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Technical Change, Wage Inequality, and Taxes†

By Laurence Ales, Musab Kurnaz, and Christopher Sleet*

This paper considers the normative implications of technical change 
for tax policy design. A task-to-talent assignment model of the labor 
market is embedded into an optimal tax problem. Technical change 
modifies equilibrium wage growth across talents and the substitut-
ability of talents across tasks. The overall optimal policy response 
is to reduce marginal income taxes on low to middle incomes, while 
raising those on middle to high incomes. The reform favors those in 
the middle of the income distribution, reducing their average taxes 
while lowering transfers to those at the bottom. (JEL D31, H21, H23, 
H24, J31, O33)

Technical change is inherently redistributive, complementing the labor of some 
whilst substituting for that of others. A large positive literature has analyzed its 
impact on the wage distribution. This literature has emphasized skill-biased techni-
cal change that favors the skilled over the unskilled and, more recently, has stressed 
the role of technical change in replacing “routine labor” in the middle of the wage 
distribution. However, while the positive literature documenting the redistributive 
nature of technical change is extensive, normative work exploring the policy impli-
cations of such change is not.1 Our paper fills this gap. We explore how more than 
30 years of technical change in the United States has affected the policy recommen-
dations that economic theory provides. Overall, we find that such change creates a 
rationale for a modest adjustment of optimal policy in a direction that favors middle 
income earners, reducing their average taxes while lowering transfers to those at 
the bottom. Optimal marginal taxes are reduced on incomes that are low (but not 
the lowest) and raised on incomes that are high (but not the highest). Although, the 

1 For a historical account of the relationship between skill and technology see Goldin and Katz (1998), Autor, 
Katz, and Krueger (1998), and the references therein. Bresnahan, Brynjolfsson, and Hitt (2002) look at firm level 
evidence connecting technology and the demand for skills. Autor, Levy, and Murnane (2003) argue that recent 
technical change has led to the replacement of “routine” labor in the middle of the wage distribution. Autor, Katz, 
and Kearney (2006) and Goos and Manning (2007) document “job polarization”: growth in low- and high-skill 
occupations. 
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overall effects are moderate, they are the net effect of larger countervailing forces 
stemming from technical change. First, such change directly modifies wage differ-
entials across differently talented workers; second it alters the substitutability of tal-
ent across occupations and, hence, the sensitivity of wage differentials to taxes. The 
evolution of optimal policy depends upon the balance of these conflicting forces.

We make theoretical and quantitative contributions. On the theoretical side, we 
embed a talent-to-task assignment model into an optimal tax framework. The former 
has been used by labor and trade economists to analyze the implications of technical 
change for the structure of wages and employment. We show how the technological 
parameters emphasized in this work shape optimal tax formulas. On the quantita-
tive side, we bring a parametric assignment model to the data; we estimate the key 
parameters and derive the implications of technical change from the 1970s to the 
present day for policy.

The normative tax literature largely focuses on the incentive to supply effort by 
perfectly substitutable and privately informed workers. An exception is Stiglitz 
(1982) who allows for imperfect substitutability between the effort of two different 
talents.2 This assumption renders relative wages sensitive to the profile of effort 
across talents and, hence, tax policy. In particular, Stiglitz identifies a wage com-
pression motive for subsidizing high and taxing low talents. By doing so the wages 
of high talents are compressed relative to low and the former’s incentive constraints 
are relaxed. We begin our analysis with a Stiglitz-type environment in which the 
production function is defined directly over the imperfectly substitutable labor input 
of many different worker types. In this setting with minimal restriction on the pro-
duction function, we derive a general formula for optimal taxation. The formula 
provides a framework for interpreting subsequent results. Stiglitz’s (1982) wage 
compression channel remains operative, but now takes a more complex form: the 
motive to tax a given talent type  k  at the margin depends, in part, on the elasticity 
of the relative wages of all pairs of adjacent talent types (ordered by wages) with 
respect to  k ’s effort. This setting suggests two ways in which technical change can 
influence optimal policy. First, factor augmenting technical change that is biased 
toward a subset of talents can do so by modifying relative wages and, hence, tighten-
ing or relaxing incentive constraints. Second, technical change that alters the effect 
of one talent type’s effort on the relative wages of other talent types impacts policy 
by strengthening or diluting the wage compression channel described above.

We next embed an assignment model into an optimal tax framework.3 In the class 
of assignment models we consider, talented workers have a comparative advan-
tage in complex tasks and assortative matching of workers to tasks occurs. To such 

2 Other important exceptions include Lockwood, Nathanson, and Weyl (2014); Rothschild and Scheuer (2013); 
Rothschild and Scheuer (2014); Rothschild and Chen (2014); and Slavík and Yazici (2014). 

3 The assignment framework originated with Roy (1950). Versions with a continuum of tasks, single dimen-
sional talent, and comparative advantage of talented workers in complex tasks were developed by Sattinger (1975) 
and Teulings (1995). Such models have proven to be a rich laboratory for analyzing the role of task-talent distribu-
tions and the productivity of task-talent matches in shaping the wage distribution. Recently, these models have been 
used to explore the implications of technical change that attaches to tasks (rather than talents), see Costinot and 
Vogel (2010); Acemoğlu and Autor (2011); and Autor and Dorn (2013). 
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 models we add an intensive effort margin, a societal motive for redistribution and 
explicitly private talent.4

In the equilibria of our embedded model, workers sort themselves efficiently 
across tasks conditional on the effort of other workers. This induces an indirect 
production function over the effort of different talents of the sort that our earlier 
analysis directly assumed. Technological parameters that determine relative task 
demand and the productivity of task-talent matches in the assignment framework 
are thus mapped to the variables and elasticities necessary for optimal tax analysis. 
In particular, the pattern of comparative advantage of talents across tasks shapes 
the sensitivity of relative wages to variations in the effort profile and, hence, policy. 
A local reduction in marginal taxes that induces a given talent type to increase its 
effort, depresses the (shadow) price of the task to which the type is assigned and, 
hence, the type’s relative wage. Workers of this type offset this reduction by migrat-
ing into neighboring tasks, mitigating the impact on their original task’s shadow 
price. However, the offset is partial since this migration erodes their productivity 
relative to neighboring talents. The greater is the comparative advantage of talented 
workers in complex tasks, the greater this erosion and the more sensitive are rela-
tive wages to task assignment. Thus, technical change that raises talent-complexity 
comparative advantage enhances the policymaker’s ability to influence the wage 
structure through taxation. It strengthens the wage compression force identified in 
the more reduced form Stiglitz setting.5

We take our model to the data and quantify the implications of 30 years of technical 
change in the United States for optimal policy. We treat information on occupations, 
incomes, and hours in the Current Population Survey (CPS) as if it was generated 
by an equilibrium of our assignment model and use parametric assumptions and 
equilibrium restrictions to recover estimates of key technological parameters for the 
1970s and the 2000s. To relate empirical occupations to the ordered set of tasks in 
our model, we order the former by the average wage paid. We recover an empirical 
proxy for the assignment of tasks to talents from the distribution of workers across 
occupations (ordered by wages). The estimation of parameters determining the 
demand for tasks is separated from those determining the productivity of task-talent 
matches by assuming a Cobb-Douglas technology for final goods as a function of 
tasks. This enables us to identify the demand parameters with occupational compen-
sation shares. Parameters determining the productivity of talent-task matches and, 
hence, comparative advantage are recovered from the empirical assignment function 
and the distribution of wages across tasks using the envelope condition for wages 
implied by the model. After obtaining these estimates and supplementing them with 
calibrated preference parameters, we calculate optimal tax policies for the 1970s 
and 2000s.

4 Rothschild and Scheuer (2013) were the first to consider the optimal tax implications of an assignment model. 
They do so in the context of a Roy model, i.e., a model with two sectors and no explicit notion of comparative 
advantage. We elaborate on the differences between their focus and approach and ours below. 

5 Migration of workers into neighboring tasks depresses the shadow prices of these tasks inducing the talents 
occupying them to migrate as well. A ripple effect is created and, so, an adjustment in one talent type’s effort can 
induce reassignment of many types, affecting their relative wages and in the process relaxing and tightening many 
incentive constraints. However, the greater is talent-complexity comparative advantage the more contained the 
impact of a policy-induced effort adjustment. 
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We find evidence of relative reductions in demand for mid-level tasks and relative 
increases in demand for low- and high-level tasks. We also find evidence of a  twisting 
of the talent-task productivity function, with low-talent productivity catching up to 
high talent in simple tasks and falling behind in more complex ones. The latter is 
associated with significant increases in the comparative advantage of more talented 
workers in more complex tasks. Moving from the 1970s to the 2000s, we find that 
under our benchmark estimation/parameterization, optimal marginal tax rates rise 
at the very bottom of the income distribution, fall on low- to middle-level incomes, 
rise on higher ones before falling again at the very top of the income distribution. 
This change in policy favors those in the middle of the income distribution who pay 
lower average taxes; optimal transfers to workers at the first and second income 
deciles are reduced. The twisting of the productivity function is the main force at 
work. It has two effects. First, it suppresses wage variation at the bottom of the 
income distribution, while enhancing it at the top. This relaxes incentive constraints 
on low incomes, while tightening them on high ones; it is a force for reductions in 
optimal marginal taxes on the former and increases on the latter. These effects are 
slightly enhanced by the relative reduction of demand for mid-level tasks populated 
by mid-level talents. Second, there is a partially offsetting strengthening of the wage 
compression channel. Higher comparative advantage of talented workers in com-
plex tasks increases the policymaker’s motive to apply high marginal taxes on low 
talents. Such taxes deter low-talent effort, raise low-level task prices, and encourage 
higher talents into these tasks. The relative productivity of these task migrants is 
eroded, suppressing their wage premia and relaxing incentive constraints. A parallel 
strengthening of the policymaker’s motive to reduce marginal taxes on high talents 
occurs. Policy depends on the balance of these two forces. The first dominates at 
most incomes under our benchmark parametrization (except those in the extreme 
tails), but since the second dampens the first, the overall effect is modest.

The equilibrium of our baseline model does not exhibit intra-task wage disper-
sion or the payment of the same wage in multiple tasks (“wage overlap”). Thus, it 
cannot capture the policy implications stemming from these. At the end of the paper, 
in Section VI (with details and elaboration in online Appendix VI), we describe an 
extension that permits nondegenerate and overlapping supports for intra-task wage 
distributions. This extension incorporates a second talent dimension, which impacts 
absolute advantage alone. We find that our results concerning the implications of 
technical change for policy are qualitatively robust to, but quantitatively dampened 
by this extension. We use it to obtain a lower bound on the responsiveness of policy 
to technical change.

The remainder of the paper proceeds as follows. After a brief literature review, 
Section I provides motivating facts. Section II gives optimal tax formulas for econo-
mies with imperfectly substitutable labor types and provides an initial discussion of 
the implications of technical change for policy. In Section III, an assignment model 
is embedded into an optimal tax framework. An indirect production function over 
worker effort is derived and the parameters of the assignment model are related to 
the relevant terms of the optimal tax formulas from Section II. In addition, the impli-
cations of technical change for policy in a simple two talent model are discussed. 
Section IV describes how the assignment model is used to identify estimates of 
technical change and reports these estimates. In Section V, optimal policy for the 
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1970s and 2000s is computed and the implications of technical change for policy 
recovered. The tax formula from Section II is used to decompose and account for 
changes to optimal taxes. Section VI describes a model extension that can accommo-
date intra-task wage variation; Section VII concludes. Appendices contain proofs, 
robustness checks, and extensions.

Literature.—A contribution of our paper is to bring together the normative opti-
mal taxation literature and a positive literature that analyzes the impact of technical 
change on the wage distribution. Both literatures are large. Many contributions to 
the latter have attributed increases in the skill premium to skill-biased technical 
change, formalizing this insight in what Acemoğlu and Autor (2011) have called the 
“canonical model,” i.e., a model with imperfectly substitutable skilled and unskilled 
workers and factor-augmenting technical change directed toward the skilled.6 
Recently, a more nuanced view of the labor market has emerged that emphasizes 
growth in low- and high-wage occupations relative to those in the middle. It has 
spurred the development of assignment models that endogenize the joint distribution 
of workers across wages and occupations and in which technical change attaches to 
tasks rather than worker types. Examples include Acemoğlu and Autor (2011) and 
Autor and Dorn (2013).

Most contributions to the normative literature focus on the incentive to supply 
labor in environments with privately known talent and perfectly substitutable labor. 
Stiglitz (1982) was the first to introduce imperfectly substitutable labor into such a 
setting. Rothschild and Scheuer (2013) (extended in Rothschild and Scheuer 2014) 
were the first to introduce assignment. They show that a worker’s ability to select her 
task mutes the regressivity of optimal taxes found by Stiglitz. They also show that 
optimal tax formulas are substantially complicated by additional terms stemming 
from wage overlap. The focus in Rothschild and Scheuer (2013) is on economies 
with two tasks and two dimensional talents.7 In contrast, our baseline assignment 
model features a continuum of tasks and one dimensional talent. In our model a more 
talented worker is better at everything, but especially good at some things, with those 
things interpreted as more complex tasks. The restriction to one dimensional talents 
follows a tradition in labor economics initiated by Sattinger (1975) and adopted 
recently by the positive literature described above. Its adoption allows us to make 
contact with these recent contributions, to formulate the notions of talent and task 
complexity in a parsimonious way and to develop a strategy for bringing our model 
to the data. It permits a significant simplification of the tax formula in Rothschild 
and Scheuer (2013) (via the omission of wage overlap) and leads us to adopt a 
substantially different approach to analyzing the problem than that in Rothschild 
and Scheuer (2013). However, it cannot accommodate intra-task wage dispersion 
or wage overlap. In Section VI and online Appendix VI we provide an extension 
that can. Lockwood, Nathanson, and Weyl (2014) also integrate tax considerations 
into an assignment setting. They focus on the externalities  associated with certain 

6 Examples include Acemoğlu (2002) and Krusell et al. (2000). 
7 This is generalized in Rothschild and Scheuer (2014) to  K  tasks and  K  dimensional talent. 
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assignments and characterize the optimal structure of corrective Pigouvian taxa-
tion.8 We abstract completely from this tax motive.

