illustrate these paths consider the 

first user.  This user has a total of 44 viewings; their B&N session started at the home page, and 

then viewed many category pages with only a couple of interruptions to product pages. Finally, 

the user ended the session without purchasing.  Next consider user 6; this user started by visiting 

the home page, looked at an information page, and then moved to an account page.  These 

actions suggest the session is more purchase directed.  This is confirmed by the user’s frequent 

searches for products some of which are added to the shopping cart later on.  Finally, this user 

made a purchase, checked their order status, and continued to the home page before exiting. 
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  Category of Previous Viewing 

Category Home Account Category Product Inform. ShopCart Order Exit
Home .23 .01 .01 .01 .10 .02 0 .16
Account .01 .69 .01 .01 .02 .15 0 .01
Category .17 .02 .60 .31 .15 .05 0 .16
Product .01 0 .20 .43 .10 .05 0 .05
Information .25 .06 .08 .12 .46 .15 .87 .61
Shop. Cart .01 .16 .01 .03 .02 .45 .13 .01
Order 0 0 0 0 0 .10 0 0Ca

te
go

ry
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nt

 
V

iew
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g 

Exit .32 .06 .09 .09 .14 .02 0 0
 Marginal .06 .05 .32 .17 .23 .05 .01 .11
 Initial Prob. .16 .02 .16 .06 .60 .01 0 0

Table 4.  Sample transition matrix, marginal and initial probabilities for categories of viewings.  
(Notice that the columns sum to one, and there are a total of 14,512 observations.) 

 To better summarize the transitions between categories we report the sample transition 

matrix in Table 4 along with the marginal and initial probabilities of viewing a category.  The 

transition matrix provides an estimate of a first-order Markov model (cf, Cadez et al 2000).  

Additionally, in the last row of Table 4 we report the probability this was the category of the first 

B&N page viewed during a session.  Clearly, users do not randomly enter the site, but tend to 

start either at an information (60%), home (16%), or category page (16%).  Notice that there is 

high degree of persistence for viewing the same type of web page again, the diagonal elements 

for all types of web pages except home, order, and exit range from .43 to .69.  The lack of 

transitions between exit pages is due to our definition of a session, in which we treat consecutive 

viewings at other web sites as a single exit observation.  Finally, note that there is a 23% 

probability of viewing the home page in the next viewing even when you are already at the home 

page.  Home to home page viewings usually arise when a user works with another program in 

between viewings (for example sends an email message) or visits a non B&N page in between 

home page viewings. 

 The transition matrix contains information about the sequence of pages viewed.  We 

presume that users clicking on hypertext links generate most of the sequences.  However, pages 

may be selected through the browser’s interface (back and forward buttons, bookmarks, or 

history).  Hence, it is quite possible that two pages that are not linked together will appear as 

consecutive viewings in our dataset due to the use of the browser interface.  This is especially 

important in understanding that even though the web site may not offer links to all of the other 

categories, it is possible that the user could navigate to the page using another control.  
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Navigation is complicated by the fact that a user could have multiple windows (web browsers) 

open in different areas of the web site, unfortunately in our dataset we see all viewings as a 

continuous stream and do not know with which window a viewing is associated or even if there 

are multiple windows open. 

 Many of the patterns in the transition matrix are due to the construction of the web site.  

For example, the many hypertext links from a category page to a product page make it likely the 

user may use one of these links to navigate the web site.  However, navigation is not restricted to 

these links.  Suppose a user requests additional information about shipping which appears as a 

popup window, the user may continue browsing through the web site but leave the popup 

window open.  The user may re-select the popup window later in the session even though there 

is no link to the popup on the current web page.  There is one exception to this stochastic 

approach that we make for the order page.  The only way for a user to get to an order page is 

from the shopping cart page; even if multiple windows are open the previous page must be a 

shopping cart page.  Hence, we assume that a user cannot select the order page unless they are 

currently on a shopping cart page. 

 

3. A Dynamic Multinomial Probit Model of Web Browsing 

 Our exploratory analysis from the previous section prescribes two important elements 

needed in a formal statistical model: a categorical choice model of web page movement and 

memory to capture dependence in the sequences chosen.  Additionally, past research suggests 

that we need to account for other possible features of the data such as consumer heterogeneity, 

the use of user characteristics and demographics to explain some of this heterogeneity, dynamic 

behavior, the use of covariates to explain transitions between pages, and general error covariance 

patterns to capture unexplained transitions.  The simple first-order Markov model proposed in 

the previous section cannot accommodate all of these facets.  The main problem being that the 

first-order Markov model has a one-period memory, i.e., the present viewing given the last one is 

independent of the previous path. 

 Modeling categorical data can be accommodated using a multinomial choice model, such 

as a multinomial probit model.  The probit model makes it easy to incorporate covariates that 
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may explain web navigation choices.  However, the traditional probit model has no memory.  To 

overcome this problem we propose a dynamic multinomial probit model.  Specifically, we 

introduce a vector autoregressive component to the model that can capture dynamics in choice 

(Paap and Franses 2000, Haaijer and Wedel 2001).  Additionally, we incorporate a correlated 

error structure in the model to capture unexplained patterns (i.e., those that cannot be attributed 

to our covariates), which also overcomes the IIA property of multinomial logit models.  We 

frame our model in the context of a hierarchical Bayesian model to allow for heterogeneity 

across users (Rossi and McCulloch 2000, Rossi, McCulloch, and Allenby 1996).  As a final point, 

we note that consumer behavior research has found that users may have goal-directed or 

exploratory search (Moe 2003, Janiszewski 1998) or flow and non-flow states (Hoffman and 

Novak 1996).  Hence we incorporate a mixture process, where the model parameters for an 

individual can switch during the course of a session, to reflect the possibility that browsing 

behavior may be quite different and change suddenly, depending upon a user’s current goals or 

state of mind.  This dynamic mixture process has not been previously considered in a choice 

context.  Overall, our contribution is a conjunction of these techniques applied to a substantively 

new problem. 

