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Abstract:

The Internet gives incredible opportunities for companies to learn about their consumers.

Most managers view learning as actively asking questions directly to consumers and listening to

their responses.  Alternatively, managers can passively learn by observing the choices that

consumers make.  Passive learning techniques include user profiling, collaborative filtering, path

analysis, and conjoint analysis.  These techniques can be used to extract knowledge from online

data sources like purchase transactions, clickstream data, and e-mail.  Together active and

passive learning can be used to create personalized environments for consumers.  Such

personalization gives higher value and causes customers to become more loyal and more

profitable for businesses.
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Introduction

Personalized marketing refers to customizing offers and content to the individual

consumer.  This individualized approach to marketing is also called interactive marketing

(Blattberg and Deighton 1991, Haeckel 1998) or one-to-one marketing (Peppers, Rogers, and

Dorf 1999).  At the heart of an interactive marketing strategy is the ability to learn about

individual consumers and adapt the marketing messages correspondingly.  The purpose is to

create more value for consumers to increase the consumers’ loyalty to the supplier, and thereby

increase the supplier’s profitability.

A fundamental question is how do we learn about a consumer so that we know what level

and type of personalization is valuable to the consumer?  The obvious answer is to ask the

consumer directly, which we call active learning.  Examples of actively seeking information

from users online include log-ons, surveys, forms, and shipping information.  These are

frequently the fastest and easiest techniques for collecting information that suppliers use to

personalize the products and services they offer.  Unfortunately, active learning techniques have

many shortcomings:

(1) The direct approach requires too much effort on the part of the consumer.  Imagine a

visitor to Ford’s Web site who would like to build a car and must select every one of

the 4,000 component systems that make up the automobile.  Clearly this would be too

intensive an exercise.

(2) The consumer may not know the correct answer, either lacking the proper knowledge

or experience to evaluate the alternatives.  For example, our visitor to Ford’s Web site

may lack the expertise to answer questions about engine options.
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(3) Consumers may be unwilling to reveal correct answers.  Suppose Ford was to ask

what price the user would be willing to pay for a customized car.  Clearly consumers

might bias their answers anticipating that Ford might use the information to set the

price.

(4) The direct approach is inefficient since it ignores information consumers reveal about

their preferences in their past interactions and purchases.  A good deal of internal and

external information to the company can be used to supplement actively collected

information.  A repeat visitor to the Ford Web site, for example, who reviews the

product information several times, shows a higher interest level than a one-time

visitor; this is useful internal information in targeting and relationship building.

Additionally, Ford may have access to previous car purchases through external

sources that could also be used to customize the user’s online experience.

Another type of learning is passive learning, and it is the subject here.  Passive learning

focuses on learning about consumers through the information they reveal online in browsing the

Web.  Active learning is still useful, and sometimes is the only method for learning about a

consumer.  Consider a company that needs a customer’s mailing address.  One could guess that

the previous mailing address was still correct, which is a form of passive learning.  But the direct

approach of asking for a new mailing address is preferred.  However, combining active and

passive learning may yield a superior approach.  For example, one could give the consumer a

choice of shipping to the address used in the past or to a new address, which combines active

learning (asking for a new address) and passive learning (presenting a previous address).

Many managers are unfamiliar with passive learning and they may be losing out on its

benefits.  Passive learning requires some sophistication on the part of the manager, which may
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explain why passive learning is less commonly used than active learning.  A primary benefit of

the Web is that it is a wonderful tool for collecting and processing information passively.

An Example of Passive Learning

To understand passive learning, consider a Web visitor to altavista.com who searches for

an online stock broker using the keywords online brokerage.   AltaVista responds with a Web

page that contains text, graphics, and links.  One of the graphics is a banner advertisement.

However, this graphic is not generated by AltaVista but is provided by another company,

DoubleClick.  DoubleClick provides advertising services for many Web sites.

Most Web browsers are configured to retrieve any graphics embedded within a page.

Additionally, browsers automatically provide the referring Uniform Resource Locator (URL)

when requesting a graphic or other file.  The user’s search at AltaVista will result in a request for

a graphic file (or the banner advertisement) from DoubleClick.  Hence, the user has unknowingly

started an opportunity for DoubleClick to use passive learning.  In this case, AltaVista’s referring

URL signals to DoubleClick that the user is looking for financial information, which indicates

that AltaVista directed the user to the site during a search for ‘online brokerage’.  DoubleClick

can remember previous requests from this user by assigning the user a unique identification

number and depositing this id in a cookie on the user’s browser.  (A cookie is a small file of

information that the Web server can store on a user’s local PC).  Using this cookie DoubleClick

can identify this same user at any site that offers DoubleClick banner ads, such as U.S. News or

the Dilbert Zone.  DoubleClick’s server uses the information it compiles on the user’s history

and profile to determine an appropriate advertisement and relays this ad to the user’s browser,
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which displays it automatically.  In this wonderful example of passive learning, DoubleClick

learns about users without ever actively asking them questions.

