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Abstract

This paper studies the Rothschild and Stiglitz (1976) adverse selection environment,
relaxing the assumption of exclusivity of insurance contracts. There are three types of
agents that differ in their risk level, their riskiness is private information and known
before any contract is signed. Agents can engage in multiple insurance contracts simul-
taneously, and the terms of these contracts are not observed by other firms. Insurance
providers behave non-cooperatively and compete offering menus of insurance contracts
from an unrestricted contract space. We derive conditions under which a separating
equilibrium exists and fully characterize it. The unique equilibrium allocation consists
of agents with a lower probability of accident purchasing no insurance and agents with
higher accident probability buying the actuarially-fair level of insurance. The equilib-
rium allocation also constitutes a linear price schedule for insurance. To sustain the
equilibrium allocation, firms must offer latent contracts. These contracts are necessary
to prevent deviations by other firms; in particular they can prevent cream-skimming
strategies. As in Rothschild and Stiglitz (1976), pooling equilibrium still fails to exists.
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1 Introduction

In this paper we address the question of what type of insurance contracts emerge when

insurance providers compete among themselves. We are interested in environments where

the insured have private information on their risk probability and can sign without being

observed multiple insurance contracts with different insurance providers.

Insurance contracts are written to offset the risk associated with a wide variety of events.

Examples of different types of insurance contracts include insurance against person-related

events (medical, life, annuities), property events (car, home), and financial events (credit

default swaps).1 These insurance contracts share two common properties: the realization of

uncertainty can be verified, and subscribers might have additional private information about

the probabilities that an event realizes. However, due to different regulatory oversight, a

feature that varies greatly amongst them is the ability of the insurer to enter into additional

contracts with other insurance providers. This possibility of non-exclusive insurance holding,

while rare in property insurance, is a definite possibility – for example, in the case of credit

default swaps.2

Motivated by the above observations we investigate the restrictions on the equilibrium

insurance contracts that arise once we dispense with the exclusivity assumption. We consider

a variation of the standard Rothschild and Stiglitz (1976) (RS henceforth) environment.

Agents are subject to uncertainty regarding their endowment realization, the endowment

can be either high or low. We consider three types of agents, each type features different

probability of the high realization of the endowment. This probability is private information

of the agent. Differently from RS we allow agents to engage in multiple insurance contracts

simultaneously with multiple insurance providers. The key assumption is that the terms of

these contracts are not observed by other insurance providers. Insurance providers behave

non-cooperatively and compete offering menus of insurance contracts from an unrestricted

contract space. We derive parameter restrictions under which a separating equilibrium exists

and fully characterize it. The unique equilibrium allocation consists of agents with the

lowest probability of receiving the high realization of endowment (the bad type) buying the

actuarially-fair level of insurance. The other two types with medium and high probability of

high endowment realization (the medium and good type) purchase no insurance.

1For a review, refer to Duffie (1999). For recent empirical pricing evidence refer to Blanco, Brennan, and
Marsh (2005).

2Until early 2009, credit default swaps were issued in private bilateral trades without any intermediation
by any clearing house. On March 10, 2009ICE TrustTM began operating as a central counter party clearing
house for credit default swaps in North America.
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Similarly to our paper, the equilibrium allocation in RS features full insurance at the

actuarially fair price for the low type. Differently from our paper in RS (see also Wilson

(1977)) the medium and high type receive a positive amount of insurance. Another key

difference with respect to RS are the condition required for existence. In our environment

these conditions are stronger, this is due to the nature of non exclusive competition that

allows for additional types of deviation by entrants that are not present in RS. When an

equilibrium exists we find that latent contracts must be offered by insurance providers. These

are contract offered in equilibrium but not chosen by any type. These contracts are necessary

to prevent cream-skimming deviations by entrants and also deviations by incumbents.3 This

highlights the dual role that non-exclusivity plays in our environment. First, by allowing

agents to sign additional insurance contracts, it constitutes a constraint on what an insurance

providers can offer hence limiting the availability of insurance and in certain cases leading to

non existence of equilibrium. Second, non exclusivity enables insurance providers to sustain

equilibrium contracts. Deviations from equilibrium can by prevented with the threat that

any agent can combine latent contracts with the ones offered following a deviation. This

behavior makes it impossible for an entrant to separate different agent types.