 

3.1. Model Specification 

 Formally, we assume that user i has latent utility Uiqtc associated with viewing a page in 

category c on viewing occasion t of session q, where there are total of I users, C categories, Qi 

sessions for user i, and Tiq viewings for the qth session of user i.  In our dataset, I=1,160, C=8, 

Qi ranges from 1 to 17, and Tiq ranges from 2 to 239.  The consumer selects the category (or 

more precisely the page associated with the category as summarized in Table 3) that has the 

highest utility from amongst those that are available.  We denote the user’s selection as Yiqtc, 

which yields the following observational equation: 

 


 〉〈==

=
otherwise0

)max( and 1 if1 iqtiqtiqtciqtc
iqtc

Uι
Y

ιU
. (1) 

Where ],,,[ 21 iqtCiqtiqtiqt UUU=U  is a C × 1 vector of latent utilities, ιiqtc is an indicator variable 

that equals one when category c is available for user i during the tth viewing of session q, ιiqt=[ 
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ιiqt1, ιiqt2, …, ιiqtC], the operator U<ι> denotes the set of elements from the vector U whose 

corresponding indicator operand (ι) equal to one.  In our model ιiqt is a vector of ones except the 

element that corresponds with the order page, which only equals one when the previous page is 

a shopping cart.  The purpose of allowing only a subset of pages to be selected is to eliminate 

impossible transitions (i.e., moving to the order page unless the shopping cart was previously 

selected).  We note that our technique could easily be modified to include other exceptions, but 

as noted in §2 this is the only one present in our dataset. 
 The latent utility vector ( iqtU ) is modeled as:  

 ),(~      , , ,1,,1,, ><><><−><−>< ++= iqtsiqtsiqtiqtsiqttiqiqtsitiqiqtsiiqt MVN Σ0εεUΦXΓU , (2) 

where subscript s<iqt> defines the user’s state (s=1, …, S) for user i during session q at viewing 

t.  For notational simplicity we may drop the dependence of state on the user, session, and 

viewing (<iqt>) and assume that this dependence is understood.  Also, Xiq,t-1 is a vector of the L-

1 covariates given in Table 4 for user i during session q at time t (L=14 as the first element of X 

is unity to incorporate an intercept), isΓ is a C × L parameter matrix, isΦ  is a C × C matrix of 

autoregressive coefficients, and the error vector iqtsε follows a multivariate normal distribution.  

We have included only the first lagged vector of utility which is supported in our empirical 

analysis, although future researchers may want to consider more general lag structures. 

 Notice that the Xiq,t-1 covariates associated with the utility at time t, see equation (2), 

correspond to the page contents of the previous viewing at time t-1.  We assume that a user 

decides which category to view at time t largely based upon the information being viewed at time 

t-1 (e.g., the number of links of the page, type of information display, time page viewed, etc.), 

since the page at time t has not yet been displayed.  A potential direction for future research is to 

replace the observed covariates with predicted values since the user only views the covariates of 

the selected alternative.  Hence our current framework relies upon an assumption of the user’s 

rational expectation of these covariates.  Additionally, the initial utility values for the first viewing 
of each session ( 0iqU ) are not observed but are inferred from the observed data (see Technical 

Appendix).  To ensure identification of our model we follow the usual practice of setting utility 

of a base category to zero, which in our case is the enter/exit category (c=8, Uiqt8=0), and from 
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equation (2) and hereafter set C=7 to refer to the remaining categories.  Also, for identification 
we set the first element of the error covariance matrix to unity, [ ] 11,1 =Σ s . 

 

3.2. Modeling State Transitions 

 We consider both a zero and first-order hidden Markov process to model the state 

variate (s<iqt>).  The zero-order Markov process states that there is a vector iν —which is 

independent of time and path—that defines the probability of user i being in state s: 

 [ ] [ ]′==>=< iSiiiisi ,siqts νννν 21 where Pr νν . (3) 

 We formulate the first-order Markov process by assuming that there is a hidden, 

continuous time Markov chain , Diqt, which indicates the state.  Note that s<iqt> is only defined 

at integer time values, while Diqt is continuous and equal to s<iqt> at integer values1.  The waiting 

time between transitions (wiqt) in our continuous time domain follows an exponential 

distribution: 

 [ ]′=−= iSiiiDiiqtDiiiqt iqtiqt
ww λλλλλ 21,,  where },exp{]|Pr[ λλ . (4) 

Where isλ is an intensity parameter for state s, and the expected waiting time till the next is the 

inverse of this parameter ( isλ1 ).  Given that a transition has occurred, the transition matrix 

( iP ) that defines our first-order Markov process is: 

 [ ]


















=>===+

0

0
0

 where ,1  if,,Pr

21

221

112

,

iSiS

Sii

Sii
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where Pigs denotes the conditional distribution for user i to switch to state s given the previous 

state was g, hence the rows sum to one.  Notice that the diagonal elements are zero since same 

state transitions are captured through the waiting time.  Finally, the initial state probability for 

the first viewing of a session is: 
 1  if]Pr[ , === tvsD

iqtDiiiqt ν . (6) 

where we redefine the probability vector iν  as the initial starting probabilities. 

                                                   
1 We define time between viewings as a standard time unit, and not as the time of day.  The elapsed clock time 
between viewings is irregular, and may include viewings at other sites or non-computer activities (e.g., getting a 
cup of coffee).  The disadvantage of this approach is a loss of information.  However, we do include elapsed 
time as a covariate, but find that it is a poor predictor of browsing, which supports our standardization of time. 
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 In order to identify the states we place a restriction on the means of the latent variable 

iqtcU .  Specifically, we introduce two metrics, a
iqtsW and b

iqtsW , to capture the user’s tendency to 

browse (e.g., surf or a non-purchase orientation) or deliberate (e.g., focused navigation or a 
purchase orientation) during a session.  a

iqtsW  is the sum of the expected value of Uiqtc for the 

account, shopping cart, and order pages, while b
iqtsW is the sum of the expected value of home, 

category, product, and information pages.  We assume state 1 corresponds with the highest 
browsing orientation (lowest value of a

iqtsW  and highest value of b
iqtsW ) and state S is the state 

that exhibits the most deliberation orientation (highest value of a
iqtsW  and lowest value of b

iqtsW ).  