While this system may seem complicated, it is transparent and automatic to the

consumer.  Its primary advantage is that it allows DoubleClick to display a banner ad on a

finance topic targeted to an individual who has just visited a finance site or to rotate banner ads

to maintain their effectiveness.  DoubleClick can also display banner ads chosen on the basis of

search terms and keywords.  For example, if a user performs a search for “online brokerage” at

altavista.com, a banner ad for Datek, an online brokerage, may be returned along with the results

of the search.  DoubleClick reports that the “click-thru” of targeted banner ads for Datek

constructed in this way was over 15 percent, far beyond the usual 0-3 percent range.  The cost for

such a targeted banner ad may be $.085 per viewer, which is more than four times the cost of a

nontargeted banner ad.  In comparison the average cost of a 30-second commercial on television

during prime time is about $.012 per viewer.  Targeted advertisements are more costly, but their

greater effectiveness may outweigh their costs.  The use of passive learning goes far beyond

targeted banner ads; it can be used in many contexts to customize the offers and content provided

to users.

The Inputs of Online Learning

Learning occurs when we take the raw input of data and turn it into knowledge.  We can

measure the value of knowledge by the impact it has on a decision.  Unfortunately, many

managers do not know how to extract knowledge from the data they collect.  Hence, the data

have no value because it has not impact on their decisions. Fortunately many tools are available

for turning data into action.
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Online environments provide many sources of data.  A natural byproduct of users

accessing Web pages is a dataset that contains the sequence of URLs they visited, how long they

viewed them, and at what time.  This dataset is called the clickstream, and it is a rich resource for

online learning.  To maximize its potential, managers can merge the clickstream with

demographic and purchase information or other external databases.  The different types of data

available online include purchase and transaction data, clickstream data, information collected

from cookies, and e-mail data.

Purchase and Transaction Data

Generally, as marketers we wish to predict purchases so it is only natural to start with

transaction data.  In many retail contexts, transaction data are already collected automatically.

For example, when you check out at your local supermarket, a computerized bar-code scanner

records all your purchases, the prices you paid, any specials or coupons, and may associate these

purchases with you using a frequent-buyer or affinity card.  Besides the obvious uses of this

information for accounting and inventory purposes it can also be used for marketing purposes.

For example, we can compile these data through time and use them to predict a consumer’s next

purchase.  In marketing research, we find that the best predictor of a future purchase is what the

consumer has purchased in the past.  For example, if we are trying to predict whether a shopper

will purchase Tide or Wisk laundry detergent on a particular visit, the most valuable information

is not age, gender, or other demographics.  The most valuable piece of information is whether

that person bought Tide in the past.

In addition, if we want to determine whether the shopper should get a coupon, the most

relevant question is not what they have bought, but how will they respond to price promotions in
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the future.  Rossi, McCulloch, and Allenby (1996) consider how purchase histories can be used

to determine couponing policies.  They estimate a statistical model known as a multinomial

probit model to determine the price sensitivity of a supermarket shopper using information from

previous purchases in a single product category, canned tuna.  They used the model to determine

what value (if any) of coupon to offer a shopper at the checkout stand and the expected profits

for different coupons based on various information sets (Table 1).  The blanket coupon drop

assumed that all consumers received a coupon for 10¢ off on their next purchase.  This blanket

coupon drop is used as a benchmark to compare other strategies.  Using demographic

information to choose who received a coupon, they increased expected profits by 10 percent over

a blanket coupon drop.  In comparison, by using only data on the last purchase, they increased

profits by 60 percent.  Clearly purchase information is more valuable than demographic

information in this context.  In the full information case, they used information on both previous

purchases and demographics and obtained a 160 percent increase in expected profitability over

the blanket coupon drop.  Purchase information used properly is an incredible resource.

Information Set Profit gain
Blanket coupon drop
Coupon drop using information from consumer demographics
Coupon drop using information from last purchase
Coupon drop using entire purchase history
Coupon drop using entire purchase history and demographics

1.0
1.1
1.6
1.9
2.6

Table 1.  The relative value of information sets for the distribution of a coupon as estimated by
Rossi, MuCulloch, and Allenby (1996).  Expected profits increase as more information is used.
The most dramatic profit increased come from using purchase histories and not just demographic
information.
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Clickstream Data

Just as we can collect purchase data in physical stores, we can collect purchase data in

virtual stores.  However, the data set is much richer.  In the brick and mortar retail store, we

know what the customer purchased and what items and prices were available within the store.

But imagine that we also record shopper movements through the store, what items they looked at

and considered and those they ignored, how long shoppers considered their decisions, and

whether they bought cake mix and then put cake frosting into their carts.  This is exactly the kind

of information we can collect in online shopping environments.