Related Literature

This paper is related to two large and growing literatures. The first one studies problems

with adverse selection. It originates from the pioneering work of Akerlof (1970), Rothschild

and Stiglitz (1976), Wilson (1977) and Miyazaki (1977).4 From this literature we take our

basic setup where agents seek insurance and are privately informed on their risk type. The

second one is a more recent literature focusing on non exclusive contracting, see for example

the work of Epstein and Peters (1999), Peters (2001), Martimort and Stole (2002) and

references therein. In these papers a principal cannot prevent an agent to contract with

other competing principals. In addition contracts are private information of the agent and

the counter-party. From this literature, as in Biais, Martimort, and Rochet (2000), we adopt

the approach to equilibrium characterization. We consider the case where each individual

insurance provider offers a set of menus of contracts and delegates to the agent the choice of

which insurance contract to pick.

The closest paper to hours is Attar, Mariotti, and Salanié (2014) independently developed

during the same time as ours. The two papers share many similarities and some differences.

There are three main differences in terms of modeling assumptions. First, their paper re-

3For the use of latent contracts to prevent deviation by entrants also refer to Arnott and Stiglitz (1991)
for the case of moral hazard and Attar, Mariotti, and Salanié (2011) for the case of adverse selection.

4For a review refer to Dionne, Doherty, and Fombaron (2001).
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stricts the analysis to the two types case, while we consider agents with three privately

observed types. Second, they consider the case without free entry while we consider the case

with free entry. Finally, although their preference specification is more general nesting both

a pure trade environment and an insurance environment, the restriction on insurance pur-

chase is different in the two papers. In our paper any insurance purchase that does not lead

to negative consumption is allowed. On the other hand Attar, Mariotti, and Salanié (2014)

considers either the case either with arbitrary amount of insurance (without non-negativity

constraint on consumption) or the case with only positive insurance (in the appendix). Both

papers reach similar results: pooling equilibrium fails to exists, the agent with the highest

risk reach full insurance, while for everybody else no insurance is provided. An equilibrium

may fail to exist altogether. In the body of the paper we highlight additional similarities

and differences.

This paper is also related to a series of papers that analyze the effect of non-exclusive

contracting in the purchase of goods. One of the first papers to do so is Biais, Martimort,

and Rochet (2000). The authors consider an environment where competing traders provide

liquidity to a risk-averse agent who is privately informed on the value of an asset. As in this

paper, the agent is not restricted in trading with only one trader. Moreover traders compete

among each other using menus of possible trades. Differently from our paper, they consider

an environment where goods are being traded rather than insurance and they consider the

case where the privately observed type can take a continuum of values while we consider a

finite (three) number of types. Ales and Maziero (2014) study a dynamic environment with

private information (but unlike this paper, the realization of private information happens

after agents sign the contract) where agents can engage in multiple non-exclusive contracts

for both labor and credit relationships. The paper shows that a unique equilibrium always

exists and that latent contracts are necessary. As in this paper, the equilibrium can be

implemented using linear contracts for wages and bonds. In a recent paper, Attar, Mariotti,

and Salanié (2011) extend the environment of Akerlof (1970) (with linear preferences and a

capacity constraint for the informed agent) to include non-exclusive contracting. Differently

than our paper they show that an equilibrium always exists. Similarly to our environment,

when the equilibrium exists, it is unique in terms of allocations, it involves linear prices, and

it is sustained by latent contracts. Arnott and Stiglitz (1991) and Bisin and Guaitoli (2004)

study static moral hazard environments where agents trade in non exclusive relationships.