That is, a
iqt

a
Siqt

a
iqtS WWW 1)1( ≥⋅⋅⋅≥≥ −  and b

iqtS
b

iqt
b

iqt WWW ≥⋅⋅⋅≥≥ 21 .  While we believe these 

metrics are useful in describing the likely cognitive state of a user, this is only a conjecture on our 

part and can be thought of as convenient labels to refer to each state. 

  An alternative to this waiting time formulation in continuous time would be to assume a 

discrete time Markov chain with a transition matrix that had a non-zero diagonal.   The 

advantage of the waiting time formulation is that it is more amenable to the Reversible Jump 

Algorithm that we use to estimate this model (see Technical Appendix B, step 9).  However, 

these two formulations are equivalent if the transitions occur at integer values.  To illustrate this 

equivalence notice that the transition matrix for a two-state Markov model can be parameterized 

in terms of the waiting times (the i subscript is suppressed for clarity): 

 
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
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P . (7) 

This equivalence relies upon the “lack of memory” property of the exponential process (cf., 

Johnson, Kotz, and Balakrishnan 1994, Chapter 19), in which the conditional distribution of an 

exponential process given that an event has not occurred is equivalent to the original marginal 

distribution.  The primary difference between these formulations is that our model is more 

general since the transitions may occur at non-integer values.  

 

3.3. Specification of the Hyper Distributions 

 Following the usual hierarchical Bayesian framework (Rossi, McCulloch, and Allenby 

1996) we incorporate heterogeneity across users by assuming that isΓ  has a random coefficient 
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specification.  Specifically, the lth column of isΓ , which we denote as ilsγ , a C × 1 vector, 

follows a multivariate regression: 

 ) ,(~    , silsilsilsils MVN Ψ0ςςRΠγ += , (8) 

where iR  is the K × 1 vector of demographic measures, plus an intercept, listed in Table 1 for 

user i (K=10, since the first element is unity to incorporate an intercept), lsΠ  is a C × K 

parameter matrix, and sΨ is a C × C covariance matrix. 

 We assume that the VAR coefficients are drawn from a hyper-distribution: 

 ) ),((~)( ssis vecMVNvec ΩΦΦ , (9) 

where isΦ  is a C × C matrix of autoregressive coefficients and sΩ is a C2 × C2 covariance 

matrix.  Finally, we assume that the row vectors of the transition matrix and the vector of initial 

probabilities follow a Dirichlet distribution, and the waiting times follow a gamma distribution: 
 ),(~   ),(~   ),(~ scshissisjij DD λλλν ΓατP , (10) 

where Pij denotes the jth row of the matrix Pi, scsh λλ  and  denote the shape and scale 

parameters, respectively. 

 

3.4. Discussion of the Model 

 There are two dynamic elements that we include in our model of browsing behavior.  

First, we introduce persistent behavior through a vector-autoregressive (VAR) component of 

lagged latent utility values (Hamilton 1994, Chapter 11).  The idea is that a higher than average 

affinity for a type of page may persist for many viewings.  For example, a user may view many 

product pages consecutively.   This dictates the need for incorporating a memory or time series 

element in the model.  Secondly, we allow for abrupt changes in browsing behavior by 

incorporating a time varying mixture model.  A hidden Markov chain governs the transitions 

between the states of this mixture model.  For example, during a session a user may change their 

goals and decide to focus upon making a purchase, or alternatively decide to just look around 

instead of making a purchase. 

 While it might seem redundant to have two time series components in the model, the 

purpose of each is quite different.  The VAR model is meant to capture smoothly trending 

behavior reflective of a certain type of browsing, while the mixture process with the Markov 
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transitions is meant to capture abrupt changes in browsing styles.  Additionally, the Markov 

process may be able to capture longer-term dynamics and help lessen the dimensionality of the 

autoregressive process, leading to a more parsimonious model.  To illustrate, consider the 

conditional mean of the latent utility of a two state process (S=2), which can be derived from the 

Markov property of the hidden Markov chain under the assumption of stationarity: 
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. (11) 

Notice that the state parameters (λ1i, λ2i) control the mixing of the VAR parameters. 

 The markov switching-autoregressive models that we employ for our latent process were 

first proposed in a univariate model by Hamilton (1989) to describe the U.S. business cycle by 

modeling US real GNP.  Subsequently there has been a great deal of interest in the use of this 

model for studying macroeconomic processes.  Krolzig (1997) studies the multivariate form of 

the model that we employ.  The primary difference with this past work is that we assume our 

latent process follows this structure and not an observed process.  These models all employ 

discrete jumps between states; another approach is the smooth-threshold autoregressive model 

by Teräsvirta (1994), which may offer an interesting direction for future research. 

 A univariate version of our dynamic probit model has been considered in the binary time 

series literature (Kedem 1980a).  Specifically, in the context of a discretized autoregressive-

moving average (DARMA) (Kedem 1980b, Keenan 1982).  DARMA models are quite flexible in 

capturing time series trends in binary processes.  Keenan (1982) showed that any stationary time 

series process could be modeled as the discretization of a latent continuous process.  This 

approach contrasts with the usual Markov modeling strategy, which models the observed 

process directly.  While DARMA models can well approximate Markov models, the conditional 

transition probabilities of DARMA processes lose their Markov property (Keenan 1980).  In 

other words knowledge of the previous state is not sufficient for forecasting the next state.  Our 

use of a VAR model should result in a good approximation to the Markov model described in 

our exploratory analysis.  Recently, there have been several applications of VAR models in 

marketing choice models to capture brand inertia and loyalty effects (Paap and Franses 2000, 
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Haaijer and Wedel 2001, Seetharaman 2004).  These VAR models can be thought of as a 

multivariate generalization of a univariate DARMA process. 

 

4. Estimation Results 

 In this section we present the empirical results from estimating the model presented in 

§3 using the data discussed in §2.  We start by considering the fit and predictive performance of 

various formulations of our model as well as other potential benchmark models, and then 

continue with a discussion of some specific features and properties of our best model.  To 

provide an overall comparison of the various model specifications we compute the marginal 

posterior distribution (or the marginal density) and the hit rate.  The marginal posterior 

distribution is computed by taking the mean across the Gibbs iterations weighted by the 

corresponding priors (Newton and Raftery 1994).  The hit rate refers to the percentage of 

viewings whose categories are correctly predicted.  For example, random guessing should yield 

odds of 1 in 8 of a correct guess or a 12.5% hit rate. 