Slavík and Yazici (2014) apply the logic of Stiglitz (1982) to capital taxation. In 
their paper they introduce two sorts of capital: buildings and machines. Following 
the skill premium literature, they assume a machine-skill (or machine-talent) com-
plementarity. Thus, machines raise the marginal product of the talented relative 
to the untalented and, as in Stiglitz (1982), this dilutes incentives. It is socially 
 desirable to deter the accumulation of machines. In quantitative work, Slavík and 
Yazici (2014) show that this creates a rationale for quite high rates of (machine) 
capital taxation. Slavík and Yazici’s (2014) contribution is complementary to ours. 
They endogenize technical change in the context of a two talent “canonical model” 
and develop policy implications. We treat technical change parametrically, but do so 
in a multi-talent/multi-task assignment setting.

Heathcote, Storesletten, and Violante (2014) analyze optimal income tax pro-
gressivity in a rich dynamic environment. They assume imperfectly substitutable 
skills, but do not explicitly model tasks. Our model is static, but we add assignment 
and, hence, endogenize the substitutability of skills and relate it to technical change. 
In addition, Heathcote, Storesletten, and Violante (2014) restrict optimal taxes to a 
parametric class, we do not.

I. Evolution of the Occupational Wage Distribution: Stylized Facts

We first document some stylized facts that motivate our analysis. Figure 1 dis-
plays changes in average incomes across (one-digit) occupations from the 1970s to 
the present.9 The figure indicates considerable variation in the experience of differ-
ent occupations, with some exhibiting significant average income growth and others 
stagnating. Moreover, occupations with slow average income growth were predom-
inantly middle income in the 1970s, while fast growers were mainly low or high 
income at that time. For example, precision production, craft, and repair workers 
had a mid-level income of $33,109 in 1975 (all incomes are expressed in 2005 dol-
lars) and negligible income growth subsequently. In contrast, the two occupations 
with the fastest growing average incomes, services and managerial and professional, 
had average incomes in the mid-1970s of $12,912 and $40,013, placing them at 
opposite extremes of the income distribution. Such occupational polarization, with 
the middle growing more slowly than the extremes, is not confined to earnings; it is 
also present in various measures of occupational size and demand. Figure 2 displays 
changes in the share of employment of different occupations over time.10

Here managerial/professional and service related occupations that are con-
centrated in the extremes of the income distribution are expanding in size, while 
mid-income level occupations such as operators and fabricators (mostly employed 
in manufacturing) whose workers are shrinking over time.

8 Rothschild and Scheuer (2014) also incorporate this motive into their theoretical work. 
9 The data is taken from the March CPS. See online Appendix III for additional details on the data and our 

sample selection. 
10 See, inter alia, Goos and Manning (2007); Acemoğlu and Autor (2011); and Autor and Dorn (2013) for 

related evidence. 
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Overall, the picture that emerges from the CPS (and other data sources) is one 
in which high-wage and low-wage occupations are growing in size and in average 
compensation relative to middle ones. If talent is imperfectly substitutable across 
occupations, then these varied occupational fortunes suggest varied fortunes for 
 differently-talented workers. In the remainder of the paper we consider the optimal 
policy response to such events.
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II. Taxation with Imperfectly Substitutable Workers

Mirrlees’s (1971) model of optimal taxation assumes that workers of different 
types are perfect substitutes and that final output is a weighted sum (or integral) 
of worker efforts, with the weights given by private productivities. Stiglitz (1982) 
allows for a more general production function. He assumes that workers are one of 
two imperfectly substitutable types and interprets these types as “low” and “high” 
skilled. In this section, we generalize (Stiglitz 1982) to  K -types, but place no inter-
pretation on a worker’s type (the nature of which is defined implicitly by the pro-
duction function). In this (and compared to later sections reduced form) context we 
discuss implications of technical change for taxes.11

A. Physical Environment

Workers.—A continuum of workers has identical preferences over consumption  
c ∈  ℝ +    and effort  e ∈ [0,   _ e  ]  described by a utility function U :   ℝ +    ×  [0,   _ e  ]  → ℝ. 
The function  U  is assumed to be concave, twice continuously differentiable on the 
interior of its domain, with for each  e ∈ [0,   _ e  ]  ,  U( ⋅, e)  increasing and for each 
 c ∈  ℝ +    ,  U(c,  ⋅ )  decreasing and strictly concave. First and second partial deriva-
tives of  U  are denoted   U  x    and   U  xy    with  x, y ∈ {c, e} .  U  satisfies the Inada conditions: 
for all  c > 0  ,   lim  e↓0       U  e  (c,  ⋅ ) = 0  and   lim  e↑  _ e         U  e  (c,  ⋅ ) = −∞ . In addition,  U  
satisfies the Spence-Mirrlees single crossing property:  − U  e  (c, y/w) / {w U  c  (c, y/w)}  
is decreasing in  w . Workers are partitioned across a finite number of “types”  K ≥ 2  
with a fraction   π k    of workers being of type  k ∈ {1, … , K } . The fraction of workers 
with type less than or equal to  k  is denoted   Π k   =  ∑ j=1  k     π j   .

Workers sell their labor to firms and pay taxes on the income that they earn. Let  
T :   ℝ +    → ℝ denote an income tax function.12 A worker of type  k  receiving wage   w  k    
solves the problem

(1)    max   ℝ +  ×[0,   _ e  ]  
    U(c, e)  s.t.  c ≤  w  k   e − T( w  k   e). 

Technology.—A representative competitive firm hires workers of all types. The 
firm uses a production function F :   ℝ  +  K    →   ℝ +    defined directly on the labor inputs of 
the different types. The firm solves

   max  
 ℝ  +  K  

      F( e  1    π 1  , … ,  e  K    π K  ) −   ∑ 
k=1

  
K

     w  k    π k    e  k  , 

11 Much of the optimal tax literature is cast in terms of a continuum of types. This literature maintains the linear 
production function assumption. Although versions of the results that we give below are available for continuum 
economies, for general constant returns to scale production functions over worker effort allocations, their derivation 
requires leaving the framework of optimal control and maximizing an infinite-dimensional Lagrangian directly. 
To avoid technical complications that do not generate additional economic insight we do not do this. In our later 
assignment setting, optimal control techniques are applicable and we use them in online Appendix II. 

12 We restrict attention to non-stochastic tax functions. See Hellwig (2007) for sufficient conditions for such 
mechanisms to be socially optimal in utilitarian settings. 
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where   e  k    is the common effort level of workers of type  k .  F  is assumed to be a 
 continuously differentiable, constant returns to scale function with  k  th partial deriv-
ative   F  k   . At this stage, we place no further restrictions on  F . In classical Mirrlees 
models  F( e  1    π 1  , … ,  e  K    π K  ) =  ∑ k=1  K     a  k    e  k    π k    for some positive constants  { a  k  }  and 
workers of different types are perfectly substitutable. However, we allow for and 
focus upon worker types that are imperfect substitutes in production. Since  F  defines 
what it means for a worker to be of one type or another, the economic nature of a 
worker’s type is for the moment left implicit.13

Tax Equilibrium.—Let  G ∈  ℝ +    be a fixed public spending amount. Given  G  , a 
tax equilibrium is an income tax function T :   ℝ +    → ℝ , an allocation   { c  k  ,  e  k  }  k=1  K    and a 
wage profile   { w  k  }  k=1  K    such that (i) for each  k = 1, … , K  ,  ( c  k  ,  e  k  )  solves (1), (ii) for 
each  k = 1, … , K  ,   w  k   =  F  k  ( e  1    π 1  , … ,  e  K    π K  ) , and (iii) the goods market clearing 
condition holds:  G +  ∑ k=1  K     c  k    π k   ≤ F( e  1    π 1  , … ,  e  K    π K  ) . Let ℰ denote the set of tax 
equilibria (given  G ), which we take to be nonempty.

B. Optimal Policy

A government attaches Pareto weight   g  k    to workers of type  k  , with weights nor-
malized to satisfy   ∑ k=1  K     g  k   = 1 . It selects a tax equilibrium to solve

(PP)   sup  
ℰ

          ∑ 
k=1

  
K

     U(  c  k   ,   e  k   )  g  k   .

Let   T   ∗   and   { c  k  ∗ ,  e  k  ∗ ,  w  k  ∗ }  k=1  K    denote an optimal tax equilibrium. Define the correspond-
ing (optimal) marginal tax rate at income   q  k  ∗  :=  w  k  ∗   e  k  ∗  > 0  to be14

   τ  k  ∗  = 1 +    U  e  ( c  k  ∗ ,  e  k  ∗ ) ____________   w  k  ∗  U  c  ( c  k  ∗ ,  e  k  ∗ )   . 

To characterize optimal tax equilibria, we follow the conventional procedure of 
recovering optimal allocations from a mechanism design problem. Subsequently, 
prices and (optimal) taxes are determined to ensure implementation of this alloca-
tion as part of a tax equilibrium. The mechanism design problem associated with 
(PP) is

(MDP)    sup  
 { c  k  ,  e  k  }  k=1  K  ∈ { ℝ +  ×[0,   e ̅  ]}   K 

        ∑ 
k=1

  
K

    U( c  k  ,  e  k  ) g  k   

13 The firm’s problem determines relative levels of efforts across types. The scale of the representative firm is 
determined in equilibrium. 

14 (PP) does not uniquely determine   T   ∗  . However,   T   ∗   may be chosen to be directionally differentiable in which 
case:  ∂  T  −  ∗  ( q  k  ∗ ) ≤  τ  k  ∗  ≤  ∂  T  +  ∗  ( q  k  ∗ )  , where  ∂  T  −  ∗  ( q  k  ∗ )  and  ∂  T  +  ∗  ( q  k  ∗ )  are left and right derivatives of   T   ∗   at   q  k  ∗  > 0 . If   T   ∗   
is (chosen to be) differentiable at   q  k  ∗   , then its derivative at that point equals   τ  k  ∗  . 
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s.t. for each  k, j ∈  := {(l, m) ∈  {1, … , K }   2 , l ≠ m}  ,

(2)   η k, j   : U( c  k  ,  e  k  ) ≥ U ( c  j  ,   
 F  j  ( e  1    π 1  , … ,  e  K    π K  )  ______________   F  k  ( e  1    π 1  , … ,  e  K    π K  )   e  j  )   

and

(3)  χ : F( e  1    π 1  , … ,  e  K    π K  ) ≥ G +   ∑ 
k=1

  
K

     c  k    π k    .

In (MDP) the government selects a report-contingent allocation of consumption 
and effort   { c  k  ,  e  k  }  k=1  K    that induces each worker to truthfully report its type  k  and 
produce the associated income   q  k   =  F  k  ( e  1    π 1  , … ,  e  K    π K  ) e  k   . Incentive constraints 
that ensure the optimality of truthful reporting are given in (2) with corresponding 
Lagrange multipliers   η k, j   . If type  k  claims to be of type  j  she must reproduce the 
corresponding income   q  j   =  F  j  ( e  1    π 1  , … ,  e  K    π K  ) e  j   . The effort cost to her of doing 

so is     F  j  ( e  1    π 1  , … ,  e  K    π K  )  ____________   F  k  ( e  1    π 1  , … ,  e  K    π K  )    e  j   . Thus, the  (k, j)  th incentive constraint (2) depends upon the 

entire profile of worker efforts via the  (k, j) th shadow wage ratio. We refer to a 
 (k, j) -incentive constraint as local if  j = k − 1  or  j = k + 1  , local downwards if  
j = k − 1  and local upwards if  j = k + 1 . The final restriction (3) in (MDP) is 
the resource constraint with corresponding multiplier  χ .

Toward understanding how technical change shapes policy, we give a proposition 
that relates optimal taxes to  F . This proposition is a consequence of a more general 
result given in the Appendix. In the latter, we show that when worker types are ordered 
consistently with optimal wages and incomes, then only local downwards  (k, k − 1)  
or upwards  (k, k + 1)  incentive constraints bind. In the main text we follow the 
common convention of assuming that only the former are binding and then verify-
ing this assumption in numerical calculations as needed.15 To state the proposition 
(and its generalization in the Appendix) it is convenient to reexpress the constraints 
in (MDP) in the form  ( { c  k  ,  e  k  }  k=1  K  ) ≥ 0  , where  :   ℝ  +  2K   →   ℝ   K(K−1)+1   combines 
the constraint functions. Problem (MDP) satisfies a (Mangasarian-Fromowitz) 
constraint qualification at   { c  k  ,  e  k  }  k=1  K   ∈  ℝ  ++  2K    if there is an  x ∈  ℝ   2K   such that 
 ∇ ( { c  k  ,  e  k  }  k=1  K  )x < 0  , where  ∇ ( { c  k  ,  e  k  }  k=1  K  )  is the Jacobian of  at   { c  k  ,  e  k  }  k=1  K   .  
Let   η  k, j  ∗    and   χ   ∗   denote the optimal (Karush-Kuhn-Tucker) multipliers asso-
ciated with the incentive and resource constraints. Finally, let   ∆ e   U  c  (c′, e′; δ) :   
=    U  c  ( c ′  ,  e ′   + δ) −  U  c  ( c ′  ,  e ′  )  _____________ δ    denote a finite difference approximation to the derivative of   
U  c    with respect to  e  at  (c′, e′ )  and define   ∆ e    U  e    analogously.

PROPOSITION 1: Let   T   ∗   and   { c  k  ∗ ,  e  k  ∗ ,  w  k  ∗ }  k=1  K    denote an optimal tax equilibrium 
with worker types indexed so that   w  k  ∗  =  F  k  ( e  1  ∗   π 1  , … ,  e  K  ∗    π K  )  is nondecreasing in 
 k . Assume that for each  k  ,   c  k  ∗  ∈  ℝ ++    and   e  k  ∗  ∈ (0,   e ̅  )  , that  satisfies the constraint 

15 A general formula with possibly binding upwards incentive constraints is supplied in the Appendix. 
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qualification at   { c  k  ∗ ,  e  k  ∗ ,  w  k  ∗ }  k=1  K    and that the local upwards incentive constraints are 
nonbinding, i.e.,

(NUIC)  U( c  k  ∗ ,  e  k  ∗ ) > U( c  k+1  ∗  ,  q  k+1  ∗   /  w  k  ∗ ), where  q  k+1  ∗   :=  w  k+1  ∗    e  k+1  ∗   . 