Consider a web user who visits the portal AltaVista, searches for “automobile”, and

selects the first site from the list of results, which is labeled “Automobile Magazine Just $11.95 a

Year!”  This Web session is illustrated in Figure 1, and the corresponding clickstream data set is

provided in Table 2.

The browser does many tasks for the user automatically.  When the user requested the

second URL the document called for had many graphic images to be imbedded.  The browser

automatically requested these images from their servers and displayed them appropriately in the

browser window.  Three of the graphics were logos (Avsmall.gif) or navigational symbols

(blended_icon.gif and truste_mark.gif) that were located at akamai.net.  The other was a banner

ad located at ad.doubleclick.net/click .  Each of these requests created a trace on the servers at

akamai.net or doubleclick.net and hence further opportunities to learn about the user for these

companies.
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Figure 1. This sample clickstream session illustrates a search at the portal AltaVista for
“automobile”.  The arrows illustrate the controls selected by the user and the flow of the session.
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Date and Time
Of Access

Seconds
Viewed URL

18Jul2001:18:55:57
18Jul2001:18:56:17
18Jul2001:18:56:55

20
38
18

http://www.altavista.com
http://www.altavista.com/sites/search/Web?q=automobile
http://store.yahoo.com/magazinecity/9675-12.html

Table 2. This table provides the clickstream dataset in tabular form that would be collected from
the session in Figure 1.

There are four potential sources of clickstream data:

(1) The host server (the computer of the site being visited) keeps a record of visits, usually

called a server log.  When a user requests a page, the server records identifying information

(the user’s IP (Internet protocol) address, previous URL visited, and browser type) in the

server log.  In the example given in Figure 1, altavista.com would know that this user

requested two different URLs from their server.

An advantage of collecting clickstream data from server logs is that they contain a record

of everything done at a Web site.  Unfortunately, they can also be difficult to process because

they contain so much data.  A practical problem with many server logs is that they become

large very quickly.  The Internet portal Yahoo! received 1.2 billion page requests per day as

of July 2001.  This generates terabytes of information to be stored every day.

Learning how to access and store this information can be incredibly challenging.  Many

companies provide products to summarize and analyze these logs, for example, Accrue, IBM

SurfAid, IRG, MINEit, Macromedia, NetGenesis, NetIntellect and WebTrends.  Other

companies, such as Accrue,  CommerceTrends, Digital Archaeology, E.piphany, Hyperion,

Informatica, MicroStrategy, Personify, and Sagent, provide consulting services that process

clickstream data and aggregate them with online sales data and e-mail data to create a

comprehensive picture of their client firm’s business (Mena 2001).
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To make its logs useful for later analysis the server should record what it presented to the

user.  This is a problem because servers generally offer large amounts of content and change

it frequently.  Many URLs and the content these URLs contain are dynamically created,

which means that requests for the same page by two different users may result in two

different pages.  To manage the resulting data set and extract useful information, some

companies scan each Web page presented to a user for titles or metatags.  This process is

called packet sniffing.

(2)  A major limitation of clickstream data collected from server logs is that the data come

from only one site and do not enable tracking across sites.  For example, in the previous

example, AltaVista would not know what the user did before or after he or she left its Web

site.  One way around this is to provide links to content, such as graphic images, that are

stored at other sites.  For example, when DoubleClick provides graphic images at AltaVista,

it can collect clickstream data from AltaVista’s users without their intentionally visiting

DoubleClick’s Web site.  Of course, AltaVista must be willing to place these images on its

Web site.  Many firms besides DoubleClick provide advertising placement services:

24/7Media, Ableclick, Advertising.com, AOL, BURST!Media, Cybereps, Engage,

Go4Media, L90, Phase2Media, Premium Network, RealMedia, Sonar, and ValueClick

(Mena 2001).  Large providers, such as DoubleClick and Engage, can leverage the large

number of sites they do business with and track users across Web sites.  For example,

DoubleClick can remember that a visitor to iVillage.com is the same one that visited

altavista.com last month, even though iVillage and AltaVista have no direct relationship.

Other third parties that can collect clickstream data by working in conjunction with Web

servers are Application Services Providers (ASPs), such as Angara, Cogit, CoreMetrics,
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DigiMine, Interelate, Informative, Keylime, and WebMiner (Mena 2001).  Frequently, these

companies do not provide graphics the user will see as DoubleClick does, but 1x1 pixel

images called Web bugs.  These graphics are so small that they are invisible to Web visitors.

CoreMetrics holds a patent for one type of Web bug.  For example, walmart.com places Web

bugs on its site that allow CoreMetrics to record a visitor’s movements at walmart.com.