 As another measure of model adequacy, we compute out-of-sample predictive 

performance.  Each user’s sessions are divided into two parts, the earlier sessions are used for 

estimation and the later ones are used for prediction.  If a user has one session, then their data 

will only be used for estimation.  Fractions of a session in the estimation and holdout sample are 

rounded up and down respectively (e.g., a user with three sessions would have their first two in 

the estimation sample and the last in the holdout sample).  The construction of the validation 

sample is meant to closely approximate the type of information that B&N would have available 

for their users based upon past information.  There are 1,160 users in the estimation sample and 

268 users in the holdout sample with 9,589 observations and 4,923 observations, respectively.  

The disparity in the number of users is due to the large number of users with only one session.  

For the users in the holdout sample we predict their parameters and the states of the hidden 

Markov model only using the information from the estimation sample. 
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4.1. A Predictive Analysis with State Changes at the Page, Session, and User Level 

 Our model permits a great deal of flexibility with regards to changing the underlying 

browsing state, since the state may potentially change with every page viewing.  For example, a 

user may begin their session in a state where purchase is unlikely, but then switch later in the 

session to a state where purchase is likely.  However, allowing state changes at the viewing level 

may result in too much variability.  Hence we consider two additional formulations of our model 

that restricts state changes to the session or user level.  Restricting viewings within a session to 

share a common state reduces the potential of a user switching states in the midst of a session.  

Restricting all of a user’s viewings to a single state permits heterogeneity across users (although 

not within a user), which can capture departures from the normality assumption in our hierarchy. 

 We estimate our model using the assumption that states that are allowed to change at the 

page and session level with both a zero and first-order Markov model, and another set of models 

where the state is constant for all of a user’s viewings (only a zero-order Markov process is 

estimated, since there is no pre-user information necessary for a first-order Markov process). 

The question of how many states should be included is an empirical one, hence we estimate our 

model for one, two, and three states (S=1, 2, or 3) to allow the data to inform about this 

parameter.  This yields a total of 15 models from which to investigate the amount of within user 

heterogeneity.  We report the fit and out-of-sample prediction validation in Table 5. 

 First, notice transitions defined at the page-level outperform models estimated at a 

session or user level.  This supports the notion that users are likely to change states in the midst 

of a session.  Hence it is inaccurate to describe a user or an entire user session simply being 

either purchase or non-purchase oriented.  Secondly, notice when the hidden states are governed 

by a first-order Markov model the fit is superior to a zero-order process.  This suggests that the 

goals, to the extent they are reflected in a state, show some persistence.  It also suggests that the 

VAR process cannot fully capture a user’s behavior, perhaps due to abrupt changes in a 

consumer’s goal, e.g., a user changes from a browsing orientation to a purchase orientation.  We 

also compute Bayes factors following Kass and Raferty (1995) for three of our page-level 

proposed models: a one-state, two-state and three-state version of the hidden Markov model.  

The two-state model is favored over the one-state model by odds of 117.1.  Also, the two-state 
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model is favored over the three-state model by odds of 45.7.  We can also find similar pattern 

for our session and user-level models, indicating a two-state model is adequate.  
 

 
State 
Time 

 
State 
Process 

Number 
of States 

Log 
Marginal 
Density

In-Sample 
Hit Rate 

(%)

Out-of-
Sample Hit 

Rate (%) 
1 -9378.1 72.05 

(0.46)
65.40 
(0.68) 

2 -9016.9 79.44 
(0.41)

71.42 
(0.64) 

Zero-
Order 

3 -9064.0 80.34 
(0.41)

70.56 
(0.64) 

1 -8545.4 83.23 
(0.38)

79.95 
(0.57) 

2 -8428.3 89.71 
(0.31)

83.15 
(0.53) 

Page 

First-
Order 

3 -8474.0 89.97 
(0.31)

81.14 
(0.56) 

1 -9376.1 73.17 
(0.45)

61.56 
(0.69) 

2 -9051.0 77.90 
(0.42)

70.48 
(0.65) 

Zero-
Order 

3 -9097.7 78.76 
(0.42)

66.14 
(0.67) 

1 -8573.5 83.05 
(0.38)

73.57 
(0.63) 

2 -8464.9 88.44 
(0.33)

81.48 
(0.55) 

Session 

First-
Order 

3 -8487.0 88.73 
(0.33)

78.42 
(0.59) 

1 -9411.1 64.38 
(0.49)

61.50 
(0.69) 

2 -9124.2 70.04 
(0.47)

64.12 
(0.68) User Zero-

Order 
3 -9193.8 70.85 

(0.46)
63.99 
(0.68) 

Table 5.  Measures of fit for various dynamic probit models. The standard errors of the hit rates 
are provided in parentheses below the estimate. 

 

4.2. Predictive Comparisons with Alternative and Nested Model Specifications 

 The model presented in §3 is quite general and nests many common models as special 

cases, such as the multinomial probit and latent class model.  To better understand these cases 

we show the relationship with these nested models.  Additionally, we propose some alternative 

benchmark models to help evaluate the fit and predictive ability of our models, which are 

reported in Table 6 and discussed below. 
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Model 
Log Marginal 
Density 

In-Sample Hit  
Rate (%) 

Out-of-Sample 
Hit Rate (%) 

Zero-Order Markov Model (1 State) -20410.4 20.48 
(0.41) 

12.62 
(0.47) 

Zero-Order Markov Model (2 States) -19458.3 28.18 
(0.46) 

19.02 
(0.56) 

First-Order Markov Model  (1 State) -16444.5 56.06 
(0.51) 

51.59 
(0.71) 

First-Order Markov Model  (2 States) -16076.0 58.61 
(0.50) 

52.08 
(0.71) 

Latent Class Model (1 State) -17849.2 35.47 
(0.49) 

30.78 
(0.66) 

Latent Class Model (2 States) -17673.9 44.29 
(0.51) 

40.21 
(0.70) 

Latent Class Model (3 States) -17722.3 45.29 
(0.51) 

36.14 
(0.68) 

Independent -19086.4 33.23 
(0.48) 

30.35 
(0.66) 

Only-Intercept -19335.9 29.37 
(0.47) 

23.12 
(0.60) 

VAR with Intercept -13768.4 71.13 
(0.46) 

64.38 
(0.68) 

Table 6.  Measures of fit for other alternative model specifications.  The zero- and first-order 
markov models directly model the observed process and do not include VAR or hidden-Markov 
processes to govern state transitions as with the other models. The standard errors of the hit 
rates are provided in parentheses below the estimate. 