Optimal tax rates then satisfy

(4)     τ  k  
*  _____ 

1 −  τ  k  
*     =      1 −  Π k   ______  π k       

∆ w  k+1  
*   _____  w  k+1  

*      Ψ  k  
*     k  

*  
 
 


    

Mirrlees

      +         ∑ 
j=1

  
K−1

      k,j  
*    ϕ  k,j  

*   
 
 


    

Wage Compression

  

 

   ,

where  ∆ w  k  ∗  :=  w  k  ∗  −  w  k−1  ∗    ,

      Ψ  k  ∗   :=   ∑ 
j=k

  
K−1

       k,j  
*   {1 −    g  j+1   U  c  ( c  j+1  ∗  ,  e  j+1  ∗  )  ____________   π j+1    χ   ∗   }   (   U  c  ( c  k  ∗ ,  e  k  ∗ ) __________   U  c  ( c  j+1  ∗  ,  e  j+1  ∗  )  )     π j+1   _____ 1 −  Π k    ,  

with      k,j  
*    : =  ∏ i=k+1  j       U  c  ( c  i  ∗ ,  q  i  ∗  /  w  i+1  ∗  )  ___________   U  c  ( c  i  ∗ ,  e  i  ∗ )   ,

     k  
*   := −    ∆ e    U  c  ( c  k  ∗ ,  e  k  ∗ ;  q  k  ∗  /  w  k+1  ∗   −  e  k  ∗ )   ____________________   U  c  ( c  k  ∗ ,  e  k  ∗ )    e  k  ∗  

 +    ∆ e    U  e  ( c  k  ∗ ,  e  k  ∗ ;  q  k  ∗  /  w  k+1  ∗   −  e  k  ∗ )   ____________________   U  e  ( c  k  ∗ ,  e  k  ∗ )      w  k  ∗  ___  w  j  ∗     e  k  
∗  + 1, 

      k, j  
*    : =    U  c  ( c  k  ∗ ,  e  k  ∗ ) _________   U  e  ( c  k  ∗ ,  e  k  ∗ ) e  k  ∗      

 U  e   ( c  j  ∗ ,  q  j  ∗  /  w  j+1  ∗  )   ___________   U  c  ( c  j  ∗ ,  e  j  ∗ )      q  j  ∗  ____  w  j+1  ∗       
1 −  Π j   ______  π j        π j   __  π k      Ψ  j  ∗  

 and cross relative wage elasticities

   ϕ  k, j  ∗   :=      
 e  k  ∗  ______  w  j+1  ∗   /  w  j  ∗      

∂   w  j+1  ∗   /  w  j  ∗  ________ ∂   e  k     ( e  1  ∗ , … ,  e  K  ∗  ) .

PROOF:
See the Appendix.

The right-hand-side of the optimal tax formula (4) is the sum of two terms, which 
we label “Mirrlees” and “Wage Compression.” We discuss each in turn below.

Mirrlees Term.—The Mirrlees term in (4) is quite standard in optimal tax anal-
yses. We very briefly review and interpret its four components.16     k  

*   is a discrete 

16 For detailed discussion of these components in a continuous-type setting see Salanié (2011). 
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approximation to    
1 +  ℰ u,k   ______  ℰ c,k  

   , where   ℰ c,k    and   ℰ u,k    are, respectively, the compensated and 
uncompensated labor supply elasticities at  ( c  k  ∗ ,  e  k  ∗ ) . If worker preferences are addi-
tively separable, this reduces to one plus (a discrete approximation to) the reciprocal 
of the Frisch elasticity. Incentive-compatibility considerations require that if worker 
type  k  receives an increment in consumption all higher types  j = k + 1, k + 2, … , K   
receive an increment in utility sufficient to deter them from reporting a lower type.   
Ψ  k  ∗   captures the net societal cost of such a redistribution; it weighs the cost of 
extracting resources from the population at large against the benefits of raising the 
welfare of higher income types.    1 −  Π k   ____  π k      is the reciprocal of the type hazard. This 
plays an important role in conventional optimal tax analysis since, if types have 
compact support (as in the current finite setting), it implies zero marginal taxes 
at the maximal income. However, it is unaffected by technical change and, thus, 
is less central to our analysis. In contrast, the wage growth (across types) term 
 ∆ w  k+1  ∗   /  w  k+1  ∗    is endogenous and important in what follows. To understand its role 
consider the local downwards incentive constraint:

(5)  U( c  k+1  ,  e  k+1  ) ≥ U( c  k  ,  e  k    w  k   /  w  k+1  ) .

As noted previously, the wage ratio   w  k+1   /  w  k    appears on the right-hand-side of this 
inequality. Higher values of this ratio reduce the effort that a  k + 1 th type worker 
must exert to mimic a  k  th-type. Consequently, they tighten the incentive constraint 
and lead to greater distortions of allocations. Higher wage growth across the  k  
and  k + 1  types is, other things equal, a force for higher marginal taxes on the  k  th 
type.17

Wage Compression Term.—The second term in (4) does not appear in standard 
optimal tax equations that are derived from models with linear production functions 
and exogenous wages. In settings with nonlinear production functions, such as ours, 
the effort of the  k  th worker type can affect the marginal rate of transformation and, 
hence, the ratio of wages between the  j  and  j + 1 th types. Following the logic of the 
previous paragraph, more compressed wage ratios relax incentive constraints and, 
thus, to the extent that the effort of a given type increases wage differentials it should 
be deterred. In particular, larger values of the cross relative wage-effort elasticities 
  ϕ  k, j  ∗    are a rationale for higher marginal taxes on the  k  th type’s income. Stiglitz 
(1982) identifies this wage compression channel in a two type model. In that 
case there is only one binding incentive constraint and − ϕ  1, 1  ∗   =  ϕ  2, 1  ∗   = 1/     *  ,  
where      *   is the elasticity of substitution between the two worker types i.e., 

17 The terms    
1 −  Π k   ______  π k      and    

∆ w  k+1  ∗   _____  w  k+1  ∗      may be consolidated as:    
1 −  Π k   ______  π k       ∆ w  k+1  ∗   _____  w  k+1  ∗     . In the continuous limit the latter 

reduces to  Haz(w) =   1 − Ξ(w) _______ ξ(w)w    , where  Ξ  and  ξ  are the wage distribution and density functions and, following 

the usage of Saez (2001), Haz  (w)  is the wage hazard ratio. In the continuous setting, the impact of a change in 

wage growth across types    1 _____  w   ∗ (k)     
∂  w   ∗  ____ ∂ k  (k)  on marginal taxes may be understood via its impact on Haz. Specifically, 

an increase in    ∂  w   ∗  ____ ∂ k  (k)  reduces  ξ( w   ∗ (k))  (the “fraction” who will be distorted by a marginal tax) relative to 

 1 − Ξ( w   ∗ (k))  (the fraction who will be undistorted and will pay higher average taxes). It is, therefore, a force for 
higher marginal taxes at   w   ∗ (k) . 
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  (  
 w  2  / w  1   ____ 
 e  2  / e  1  

     
∂  e  2  / e  1   ____ ∂ w  2  / w  1  

  )   at the optimum. Assuming this is positive, compression of wages 

between the two types, requires that the effort of the high (resp. low) type should 
be relatively encouraged (resp. discouraged). Since the first term in (4) is zero for  
k = K = 2  , this translates into an optimal marginal income subsidy for high types 
and an enhanced marginal income tax for low types.

The Role of  F .—The functional form for  F  plays an important role in shaping 
wage growth across types  ∆ w  k+1  ∗   /  w  k+1  ∗    , the cross relative wage-effort elasticities 
  ϕ  k, j  ∗    and, hence, optimal taxes. Consider first some standard functional forms. 
If  F  is a weighted sum of type efforts, as in the classical Mirrlees model, then 
 ∆ w  k+1  ∗   /  w  k+1  ∗    is treated as structural and invariant to policy, while each   ϕ  k, j  ∗    is set to 
zero and the wage compression channel is shut down. If  F  is a more general CES 
function, then, except in the limiting linear case, policy can affect  ∆ w  k+1  ∗   /  w  k+1  ∗    and 
the wage compression channel is active. However, the elasticity of substitution and, 
hence, the relative wage-effort elasticities remain parametric and independent of 
policy. The CES form also places strong restrictions on the latter requiring that they 
equal

(6)   ϕ  k,j  
*    =   

⎧
 

⎪
 ⎨ ⎪ 

⎩
   
–   1 __   

  

j = k
      1 __     j = k − 1   

  0

  

otherwise,

   

where  is the elasticity of substitution between the effort of worker type pairs. Thus, 
for each worker type  k  , the elasticities   ϕ  k, j  ∗    are nonzero only locally (i.e., a variation 
in a type’s effort only affects its wage relative to others, it does not affect the relative 
wage of other type pairs) and all elasticities   ϕ  k, k  ∗    and   ϕ  k, k−1  ∗    take common values 
independent of  k . These features have led to some resistance amongst labor and 
public finance economists to the use of CES production functions in modeling labor 
demand. For example, Salanié (2011, p. 111) asserts: “It is, unfortunately, quite 
difficult to specify a production function that models the limits to factor substitution 
with an infinite number of factors.” He emphasizes that the substitutability of similar 
and dissimilar worker types may be quite different, but that such differences cannot 
be accommodated under the CES assumption. In Section III, we use an assignment 
framework to micro-found a production function  F  defined directly over worker 
efforts. In this setting the allocation of workers to tasks is efficient given worker 
effort and  F  is the upper envelope to a family of production functions indexed by 
worker task choices. Relative wage-effort elasticities   ϕ  k, j  ∗    and the wage compression 
channel are then shaped by both technology and policy and tied to the underlying 
technological parameters that describe the productivity of differently talented work-
ers in different tasks.18

18 Rothschild and Scheuer (2013) and its generalization Rothschild and Scheuer (2014) consider assignment 
economies in which workers choose tasks as well as effort. In their setting a worker’s multidimensional type gives 
his or her productivity in all tasks. If, in the latter paper, the distribution over worker types places all mass on types 
that have positive productivity in only one task, then it reduces to a  K -type Stiglitz economy with workers effec-
tively “locked” into particular tasks. Consequently, results similar to Proposition 1 would emerge in Rothschild and 
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Technical Change.—The formulas in Proposition 1 point to several channels 
through which technical change can influence optimal policy. If such change raises 
the return to effort of all workers equally at a given effort profile, then it does not 
directly affect wage growth over types  ∆ w  k+1  ∗   /  w  k  ∗   or the responsiveness of rela-
tive wages to effort   ϕ  k, j  ∗    in (4). Such “type-neutral” technical change impacts pol-
icy only insofar as it affects labor supply elasticities and relative marginal rates 
of substitution across workers.19 If, on the other hand, technical change augments 
the effort of a subset of workers, then, in general, it does affect wage growth 
over types. Specifically, if  F  is a CES function of the form  F( e  1    π 1  , … ,  e  K    π K  )  

= A  [ ∑ k=1  
K     D  k    e  k  

  
−1

 _____    ]    
  

 _____ −1
  

   , then:

(7)    ∆ w  k+1   ______  w  k+1     ≈ −log  (   w  k   ____  w  k+1    )  = −log  (   D  k   ____  D  k+1    )  +   1 __    log  (   e  k   ____  e  k+1    )   ,

and technically induced variations in the log relative CES weights   {log     D  k   ____  D  k+1    }   addi-

tively translate the map from efforts to wage growth over types. Such variations, 
by modifying the productivity of one type of worker relative to another at a given 
effort profile, relax or tighten incentive constraints and, hence, elicit an optimal 
tax response. They do not affect the responsiveness of relative wages to effort, i.e., 
they leave the elasticities   ϕ k, j    unaltered (at the fixed values given in (6)). For more 
general production functions (such as the induced  F  in the next section), technical 
change can influence the sensitivity of wages to the effort profile as well. In par-
ticular, by reducing substitutability between skills, technical change can enhance 
the impact of variations in relative labor supplies on relative wages and, hence, the 
policymaker’s influence over the wage distribution. This strengthens the wage com-
pression motive and is a further channel via which technical change can influence 
optimal policy (and a channel that is absent under the CES specification).

III. Taxation, Assignment, and Technical Change

We now consider optimal taxation in a framework with task assignment. As noted 
in the introduction, assignment-based frameworks have been used in the positive 
literature to formalize the impact of technical change on the distribution of workers 
across wages and occupations. As we show below they imply and, hence, micro-
found an indirect production function over worker efforts. Consequently, we are 
able to relate key elasticities in the optimal tax equation (4) to deeper structural 
parameters that describe the relative demand for tasks and the way in which tasks 
and talent interact. We interpret changes in these parameters as technical change and 
conclude this section by deriving implications of such change for optimal policy in 
a very simple assignment model.

Scheuer (2014) under this restriction. Our analysis in Section III, however, shows that Proposition 1 is much more 
generally applicable. 

19 In our later numerical work, we shut this channel down by restricting to utility functions:  log  c + h(e) . 
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A. Physical Environment

As before, workers are partitioned across types  1, … , K  with a fraction   π k    being 
of type  k . Types are now explicitly identified with talents. In addition, there is a 
continuum of tasks v ∈ [   v _   ,    

_
 v   ] differentiated by complexity. Workers can choose 

which task to work (exert effort) in; they cannot work in multiple tasks. They face 
a schedule of task-specific wages ω : [   v _   ,    

_
 v   ] →   ℝ +   , with ω(v) the wage per unit of 

effective labor paid in task v. A worker of talent k has productivity   a  k   (v) ∈   ℝ +    in 
task v. If she exerts effort e in this task her effective labor is   a  k    (v)e and her income is 
ω(v)  a  k   (v)e. The worker chooses her consumption, effort, and task to solve

(8)    sup  
 ℝ +   × [0,   

_
 e  ] × [  v ¯  ,   _ v  ]

       U(c, e) s.t. c ≤ ω(v)  a  k   (v)e − T(ω)  a  k   (v)e).

The productivity functions  { a  k  }  ,   a  k   : [  v _  ,   
_

 v  ] →  ℝ +  ,  play a key role in the subse-
quent analysis. The following condition is imposed upon them.

ASSUMPTION 1: The functions   a  k   : [  v _  ,   
_

 v  ] →  ℝ +  ,  k ∈  {1, … , K }  are continuous 
and satisfy (i) (weak comparative advantage) for each  k ∈ {1, … , K − 1}  and 
 v′, v ∈  [  v _  ,   

_
 v  ] with v′ > v, log  a  k+1  (v′ ) − log   a  k  (v′ ) ≥ log   a  k+1  (v) − log   a  k  (v)  and 

(ii) (absolute advantage) for each  k ∈ {1, … , K − 1}  ,   a  k+1   >  a  k   .