CoreMetrics can then analyze these movements and make recommendations to walmart.com

about its Web design and marketing policies.  Another example of a Web bug is one used by

zanybrainy.com in 2000.  Whenever a customer made a purchase at zanybrainy.com, it

placed a Web bug that relayed the purchase information to DoubleClick.  Web bugs allow

one company to communicate information about its Web visitors to another company.

(3)  Clickstream data can also be collected by a third party because of the network topology

of the Internet.  Users’ requests for Web pages on their computers’ are relayed by a series of

computers attached to the network before they finally reach their destination.  Most users are

connected to the Internet through an internet service provider (ISP) or a commercial on-line

service (COS), such as AOL.  For example, when an AOL user makes a request, AOL’s

servers receive the request before it is relayed through the Internet.  When an ISP or COS

routes a request, it can record the routing information and create its own clickstream data set.

(What AOL does with this information depends upon its privacy policy.)  Because many

ISPs and COSs cache their users’ page requests, they do not always pass all requests on to

the server.  Instead ISPs and COSs may serve many pages from their own archives to speed

up responses to user requests.  Unfortunately, this means that the server logs we discussed in

(1) and (2) may contain only a subset of the users’ viewings.  Dreze and Zufryden (1998)

discuss some of the challenges of using server log data to measure advertising effectiveness.
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(4) A final–and perhaps the most reliable–source of clickstream data is a meter program that

can record what users do on their computers.  This meter program can “watch” the user and

record the URLs of all pages viewed in the browser window and any other application

programs the user is running.  Because this program works on the user’s computer, it avoids

problems with cached pages mentioned in (3).  Such a program can also record how long

users keep windows active, instead of simply when they request URLs.

A drawback to this technique is that the individual must be willing to run such a program.

Most companies that use this method to collect clickstream data are marketing research

companies, such as Jupiter Media Metrix and A.C. Nielsen.  These companies create large,

representative samples of households that own personal computers (PCs) and have consented

to participate in such a panel.  The companies use statistical techniques to project usage from

these small samples to the overall population.

Cookies

Cookies are small text files that are stored by a user’s browser.  Cookies are important

because they overcome a major shortcoming of the original design of the World Wide Web

(WWW), the lack of memory about a user.  Originally, those who developed the Web envisioned

that users would view static text or content that would not change.  Hence they saw no need for

the system to remember that the user viewing one page was the same one who viewed another

page.  The content of a page was always the same, regardless of what content the user viewed

previously.  However, as the Web has evolved, a page may depend strongly on the previous

page.  For example, users may want to create shopping carts, avoid logging in every time they

visit sites, or simply save their preferences from one click to the next.
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Cookies allow Web servers to maintain memories about users.  When a browser makes a

request to a Web server, it also checks to see whether it has any cookies that the server has asked

it to save from previous visits.  The first time a user visits a Web server, he or she will not have

any cookies for that site.  The Web server can ask the browser to create cookies or change

cookies when it responds to a user request.

The Web server determines how to use the cookie.  For example, DoubleClick uses a

cookie to assign every visitor who requests one of its files a unique identification number.  Other

servers use a cookie to identify the shopping basket, to save preferences about a Web site, or to

identify which requests from a given computer are coming from the same browser window.

Users can decide whether they want to accept a cookie, but most users do not change the default

setting of “accept all cookies.”  Given that the primary use of the cookie is to track users, many

privacy advocates are very concerned about the use of cookies, although no consensus has

developed concerning privacy (Smith 2001).

E-mail

E-mail is one of the most frequently used applications on the Internet, and marketers can

use it to reach customers.  People use e-mail to communicate with colleagues, friends, and

family.  One property of e-mail that makes it different from Web browsing is that it is

asynchronous.  Generally, when a user requests a page from a Web server, it is displayed

immediately and then removed after a short time.  E-mail messages, however, may not be viewed

for many hours or days.  Also, they can persist for a long time, since users can save them for

future reference.  It is possible to embed Web bugs or references to graphic images in e-mail

messages that will cause them to make requests to a Web server.  When the user reads the e-mail
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message, the browser will request the server to display the graphic or Web bug, leaving a trace in

a clickstream dataset.  Hence, clickstream data and data on e-mail browsing can be combined.

Many companies have begun using e-mail for direct marketing.  Companies such as

Brigade, Brightware, Digital Impact, eGain, FaceTime, Kana, LivePerson, Message Media, and

NetCentives (Mena 2001) provide e-mail systems that can be intelligent and can interface with

other functions that their clients provide.  For example, LivePerson provides facilities to monitor

chat sites and to use advanced text-processing techniques to respond to user comments.

Passive Learning

 Online data sources are valuable only if they change our actions as marketers.  Most of

the data sets we have mentioned are easy to collect but can be large and difficult to process.