 

 Zero-Order Markov Model   Perhaps the simplest model assumes there is a fixed 

probability for each user to select a category, which can be described as a multinomial 

distribution or a zero-order Markov model.  Specifically, the probability that user i chooses 

category c during session q at viewing t is independent of other viewings: 
 1  iff where ,) Pr( ==== iqtciqtciqt YcZcZ δ . (12) 

Notice there is no multinomial probit or vector auto-regression component.  To estimate this in 

a Bayesian specification we employ a diffuse prior on cδ .  This structure can be duplicated in our 

full model with a single state (S=1) when the only covariate is an intercept and the errors are 

independent, standard normal variates: 
  ,    ~ ( , )iqt i iqt iqt N= +U 0 Iγ ε ε . (13) 

Our Bayesian framework can yield results similar to the maximum likelihood estimator (MLE) 

when no individual level covariates are used (R is a vector of ones) and the covariance of the 

hyper-distribution is small (Ψ→0).  Essentially the individual level parameters are shrunk to a 

common, pooled value. 
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 This model is estimated for both a pooled sample (one-state) and a split sample of 

purchasers versus non-purchasers (two-state).  Notice that these states are determined 

exogenously in contrast with the hidden markov process proposed in the previous section.  The 

estimation results are reported in Table 6 and show that both zero-order Markov models have 

the worst fit and predictive ability amongst all the models considered. 

 First-Order, Markov Model   The first-order Markov model assumes that the category 

of the current viewing can be predicted with knowledge of only the past category.  Specifically, 

the probability that user i chooses category c during session q at viewing t will be: 
 cdtiqiqt dZcZ δ=== − ) | Pr( 1, . (14) 

To estimate this in a Bayesian specification we employ a diffuse prior on cdδ . Although this 

model is not nested within our framework, the VAR process may provide a good approximation 

to such a model.  As with the zero-order Markov model we estimate a two-state model with each 

state made up of purchasers or non-purchasers.  The results in Table 6 show an order of 

magnitude increase in fit over the zero-order model illustrating the importance of memory in 

path analysis, but are inferior to our dynamic multinomial probit model. 

 Latent Class Model   A popular model in marketing is the latent class model 

(Kamakura and Russell 1989), which occurs as a special case of our model.  If the state 

transitions in our model are restricted to a single state for each user, then the s subscript in §3 

can be interpreted as an index of the class of the mixing distribution.  Hence, the traditional 

latent class model in a multinomial probit framework occurs when the state transition process is 

characterized by a zero-order Markov model as defined in §3.2 and when each user is restricted 

to a single state for all sessions.  Our Bayesian framework yields estimates similar to the MLE of 

the traditional latent class model when no individual level covariates are used (R is a vector of 

ones) and the covariance of the hyper-distributions are small (Ψ→0, Ω→0).  Although for 

consistency sake we use the same prior settings as our other multinomial probit models; hence, 

our latent class model allows heterogeneity at a user level similar to the work of Allenby, Arora, 

and Ginter (1998), but the heterogeneity is shrunk towards the aggregate parameter vectors for 

the user’s assigned state.  We estimate latent class models with one, two, and three states, and 

find the data favors the two state model using both the log marginal density and out-of-sample 
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hit rate.  The predictive accuracy falls between the zero and first order markov model, suggesting 

that the covariates are not able to fully capture persistence in latent utility. 

 Multinomial Probit Model (Independent, Intercepts only, and VAR)   We estimate 

an independent probit model with the page and session covariates (S=1, S=I) to judge the 

contribution of the correlated error structure (labeled as “Independent” model in Table 6).  This 

model is estimated for a single state without VAR effects (S=1, Fis=0).  Additionally, we estimate 
our multinomial probit model with only intercepts and no covariates (S=1, ]1[=iqtX , Fis=0), to 

assess the effect of the covariates (labeled as “Only-Intercept” in Table 6).  These two models 

benchmark the performance of the popular multinomial probit model without memory.  Finally, 

to help judge the contribution of our covariates in our full model we estimate a discretized 

vector autoregression model without covariates (labeled as “VAR with Intercept”).  This is 

identical to our full model without the page and session covariates but with only a single state 

(S=1, Gis=0).  Notice from Table 6 that the correlated intercept-only multinomial probit model 

does a poor job since it ignores the contribution of covariates with marketing mix variables, web 

page content characteristics, and web user’s demographic variables.  The independent 

multinomial probit model also does poorly because of the unexplained dependency across web 

page categories.  The VAR with intercept does quite well against all the alternative models, 

demonstrating the much of the improvement of our dynamic multinomial probit model comes 

from its VAR component. 

 Discussion  Models with memory, such as the dynamic multinomial probit models 

(from Table 5) the first-order Markov models and the VAR model (from Table 6) perform an 

order of magnitude better in predicting than comparable memory-less models, such as the 

independent, only-intercept, and latent class models.  This clearly demonstrates the importance 

of memory in predicting paths.  This is an important finding since it shows that not only is the 

frequency of viewing different content important, but that there is also a good deal of 

information contained within the sequence of viewings.  This affirms the central thesis of this 

paper that path analysis is informative.  Additionally, the VAR model by itself outperforms the 

first-order Markov model, which shows that while a first-order Markov model may be a good 

first-order approximation, browsing behavior is better represented by a richer memory model. 
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4.3. Parameter Estimates 

 We focus our discussion of parameter estimates on our best model, which in terms of 

posterior odds and out-of-sample prediction is a two-state dynamic, multinomial probit model 

with transitions at the page-level.  This model is strongly favored using both the posterior odds 

and the out-of-sample hit rate.  First, we consider the parameters that govern our state 

transitions.  We label the first state as a browsing-oriented and the second state as a deliberation-

oriented, following our identification conditions.  While purchases may occur in either state, they 

are more likely to occur in the deliberation-oriented state.  64% of users start in a browsing-

oriented state.  Users tend to stay in a browsing-oriented state for about three viewings, while 

they tend to stay in a deliberation-oriented state for about four viewings. 