In particular, the latter shows that latent contracts are necessary to sustain the equilibrium

and lead to positive profit for the insurance providers. In our paper insurance provider

generate zero profits. Finally Parlour and Rajan (2001) and Attar, Campioni, and Piaser
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(2006) study the effect of non exclusive relationships for the provision of credit either under

limited commitment (the former) or under moral hazard (the latter).

In spirit, this paper is also related to an earlier literature focused on modifying the

equilibrium concept first studied by Rothschild and Stiglitz (1976). In particular Wilson

(1977) extends the equilibrium concept used in RS beyond static Nash equilibrium by al-

lowing insurance providers to take into account how a change in their policy offers might

affect the set of policies offered by other insurance providers. In our paper, latent contracts

play a similar role to these non stationary expectations by enabling a reaction of insurance

providers to deviations of other insurance providers. On a similar note are the papers that

study inter-firm communication in insurance settings, such as Jaynes (1978) and Hellwig

(1988).5 The first considers a static adverse selection economy and allows firms the choice to

disclose or not information on who accepts the insurance contract. It shows that some firms

share information leading to a separating equilibrium (that always exists), while in the case

where no information is shared, no equilibrium exists. Sharing information allows a firm to

offer an insurance contract that is contingent on additional purchases of insurance an agent

might accept. In our paper, firms gather information on insurance purchased by also offering

latent contracts, which allows us, in contrast to Jaynes, to have an equilibrium even without

any information being shared directly. Latent contracts have the same role as information

sharing, since they enable firms to react to deviation of incumbent firms. Hellwig (1988)

highlights that the ability to react is the key to equilibrium existence rather than inter-firm

communication. In particular, inter-firm communication enables firms to react only if the

equilibrium concept considered in Jaynes (1978) is implicitly assuming a non-stationary ex-

pectation similar to Wilson (1977). Along similar lines, Picard (2009) considers the case

where the contracts offered by the insurance providers feature participating clauses so that

the payout is conditional on the profits of the insurance provider. In this setup it is shown

that an equilibrium always exists and coincides with the Miyazaki-Spence-Wilson allocation.

This paper is organized as follows: Section 2 describes the environment. Characterization

and implementation are studied respectively in Sections 3 and 4. Section 5 concludes.

2 Environment

The economy is populated by a continuum of measure one of agents and infinite but countably

many insurance providers. Following Rothschild and Stiglitz (1976) we assume free-entry in

5For an extension to a moral hazard environment, also look at Hellwig (1983).
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the insurance market. Agents are ex ante heterogeneous. We consider three types of agents.

There is a fraction pg of type g agents (the good type) a fraction pb of type b (the bad type)

and a remaining fraction pm = 1− pg − pb of type m (the medium type).6 We assume that

pb > 0, pm > 0 and pg > 0.7 The economy lasts for 1 period. Agents’ utility u is defined over

consumption c. Assume u : R+ → R is a twice continuously differentiable, increasing, and

strictly concave function. At time 1, an agent of type j = b,m, g receives an endowment ωH

with probability πj and ωL with probability 1− πj. Let ωH > ωL and denote ω = (ωL, ωH).

The realization of the endowment is publicly observed. Assume that πg > πm > πb, that

these probabilities are private information of the agent and that these probabilities are known

to the agent before signing any insurance contract. Define the market (average) probability

of high realization as π = pgπg+pmπm+pbπb. The probability of high endowment realization

averaged across any two types is given by πi,j =
piπi+pjπj
pi+pj

with i, j = b,m, g. In much of the

characterization with three types it is be important to distinguish if πm ≥ π or if πm < π.

Respectively theses two cases represent the instance in which the medium type is less risky

(πm ≥ π) or more risky (πm < π) than the overall average market. In the former case it is

easy to see that πb,g ≤ π while in the latter πb,g > π.