By Assumption 1(i)  a  is a weakly log super-modular function of talent and task 
and higher talents have a weak comparative advantage in more complex tasks. 
In the subsequent analysis this assumption is often strengthened to strict log 
 super-modularity: for  k ∈ {1, … , K − 1}  , and  v′, v ∈ [  v _  ,   

_
 v   ] with v′ > v, 

log  a  k+1  (v′ ) − log   a  k  (v′ ) > log   a  k+1  (v) − log   a  k  (v) . This stronger condition 
ensures assortative matching of tasks and talents in equilibrium. Assumption 1(ii) 
implies that more talented types have an absolute advantage in all activities. It is not 
essential for all of our results, but it guarantees that wages are strictly increasing in 
talent. Hence, the orderings over talent and wages conform and there is no “wage 
pooling” (multiple talents earning the same wage).

REMARK 1 (Interpreting  a ): The function  a  captures the idea that different workers 
may be more or less effective at performing specific tasks or using task-specific cap-
ital. Combined with Assumption 1 it formalizes the notions of talent and task com-
plexity. More talented workers are better at all tasks and are especially good at more 
complex ones. Relatedly, more complex tasks are more talent-intensive. The formu-
lation of production here follows that in the assignment literature, e.g., Costinot and 
Vogel (2010), with the important addition of an intensive effort  margin.20 

20 The assignment literature refers to a worker’s innate productive attribute as “skill.” Since skills are endog-
enous, we prefer the word talent. Our model could be reinterpreted as one in which workers exert effort partly or 
wholly in acquiring skills rather than working. 
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Later we allow for the possibility that  a  may change over time. We interpret such 
change as technical progress and allow it to depend upon both worker talent and 

task complexity. In particular if, for each  v  and  k′ > k  ,  log    a  k′  (v) ____  a  k  (v)    increases, then 

technical progress is talent-biased; if for each  k  and  v′ > v  ,  log    a  k  (v′) ____  a  k  (v)    increases, then 

it is complexity-biased and if for each  k′ > k  ,  v′ > v  ,  log (    a  k′  (v′) ____  a  k  (v′)  /    a  k′  (v) ____  a  k  (v)  )   increases, 

then it is biased toward high-talent, high-complexity matches. In the latter case, 
it enhances the comparative advantage of talent in complex tasks and reduces the 
substitutability of talent across tasks. 

The task choices of workers imply a distribution of workers and, hence, effective 
labor across tasks. Let   Λ k    denote a distribution of  k  th talent workers over tasks with 
density   λ k   . If  k  th talent workers exert effort   e  k    , then the supply of effective labor in 
task  v  is

    ∑ 
k=1

  
K

     λ k  (v) a  k  (v) e  k   . 

A representative firm hires effective labor to perform tasks and combines task 
output to produce final output. Let  l  : [   v ¯     ,    _ v   ] →   ℝ +    denote an allocation of effective 
labor across tasks and let  denote the set of such allocations (with  restricted to 
ensure the integrals defined below in (9) are well-defined). Output is assumed to 
equal effective labor in each task  v . Final output  Y  is produced from task output and, 
hence, from an allocation of effective labor  l  using a CES-technology:

(9)  Y = H(l) :=  
⎧

 
⎪

 ⎨ ⎪ 
⎩
 A  { ∫   v _    

  _ v    b(v)l (v)     ε−1 ___ ε   dv}    
  ε ___ ε−1     ε ∈  ℝ +  \{1},     

A exp  { ∫   v _    
  _ v    b(v) ln l(v) dv} 

  
ε = 1,

    

where  A > 0  and  b :   [  v _  ,   
_

 v  ] →  ℝ ++    is a continuous function such that if 
 B(v) :=  ∫   v _    v   b(v′ ) d v ′    , then  B(  _ v  ) = 1 . Let  ω :  [  v _  ,   

_
 v  ] →  ℝ +    be the wage per unit of 

effective labor in each task v. The firm solves

(10)   max  
l∈      H(l) −  ∫   v _    

  _ v     ω(v) l(v) dv . 

REMARK 2 (Interpreting  b ): The function  b  weights task output in the final good 
aggregator. Variations in  b  may be interpreted as stemming from technological or 
preference-based variations in demand for different task outputs. We do not explic-
itly model capital. However, the model may be extended in this direction, in which 
case the production functions in (9), under the assumption  B(  _ v  ) ∈ (0, 1)  , can be 
reinterpreted as indirect production functions for labor across tasks after the substi-
tution of optimal capital. The parameter  b(v)  is then interpreted as the sensitivity of 
final output with respect to the labor input in task  v . It is influenced not only by varia-
tions in demand for different tasks, but also variations in the capital/labor intensity 
of tasks. Such variations are stressed by Acemoğlu and Autor (2011) who emphasize 
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the automatization of middle complexity tasks. A further possibility is that  b  cap-
tures the extent to which workers purchase task output in domestic markets, produce 
it at home or purchase it in foreign markets. Shifts in  b  for some tasks may reflect 
the substitution of market for home production as in Buera and Kaboski (2012) or 
domestic for foreign production as in Grossman and Rossi-Hansberg (2008).

B. Tax Equilibria and the Government’s Policy Problem

In the assignment setting, the definition of a tax equilibrium is modified as 
follows.21

Tax Equilibrium.—Let  G  be a fixed public spending amount. Given  G  , a tax equi-
librium is an income tax function  T :   ℝ +    → ℝ, an allocation  {l,  { c  k  ,  e  k  ,  λ k  }  k=1  K  }  and 
a wage profile  ω  such that (i) for each  k = 1, … , K  ,  ( c  k  ,  e  k  )  and  v  in the support of   
Λ k    solves the  k  th worker’s problem (8) at  T  and  ω  ; (ii)  l  solves (10) at  ω  ; (iii) the 
final goods market clears:

(11)  G +   ∑ 
k=1

  
K

     c  k    π k   ≤ H(l); 

and (iv) labor markets clear, for all  v ∈ [  v _  ,   
_

 v  ],  

(12)  l(v) =   ∑ 
k=1

  
K

     λ k  (v)  a  k  (v)  e  k  ,  

and for all  k = 1, … , K  ,

(13)   π k   =  ∫   v _    
  _ v      λ k  (v) dv . 

Again, let ℰ denote the set of tax equilibria. Proposition 2 below characterizes 
tax equilibria. It contains the simple, but important result that conditional on effort 
assignment in a tax equilibria maximizes output.

PROPOSITION 2: Let Assumption 1 hold. Let  {l,  { c  k  ,  e  k  ,  λ k  }  k=1  K  }  and  ω  be, respec-
tively, the allocation and wage profile of a tax equilibrium. Then there is a tuple of 
threshold tasks   {  v ̃   k  }  k=1  K−1   such that:

   λ k  (v) =  
⎧

 ⎪ ⎨ 
⎪

 
⎩
  

0
  

v ∈ [  v ¯  ,   v ̃   k − 1  ) ∪ (  v ̃   k  ,   _ v  ]
       b (v)   ε  a  k   (v)   ε−1   ___________   B  k   (  v ̃   k−1  ,   v ̃   k  )   ε     π k  

  
v ∈ (  v ̃   k−1  ,   v ̃   k  ),

    

21 As before, we constrain the set of mechanisms available to the government to ones that deterministically 
condition upon worker incomes. This assumption is standard in the literature and to a first approximation describes 
current tax codes. In our setting, it implies that the government cannot observe the task a worker does or the amount 
of task output. The former may reasonably reflect the inherent difficulties in distinguishing between a worker’s 
formal job description and the tasks that the worker actually performs. 
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where   B  k  (  v ̃   k−1  ,   v ̃   k  )  :=   [ ∫   v ̃   k−1      v ̃   k      b (v)   ε   a  k   (v)   ε−1  dv]      
1 _ ε    . All workers of talent  k  earn a com-

mon wage   w  k   = ω(v) a  k  (v)  ,  v ∈ [  v ̃   k−1  ,   v ̃   k  ] . Relative wages are given by

(14)     w  k+1   ____  w  k      =     a  k+1  (  v ̃   k  ) ______  a  k  (  v ̃   k  )    =      B  k+1  (  v ̃   k   ,   v ̃   k+1  )/{ π k+1    e  k+1   }     1 __ ε   
   _____________________  

 B  k  (  v ̃   k−1  ,   v ̃   k  )/{ π k    e  k   }     1 __ ε   
    .

Conditional on the effort profile  { e  k  }  , the equilibrium allocation of talent to tasks 
maximizes output.

PROOF:
See online Appendix I.

Efficiency of assignment (in the sense of output maximization) conditional on 
effort implies that output is given by the following indirect production function over 
efforts:

(15)  F( π 1    e  1  , … ,  π K    e  K  ) = 

  sup  
 
     { A  {  ∑ 

k=1
  

K

    B  k  (  v ̃   k−1  ,   v ̃   k  )  { e  k   π k  }      ε−1 ____ ε   }    
  ε ____ ε−1  

  |  s.t.   v ¯   ≤   v ̃   1   ≤ … ≤   v ̃   K − 1   ≤   _ v  }}  . 

With  F  determined in this way, the environment effectively reduces to that in 
Section II and the government’s problem to (PP). Recovery of an optimal tax equi-
librium can be decomposed into two steps. The outer step is simply (PP) at the 
induced production function  F ; the embedded inner step solves the assignment prob-
lem (15) at each candidate effort allocation  { e  k  }  and, hence, evaluates  F  at  { e  k  } .22

In contrast to Section II, the production function  F  is micro-founded; changes in 
parameters of this production function can be related to changes in the demand for 
tasks  b  and the productivity of task-talent matches  { a  k  } . The inner step assignment 
problem is essentially the same as those considered in Teulings (1995); Costinot and 
Vogel (2010); and Acemoğlu and Autor (2011) (with the distinction that the supply 
of each talent’s labor is selected as part of an optimal tax equilibrium rather than 
being pinned down parametrically).23 Solving the assignment problem at an effort 
profile  { e  k  }  reduces to finding a sequence of task thresholds   {  v ̃   k  }  k=1  K−1   satisfying the 
discrete boundary value problem:

(16)     a  k+1  (  v ̃   k  ) ______  a  k  (  v ̃   k  )    =     B  k+1  (  v ̃   k   ,   v ̃   k+1  )/{ π k+1    e  k+1   }     1 __ ε   
   _____________________  

 B  k  (  v ̃   k−1  ,   v ̃   k  )/{ π k    e  k   }     1 __ ε   
    ,

with    v ̃   0   =   v _   and   v ̃   K   =   _ v   .
22 In a tax equilibrium, a worker reproducing the income and paying the taxes of a less talented type will exert 

less effort in the task that pays her the best wage, she does not move to the task of the less talented whose income 
she mimics. Thus, worker task (and wage) choice is independent of the effort she exerts and the income she earns 
in the task. The counterpart of this in the decomposition just described is the incentive constraint in the outer step 
which depends on relative wages and only via them on task choice. 

23 In fact the analysis on p. 758–60 of Costinot and Vogel (2010) in which the labor input across “skills” is 
changed in particular ways represents a partial exploration of the indirect production function. 
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An immediate consequence of Proposition 2 and the absolute advantage condi-

tion Assumption 1(ii) is that     w  k+1   ____  w  k     =    a  k+1  (  v ̃   k  ) ______  a  k  (  v ̃   k  )   > 1 . Consequently, talents are strictly 

ordered by equilibrium wages and “wage pooling” (the payment of the same wage to 
different talent types) does not occur.24 Proposition 1 identifies relative wage-effort 
elasticities   ϕ k, j    as key determinants of the wage compression channel and, hence, 
marginal taxes. If each  log ( a  j+1   /  a  j  )  is differentiable, then in a tax equilibrium the 
terms   ϕ k, j    can be expressed as

(17)   ϕ k, j   = −   ∂  log ( w  j+1   /  w  j  )  ____________ ∂  log  e  k     =  
⎧

 
⎪

 ⎨ ⎪ 
⎩
  
−   ∂  log ( a  j+1   /  a  j  ) ________ ∂  log   v ̃   j       ∏ 

l=k
  

j−1
   (  ∂  log   v ̃   l+1   ______ ∂  log   v ̃   l    )    ∂  log   v ̃   k   _____ ∂  log  e  k         j ≥ k

     
−   ∂  log ( a  j+1   /  a  j  ) ________ ∂  log   v ̃   j       ∏ 

l=j
  k−2   (  ∂  log   v ̃   l   ______ ∂  log   v ̃   l+1    )    ∂  log   v ̃   k−1   _____ ∂  log  e  k      j ≥ k

   .

Thus, elasticity   ϕ k, j    depends upon the local comparative advantage of talents  j  and  

j + 1     ∂  log ( a  j+1   /  a  j  ) _________ ∂  log   v ̃   j      at the threshold    v ̃   j    , the sensitivity of the  k − 1 th or  k  th task thresh-

old to the effort of the  k  th talent    ∂  log   v ̃   k   _____ ∂  log  e  k      and the sensitivity of thresholds intermediate 

between  j  and  k  to one another    ∂  log   v ̃   l+1   ______ ∂  log   v ̃   l     .
Only under very special conditions is the induced production function  F  a CES 

function. One such case occurs when each    ∂  log ( a  j+1   /  a  j  ) _________ ∂  log   v ̃   j     = 0  ,   ϕ k, j   = 0  , talents are 
perfectly substitutable across tasks and  F  is linear. Another  25 occurs when the   a  k    
functions are indicators for the sub-intervals [   v ¯   ,    v ̃   1   ], (   v ̃   1  ,   v ̃   2  ], …  ,  (  v ̃   K−1  ,   _ v  ] . Then 
workers are as substitutable as the tasks into which they are locked. For more gen-
eral cases, however, relative wage-effort elasticities are functions of technological 
parameters and the effort profile  { e  k  }  and, hence, indirectly policy. Thus, they are not 
structural. In the Appendix, we prove:

LEMMA 1: Each    ∂  log   v ̃   j   ______ ∂  log   v ̃   j+1      ,    
∂  log   v ̃   j+1   ______ ∂  log   v ̃   j      and    ∂  log   v ̃   k   _____ ∂  log  e  k      is positive. Each    ∂  log   v ̃   k−1   ______ ∂  log  e  k      is negative. 

If     ∂  log ( a  j+1   /  a  j  ) _________ ∂  log   v ̃   j       > 0  , then   ϕ k, j   < 0  if  j ≥ k  and   ϕ k, j   > 0  if  j < k . In addition,   
ϕ k, k   ∈ [−1/ε, 0]  and   ϕ k, k−1   = [0, 1/ε] .

PROOF:
See online Appendix I.