 Second, we consider the relationship between our covariates and the selection of the 

home category.  The large number of parameters make it impractical to discuss all parameters in 

this text (we refer the reader to the Technical Appendix D for a full report).  However, in order 

to illustrate some of the findings from our model we consider the parameters associated with the 

home category. 

 The home category is common entry point for a web site.  Intuitively its use signals the 

beginning of a session (16% of sessions begin at this page) or even within a session the 

beginning of a new goal (for example, a previous path was terminated since the user couldn’t 

find the right book and is starting over at the home page).  Our results show that the home page 

is more likely to be viewed in the browsing state than the deliberation state as indicated by a 

higher intercept value.  The effect of each variable depends quite a bit upon the state of the user.  

Users who are browsing are more likely to visit a home page if they have previously purchased, 

are viewing the page during the weekend, or visited another site.  While users in a deliberation 

state are much less likely to visit the home page as a result of these effects. 

  The presence of price information and advertisements tends to lessen the chance of 

viewing the home page for both types of viewers.  Users in a browsing-oriented state are more 

likely to visit the home page if they have bought in a previous session, have a long session, visit 
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during the weekend, or visit other sites during their B&N session.  The differences between the 

states illustrate the importance of allowing heterogeneity both across and within users. 

 Demographic characteristics are also predictive of browsing tendencies.  Nested within 

the hyper-distribution is a linear model that relates the demographic characteristics of the user to 

parameters in isΓ .  Again there are a large number of effects, and for illustration purposes we 

consider only the effect of the demographics upon the “Price Present” coefficient for selecting 

the home page.  We find that higher income males with children are more likely to use the home 

page when they are in the browsing state.  In contrast the demographics of users in a 

deliberation oriented state are much less helpful in prediction.  It is possible that gender (Meyers-

Levy 1989), age (Bettman, Luce and Payne 1998), and education (Crosby and Taylor 1981) are 

indicative of cognitive strategies, but demographic variables can be correlated with many other 

characteristics that were not measured in this study. 

 

4.4. Capturing Memory 

 At the heart of path analysis is the ability to use summaries of past movements or 

memory to predict future movements.   The VAR process was important in improving the 

predictive ability of the model.  For instance the out-of-sample hit-rate jumped from 23% to 

64% when a VAR process was included when compared to a model with only intercepts.  

Similarly, a first-order Markov model has a 52% out-of-sample hit-rate compared with 13% for a 

zero-order Markov model.  Clearly memory plays a crucial role in the predictive ability of models 

for clickstream data.  The memory effects in our model are captured by the first-order Markov 

model that governs state transitions, the VAR parameters, and the time varying covariates.  

Instead of discussing the parameter estimates further (which are reported in our Technical 

Appendix D), we focus on illustrating the dynamic performance of our model. 

 The fit and hit-rate provided in Tables 5 and 6 are measures of one-step ahead forecasts.  

However, we are not simply interested in forecasting a single-step ahead, but we are potentially 

interested in predicting the entire path that a user may take.  One way to measure the multi-step 

ahead accuracy of our model is the ability to predict the run length of a path; where we define a 

run-length as the number of intervening viewings between two events of interest, say two 



 - 24 -

category viewings.  For example, the run length of “CC”, “C?C”, and “C??C” would be 0, 1, and 

2, respectively (where “?” represents any category other than exit).  Figure 1 illustrates the 

frequency distribution of run-lengths for our actual data (using the estimation sample) as well as 

the predicted run-lengths for various models.  Notice that all the models except for the dynamic 

multinomial probit models substantially under predict the count of runs with zero length.  Also, 

the zero-order Markov model tends to underpredict the length of the remaining runs while the 

first-order Markov and latent class models tends to over predict.  Only the two-state dynamic 

probit model does a good job of capturing the entire distribution.  We present another multi-

step ahead forecasting comparison in the Technical Appendix E which yields similar findings. 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0
2

4
6

Run Length

Lo
g(

Fr
eq

ue
nc

y)

Zero-Order Markov
First-Order Markov
Latent Class
VAR with Intercept
Dynamic Probit (1 State)
Dynamic Probit (2 States)

 
Figure 1.  Frequency distribution of run-lengths between category viewings (e.g., run length of  
CC, C?C, and C??C, is 0, 1, and 2, respectively).  The vertical axis is given in logged units to 
better illustrate the dispersion amongst the models. 

 

5. Predicting Purchase Conversion 

 Purchase conversion refers to the percentage of web visitors who make a purchase 

during a visit to an online retailer.  It is a key metric of the success of an e-commerce site since it 

provides a measure of how many visitors are turned into customers.  Despite the rapid growth of 
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e-commerce, online purchase conversion rates have remained low.  Online retailers such as 

Amazon.com, Macys.com, JCPenney.com, and MarthaStewart.com have purchase conversion 

rates that range between 1-2% (New York Times 2000).  E-commerce managers are interested in 

understanding what influences purchase conversion and how to improve their conversion rates 

by dynamically adapting to customers’ preferences (Internet Week 2001). 