In this environment, each agent seeks to insure himself against the uncertain realization of

the endowment. Insurance is provided by insurance providers (referred to as firms in the body

of the paper). Denote by I the number firms active in equilibrium. Each firm i ∈ {1, . . . , I}
offers insurance contracts to agents. A contract prescribes consumption transfers conditional

on the realization of the endowment. The key feature of our environment is that agents can

simultaneously sign contracts with more than one firm and that the terms of the contract

between an agent and any firm are not observed by other firms. We restrict the analysis to

bilateral mechanisms between a principal and an agent; as described in Martimort and Stole

(2002) and Peters (2001) in a single agent environment and in Han (2006) in a multi-agent

setting,8 we can restrict the analysis to menu games. In a menu game, each firm i offers

a menu: a set Ci in P(R2) (the power set of R2). We focus on pure-strategy equilibria.

6The original insurance problem discussed in Rothschild and Stiglitz (1976) focuses on two types only.
Refer to Wilson (1977) for the case with multiple types.

7The case with one of the pj = 0 with j = b,m, g, reduces the environment to one with only two types
of agents. This case was studied in a previous version of this paper. All of the results of this paper hold in
that case also.

8Han (2006) extends the delegation principle to a multi-agent setting in which the contracts offered by
principals to an agent can depend on the messages sent by this agent and not on the messages sent by other
agents. The paper shows that a pure-strategy equilibrium of any bilateral mechanism can be implemented
as a pure-strategy equilibrium of a menu game. Considering multilateral mechanisms that allow an agent’s
allocation to depend upon the reports of other agents might expand the set of equilibria allocations as shown
in Yamashita (2010).
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Elements of Ci are transfers pairs, (τL, τH), conditional on a realization respectively of ωL

or ωH . To assure the agent’s problem has a solution, we restrict the menus offered to be

compact sets. We do not impose any additional restriction on the type of menus offered

by firms besides requiring that each firm offers the null transfer (0, 0).9 If agents of type j

choose the transfer pair (τL, τH) in the menu, its impact on the profit of the firm is given by

−pj(πjτH + (1− πj)τL).

We focus on symmetric equilibria so that agents of the same type make the same choices.10

Denote by τ j,i the choice of agents of type j within Ci. Given the number of firms active in

equilibrium, I, and the menus offered by these firms, C = {C1, . . . , CI}, the problem for an

agent of type j = b,m, g is defined as:

max
{(τ j,iL ,τ j,iH )∈Ci}Ii=1

[
πju

(
cjH
)

+ (1− πj)u
(
cjL
)]

(1)

s.t. cjk = ωk +
I∑
i=1

τ j,ik for k = H,L,

cjk ≥ 0, for k = H,L.

Two observations are worth emphasizing. First the optimal choices of the agents are not

necessarily unique. In equilibrium (defined below) firms take as given agents’ optimal choice

and multiple equilibria might arise given the multiplicity of agents’ optimal choices. Second,

best replies of the agents depend not only on the menu offered by firm i but on all the menus

offered by other firms.

The objective of firms is to maximize profits by optimally choosing a menu. Each firm

takes as given the menus offered by other firms, denoted by C−i, and the optimal choices of

the agents (their best reply) defined in (1) to solve the following:

max
Ci∈P(R2)

−
∑

j=b,m,g

pj[πjτ
j,i
H (Ci, C−i) + (1− πj)τ j,iL (Ci, C−i)] (2)

(0, 0) ∈ Ci

τ j,i(Ci, C−i) solves (1)

The constraints on the firm’s problem require that, for any menu a firm offers, the choice of

the agents are according to their best reply. It also highlights the dependence on the menus

9In particular we allow firms to offer negative insurance: offer menus containing contracts that imply a
negative transfer upon the realization of the low state. See also discussion following Proposition 2.

10This assumption is made for convenience and plays no crucial role for our results.
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offered by other firms by taking into account the fact that whenever a firm −i changes the

menu offered, it might imply that agents’ choices in the menu offered by firm i also changes.

We denote by Π(C ′, C) the profit to a firm of offering menu C ′ when C is the set of menus

offered by the other firms active in equilibrium.

We can now define our free-entry equilibrium in the menu game.