The economics behind Lemma 1 is straightforward. Consider a small increase 
in   e  k    (perhaps in response to a policy change). This raises output in tasks  [  v ̃   k−1  ,   v ̃   k  ]  , 
placing downward pressure on  [  v ̃   k−1  ,   v ̃   k  ] -shadow prices and, hence, the wage   w  k    of 

24 Assumption 1(ii) (i.e., global absolute advantage of more talented types across the entire task space) is suffi-
cient, but not necessary for this result. Local absolute advantage of successive talents  k + 1  at each task boundary    v ̃   k    
is enough. 

25 Although, this case is not consistent with talent-complexity comparative advantage (except when  K = 2 ), 
smoothness or continuity of the   a  k    functions. 
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talent  k  workers. These workers respond by populating tasks that are both below    v ̃   k−1    
and above    v ̃   k   . This task migration moderates, but does not fully offset the impact of 
the increase in   e  k    on   w  k   . As  k -talents move into less complex tasks in which they 
have a comparative disadvantage relative to  k − 1 -talents and more complex tasks 
in which they have a comparative disadvantage relative to  k + 1 -talents so   w  k   /  w  k−1    
falls and   w  k+1   /  w  k    rises. Moreover, as  k  -talents spill into neighboring tasks, output of 
these tasks increases, depressing their shadow prices and inducing neighboring tal-
ents to migrate into new tasks. Workers of talent  k + 1  move into tasks above    v ̃   k+1    , 
while workers of talent  k − 1  talents move into tasks below    v ̃   k−1   . A ripple effect is 
created with each task threshold    v ̃   j    above  k  rising and each threshold below  k  falling. 
Since relative wages between adjacent talents are determined by productivity ratios 
at thresholds (i.e., by   a  j+1  (  v ̃   j  )/ a  j  (  v ̃   j  ) ), an effort change by talent  k  workers can affect 
relative wages across the whole spectrum of talents and be a motive for encouraging 
or discouraging that talent’s effort.

Expressions for the threshold elasticities    ∂  log   v ̃   j   ______ ∂  log   v ̃   j+1      ,    
∂  log   v ̃   j+1   ______ ∂  log   v ̃   j     , and    ∂  log   v ̃   k   _____ ∂  log  e  k      are given in 

the proof of Lemma 1. They point to the role of the parameters  b  and  a  in influencing 
the sensitivity of task choices and, hence, relative wages to a given talent’s effort. 
Suppose that workers of talent  j  migrate into more complex tasks either because they 
have increased their effort or because the tasks that they originally performed have 
been encroached upon by  j − 1  talents. If there is much demand and, hence, high 
 b -values for tasks immediately above    v ̃   j    , then these tasks will soak up this migration 
with little change in the threshold    v ̃   j   . Conversely, if  b -values in this neighborhood 
are low, then talent  j -workers will migrate further up through the task set push-
ing    v ̃   j    to a new possibly much higher level. In the former case, the impact on the 
  w  j+1   /  w  j    wage differential will be muted; in the latter case, it will be enhanced. Turning 
to the  a  function, an increase in the comparative advantage of talent in complex 

tasks, raises    ∂  log ( a  j+1   /  a  j  ) _________ ∂  log   v ̃   j      and, hence, the sensitivity of relative wages to task thresh-

old adjustment. The resulting upwards pressure on   ϕ k, j    is dampened by the deter-

rence to task migration and task threshold adjustment and, hence, lower values for 

   ∂  log   v ̃   j+1   ______ ∂  log   v ̃   j      and    ∂  log   v ̃   k   _____ ∂  log  e  k      , created by higher comparative advantage.

C. An Example: Technical Change in the Two Talent Model

We now make some of the preceding observations more precise in the context of 
a simple two talent example. For concreteness, we label these talents low ( k =  L) 
and high ( k =  H) rather than 1 and 2. We restrict preferences to be quasi-linear in 
consumption, U(c, e) = c −      e   1+γ  ____ 1+γ   , with  γ > 0  and denote the government’s Pareto 
weights by   g  k    ,  k ∈ {L, H} . To create a motive for redistribution to low skills, we 
assume   g  L   >  π L   . In this case, the Mirrlees and Wage Compression components can 
be consolidated to give the (Stiglitz) optimal tax functions:

(18)    τ  L  ∗   _____ 
1 −  τ  L  ∗     =  (   g  L   ___  π L     − 1)    {1 −   (  1 __     *   )    

1+γ
   {1 −   1 ___ 

    *   } }    ≥ 0, 



3081ALES ET AL.: TECHNICAL CHANGE, WAGE INEQUALITY, AND TAXESVOL. 105 NO. 10

(19)    τ  H  ∗   _____ 
1 −  τ  H  ∗     =  (   g  H   ___  π H     − 1)     (  1 ___ 

    *      
 e  L  ∗  ___  e  H  ∗    )    

1+γ
    1 ___ 
    *     ≤ 0, 

where      *   =    w  H  ∗   ___  w  L  ∗    is the optimal talent premium and the substitutability of talents 

at the optimum is completely described by the elasticity of substitution      *  . In the 
assignment setting, both      *   and      *   are endogenous. If Assumption 1 is maintained, 
then in an optimal tax equilibrium the set of tasks is partitioned at a threshold    v ̃     ∗   , with 
low talents working in tasks below    v ̃     ∗   and high talents working in tasks above. The 

talent premium satisfies      *   =    a  H  (  v ̃     ∗ ) _____  a  L  (  v ̃     ∗ )   , while the elasticity of substitution between 

the labor of the two talents is given by      *  =  (  v ̃     ∗ ; a, b) , where

(20)  ( v ̃  ; a, b)   := −    
∂ log   

 e  H  
 ___  e  L    
 _______ 

∂ log   
 w  H  

 ___  w  L    
    = ε +    1 ____________  

  
∂ log  a  H  / a  L  

 __________ ∂ v   ( v ̃  )
      [   b  H  ( v ̃  ) ____  B  H  ( v ̃  )   +    b  L  ( v ̃  ) ____  B  L  ( v ̃  )  ]   ≥ ε,

  B  L  ( v ̃  ) :  =  ∫   v _     v ̃     b (v)   ε  a  L   (v)   ε−1 dv  ,   B  H  ( v ̃  ) :  =  ∫  v ̃      
_ v    b (v)   ε  a  H   (v)   ε−1 dv  and for  k ∈ {L, H}  , 

  b  k  ( v ̃  ) :  = b ( v ̃  )   ε  a  k   ( v ̃  )   ε−1  . Equation (20) makes explicit the role of task migration in 
raising this elasticity of substitution above  ε  , the elasticity of substitution between 
task outputs. Specifically, the term    

∂ log  (a  H  / a  L  ) _________ ∂ v
     ( v ̃  )  is the local comparative  advantage 

of high talents in the neighborhood of the threshold task   v ̃   . If this term equals  ∞  , 
then workers are as substitutable as the interval of tasks into which they are locked. 
Otherwise, their ability to migrate across tasks enhances their substitutability. 
Equation (20) highlights the dependence of the elasticity of substitution on techno-
logical parameters and its (implicit) dependence on policy.

The workers’ equilibrium first order conditions in this setting together with (14) 
gives

(21)      *   =    a  H  (  v ̃     ∗ ) ______  a  L  (  v ̃     ∗ )   =   (   B  H  (  v ̃     ∗ ) _______  B  L  (  v ̃     ∗ )  )    
  γε ____ 1+γε  

   (   π L   ___  π H    )    
  γ ____ 1+γε     (  1 −  τ H   _____ 1 −  τ L    )    

  1 ____ 1+γε    .

Equation (21) gives the threshold    v ̃     ∗   and relative wages as functions of  a  and  b  
and relative marginal taxes. Substituting for optimal marginal taxes from (18) 
and (19) reduces the system of equilibrium equations to a single equation in one  
unknown,    v ̃     ∗  :

(22)    a  H  (  v ̃     ∗ ) ______  a  L  (  v ̃     ∗ )   =   (   B  H  (  v ̃     ∗ ) _______  B  L  (  v ̃     ∗ )  )    
  γε ____ 1+γε  

   (   π L   ___  π H    )    
  1+γ ____ 1+γε   

 ×    

⎧
 

⎪
 ⎨ ⎪ 

⎩
  
 g  H   − ( π H   −  g  H  )  (   a  H  (  v ̃     ∗ ) _____  a  L  (  v ̃     ∗ )  )    

(1+γ)(ε−1)
   (   B  H  (  v ̃     ∗ ) _____  B  L  (  v ̃     ∗ )  )    

−(1+γ)ε
   1 __     *        ____________________________________    

 g  L   − ( g  L   −  π L  )  (   a  L  (  v ̃     ∗ ) _____  a  H  (  v ̃     ∗ )  )    
1+γ

  (      *  − 1 _____ 
    *   ) 

   

⎫
 

⎪
 ⎬ ⎪ 

⎭
    

  1 ____ 1+γε  

   .
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It follows easily from (22) that if  ε ≥ 1  (so that goods, and, hence, efforts of dif-
ferent talents are gross substitutes) and if  ( ⋅; a,  ⋅ )  is (locally) constant, then com-
plexity-biased perturbations of  b  that raise   B  H   /  B  L    lead to increases in    v ̃     ∗   and      *  . 
Intuitively, increases in the relative demand for more complex tasks raise the relative 
shadow price of such tasks and encourage less talented workers to migrate into them 
(   v ̃     ∗   rises). However, such task-upgrading erodes the comparative advantage of low 
talents and the talent premium  (    *  ) rises. These effects are mitigated by adjust-
ments in relative efforts that occur in response to wage adjustments and that are 
reinforced by changes to tax policy. Overall, a rise in   B  H   /  B  L  ( ⋅ )  is associated with a 
higher talent premium, a tightening of the incentive constraint between low and high 
talents and higher marginal taxes on low talents.

Sufficient conditions for the elasticity of substitution      *   to be constant in 
response to a shift in task demand are rather stringent.26 In general, it may rise or 
fall as a direct effect of the change in  b  or the indirect effect of changes in    v ̃     ∗   on 

   1 ___________ 
  
∂ log  a  H  / a  L  

 __________ ∂ v
   ( v ̃  *)

      {   b  H  ( v ̃  *) ____  B  H  ( v ̃  *)   +    b  L  ( v ̃  *) ____  B  L  ( v ̃  *)  }   in (20). These changes may reinforce or offset the 

responses just described. To the extent that      *   is increased, the government’s ability 
to compress wage differentials and relax incentive constraints is reduced. It is cor-
respondingly encouraged to reduce relative taxation of low talents and to permit a 
further increase in the talent premium. The reverse is true if      *   falls.

Turning next to the consequences of variation in  a  , suppose that  log    a  H  (v) ____  a  L  (v)     
 =   α 1   +  α 2  (v −    v _   ) so that   α 1    controls the absolute advantage of high talents (in the 

lowest task) and   α 2    controls their comparative advantage in more complex tasks. If 

 > 1 and   {  
  b  H  (  v ̃     ∗ ) ____  B  H  (  v ̃     ∗ )   +    b  L  (  v ̃     ∗ ) _____  B  L  (  v ̃     ∗ )  }   is locally constant, then small technologically induced 

increases in   α 2    will, from (22) , both raise the talent premium and reduce the elas-
ticity of substitution      *  .27 Low-talent marginal taxes   τ  L  ∗    will rise both because      *   
rises and because the wage compression channel is enhanced via the reduction in   
   *  : as workers become less substitutable, the government is encouraged to offset 
the rise in the talent premium by discouraging low-talent effort through taxation. 
Increases in   α 1    work in a related way, but absent any reinforcing adjustment in      *  . 
As in the case of complexity-biased perturbations in the  b  functions, adjustments in 

the     b  H  (  v ̃     ∗ ) _____  B  H  (  v ̃     ∗ )   +    b  L  (  v ̃     ∗ ) _____  B  L  (  v ̃     ∗ )    term (either direct through changes to the   b  k    functions or indirect 

through adjustments to    v ̃     ∗  ) may work to reinforce or dampen these effects.

Summary.—Technical change that increases the talent wage premium and reduces 
the substitutability of talents is associated with higher optimal marginal taxes on low 
talents. Change that increases both the talent income premium and the substitutabil-
ity of talents is associated with lower marginal subsidies on high talents. In general, 

26 For example, if  ε = 1  ,  b  is constant and equal to one and the remaining parameters are such that    v ̃     ∗  = 1 / 2  , 
then      *   is locally constant. 

27 In this case the task threshold    v ̃     ∗   falls: the increased productivity of high talents in complex tasks reduces the 
relative shadow price of such tasks and encourages high talents to downgrade their tasks. Despite some erosion of 
their comparative advantage, their relative wages rise. 
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the technical parameters  a  and  b  influence both talent premia and talent substitut-
ability directly and indirectly through endogenous task assignment. The analysis 
is more complicated in settings with multiple talents. Such settings are, however, 
essential for exploring the policy implications of recently documented polarizing 
shifts in the pattern of wages and employment across occupations.

D. Comparison to Rothschild and Scheuer (2013)

We briefly describe the connections between our model and that of Rothschild 
and Scheuer (2013). Our model features a continuum of tasks and a finite set 
of talents, but it is readily reformulated as one with a continuum of tasks and 
talents (see online Appendix II). In both formulations our assumptions ensure 
that the ordering over talents translates directly into an ordering over wages. 
Consequently, the pattern of (local) binding incentive constraints over talents is 
easily inferred and consumption and effort allocations can be solved directly as 
functions of talent. We use our approach to relate optimal taxes to the indirect pro-
duction function  F , relative wage elasticities and, hence, properties of the task-tal-
ent productivity function  a .

In contrast, Rothschild and Scheuer (2013) consider an environment with a 
finite number of tasks in which an agent’s type is her productivity in each task and 
is, thus, multidimensional. In this case, the structure of binding incentive-compat-
ibility conditions across allocations expressed as functions of type is complicated. 
However, such conditions become quite standard if consumption and effort allo-
cations are reformulated as functions of wages. The cost of this reformulation is a 
rather complicated joint restriction on allocations and the (endogenous) distribution 
over wages. To solve such a problem Rothschild and Scheuer (2013) propose a 
quite different inner-outer method than that used here. In the inner step the alloca-
tion of labor across tasks and, hence, the wage distribution is fixed and an optimal 
incentive-compatible consumption-effort profile (over wages) consistent with this 
allocation is found. In the outer step, the labor allocation and the wage distribution 
are determined. Rothschild and Scheuer (2013) use this approach to relate optimal 
taxes to the impact of effort on the wage distribution. Their formula, thus, provides 
an alternative perspective on the forces shaping tax policy in an endogenous wage 
environment to ours.