Data mining (Berry and Linoff 1997) is useful for processing these datasets.  Data mining

combines algorithms developed in computer science with statistical techniques to automatically

search for patterns in large data sets.  Currently, data mining is made up of diverse methods, such

as regression analysis, decision trees, neural networks, Bayesian learning, genetic algorithms,

and clustering.  Many software providers provide data-mining tools:  Angoss, BusinessMiner,

Data Distilleries, IBM, Megaputer, Quadstone, Urban Science, Visual Insights, SAS, and SPSS.

Unfortunately, these tools can be expensive and require trained analysts to process the data sets

into actionable knowledge.  These techniques extract knowledge from data collected passively,

and several are very promising in turning data collected online into valuable intelligence for

managers.  Hence, data mining is another example of passive learning.

 User Profiling
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Frequently we want to identify users in terms of demographic characteristics or attitudes.

For example, if we have separate clothing lines for men and women, determining users’ genders

could be useful for personalizing their experience.  Answering questions can be burdensome for

users—if they are willing to answer questions at all.  We can use passive learning with

clickstream data to make inferences about users’ demographic characteristics and attitudes based

upon the choices they made while visiting Web sites or pages.  For example, visitors to sports

sites are likely to be men.  The question is how much can we learn and can we trust what we

learn?

Montgomery (2001) developed a user-profiling technique using clickstream data.

Consider the example of one user who visited 22 Web sites during a month (Table 3).  Jupiter

Media Metrix estimated the percentage of people visiting each domain at least once during the

month who were women.  For example, it estimated that 66 percent of visitors to ivillage.com are

female.  (This percentage is not weighted by the number of pages requested, and men may

account for a lower percentage of page requests since they may request fewer pages per visit than

women.)  Without knowing anything about a user except that he or she visits ivillage.com, the

odds are two to one that the user is female.  These odds are quite reasonable because ivillage.com

offers content geared towards women.  For similar reasons, a gaming site may appeal primarily

to teenage boys, and sports sites may predominately attract men.  On the other hand, portals such

as Yahoo and Excite draw audiences that are fairly representative of the Web as a whole and their

use provides little information about gender.

Domain Visited

Percentage
of Visitors
who are
female Domain Visited

Percentage
of Visitors
who are
female
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Aol.com
Astronet.com
Avon.com
Blue-planet.com
Cartoonnetwork.com
Cbs.com
Country-lane.com
Eplay.com
Halcyon.com
Homearts.com
Ivillage.com

48%
64%
75%
52%
56%
54%
76%
47%
41%
70%
66%

libertynet.org
lycos.com
netradio.net
nick.com
onhealth.com
onlinepsych.com
simplenet.com
thriveonline.com
valupage.com
virtualgarden.com
womenswire.com

63%
39%
27%
57%
59%
83%
44%
76%
59%
71%
66%

Table 3.  In this list of domains visited by a female user over the course of one month, Jupiter
Media Metrix estimated the percentage of people who visited the domain at least once during the
month that were female.

If we did not know the gender of a Web user, we might form the hypothesis that the user

was female since the user visits web sites oriented towards a female audience (Table 3).  Initially

we could use the information that 45 percent of Web users in this month were female.  If we

knew that the user visited ivillage.com, 66 percent of whose visitors were female, we could

update our inference that our hypothesis (the user is female) was true using this new piece of

information.  Statistically this is known as a Bayesian hypothesis-updating problem, and we

could apply the following rule to recompute the probability that the user is female:

The original probability that the user is female is denoted by p� =.45.  The new

information indicates the probability is .66, p=.66.  The updated probability or posterior

probability of our hypothesis is denoted by p�� =.62.  In other words, the probability that this is a

female user has increased from 45 percent to 62 percent.  Based on information from all 22 sites,

the probability that the user is female is 99.97 percent (derived by updating the probability that

the user is female by using information on all the sites listed in Table 3).

62.
34.55.66.45.

66.45.
)1()1(

=
⋅+⋅

⋅=
−⋅−+⋅

⋅=
pppp
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��

�
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To assess the accuracy of this technique, we applied it to actual usage information from a

sample of 19,000 representative Web users with one month of usage and known gender.  Users

in this sample vary a great deal; some visit only one site, while others may visit hundreds.  If the

model predicted that a user was male with more than an 80 percent probability, then we

predicted the user to be male.  We made similar predictions for female users.  We had enough

information to classify 60 percent of users as either male or female.  Of the users we classified as

male, 81 percent were male, and of the users we classified as female, 96 percent were female.

The agreement between the predictions and actual gender validates the accuracy of the

technique.  More advanced techniques that accounted for statistical dependence between Web-

site visits could increase the accuracy of these predictions.