Definition 1 (Equilibrium). A pure strategy symmetric equilibrium of the menu game is:

the number of firms active in equilibrium, I, a collection of menus Ci for all i ∈ {1, . . . , I}
and agents’ optimal choices {(τ j,iL , τ

j,i
H )}Ii=1, for all j = b,m, g such that:

1. For each j = b,m, g, {(τ j,iL , τ
j,i
H )}Ii=1 is a solution of the agent problem (1).

2. For each i ∈ {1, . . . , I}, taking as given C−i and agents’ optimal choices (their best

replies) {(τ j,iL , τ
j,i
H )}Ii=1 for each j = b,m, g, Ci solves (2).

3. There is no C ′ ∈ P(R2) such that Π(C ′, C) > 0.

The definition of equilibrium is standard, agents maximize expected utility and in particular

conditions 1. and 2. together imply that no contract offered in equilibrium makes negative

profits. Given the free-entry nature of our environment there is always a firm not active

in equilibrium; given this, condition 3. implies that there is no contract left outside of

the equilibrium that would otherwise earn positive profits.11 Note that a menu offered in

equilibrium might contain more alternatives than the number of types, given our focus on

symmetric equilibria this implies that some alternatives are not be chosen in equilibrium.

We denote a contract as latent if it is offered in equilibrium by some firm and is not chosen

in equilibrium by any agent. As it will be shown in the following section these contract are

necessary to ensure the existence of equilibrium.

For notational convenience we consider, in the body of the paper, utility and profits

derived from consumption transfers rather than by menus. Let c = (cL, cH) denote the

consumption in the low and high state realization. For a given type j = b,m, g, denote

by U j(c) = πju(cH) + (1 − πj)u(cL) the expected utility from consumption c, where ck =

ωk +
∑I

i=1 τ
i
k for k = L,H. We denote by U j(ω) the expected utility in autarky for agents of

type j. Given τ = (τL, τH), let Πj(τ) = −πjτH − (1− πj)(τL). Conditional on agents of type

j ∈ {b,m, g} accepting contract τ , profits for a firm offering τ are equal to pjΠ
j. Similarly

let Πi,j(τ) = −πi,jτH − (1 − πi,j)τL, if multiple types i and j accept contract τ profits will

11In Attar, Mariotti, and Salanié (2014) instead the number of firms in the environment is fixed.
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be equal to (pi + pj)Π
i,j(τ). If all three types accept contract τ then we denote profits by

Π(τ) = −πτH−(1−π)τL. It is convenient to define aggregate profits as the sum of all profits

originating from the aggregate consumption allocation. Aggregate profits Π are defined as:

Π =
∑

j=b,m,g

pjΠ
j(cj − ω). (3)

3 Characterization of Equilibrium

A first straightforward result is that in any equilibrium profits for the firms must be non-

negative: for all i, Π(Ci, C−i) ≥ 0, this is because a firm can always secure zero profit by only

offering the null contract (0, 0). This implies that aggregate profits must be weakly positive:

Π ≥ 0. Similarly for all agents j = b,m, g the consumption allocation cj must be weakly

preferable to the autarky one: U j(cj) ≥ U j(ω). The concavity assumption on preferences

implies a positive demand for insurance. In particular since ωH > ωL we have that:

1− πj
πj

u′(ωL)

u′(ωH)
>

1− πj
πj

, j = b,m, g.

The above relationship implies that each agent is willing to purchase small positive amounts

of insurance at a price which generates positive profits for the insurance provider. On the

other hand, the same relationship implies that each agent is willing to purchase small amounts

of negative insurance at a price which generates negative profits for the insurance provider

if only such agent purchases it.

To characterize equilibrium, we consider two cases. The first case is a pooling equilibrium.

In this case agents of all three types receive the same equilibrium allocation. In the next

subsection we show that this type of equilibrium never exists. A second type of equilibrium,

a separating equilibrium, occurs when at least two types receive a different consumption

allocation. In subsection 3.2, we show that the unique equilibrium consumption allocation

of the menu game is a separating equilibrium with the following characteristics: agents of

type b (the bad type) receive full insurance against the realization of the endowment at their

actuarially-fair price, while agents of types m and g, receive no insurance.