Rothschild and Scheuer’s (2013) model permits intra-task wage dispersion and 
task-specific wage distributions with overlapping support. It thus allows the impli-
cations of these things for policy to be explored, ours does not. On the other hand, 
our model connects directly to the technical change literature in labor economics. 
It underpins an empirical strategy for quantifying the effect of technical change 
on optimal policy described in Sections IV and V. Thus, the models are compli-
mentary. In online Appendix VI, we present a general formulation that nests our 
model and that of Rothschild and Scheuer (2013) and makes transparent the alter-
native approaches taken. It then specializes that formulation to one intermediate 
between our model and theirs. This formulation incorporates intra-task wage dis-
persion and wage overlap, while preserving our approach to formalizing the impact 
of technical change.
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IV. Measuring Technical Change

In this section, we measure the extent of technical change in the United States. 
Our data source is the Current Population Survey (CPS).28 We proceed as if this 
data was generated by a (possibly suboptimal) tax equilibrium and use parametric 
assumptions and equilibrium restrictions from our model to identify and estimate 
the technological parameters  a  and  b  in the 1970s and 2000s. In Section V, we cal-
culate optimal tax equilibria at these estimated parameters.

A. Determining Types and Tasks

Mapping Empirical Occupations to Ordered Sets of Tasks.—The CPS catego-
rizes workers into distinct occupations; our sample contains  M = 302  occupations. 
The CPS also provides information on worker earnings and hours worked from 
which a measure of wages can be imputed. Our model involves an interval of tasks 
ordered by complexity. We identify tasks with empirical occupations and use the 
average wage paid in each occupation to infer its complexity. In so doing, we utilize 
the model’s implication that task wages are rising in task complexity. We normalize 
the task space to [   v _   ,    

_
 v   ] = [0, 1] and subdivide this interval into M subintervals of 

length  ∆v =   1 __ M    ,    m    = [ v  m−1  ,  v  m  ]. We calculate the imputed average wage in each 
occupation using 1970’s data and rank occupations according to this wage. The  m  th 
ranked occupation is then mapped to the  m th subinterval    m   .29

We use data on the skill content of occupations contained in the O⋆NET database 
to corroborate our inferred complexity ordering over occupations. The O⋆NET data-
base provides a detailed description of the skill (35 distinct skills are considered) 
and ability (52 distinct abilities are considered) content of each occupation.30 We 
recover from the O⋆NET a single index describing the importance of each skill and 
ability for each occupation.31 We then calculate the correlations of these skill/abil-
ity indices with our wage imputed rank. We find that the three most correlated skills 
(correlation in parenthesis) are: complex problem solving (0.66); critical thinking 
(0.62); and judgment and decision making (0.61). The three most correlated abili-
ties are: deductive reasoning (0.63); inductive reasoning (0.60); and written com-
prehension (0.57). The least correlated skill is equipment maintenance (−0.07), 
while the least correlated abilities are: stamina (−0.33) and trunk strength (−0.37). 
These correlations suggest that the average wage paid in an occupation is informa-
tive about that occupation’s complexity.

28 King et al. (2010). Further details of our use and treatment of the data are given in online Appendix IIIA .
29 We keep this ranking over occupations fixed. In doing so, we follow the precedent of Acemoğlu and Autor 

(2011). Fixing the ranking allows us to unambiguously identify an index  v  with a physical occupation and to inter-
pret variations in the parameters  a  and  b  as occurring in a given physical occupation rather than at a given complex-
ity index whose physical interpretation is shifting. However, there is some reranking of occupations over time in the 
data. In online Appendix IIIC we describe the implications of using current rather than the 1970s wage ranking for 
our estimates of the  a  and  b  functions and for optimal taxes. 

30 The O⋆NET database contains 974 occupations. We relate these to the occupations contained in CPS in two 
steps. We first map the occupations in our sample to the Standard Occupation Classification of the 2000 census. We 
then map these occupations to those in the nineteenth release of the O⋆NET. A small number of occupations are 
recoded manually. We thank Giovanni Gallipoli for directing us toward the O⋆NET. 

31 Specifically, the index is the product of the importance and level measures in O⋆NET. 
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Recovering the Empirical Assignment Function   v ̃   .—The model in Section III fea-
tured a finite number of talents; this facilitated the derivation of analytical results. 
However, for the remainder of the paper we find it convenient to treat worker tal-
ent symmetrically with task complexity and to assume that workers are distributed 
uniformly across an interval of talents,  k ∈ [  k ¯    ,   ̄  k   ] .32 Thus, a worker’s talent should 
now be interpreted as an index (and a rank), the implications of which for productiv-
ity are captured by the function: a :   [  k ¯    ,   ̄  k   ] × [  v ¯    ,   ̄  v   ] →  ℝ +  .  Although the distribution 
over the (ordinal) talent index is uniform, the distribution over (cardinal) productiv-
ities is not: it is induced endogenously by a and by the assignment of talent to tasks. 
The set  [  k ¯    ,   ̄  k   ]  is normalized to [0, 1].

The continuous analogue of the task thresholds {   v ̃   k   }  is a task assignment func-
tion   v ̃    :  [  k ¯    ,   ̄  k   ]  →  [  v ¯    ,   ̄  v   ] . This function is strictly increasing in our model. Denote its 
inverse by   k ̃   . Under the assumption that workers are distributed uniformly across 
talent indices,   k ̃    is the distribution of workers across tasks. Consequently, we treat 
the distribution of workers across ordered occupations as the empirical counterpart 
of   k ̃    and   v ̃    to be the inverse of this.

B. Estimating  b  

It is well known that the elasticity of substitution between goods and factor aug-
menting technical progress ( ε  and  b  in our case) cannot be separately identified from 
data on outputs, inputs, and marginal products—an observation that goes back to 
Diamond, McFadden, and Rodriguez (1978). In our baseline case, we restrict the 
elasticity of substitution between task outputs,  ε  , to be one (so that the final good 
production function is Cobb-Douglas) and identify  b(v)  with the share of total com-
pensation paid to workers in task  v .33 Thus, estimates of  b  may be calculated from 
compensation shares independently of knowledge of the  a s. Specifically, under the 
Cobb-Douglas restriction, the firm’s first order conditions from the continuous-tal-
ent version of  (10), imply for almost all  (k, v) :

(23)  ω(k, v) = Y    a(k, v)b(v) _________ 
y(v)   . 

In the continuous talent setting, task output is given by  y(v) = a( k ̃  (v), v)e( k ̃  (v))  k ̃   v  (v)  ,  
with    k ̃   v    the derivative of   k ̃   . Combining this with (23) and integrating over    m    gives 
total labor income in occupation  m  in terms of the  b -function:

   ∫   m       ω( k ̃  (v), v)e( k ̃  (v))  k ̃   v  (v) dv = Y ∫   m       b(v) dv . 

32 The convenience is two-fold. First, since occupational (task) data is discrete, assuming a continuous set 
of talents avoids having to deal with talent groups that are distributed across adjacent occupations. Second, it 
allows us to apply numerical optimal control methods to solve the problem. A formal statement of the continuous 
 talent-continuous task model can be found in online Appendix II. 

33 The quantitative implications of alternative assumptions for  ε  are considered in online Appendix IIB. 
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Average income in occupation  m  ,   i  m    , is then obtained by dividing both sides by the 
mass of workers in the occupation,   S  m   :

   i  m   :=   1 ___  S  m      ∫   m       ω( k ̃  (v), v)e( k ̃  (v), v)  k ̃   v  (v) dv =   Y ___  S  m      ∫   m       b(v) dv . 

Thus, the average value of  b  in occupation  m  ,   b  m  ∆v :=  ∫  v  m−1     v  m      b(v) dv  , is

(24)   b  m   =    S    m    i    m   ____ ∆vY
   ,   ∀ m = 1, … , M. 

We identify  Y  with per capita labor income.34 A smooth estimate of the  b -function 
is obtained by fitting a LOWESS model to  { v  m  , log   b  m  }  data.35 Figure 3 displays 
estimates of  b  for the 1970s and the 2000s. The figure shows that  b  rises (slightly) 
for low and (significantly) for high  v -occupations, but falls for intermediate ones. 

34 In 2005 dollars we have   Y  70   = $36,998  and   Y  00   = $45,260 .  M  is 302. In aggregate data using GDP defla-
tor (Table 1.1.9 in NIPA) and total nonfarm payroll (BLS) we get a value of real compensation per worker equal 
to   Y  70   = $37,114  and   Y  00   = $53,304 . However deflating using CPI we get values consistent with our sample:   
Y  70   = $37,966  and   Y  00   = $45,151 . 

35 The LOWESS scatterplot smoothing builds up a smooth curve through a set of date points by fitting simple 
linear or quadratic models to localized subsets of data. We use a smoothing parameter of 0.4. 
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The picture is consistent with the phenomenon of job polarization as discussed in 
Section I. This polarization feature is robust to different sample selection assump-
tions, see online Appendix IIIA for details.

Figure 4 sharpens intuition concerning the relation of different  v s to the data. 
The figure overlays the values of  b( ⋅ )  with a bar graph displaying the employment 
shares of occupations belonging to particular sectors. Figure 4, panel A does this for 
services and Figure 4, panel B for manufacturing.36 The service sector is associated 
mostly with extreme and, especially, “low”  v  occupations (the bar on the right in 
Figure 4, panel A refers to managers and administrative support), while manufactur-
ing is mostly middle  v  occupations (although with a wider range).

C. Estimating  a 

The envelope condition from the task choice component of the worker’s equilib-
rium problem,  w(k) =  max  v∈[  v _  ,   _ v  ]      ω(k, v)  , implies that

(25)    d log w ______ dk  (k) =   ∂  log ω(k,  v ̃  (k))  _____________ ∂ k   =   ∂  log a(k,  v ̃  (k))  ____________ ∂ k   =   ∂ α ___ ∂ k  (k,  v ̃  (k)), 

where  α(k, v)  := log  a(k, v) . An empirical counterpart for    d log w _____ dk    is constructed in 
three steps. First, information from the CPS on weeks and usual hours worked in 
the previous year and self reported yearly labor income is used to impute work-
ers’ average hourly wages. Second, wages are averaged over occupation to con-
struct empirical counterparts of  w( k ̃  (v)) . Third, a LOWESS smoother is applied 
to the log of this series and to   k ̃    , derivatives of each function are calculated 

36 Not shown are occupations that constitute less than 2 percent of the workforce of each sector. 

Figure 4. Occupations and v 

Notes: Histograms: shares of occupations over v. Plots: smoothed values for log (b(v)) over v and across decades.
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and    
d log w( k ̃  (v)) ________ dk    =    d log w( k ̃  (v)) ________ dv   /   

∂  k ̃  (v) ____ ∂ v    is found. Figure 5 displays the empirical val-

ues for (smoothed)  log w(k)  for the 1970s and the 2000s. From the twentieth to 

the eightieth talent percentile, this function is roughly linear in  k  in the 1970s and 
remains so in the 2000s. In the 1970s, it steepens over the top talent decile, while 
in the 2000s, it steepens over the top two deciles. In addition, for both decades, but 
especially for the 1970s, the profile is steeper over the bottom two deciles.

The evolution of  log  w(k)  shown in Figure 5 suggests that between the 1970s and 
the 2000s the wages of low-ranked talents caught up with mid-ranked talents, while 
the wages of mid-ranked talents fell behind those at the top. These developments are 
qualitatively consistent with a fall in the returns to talent in simpler tasks combined 
with an increase in talent-complexity comparative advantage (so that talent premia 
rise in the most complicated tasks and occupations). This motivates us to select:

(26)    ∂ α ___ ∂ k   (k, v) =  α 1   +  α 2   · v . 

Here,   α 1    captures the return to pure talent, while   α 2    captures comparative advan-

tage.37 We recover estimates of   α 1    and   α 2    by regressing    d log w( k ̃  (v)) _________ dk    onto a constant 

and the task index  v . The regression is weighted by the share of workers in each  v . 

37 Online Appendix IIIE considers a case in which comparative advantage is increasing with task complexity. 
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Results are reported in Table 1. They show a significant increase in the compara-
tive advantage parameter   α 2    between the 1970s and 2000s. Loosely, this is driven 
by the increase in wage growth over high talents occurring between the 1970s and 
the 2000s.38 In online Appendix IIID, we look outside of the CPS for corroborat-
ing evidence of increasing comparative advantage. Specifically, we use data on the 
change in the skill/ability content of occupations contained in different editions of 
the O⋆NET database. We find evidence that the use and importance of skills and 
abilities associated with complex tasks has increased in high-wage occupations rel-
ative to low.

Finally, the parameter  A  is given by the ratio of per capita income to the approx-
imation of the CES aggregator  exp  { ∫   v _      

_ v     b(v) log { y(v)} dv}  .

V. Quantitative Implications for Policy

In this section, we compute optimal policy responses to the technical change esti-
mates derived in Section IV. Calculation of policy requires a specification of worker 
and societal preferences and the amount of resources devoted to public spending. 
We briefly turn to this and then give our quantitative results.

A. Selection of Other Parameters and Computational Method

We assume that worker preferences are given by:  U(c, e) =  log c −    e   1+γ  ___ 1 + γ   . Note 
that the choice of  U  has no impact on the estimation of  b(v)  and  a(k, v) . We fol-
low Chetty et al. (2011) and set the Frisch labor supply elasticity to  1 / γ = 0.75 .  
We identify the share of output allocated to public spending with the aggregate tax 
to income ratio in our CPS sample. On this basis,   (G/Y ) 70   = 16.2  percent and   
(G/Y ) 00   = 14.0  percent; we set the  G / Y  ratio to the intermediate value of  15  per-
cent.39 Finally, in our benchmark calculations a utilitarian government is assumed:   
g  k   =  π k    for all talents  k .

38 Kaplan and Rauh (2013) emphasize the rise of “superstar” pay across a variety of high-income occupa-
tions. In our empirical strategy “superstar” workers belong to (measured) occupations inhabited by much lower 
paid workers. It is arguable that these different workers trade in distinct task-markets with distinct shadow prices. 
The implication of this is a downward bias in the estimate of comparative advantage (  α 2   ). Given the evolution of 
inequality in the United States, this bias is likely to be more significant for the 2000s. 

39 NIPA data (Table 1.1.6) gives   (G/Y) 70   = 23.9  percent and   (G/Y ) 00   = 19.3  percent. However, since we are 
concerned with spending financed out of income taxation (paid by our subsample of labor income earners) we use 
the alternative CPS-generated estimates. 