In this example, we knew all the Web sites a user visited, but such thorough tracking is

not necessary to employ a user-profiling technique.  For example, we could determine the

probability that a user who visited cnn.com were male by examining what categories he or she

visited.  Or we could guess whether a random visitor to ppg.com was an industrial buyer or

technician by examining the types of pages visited.  The technique does not require huge

amounts of information.  If we knew only that this user visited cbs.com, ivillage.com,

libertynet.org, nick.com, and onlinepsych.com, we could still predict with a 95 percent degree of

certainty that this was a female visitor.  This is precisely the information that the DoubleClick

network would have about this visitor.

Predicting the genders of Web users seems innocuous, but we can use the same

techniques to predict incomes (for example, does a user make more than $75,000?).  Just as some

sites provide information about gender, some provide information about income (for example,

millionaire.com, wsj.com, and businessweek.com).  In fact, we could apply this technique to any
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characteristic as long as we had a sample of users with known characteristics to compare with

our unknown user. With user-profiling techniques, managers can accurately predict the

characteristics of their Web-site visitors without asking them to fill out surveys.

User profiling has potential problems.  First, it makes errors.  Even with a 99.97 percent

chance that site visitors are female, we will incorrectly label some males as females and vice

versa.  For example, in a sample of 10,000 users that we predicted were females, on average

three would be male.  Therefore, we must consider the costs associated with making a wrong

prediction.  We might display the wrong advertisement or insult a female user with a male

message.  In addition, a company should assess its users’ privacy concerns and determine

whether the value of personalization outweighs its costs.

 

 Collaborative Filtering

Another approach to providing customized content is to recommend new products based

on an individual’s previous purchases or on expressed preferences for particular products.  A

popular technique for doing this is collaborative filtering.  Collaborative filtering works by

comparing a consumer’s past purchases or stated preferences to the purchases or stated

preferences of similar consumers from an existing database.  The firm can make

recommendations by identifying products that similar consumers have purchased that this

consumer has not yet purchased.

Amazon and CDNow, for example, use collaborative filtering to recommend books and

CDs to customers.  For example, if someone bought albums by the Rolling Stones, the Beatles,

the Who, and Jefferson Starship, a collaborative filtering system might recommend Hot Tuna,

Kaukonen*Jorma, Quicksilver Messenger Service, and Love.  Ireactor says this system has
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doubled CDNow’s sales of recommended albums over a system of having its employees make

recommendations based on their own experience.  For additional references about collaborative

filtering and its applications, see Shardanand and Maes (1995).

 Many collaborative filtering techniques are based on cluster analysis.  In an example by

Ungar and Foster (1998), six individuals have seen various films (Table 4).

 
 Table 4.  The favorite movies of six individuals are given in this Table.  This data is the raw
input of a collaborative filtering system.

 People  Favorite Movies

 Lyle
 Ellen
 Fred
 Dean
 Jason

 Andre, Star Wars
 Andre, Star Wars, Hiver
 Star Wars, Batman
 Star Wars, Batman, Rambo
 Hiver, Whispers

 In using K-means clustering (MacQueen 1967), the analyst assigns each item to the

cluster having the nearest mean, following three basic steps:

1. Assign the N items to K initial clusters.

2. Reassign each of the N items, to the cluster having the nearest mean.

When you reassign an item, recompute the means of the clusters losing

and gaining the item.

3. Repeat step 2 until you need to make no more reassignments.

 To create a collaborative filtering system, we can apply this technique by first clustering

the users and then clustering the movies.  On the next pass, we can reapply this technique to

cluster the people based on the movie clusters from the first pass, and then recluster the movies

based on the user clusters.  We can repeat this process until we reach a good solution.  For

example, from the data shown in Table 4, we might find the solution shown in Table 5.
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 Table 5.  An example of the clustering solution found by a collaborative filtering system. There
are apparently three clusters of movies (action, foreign, and classic) and two clusters of users
(intellectual and fun).  We might recommend Hiver to a new user who likes Andre but dislikes
Batman since this user most likely belongs to the “intellectual” group.

 User  Batman  Rambo  Andre  Hiver  Whispers  Star Wars

 Lyle
 Ellen
 Jason

   X
 X

 
 X
 X

 
 

 X

 X
 X

 Fred
 Dean

 X
 X

 
 X

    X
 X

 

 In a real application, thousands of users might have seen thousands of movies.  The idea

behind collaborative filtering is to group similar users and similar products.  To make reliable

predictions, collaborative filtering requires a large amount of information.  Many firms, such as

Gustos, LikeMinds, NetPerceptions, and Webridge (Mena 2001), create software to implement

collaborative filtering systems.  The strength of collaborative filtering is that is can turn passively

collected information into valuable intelligence.  Unfortunately, it may be costly to implement,

require large amounts of data, and may not scale well to massive data sets.