 In this section we consider how our model can be used to predict the purchase 

conversion as a user browses through B&N.  We wish to forecast the probability that given a 

sequence of pages viewed that the user will purchase sometime during his session.  For example, 

if the user has visited the category (C) and shopping cart (S) pages, we wish to know the 

probability the user will order (O) on the next page, or have the sequence “CSO”.  Additionally, 

we need to consider the chance that the user will order two viewings out (i.e., “CS?O”, where 

“?” stands for any page other than exit, since exit terminates a session), three viewings out (i.e., 

“CS??O”), or any path that will lead to a purchase during this session (i.e., “CS*O*E”, where “*” 

stands for any sequence of pages that do not include exit or order).  Notice that we are only 

interested in forecasting orders before the end of the session, otherwise we would be forecasting 

the probability of a ordering in the current session or in any future session, and not just the 

current session.  Additionally, we note that although we focus on purchase conversion the same 

technique could be used to forecast any metric of interest, such as the probability the user will 

return to the home page, exit the web site within five viewings, etc. 

 To construct these forecasts we use a simulation method.  For each sweep of our 

MCMC estimation algorithm we simulate the latent category utilities starting with the specified 

forecasting origin and continue until the session is predicted to end (i.e., until the “E” category is 

encountered).  Next, we calculate the purchase conversion probability as the percentage of 

sequences that include an order (O).  The individual-level waiting time and hidden states are 

generated from each user’s corresponding estimates of his hidden Markov chain.  Since the 

covariates of these simulated pages are not known we use the expected value for the 

corresponding category (see Table 2, i.e., expected time to the next viewing is 7.2 seconds). 

 To illustrate these purchase conversion forecasts we consider the session produced by 

user 6 as described in Table 3.  We plot the predicted conversion probabilities, as a function of 
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the amount of the path that has been observed, for various models in Figure 2.  The category 

abbreviations of each viewing are given along the horizontal axis.  For comparison we plot the 

baseline conversion rate of a 7% probability that a visitor will make a purchase during a session.  

This user starts at a home page, but then immediately moves to a series of viewings at 

information and account pages.  After five viewings we predict that there is better than an even 

chance of this user making a purchase.  Notice that while the user’s purchase probability 

continues to rise to around 80%, the rate of increase slows down significantly after 30 viewings.  

Our model predicts that this user is in a deliberation-oriented state throughout this session. 
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Figure 2.  Probability of purchase sometime during the remainder of the user’s session. 

 This graph also helps visually depict why the two-state model is better than a one-state 

model.  The two-state model is better able to capture the notion that some viewings of a user in 

a deliberation-oriented state, like viewing a category or information page, are not shifting the 

user from their overall purchase goal, but instead simply supporting the user’s goal.  In contrast 

the one-state model is not able to make this distinction and results in predictions that are more 

susceptible to apparent browsing-oriented behavior.  The other models do a much poorer job of 

tracking conversion, even the intercept only VAR model still only reaches about a 35% 

prediction of purchase by the final observation. 
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 While this graph illustrates how our model could be applied on a viewing-by-viewing 

basis to forecast purchase conversion, it only summarizes the sequential predictive performance 

for a single session.   To assess the ability to predict user’s conversion probabilities in a more 

systematic way, we compute the probability that a user will purchase sometime during their 

session based upon their initial viewings and report these results in Table 7.  We split our sample 

into those sessions where a purchase occurred and those with no purchase and the cells of Table 

7 report the predicted purchase conversion rate.  For those who purchase this is equivalent to 

the proportion of visitors who were correctly classified, while for non-purchasers it is equal to 

the proportion of visitors who were incorrectly classified.  (See Technical Appendix F for the 

forecasting performance on predicting purchase conversion of other selected models.) 
 

Forecast Origin/Number of viewings during session 
Sample Session Type 

Number of 
Sessions 1 2 3 4 5 6

Purchase 83 13.3% 
(0.48)

16.3% 
(0.52)

23.4% 
(0.60)

30.9% 
(0.65) 

34.4% 
(0.67) 

41.5% 
(0.69)

No Purchase 1129 6.1% 
(0.33)

5.4% 
(0.32)

4.6% 
(0.30)

3.7% 
(0.27) 

3.4% 
(0.26) 

3.1% 
(0.25)

E
st

im
at

io
n 

All 1212 6.6% 
(0.35)

6.1% 
(0.34)

5.9% 
(0.33)

5.6% 
(0.33) 

5.5% 
(0.32) 

5.7% 
(0.33)

Purchase 31 10.4% 
(0.97)

12.8% 
(1.06)

15.2% 
(1.14)

18.0% 
(1.21) 

19.1% 
(1.24) 

21.2% 
(1.29)

No Purchase 416 6.9% 
(0.80)

5.5% 
(0.72)

5.1% 
(0.70)

4.2% 
(0.63) 

3.5% 
(0.58) 

3.2% 
(0.56)

H
ol

do
ut

 

All 447 7.2% 
(0.82)

5.9% 
(0.75)

5.8% 
(0.74)

5.1% 
(0.70) 

4.6% 
(0.66) 

4.4% 
(0.65)

Table 7.  Predicted purchase conversion probabilities (and standard errors in parentheses) given 
initial paths for the two-state dynamic multinomial probit model. 

 Ideally, a perfect model would yield 100% probability of purchase for purchasers and 

0% for non-purchasers.  Recall that the average purchase conversion rate is 7%.  Notice that 

based on only knowing the initial viewing we are able to predict purchases with 13% accuracy, 

while non-purchasers are close to the baseline at 6%, which means the odds-ratio of 

differentiating purchasers from non-purchasers is 2.   As we observe the user’s path we are 

better able to distinguish purchasers from non-purchasers, with the probability of correctly 

predicting a purchaser after six viewings goes to 42%;  the odds-ratio goes to 14 after six 

viewings, which shows that path information can be quite valuable in differentiating purchasers 

from non-purchasers even with a limited amount of path information. 
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 The forecast probabilities for the estimation and holdout samples are reported separately 

in Table 7.  The parameter estimates of the estimation sample use all information when 

estimating the user’s parameters (such as inferring state), while those in the holdout sample use 

only past information to estimate the parameters.  However, in either case we do not use any 

future information when forecasting but only condition on past values up to the forecasting 

origin.  Notice that there is a magnitude of decline in out of sample predictions, going from 

41.5% to 21.2%.  However, our odds ratio of differentiating purchasers from non-purchasers is 

still good, about 7. 