Table 1—Estimation of Productivity Function

  α 1     α 2   

1970s 1.07 (0.25) 1.71 (0.28)
2000s 0.42 (0.32) 3.01 (0.22)
Notes: N = 302. Estimation of   α 1    and   α 2    from (25). Standard errors in parenthesis.

Source: Authors’ calculations.
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To calculate optimal policy at our selected and estimated parameters, we first for-
mulate the government’s optimization as an optimal control problem. Details of this 
formulation are given in online Appendix II. We then solve the problem numerically 
using the GPOPS-II software.40

B. Optimal Tax Results

Table 2 reports optimal average and marginal tax rates as a function of income 
percentiles for the 1970s and the 2000s. Over this time period, average rates rise at 
low incomes and fall at high and, especially, middle incomes. Transfers to the lowest 
deciles are reduced. Overall, the reform favors those in the middle. Marginal rates 
fall at low to mid incomes and rise at higher incomes. In the extreme tails they move 
in the opposite directions: rising in the very lowest and falling in the very highest 
(where marginal subsidies are increased) percentiles. To understand the evolution 
of optimal tax reported in  Table 2, we return to the tax formula (4) derived earlier.

Accounting for Optimal Taxes.—Tax formula (4) allows us to decompose opti-
mal tax rates into “Mirrleesian” and “Wage Compression” components. In partic-
ular, let   τ  k  M   denote the “Mirrleesian” marginal tax rate in the absence of the wage 
compression term:41

   τ  k  M  =   
  ∆ w  k+1  ∗   _____  w  k+1  ∗       

1 −  Π k   ______  π k        k  
*   Ψ  k  ∗ 
   ___________________   

1 +   ∆ w  k+1  ∗   _____  w  k+1  ∗       
1 −  Π k   ______  π k        k  

*   Ψ  k  ∗ 
   . 

The tax rate   τ  k  M   is that which an optimizing government would apply if wages 
were fixed at their optimal levels  { w  k  ∗ } . Define the wage compression component of 
taxes to be the residual   τ  k  WC  =  τ  k  ∗  −  τ  k  M  . In  Figure 6, we plot the Mirrleesian tax 
rate   τ  k  M   and the overall optimal marginal rate   τ  k  ∗   at each income percentile  k  and for 
each decade. Figure 6 shows that technical change deforms the Mirrleesian tax rate 

40 GPOPS-II is a flexible software for solving optimal control problems, see Patterson and Rao (2014). 
41 That is, set the wage compression term to zero in (4) and rearrange. For convenience, we continue to state tax 

formulas and their components in their discrete, rather than continuous forms. 

Table 2—Optimal Tax Rates in Real Labor Income

Percentiles of income

Decade 10th 25th 50th 75th 90th 99th

Averages 1970s −11.9 −7.3 6.9 22.3 26.1 22.3
2000s −2.3 −1.1 5.6 19.9 26.1 21.9

Marginals 1970s 20.3 34.1 44.3 40.3 23.9 −0.6
2000s 15.3 25.4 39.7 42.2 27.4 −2.2

Source: Authors’ calculations.
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pushing it to the right except at the lowest and highest talent. In addition, it raises 
the wage compression component at lower incomes and reduces it at higher ones. 
Overall the wage compression component becomes quantitatively more important.

Evolution of the Mirrlees Term.—We further decompose the Mirrlees term into 
its redistributive  Ψ  and wage growth parts in Figure 7.42 The main impact of techni-
cal change is upon wage growth (with some slight reinforcement from the redistrib-
utive term   Ψ   ∗  ). This is largely driven by shifts to the  a  function. As noted previously, 
our estimates suggest that the productivities of low talents catch up with high in less 
complicated tasks and fall behind in more complex ones. At any effort profile and, 
in particular, at the optimal one, this shift compresses wage differentials at the bot-
tom and expands them at the top. Shifts in the  b  function and in task demand from 
the middle to the extremes slightly reinforce the effect. The impact of the latter is, 
however, surprisingly small. This is largely because, in relevant areas of the task 
space, modest adjustments in the tasks of workers    v ̃     ∗   are consistent with quite large 
variations in the density of workers across tasks    k ̃    v  ∗  . Consequently, increases in the 
demand for low and high tasks are met with increases in the number of workers per-
forming these tasks, but relatively little adjustment in task assignment and, hence, 
relative productivities and wages. For more details see online Appendix IV. The 
overall effect of these  a  and  b  changes is to relax incentive constraints and reduce 
marginal taxes at the bottom, but to tighten them and raise marginal taxes at the top.

Evolution of the Wage Compression Term.—Adjustment of the wage compression 
terms is in the opposite direction to the adjustment of the Mirrlees term previously 
described. Figure 8 displays this adjustment.

It shows that the wage compression term rises at low incomes and falls, becoming 
more negative, at higher ones. These changes are largely attributable to adjustments 
in the relative wage elasticities   ϕ  k, j  ∗   . The  k  th talent’s wage compression term is given 

42 The other components are constant over time under our assumptions. 
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by  Φ  k  ∗  =   ∑ j=1  K−1      k,j     ϕ  k, j  ∗   . This equation expresses   Φ  k  ∗   as a weighted sum of relative 
wage elasticities, with the weights depending upon the marginal incentive bene-
fit of adjusting each pair of relative wages. Mechanically,   ϕ  k, j  ∗    is positive if  j ≥ k  
and negative otherwise, so that all   ϕ  k, j  ∗    are positive if  k = 1  and all are negative if  
k = K . For some intermediate  k  , positive and negative terms cancel and the wage 
compression term is zero. An increase in the lowest talent’s effort pushes all higher 
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talents upwards through the task spectrum, raising the relative wages of all adjacent 
talents. This tightens all incentive constraints and is undesirable. Consequently, the 
lowest talent has the highest wage compression term and that talent’s effort should 
be deterred at the margin. For the highest talent, this argument is reversed. An 
increase in the highest talent’s effort pushes all lower talents downwards through the 
task set, compressing relative wages. This relaxes incentive constraints and should 
be encouraged at the margin with lower marginal taxes on high-talent incomes. For 
intermediate talents these effects wholly or partially offset, leading to wage com-
pression terms that are smaller in absolute value. Figure 9 shows the impact of 
technical change on relative wage elasticities (normalized by population shares) 
  ϕ  k, j  ∗   /  π k    ,  j = 1, … , K  for low, mid, and high talents (labeled  L  ,  M , and  H   ).43 It 
indicates that almost all   ϕ  k, j  ∗    rise in absolute value. This is largely a consequence 
of the rise in the comparative adjustment parameter   α 2    which, although it dampens 
the assignment response to adjustments in effort, raises the sensitivity of relative 
wages to any reassignment that occurs. Changes in the  b  function have only moder-
ate effects on these elasticities, see online Appendix VI.

Combining Terms.—The Mirrlees and wage compression terms evolve in oppo-
site directions. Of the two, it is the adjustment to the Mirrlees term that is largest 
over most incomes. Consequently, marginal tax rates fall at low (but not the lowest) 
and rise at high (but not the highest) incomes. These adjustments are significantly 
muted by changes to the wage compression term and at the extremes of the wage 
distribution changes in this term predominate.

43 Note the global impact of relative wages to an effort adjustment, an example of the ripple effect described 
previously. 
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VI. Extension: Intra-task Wage Dispersion

This paper’s online appendices contain various robustness checks, extensions, and 
optimal tax calculations under alternative parameterizations. In the remainder of this 
section we focus on a specific extension that can accommodate intra-occupational 
wage dispersion. Recall that in the equilibrium of our (benchmark) model, differently 
talented workers partition the task space and all workers within a task receive the 
same wage: there is no intra-task wage dispersion. Our empirical strategy identifies 
tasks with occupations and uses dispersion in occupational average wages to deter-
mine the  a  function. It makes no use of measured intra-occupational wage dispersion.

Simple regressions suggest that between one-third and one-half of wage disper-
sion can be attributed to occupation. Mouw and Kalleberg (2010) impute wages 
using income and hours data in the CPS and regress this on three digit occupation 
dummies. They obtain an   R   2   of 39 percent in the 1980s rising to 43 percent in 2010. 
Lane, Salmon, and Spletzer (2007) using OES microdata from 1996–1997 find that 
one digit occupational dummies account for 28 percent of wage variation rising to 
54 percent when three digit occupational data is used. Overall, although occupations 
account for an important part of wage variation, significant residual wage variation 
remains. However, the identification of this residual variation with intra-task wage 
dispersion must be qualified in two ways. First, the residual absorbs measurement 
error in incomes and hours (from which wages are imputed).44 Second, it absorbs 
occupational misclassifications and, more generally, unmeasured variation in task 
complexity. Several occupational categories within the CPS have fairly expan-
sive definitions (e.g., some managerial occupations include managers of small, 
simple organizations, as well as managers of large complex ones) and it is likely 
that different workers sharing such occupational classifications perform different 
 complexity-ranked activities.45 It is notable that when Lane, Salmon, and Spletzer 
(2007) introduce establishment dummies on top of occupational ones and inter-
act these dummies the   R   2   in their regressions rises to 88 percent. While establish-
ment dummies may capture many things, it is plausible that they help further refine 
the task performed by a worker (especially when interacted with occupation). To 
address this issue requires further unbundling of measured occupations.46

Notwithstanding the preceding concerns, intra-task wage variation is present and 
does contribute to measured intra-occupational wage dispersion. We consider the 
extent to which it qualifies our results in online Appendix VI. We do so by extending 
the model and numerically parameterizing it to enhance intra-task wage dispersion. 
Our goal is to provide a lower bound for the responsiveness of policy to technical 
change. In the extended model, there are two aspects of talent: one captures compar-
ative advantage in complex tasks, the other the ability to do all things well. Similar 
to our baseline model in the main text, comparative advantage types  partition the 

44 Bound and Krueger (1991) find that measurement error accounts for 27.6 percent of total variance of CPS 
earnings, while Bound et al. (1994) find that it is more severe for hours and wages. 

45 Relatedly, “superstar” workers belong to (measured) occupations inhabited by much lower paid workers. It is 
arguable that these different workers trade in distinct task-markets with distinct shadow prices. 

46 We use the O⋆NET to provide some very preliminary results in this direction in online Appendix VII. There 
we report summaries of survey results that indicate disagreement as to the knowledge requirements of occupations 
(amongst workers employed in or firms employing workers in these occupations). These disagreements are greatest 
in occupations paying higher wages. 
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ordered space of tasks amongst themselves. Wage variation within these partitions 
(and, hence, within tasks) is created by dispersion in the second (absolute advan-
tage) component of talent. Such dispersion weakens the link between wages and 
tasks. It diffuses the impact of technical change and of taxes targeted at a partic-
ular income across the wage distribution. Thus, it dampens the responsiveness of 
policy to technical change. In taking the model to the data, we assume a coarse 
set of comparative advantage types and attribute all measured residual wage vari-
ation (about 75 percent of the total in our CPS sample) to variations in absolute 
advantage. Since the set of comparative advantage types is coarse, the partitions 
of the occupation space are large. Hence, we (deliberately) attribute some mea-
sured  inter-occupational wage variation to absolute advantage (and as discussed 
above measured inter-occupational wage variation may understate inter-task wage 
variation and the contribution to overall wage dispersion created by the interac-
tion of talents and tasks). As expected, the impact of technical change on marginal 
taxes is smaller than in our baseline case: the largest adjustment is about 2.5 points 
as compared to about 8.5 points before. Again, this adjustment is the net effect of 
countervailing changes to the Mirrlees and wage compression terms. We interpret 
this number as a lower bound on the responsiveness of policy to technical change. 
Moreover, while the quantitative response is more muted than in the benchmark 
case, the broad policy prescription of modest marginal tax reductions over a band of 
low- to mid-level incomes combined with an increase over higher incomes is robust.

VII. Conclusion

We relate the positive literature on technical change to normative work on optimal 
taxation by embedding an assignment model into an optimal tax framework. The 
assignment component induces an indirect production function over worker efforts 
enabling us to map technical parameters determining the productivity of task-talent 
matches and the demand for tasks to the variables and elasticities relevant for opti-
mal tax analysis. We investigate the implications of changes in these parameters for 
optimal taxes, measure the extent of this change in US data and evaluate its impli-
cations for optimal policy.

The impacts of technical change on wage growth across talents and the substi-
tutability of talents across tasks emerge as key drivers of policy. The twisting of 
the task-talent productivity function with low talents catching up in simple tasks 
and falling behind in more complex ones compresses wage differentials at the bot-
tom, while expanding them at the top. It is a force for reduced marginal taxes on 
low incomes and increased marginal taxes on high incomes. On the other hand, 
increased complementarity between talent and task complexity reduces the substi-
tutability of talents. In particular, the highest talents become increasingly locked 
into the highest tasks. Migration to lower ranked tasks to avoid lower task shadow 
prices entails greater erosion of productivity. This gives the government more tax 
leverage over the wage distribution. It is a force for higher marginal tax rates at 
the bottom. A key message of this paper is that policy depends upon the balance 
of these forces. Models that treat wages (or even the elasticity of substitution 
between talents) as exogenous omit the latter. We find its impact to be moderate, 
but nonnegligible.
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Our paper takes a first step in integrating a task-based model of technical change 
into a normative public economics framework. We conclude by describing four 
extensions that we leave for future research. First, our model focuses on the inten-
sive margin of labor supply.47 It abstracts from indivisibilities in labor supply. If 
working at a given task requires a minimal (task specific) effort, then some work-
ers may choose inactivity under the optimal tax code. As Saez (2002) shows such 
modeling of the worker extensive margin can significantly affect optimal tax results 
at the bottom. However, its implications for the impact of technical change on tax 
design are less clear. Second, our model assumes that the matching of talents to 
tasks is frictionless. Thus, our quantitative work is best viewed as capturing the 
long run policy response to technical change after the (possibly slow) reassign-
ment of workers to tasks following such change. The role of income taxation in 
supplementing other sources of insurance during transitions is omitted. Third, our 
model omits accumulation of experience or skill within tasks that can impede or 
promote transitions to other tasks. Fourth, we abstract from the endogenous nature 
of technical change. Relaxing these restrictions remain important topics for further 
research.