Path Analysis

The path a user takes through a Web site can reveal a great deal about the purpose of a

visit.  A user navigating the Barnes and Noble Web site (Figure 2) starts at the home page and

searches for “information rules”, then selects the first item in the search list, a book by Shapiro

and Varian (1998), and adds this item to the shopping cart and moves to the checkout.
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Figure 2. Example of directed user browsing behavior at Barnes and Noble and this user
searches for Information Rules.

The user could have ended up at the Information Rules page on the Barnes and Noble

Web site in a myriad of ways.  He or she could have found this book by browsing the business,

computer, or nonfiction book sections, or even found this book after searching for the authors.

The user could have come to the Barnes and Noble Web site, entered the business-book section,
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viewed a number of bestsellers, then searched for pricing, and eventually found the Information

Rules page after two dozen clicks.

 Path analysis is an attempt to infer information about users’ goals from the navigation

decisions they make. Some users make directed searches with distinct goals in mind (Figure 2).

People in this directed mode would likely see additional information as irrelevant since their goal

is to find a specific book.  In fact, any additional information on the page, such as specials and

advertisements, could be distracting and could lower the probability that they would stay at that

site. On the other hand, users surfing the site are conducting nondirected searches and can be

strongly influenced by the content of the session. An appealing Web-page design may capture

the attention of such users and cause them to look at a book they would not have considered

previously.  With path analysis, managers can personalize users’ sessions by responding with

relevant information, can intervene with users who are likely to leave the site by making special

offers, or can identify users who are simply browsing and locating products they might never

otherwise have considered (and perhaps display recommendations from a collaborative filtering

system).

Browsing behavior at online stores differs from that at offline stores.  In an offline store,

shoppers must take time to move through the store, which gives the retailer time to present

products in an order that maximizes profits. For example, supermarkets put their dairy, produce,

and bakery departments at opposite ends of the store even though they offer items that are

commonly purchased. The supermarkets thus force consumers to navigate through the entire

store. However, an online store does not have that luxury. Users can enter or leave the store from

any point. This implies that online retailers need to be more cognizant of the paths users take

through the store. Unfortunately, research on path analysis both in academia and in business is
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just beginning. However, path-analysis technology could have a huge impact on Web-site design

and on the use of passively collected data to infer shoppers’ goals and desires.

Proactive Learning

 In active learning, one focuses on asking questions and allowing users to dictate the

course of personalization. In passive learning one focuses on using information collected

passively or as a byproduct of browsing to learn about users and personalize their experiences.

Another form of learning, which we call proactive learning, combines these two elements. With

proactive learning, one leverages the strengths of the two methods to improve the interface with

users. Specifically, we will describe a marketing technique, conjoint analysis, to illustrate

proactive learning.

 The principle behind conjoint analysis is that consumers attach values to all the attributes

of a product. The total value or utility of the product is the sum of the values of its components.

However, attribute values are latent, and consumers cannot state them directly. For example, we

could ask consumers directly for the probability that they would purchase a wool coat at $98 and

a rayon one at $89. Unfortunately, consumers would not know the answer to these questions or if

they did answer such questions, the answers would be of doubtful reliability. However,

consumers would be able to answer directly whether they would purchase a wool or a rayon coat.

If the analyst varies the attributes of products and asks consumers to compare a series of coats

with varying attributes and prices, the analyst can then infer the value of each component using a

statistical model of choice, such as a multinomial logit or probit model. The use of a statistical

model helps the analyst to infer how consumers make decisions.
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 Figure 3.  An example of a conjoint task at Lands’ End’s Personal Shopper.  The consumer is
asked to choose between two outfits.  Lands’ End can use choices like this one to infer about the
value a consumer attaches to various designs and materials.

In Lands’ End’s personal shopper feature (Figure 3), consumers are asked to choose

between outfits presented in pairs. Based upon these choices, Land’s End determines the value of

each of the attributes of the outfits to each consumer. Lands’ End can use this information to

predict whether a consumer would like a new outfit that they have not seen.  Lands’ End can use

this information to personalize the consumer’s shopping environment. Instead of displaying a lot

of products that are not relevant to the individual shopper and that detract from the shopping

experience, Lands’ End can create a store that is designed to enhance that person’s shopping

experience.  Imagine a customer visiting an online store in which every product has been

selected to be of personal interest to that shopper.
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Conjoint analysis can also be used in the context of a shopbot (a shopping robot). A

shopbot helps consumers find low-priced items. The shopbot asks the user to request a product

and then launches a search at all the online stores it can access.  For example, a search for the

recent book John Adams by David McCullough at dealtime.com yields a range of prices between

$20.99 and $50.95 after searching scores of online stores. The offers made by the various stores

are for the same book but differ in price, shipping options, availability, and reputation of the

store. In the context of conjoint analysis, we can think of each of these features as an attribute.