3.1 Pooling Equilibrium

We first determine necessary conditions that any pooling equilibrium must satisfy. In this

subsection we let c = (cL, cH) be the candidate polling equilibrium level of consumption.
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Lemma 1. For any pooling equilibrium allocation for consumption c = (cL, cH), the following

conditions must hold:

cL ≥ cH , (4)

if πm ≤ π,
1− πg
πg

u′ (cL)

u′ (cH)
≥ 1− π

π
, (5)

if πm > π,
1− πm
πm

u′ (cL)

u′ (cH)
≥ 1− π

π
. (6)

Proof. In appendix A.

Equation (4) implies that pooling equilibrium must be (weakly) in the overinsurance region.

This condition is equivalent to the following relation:

1− πb
πb

u′ (cL)

u′ (cH)
≤ 1− πb

πb
,

the above implies that the marginal rate of substitution between consumption in the two

states for the b agent is less than or equal to the actuarially-fair price for the insurance if

only b agents accept it. This relation provides an intuition for the necessary condition (4). If

it were not to hold, c cannot be an equilibrium since a profitable entry opportunity is always

available. A deviating firm can provide additional insurance for agents of type b charging a

price slightly higher then the actuarially-fair one. Such deviation is always profitable for the

firm and increases expected utility for the agents of type b. Similarly, the necessary conditions

(5) and (6) require that the marginal rate of substitution between consumption in the two

states for agents of type g and m respectively is greater than the price for insurance when

all agents accept the contract. If not, entrant insurance providers can profitably provide

additional insurance to agents of type g and m. A direct implication of Lemma 1 is that

there is no pooling equilibrium, since there is no allocation that simultaneously satisfies the

conditions described in equations (4), and either (5) or (6).

Proposition 1. There is no pooling equilibrium.

Proof. Suppose there exists a pooling equilibrium c = (cL, cH). The equilibrium allocation

must satisfy conditions (4) and either (5) or (6). In the first case with πm ≤ π, from (4) and

(5) we have 1−πg
πg
≥ 1−π

π
. So that πg ≤ π, this is a contradiction since πb < πm < πg implies

πg > π. In the second case with πm > π, from (4) and (6) we have that 1−πm
πm
≥ 1−π

π
. This

implies πm ≤ π, a contradiction.

10



The key intuition for the proof of non existence of a pooling equilibrium with non-

exclusive contracts is that latent contracts cannot prevent entrants from providing additional

positive (or negative) insurance. Under exclusive contracts this type deviation does not need

to be considered. With exclusive contracts, following an entrant’s deviation, agents must

choose whether to stay with the incumbent or to accept the entrant’s contract but cannot

do both as is in the case with non-exclusive contracts. Nonetheless Rothschild and Stiglitz

(1976) and Wilson (1977) show that there is no pooling equilibrium when contracts are

exclusive by showing that there is always an alternative contract that can be offered by an

entrant that is profitable and attracts only good types (a cream-skimming deviation). It

is interesting to notice that with non-exclusive contracts some cream-skimming deviations

might be prevented. We provide a graphical example for the two-types case in Figure 1. In

this figure, the solid lines represent the indifference curves for agents of type b (the steeper

curve) and g (the flatter curve) at the best pooling equilibrium.12 Consider a contract τ̂ that

allows agents to reach a consumption level in the shaded area starting from the endowment

point. Contract τ̂ is preferred to the pooling equilibrium by agents of type g but not by

agents of type b. In addition τ̂ it is profitable for a firm as long as only agents of type g

accept it. If contracts are exclusive as in Rothschild and Stiglitz (1976), τ̂ constitutes a

profitable cream-skimming deviation. This is not necessarily the case under non-exclusivity.