Appendix

It is straightforward to verify that any allocation that solves the mechanism 
design problem (MDP) is implementable as part of a tax equilibrium. On the other 
hand, the allocation from a tax equilibrium is feasible for (MDP). Consequently, an 
optimal tax equilibrium may be constructed from a solution to (MDP)   { c  k  ∗ ,  e  k  ∗ }  k=1  K    by 
associating with it the wages and taxes needed to implement this solution.

We make two preliminary observations on solutions to (MDP). First, given a 
solution   { c  k  ∗ ,  e  k  ∗ }  k=1  K    , worker types may be ordered according to their optimal shadow 
wages   { w  k  ∗ }  k=1  K   . Types whose wages are tied may be further ordered by their pre-tax 
incomes   q  k  ∗  =  w  k  ∗  e  k  ∗  . Types may then be relabeled accordingly (with ties between 
both wage and income ordered arbitrarily). Thus, the  k  th worker type has a wage 
that is weakly greater than the wages of types  1  to  k − 1  and if the  k  th type’s wage 
ties with the  k − 1 th type, then its income is weakly greater. We impose this label-
ing below. Second, only a subset of incentive constraints (2) bind. Recall that a  
(k, j) th incentive constraint is local if  j ∈ {k − 1, k + 1} ∩ {1, … , K}  ; otherwise 
it is non-local. A well known consequence of the Spence-Mirrlees single crossing 
property and the structure of the incentive constraints in settings with exogenous 
wages is that non-local incentive constraints do not bind at an optimum. This result 
continues to hold in the present setting under our ordering.48 We record this fact in 
Lemma 2.

47 However, our model admits an alternative interpretation in which workers exert effort in skill accumulation 
rather than market work. Our theoretical insights are applicable to this interpretation. 

48 We omit the proof. It follows from a slight modification of Theorems 3 and 4 in Milgrom and Shannon 
(1994). In our setting it is possible for two worker types  k  and  k + 1  to have the same wage, but different efforts, 
incomes, and consumptions at the optimum. If the  k   th type has a higher income than the  k + 1 th type, then it is 
possible that the (nonlocal)  (k − 1, k + 1)  and  (k, k + 2)  incentive constraints bind. Thus, ordering of worker types 
with tied wages by income is necessary to ensure only local incentive constraints bind. 
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LEMMA 2: Let   { c  k  ∗ ,  e  k  ∗ }  k=1  K    denote a solution to (MDP) with corresponding shadow 
wages   { w  k  ∗ }  k=1  K    ,   w  k  ∗  =  F  k  ( e  1  ∗   π 1  , … ,  e  K  ∗    π K  )  and incomes   q  k  ∗  =  w  k  ∗   e  k  ∗   and types 
labeled consistently with their ranking in the wage (and when wages are tied 
income) distribution, then (i)   c  k+1  ∗   ≥  c  k  ∗   and   q  k+1  ∗   ≥  q  k  ∗   , and (ii) nonlocal incen-
tive constraints do not bind.

As in the main text, we gather the constraint functions from the incentive and 
resource constraints into the single function  :   ℝ  +  2K   →   ℝ   K(K−1)   and say that   
{ c  k  ,  e  k  }  k=1  K   ∈  ℝ  ++  2K    satisfies the constraint qualification if there is an  x ∈  ℝ   2K   such 
that  ∇ ( { c  k  ,  e  k  }  k=1  K  )x < 0 .

PROPOSITION 3: Let   T   ∗   and   { c  k  ∗ ,  e  k  ∗ ,  w  k  ∗ }  k=1  K    denote an optimal tax equilibrium 
with worker types indexed so that   w  k  ∗  =  F  k  ( e  1  ∗   π 1  , … ,  e  K  ∗    π K  )  is non-decreasing in  k . 
Assume that   { c  k  ∗ ,  e  k  ∗ ,  w  k  ∗ }  k=1  K    is interior (i.e., in   ℝ  ++  2K   ) and that  satisfies the con-
straint qualification at   { c  k  ∗ ,  e  k  ∗ ,  w  k  ∗ }  k=1  K    , then optimal tax rates satisfy:

(27)   
 τ  k  ∗  _____ 

1 −  τ  k  ∗    =

     1 −  Π k   _____  π k      {  ∆ w  k+1  ∗   _____  w  k+1  ∗      Ψ  k, k+1  ∗      k,k+1  
*   −   ∆ w  k  ∗  ____  w  k−1  ∗      Ψ  k, k−1  ∗      k,k−1  

*  }    
 
   


     

Mirrlees

     +        ∑ 
j=1

  
K−1

      k,j  
*    ϕ  k, j  ∗   

 
 


    

Wage compression

   , 

where  ∆ w  k  ∗  :=  w  k  ∗  −  w  k−1  ∗    ,   Ψ  k, k+1  ∗   :=    U  c  ( c  k  ∗ ,  e  k  ∗ ) ______ 1 −  Π k       
 η  k+1, k  ∗   ____  χ   ∗     and   Ψ  k, k−1  ∗   :=    U  c  ( c  k  ∗ ,  e  k  ∗ ) ______ 1 −  Π k       

  η  k−1, k  ∗   ____  χ   ∗    . 
are normalized optimal multipliers on the  (k + 1, k) th and  (k − 1, k) th incentive 
constraints,

    k,j  
*    := −    ∆ e    U  c  ( c  k  ∗ ,  e  k  ∗ ;  q  k  ∗  /  w  j  ∗  −  e  k  ∗ )   __________________   U  c  ( c  k  ∗ ,  e  k  ∗ )    e  k  ∗  

 +    ∆ e    U  e  ( c  k  ∗ ,  e  k  ∗ ;  q  k  ∗  /  w  j  ∗  −  e  k  ∗ )   ___________________   U  e  ( c  k  ∗ ,  e  k  ∗ )      w  k  ∗  ___  w  j  ∗     e  k  
∗  + 1, 

with  q  k  ∗  =  w  k  ∗   e  k  ∗ ,

    k,j  
*    :=

   U  c  ( c  k  ∗ ,  e  k  ∗ ) _________   U  e  ( c  k  ∗ ,  e  k  ∗ ) e  k  ∗    [   η  j+1, j  ∗   ____  χ   ∗    U  e   ( c  j  ∗ ,   
 q  j  ∗  ____  w  j+1  ∗    )     q  j  ∗  ____  w  j+1  ∗     −    η  j, j+1  ∗   ____  χ   ∗     U  e   ( c  j+1  ∗  ,    q  j+1  ∗   ___  w  j  ∗   )     q  j+1  ∗   ___  w  j  ∗   ]    1 __  π k    , 

and   ϕ  k, j  ∗   =    e  k  ∗  _______  w  j+1  ∗   /  w  j  ∗      
∂   w  j+1  ∗   /  w  j  ∗  ________ ∂  e  k     ( e  1  ∗ , … ,  e  K  ∗  ) .
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PROOF:
By the preceding discussion if  { T   ∗ ,  { c  k  ∗ ,  e  k  ∗ ,  w  k  ∗ }  k=1  K  }  is an optimal tax equi-

librium, then   { c  k  ∗ ,  e  k  ∗ }  k=1  K    solves (MDP). Since  satisfies the constraint quali-
fication at   { c  k  ∗ ,  e  k  ∗ }  k=1  K    and   { c  k  ∗ ,  e  k  ∗ }  k=1  K    is interior to   ℝ  ++  2K    , then   { c  k  ∗ ,  e  k  ∗ }  k=1  K    satisfies 
 Karush-Kuhn-Tucker conditions with multipliers   χ   ∗   and   η  k, j  ∗    on the resource and 
incentive constraints (and zero multipliers on the nonnegativity conditions 
  c  k  ∗ ,  e  k  ∗  ≥ 0 ). Also, since worker types are indexed so that shadow wages 
  w  k  ∗  =  F  k  ( e  1  ∗   π 1  , … ,  e  K  ∗     π K  )  are non-decreasing in  k  and if wages of different types 
are tied so that incomes are non-decreasing in  k  , then by Lemma 2, only local incen-
tive constraints are potentially binding and, hence, only the   η  k, k−1  ∗    and   η  k, k+1  ∗    multi-
pliers are potentially nonzero. The first order condition for   e  k  ∗   reduces to

 −  U  e   (  c  k  ∗ ,  e  k  ∗ ) =    χ   ∗     w  k  ∗     π k   /  D  k  
∗  ,

where:

  D  k  ∗  :=   g  k   +  η  k, k−1  ∗    −  η  k+1, k  ∗      U  e  ( c  k  ∗ ,  q  k  ∗  /  w  k+1  ∗  )  _________  U  e  ( c  k  ∗ ,  e  k  ∗ )      w  k  ∗  ___  w  k+1  ∗     +  η  k, k+1  ∗    −   η  k−1, k  ∗     U  e  ( c  k  ∗ ,  q  k  ∗  /  w  k−1  ∗  )  _________  U  e  ( c  k  ∗ ,  e  k  ∗ )       w  k  ∗  ___  w  k−1  ∗      
+     χ   ∗  π k   ______  U  c  ( c  k  ∗ ,  e  k  ∗ )    Φ  k  ∗   +     χ   ∗  π k   ______  U  c  ( c  k  ∗ ,  e  k  ∗ )    ϒ  k  ∗   and

   Φ  k  ∗   :=    U  c  ( c  k  ∗ ,  e  k  ∗ ) _______  π k       ∑ 
j=1

  
K−1

      η  j+1, j  ∗   ____  χ   ∗       U  e  ( c  j  ∗ ,  q  j  ∗  /  w  j+1  ∗  )  ___________   U  e  ( c  k  ∗ ,  e  k  ∗ )      w  j  ∗   e  j  ∗  _____  w  j+1  ∗    e  k  ∗     ϕ  k, j  ∗  ,

and

  ϒ  k  ∗   : =    U  c  ( c  k  ∗ ,  e  k  ∗ ) _______  π k       ∑ 
j=1

  
K−1

      η  j−1, j  ∗   ____  χ   ∗       U  e  ( c  j  ∗ ,  q  j  ∗  /  w  j−1  ∗  )  ___________   U  e  ( c  k  ∗ ,  e  k  ∗ )      w  j  ∗   e  j  ∗  _____  w  j+1  ∗    e  k  ∗     ϕ  k, j−1  ∗   . 

The first order condition for   c  k  ∗   reduces to

  U  c  ( c  k  ∗ ,  e  k  ∗ ) =    χ   ∗   π k      _____________________________________________      
 g  k   +  η  k, k−1  ∗   −  η  k+1, k  ∗     U  c  ( c  k  ∗ ,  q  k  ∗  /  w  k+1  ∗  )  _________  U  c  ( c  k  ∗ ,  e  k  ∗ )   +  η  k, k+1  ∗   −  η  k−1, k  ∗     U  c  ( c  k  ∗ ,  q  k  ∗  /  w  k−1  ∗  )  _________  U  c  ( c  k  ∗ ,  e  k  ∗ )  

   . 

Define the consumption-effort wedge:     τ  k  ∗  _____ 
1 −  τ  k  ∗    = −    w  k  ∗  U  c  ( c  k  ∗ ,  e  k  ∗ ) _______  U  e  ( c  k  ∗ ,  e  k  ∗ )   − 1 . Combining 

expressions gives

   
 τ  k  ∗  _____ 

1 −  τ  k  ∗    =    U  c  ( c  k  ∗ ,  e  k  ∗ ) _______  π k      {   η  k+1, k  ∗   ____  χ   ∗     {   U  c  ( c  k  ∗ ,  q  k  ∗  /  w  k+1  ∗  )  ___________   U  c  ( c  k  ∗ ,  e  k  ∗ )   −    U  e  ( c  k  ∗ ,  q  k  ∗  /  w  k+1  ∗  )  ___________   U  e  ( c  k  ∗ ,  e  k  ∗ )      w  k  
∗  ____  w  k+1  

∗    } 

 +    η  k−1, k  ∗   ____  χ   ∗     {   U  c  ( c  k  ∗ ,  q  k  ∗  /  w  k−1  ∗  )  ___________   U  c  ( c  k  ∗ ,  e  k  ∗ )   −     U  e  ( c  k  ∗ ,  q  k  ∗  /  w  k−1  ∗  )  ___________   U  e  ( c  k  ∗ ,  e  k  ∗ )      w  k  
∗  ____  w  k−1  

∗    } }   +   Φ  k  
*   +   Υ  k  

*  .

The formulas in Proposition 3 then follow immediately from the definitions of   Φ  k  ∗   ,   
Υ  k  ∗   ,     k,j  

*   ,     k,j  
*   , and   ϕ  k, j  ∗    after substitution into and rearrangement of the preceding 

expression. ∎
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The terms on the right-hand-side of the optimal tax formula in Proposition 3 
are generalizations of the “Mirrlees” and “Wage Compression” terms obtained in 
the main text. These terms incorporate the impact of binding (local) upwards con-
straints as well as downwards constraints. In standard models upwards constraints 
bind when it is optimal to pool agents with distinct wages at a common consump-
tion-effort allocation. In the more general problem , they may also bind when it is 
optimal to pool distinct types with distinct allocations at a common wage. Rothschild 
and Chen (2014) provide an example in which such wage pooling occurs.49 Our 
later assignment model micro-founds the production function  F . In that setting, the 
induced production function does not feature wage pooling. This motivates us to 
consider situations in which the local upwards incentive constraints  (k, k + 1)  are 
strictly non-binding at the optimum:50

(NUIC)  U( c  k  ∗ ,  e  k  ∗ ) > U( c  k+1  ∗  ,  q  k+1  ∗   /  w  k  ∗ ) . 

In such cases, the optimal tax formula (27) reduces to that given in Proposition 1. 
The latter is obtained as a simple corollary of Proposition 3.

PROOF OF PROPOSITION 1:
The optimal tax formula (4) in Proposition 1 follows directly from that in 

Proposition 3 after setting all   η  k−1, k  ∗    equal to 0, using the modified definitions in 
Proposition 1 and expanding the recursion for   η  k+1, k  ∗    implied by the first order con-
dition for   c  k+1  ∗    :

   
 η  k+1, k  ∗   _____  χ   ∗    =  (1 −    g  k+1   U  c  ( c  k+1  ∗  ,  e  k+1  ∗  )  _____________   χ   ∗  π k+1    )     π k+1   __________   U  c  ( c  k+1  ∗  ,  e  k+1  ∗  )    +     η  k+2, k+1  ∗   ______  χ   ∗        U  c  ( c  k+1  ∗  ,  q  k+1  ∗   /  w  k+2  ∗  )  ______________   U  c  ( c  k+1  ∗  ,  e  k+1  ∗  )  , 

with   η  K+1, K  ∗   = 0 . ∎
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