As the shopbot visitor makes choices, we can find out what features this person values. Without

asking the consumer to make dozens of comparisons, the shopbot can determine which offers are

likely to interest each consumer. It can then improve the shopping experience for the consumer,

which should make that consumer more profitable and loyal for the shopbot (Montgomery et al.

2001).

Discussion and Conclusions

 The Internet offers many firms ways to reduce their costs and ways to passively learn

about opportunities to sell products and services.  They can often reduce costs for customer

service.  By providing information online, firms can save on their call centers for customer

service.  The celebrated example in this area is Federal Express’s migration to the Internet,

where it gives customers the ability to track their own shipped packages.  The firm provides

detailed information on the progress of the shipment, including where the package is in the

transit process.  Customers switched to the Internet to obtain information, and Fed Ex’s call

center volume decreased dramatically.  Fed Ex has reduced its call-center personnel from several

hundred to scores. The firm also has an opportunity for passive learning.  Individuals who often

track overnight packages are apparently far more time sensitive than other customers.  They may
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become ripe targets for future services that further reduce shipping time or allow them to track

shipments using remote network appliances, such as cell phones or PDAs (personal digital

assistants).

 Firms in several sectors are following Federal Express’s lead. Mutual funds, inundated

with calls from customers who want their current account balances, have flocked to the Web to

minimize costly call volume.  Appliance firms provide electronic manuals to customers who

have misplaced them reducing the need for call centers to support customer requests.  The cost

reduction is immediate, and the scope for passive learning is immense.

 Through passive learning, firms can tailor different strategies for customers with different

levels of expertise. Financial service firms can provide vast amounts of information on

instruments ranging from the simple to the complex.  By mining collected data on the extent and

depth of information customers seek, firms can develop prospect lists for their product offerings.

In addition, based on customers’ information-search patterns, firms can distinguish expert

customers from novice customers.  For the former, providing information on complex offerings

might suffice, while for the latter, far more personal counseling may be required.

 Passive learning has enormous potential for business-to-business interactions as well.

Firms providing maintenance have a major opportunity to keep their customers’ machinery up

and running.  For the next generation of networked copiers, suppliers will continuously monitor

usage patterns, recognizing when the system might break down and providing timely preventive

maintenance.  Suppliers will be able to offer customized maintenance plans instead of standard

plans that may not serve all customers optimally.  The suppliers can also identify opportunities to

sell consumables, additional services, and even new products.  For example, customers who use

color copiers heavily need far more related consumables than other firms do.  The supplier can
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deliver such consumables frequently and may even figure out that a different copier would better

serve the customer.  Some customers may use copiers intensely during certain periods.  For

example, an accounting firm’s usage would peak just before April 15.  By tracking firms’ peak

loads, suppliers can schedule preventive maintenance and supplies appropriately.  Finally, such

passive monitoring systems also provide a plethora of information about which features of the

product the customer uses heavily.

 Many firms do not have the in-house expertise to leverage the data they collect.

Fortunately, many companies produce e-commerce suites and e-Customer Relationship

Management (eCRM) systems that help them to reap the benefits of these techniques.  Some of

these companies are ATG, BEA, Blue Martini, Broadbase, Broadvision, eHNC, Harte-Hanks,

Manna, MarketSwitch, Microsoft, Oracle, Siebel, and Xchange (Mena 2001).

 Today’s technology appliances are loaded with features, and disentangling their value is

critical for developing the next generation of the products.  Along with such well-known market-

research methods as conjoint analysis, inferences drawn from usage patterns might provide

valuable information about customer needs.  The opportunity for passive monitoring and

maintenance is enormous.  United Technology has proposed real-time wireless information

gathering and engine monitoring to various airlines.  Using intelligent inference engines, the firm

aims to schedule maintenance dynamically. It also plans to leverage the information it collects to

forecast requirements for parts and labor.

 Passive learning is not limited to making inferences about customers.  The Web provides

a wealth of information about competing firms.  By leveraging information found through the

customized intelligent searches offered by such companies as WhizBang Labs!

(www.whizbang.com), firms can develop the ability to monitor the changing prices of
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competitors’ products.  In fact, computer programs that systematically search the web (crawlers)

can alert managers and sales people to competitors’ price changes in real time and to content

changes such as announcements of new products or services or of promotions.

 Individualized marketing makes new demands on managers and on accounting.  In the

past, marketers thought in aggregate terms over a few quarters.  However, this is no longer

efficient, because marketers can now track customers’ responses by the individual over long

periods.  Marketers should focus on analyzing the lifetime value of consumers direct marketing

firms do (Mulhern 1999).  Managers need to track and compute the cost of acquiring each

consumer and then relate this cost to the profits the customer produces over his or her lifetime.

Given that it is much more expensive for a firm to acquire a new customer than to keep an

existing one, long-term analysis can help it to increase profits.
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