Consider the following tentative equilibrium: the incumbents offer a pooling equilibrium and

τL = L−ω with point L as in Figure 1. Consider a candidate equilibrium where only τL and

the pooling allocation is offered. In this scenario τL is latent, agents of type g and b accept

the pooling equilibrium. This latent contract τL makes τ̂ unprofitable. This is because τ̂ ,

when combined with τL, is now strictly preferred to the pooling equilibrium by agents of

type b. Hence τL prevents an entrant from offering τ̂ . However the pooling equilibrium in

Figure 1 fails to be an equilibrium under non-exclusivity since agents of type b are instead

attracted by deviations of entrants offering additional small positive amount of insurance.

No latent contract is able to prevent such deviations.

3.2 Separating equilibrium

We now study separating equilibria. For each type j = b,m, g denote the equilibrium

consumption allocation by cj = (cjL, cjH). The separating equilibrium allocation is denoted

by c = {cb, cm, cg}. Since c is a separating equilibrium there must exist at least one j and j′

12The pooling equilibrium that delivers the highest expected utility when agents are weighted equally.
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Figure 1: Pooling Equilibrium and The Role of Latent Contracts.

such that cj 6= cj
′
. By revealed preferences, the following incentive constraints must hold:

U j
(
cj
)
≥ U j(cj

′
), for j, j′ = b,m, g. (7)

Before fully characterizing the equilibrium allocations in Proposition 2, we provide some of

the necessary conditions that any separating equilibrium must satisfy. Lemma 2 focuses on

the magnitude of consumption for each type for each endowment realization.

Lemma 2. Any separating equilibrium allocation c = {cb, cm, cg} must satisfy:

cgH ≥ cgL, (8)

cbL ≥ cbH , (9)

cgH ≥ cmH ≥ cbH and cgL ≤ cmL ≤ cbL. (10)

Proof. In appendix A.

The above Lemma implies that the allocation for the g type must be in the underinsurance

region (condition (8)), while the allocation of the b type must be in the overinsurance region

(condition (9)). The intuition for this result is as follows: if the agents of type g are in

the overinsurance region, an entrant can offer a small negative insurance contract at a price

worse than the actuarially fair one. Agents of type g accept this contract and it is profitable

even if any other type accepts it. The intuition for the case when b is underinsured is similar:
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offering additional insurance to type b is always profitable even if other types also accept it.

In addition, condition (10) in Lemma 2 states that consumption under the realization of the

low endowment must be weakly decreasing as agent type increases, while must be weakly

increasing in type upon the realization of the high endowment shock. This monotonicity

property is derived from the equilibrium conditions (7) and the concavity of the utility

function.13

The previous Lemma shows some of the restrictions imposed by non exclusivity on the

equilibrium allocation. To show these restrictions we repeatedly use the following argument:

if any of the restriction does not hold, agents accept a deviation offered by an entrant together

with their original choice of contracts with the incumbents. These deviations occur if they

cannot be made unprofitable. In the next Lemma we continue with this logic, however

we now consider the fact that an agent might switch his original choice of contracts with

the incumbents upon a particular entry. This logic introduces pairwise restrictions on the

equilibrium allocation for consumption. Lemma 3 provides some of these restrictions.14 In

appendix A we show some additional conditions that must hold in any separating equilibrium

and are used in the complete characterization of the equilibrium allocation.

Lemma 3. Any separating equilibrium allocation c = {cb, cm, cg} must satisfy:

∀ j = g,m, Πb(cb − cj) ≤ 0; (11)

Πg(cg − cm) ≤ 0; (12)

Πb,m(cm − cg) ≤ 0. (13)

Proof. In appendix A.

Condition (11) is determined by the behavior of agents of type b following a deviation of the

entrant. This condition imposes that a contract allowing agents to reach consumption level

cb starting from either cm and cg must be unprofitable (weakly) if agents of type b choose

it.15 The intuition is clear in this case: if not, an entrant would provide such contract (with

a small additional transfer in one of the two states) and agents of type b would accept the

contract. Profits to the entrant are positive irrespective of which other type also accepts the

contract. Condition (12) is the mirror image of (11), focusing on the behavior of agents of

13Lemma 2 applies to any equilibrium not only the separating one. For the pooling equilibrium, conditions
(8) and (9) imply that cL = cH this immediately implies a violation of conditions (5) and (6) in Lemma 1
so that a pooling equilibrium does not exist.