 In summary, our analysis shows that path analysis can be quite helpful in predicting 

purchase conversion, even early in a session.  The next step would be to consider how managers 

could use these predictions to improve their conversion rates and profitability by dynamically 

customizing the web site.  While a full customization is beyond the scope of this paper, it is 

helpful to understand how the predictive ability of the model would translate into decision 

making.  Suppose B&N were to classify each user after their 5th viewing as either deliberation-

oriented or browsing-oriented, and then based upon this classification customize the 

subsequently requested pages with the objective of encouraging purchase conversion.  

Specifically, we make the following changes for users who are browsing-oriented: delete price 

information (if any), add promotion image (if there is not), delete banner ads, reduce the number 

of links to home pages by half, and double the number of links to product, account, and 

information pages.  These choices were made by examining the expected response to these 

covariates (see §4.3 and Technical Appendix E).  For deliberation-oriented users the opposite 

customizations were made: add price information, delete promotion image, delete banner ads, 

double the number of links to a home and product page, and reduce the number of account and 

information page links by half. 

 Applying these rules to our holdout sample we find that the conversion rate would 

increase an additional 2.46% (.22) and 3.36% (.26) for the browsing and deliberation-oriented 

users, respectively.  (Standard errors are given in parentheses.)  In summary, conversion rates 

would increase from around 7% to more than 9%.  Given that the gross profit margin for B&N 

is around 25% and currently their operating profit margin is negative, these gains in conversion 
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rate would substantively impact B&N’s profitability.  We also point out that reversing these rules 

(i.e., applying the customizations for browsing-oriented users to deliberation-oriented users and 

vice versa) could substantially reduce purchase conversion.  Specifically, purchase conversion 

rates would drop by -4.25% (.29) and -4.01% (.28) for the browsing-oriented and deliberation-

oriented users, respectively.  Hence, overall web design changes may not improve conversion. 

 Obviously these rules could and should be customized at an individual level.  Our 

purpose in following this more simplistic approach is to avoid potential computational problems 

in optimizing designs.  Additionally, optimizing the web design may not be straightforward since 

users expect some consistency in the user interface of a web site, and abrupt changes may hurt a 

user’s navigation ability (e.g., orphaned pages with no links to the home).  Finally, one could 

consider jointly optimizing marketing mix policies (price, promotion, and assortment) at the 

same time as optimizing the web design (see Zhang and Krishnamurthi 2004 for a discussion of 

promotional customization in an online store).  These issues represent limitations of our 

research, which we hope to address in future research.  These results suggest that a fully-

dynamic, customized approach to web design could be very profitable. 

 

6. Conclusions 

 Our primary purpose has been to show that the sequence of web viewings is informative 

in predicting a user’s path.  In our dataset we found that models that incorporated sequence or 

path information doubled the hit rates over those that did not.  Additionally, we have shown that 

our model has reasonable  predictive power with regards to understanding which users are likely 

to make a purchase or not.  We can predict those users that are likely to purchase with 42% 

accuracy with as few as six viewings.  This contrasts with a baseline prediction of a 7% 

conversion rate.  Furthermore, dynamically changing web design could increase conversion rate 

from 7% to beyond 9%, which indicates personalization would be quite profitable. 

 Certainly there are many aspects of web design, advertising, and promotions that are 

important elements of this problem.  Path analysis doesn’t negate or supplant the need for 

studying these other aspects of the problem.  Our narrow focus on path analysis is simply to 

understand the contribution of sequencing information.  Our study also has many limitations.  
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First, we have studied paths at only one online retailer for a one-month period.  The usual caveat 

holds that these results may not be representative of other retailers and other time periods.  

Second, we have only focused on the path taken through a web site.  Bucklin and Sismeiro 

(2003) results suggest that incorporating timing information about viewings could also be 

helpful.  We leave the integration of timing information for future research.  Third, we have 

abstracted the web site by categorizing pages which has resulted in the loss of graphical and 

textual information concerning the page content.  Additionally, other categorization schemes 

could alter the predictive accuracy of our model. 

 Finally, our approach is largely statistical in nature, although it has been motivated by 

behavioral research.  We speculate that underlying the improved predictive ability of purchase 

behavior is the fact that navigation paths reflect a user’s goals.  Goals are defined as cognitive 

states that people desire to attain (Lewin 1943) and have been shown to drive consumer’s search 

and choice behavior (Johnson and Payne 1985, Bettman, Luce, and Payne 1998, Shafir, 

Simonson, and Tversky 1993, Svenson 1996).  Incorporating structural models of consumer 

behavior (Payne, Bettman, and Johnson 1993) could result in even better use of pathing 

information.  Recently, cognitive psychologists have applied ecological models of food-gathering 

behavior in the context of information search (Pirolli and Card 1999).  Heer and Chi (2001a, 

2001b, 2002) have used the idea of a hunter following a scent in modeling web-browsing activity.  

We would hope that future research could better incorporate behavioral models of consumer 

search and goals into structural models of web navigation beyond our reduced form approach. 

 We also believe that path analysis has implications outside of online shopping.  For 

example, Underhill (1999, pg. 99) found that shoppers whose path through the store include a 

visit to a dressing room were more likely to purchase.  While collecting path information in 

traditional brick and mortar stores with human observers is prohibitively expensive and 

intrusive, there are some technologies which may make the collection and analysis of path 

information economically viable.  For example, IRI’s VideOcart installed a radio-tracking device 

to collect path information and interact with a shopper (Marketing News 1988).  Unfortunately, 

researchers were not able to make use of the tracking information (Shulman 1993).  The advent 
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of GPS enabled devices such as cell-phones and mobile computers seem to raise these issues 

anew.  Hence we believe the use of path analysis is not limited to online environments. 

 Research on clickstream analysis both in academics and business is only beginning 

(Bucklin et al. 2002).  To the best of our knowledge our study is the first within the marketing 

literature to apply path analysis at the viewing-by-viewing level to the problem of purchase 

conversion.  We hope that it will generate more widespread interest in path analysis and the 

analysis of clickstream data.  Our interest in this problem is not because e-commerce is new, but 

because path data appears to be a powerful source of information with which to infer consumer 

goals and predict behavior.  Economists have not had access to such detailed information search 

information, which provides both theoretical and empirical challenges for future research. 
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