14Refer also to Proposition 1 in Attar, Mariotti, and Salanié (2014) for similar characterizations.
15Note that given Lemma 2 such contract constitutes positive insurance.
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type g. It states that a contract allowing an agent to go from cm to cg must be unprofitable

if agents of type g accept it. To understand this condition we first recall that from Lemma

2 we have that cgL ≤ cmL so that the contract just considered is in fact a form of negative

insurance (paying when the endowment is high). In this case agents of type g are the “worst”

type for an entrant: generating the smallest profits. Given this, if condition (12) is violated

we immediately have an opportunity for a deviation that is always profitable and that is

accepted by agents of type g. Finally condition (13) looks at the behavior of agents of type

m. As before, this condition considers the relationship between cm and cg. It considers a

contract (offering positive insurance) allowing agents to reach consumption level cm starting

from cg. In this case if (13) is violated an entrant attracts agents of type m offering a contract

that allows agents to reach cm from cg (with a small additional transfer in one of the two

states). This contract, since is accepted by agents of type m, remains profitable if agents of

type b or g (or both) accept it.

Condition (11) immediately allows us to rule out the equilibrium allocation character-

ized in Rothschild and Stiglitz (1976) and Wilson (1977). When contracts are exclusive,

under certain parameter restrictions, there exists a unique separating equilibrium (referred

to as RSW from here onwards). The RSW separating equilibrium consumption allocation is

(rb, rg) where rb = (ωb, ωb) and rg = (rgL, c
g
H) such that U b(rb) = U b(rg) and Πg(rg − ω) = 0.

The RSW equilibrium allocation is displayed in Figure 2.
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Figure 2: The Rothschild-Stiglitz-Wilson Equilibrium: rg consumption for
agents of type g, rb consumption for agents of type b.

In the RSW equilibrium, given the consumption allocation of agents of type b, it is
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clear that the positive insurance purchased by agents of type g implies that Πb(rb − rg) > 0

contradicting (11). Indeed given the RSW equilibrium allocation with non exclusive contracts

an entrant can offer additional insurance τ̂ for agents of type b at a price slightly worse than

the actuarially fair price. As soon as τ̂ is offered, agents of type b will accept the additional

insurance together with the allocation rg. Given the price charged for insurance, this entry

is always profitable. The shaded area in Figure 2 displays the set of consumption that can

be achieved with an entrant offering τ̂ .

We now complete the characterization of the equilibrium. Proposition 2 below shows

that, if an equilibrium exists, there exist a unique equilibrium allocation for consumption.

This allocation (which is our candidate equilibrium) is given by cb = (ωb, ωb) with ωb =

πbωH +(1−πb)ωL and cm = cg = (ωL, ωH): as the RSW equilibrium allocation the candidate

equilibrium provides full insurance at the actuarially-fair price to agents of type b; differently

than the RSW equilibrium, the candidate equilibrium allocation provides no insurance for

agents of type m and g.

Proposition 2. Any equilibrium allocation of the menu game satisfies: cb = (ωb, ωb), where

ωb = πbωH + (1− πb)ωL; cm = cg = (ωL, ωH).

Proof. In appendix A.

Lemmas 2 and 3 impose strong restrictions on the equilibrium allocations (cb, cm, cg). In

particular with the additional results of Lemma 4 in the Appendix it follows that the equi-

librium allocation must be of the type described in Jaynes (1978), Hellwig (1988) and Glosten

(1994) so that Πb,m(cm − cg) = 0 and Πb(cb − cm) = 0.16 These restrictions however, still

do not rule out the fact that either cm or cg might generate positive profits when chosen

respectively by agents of type m or g. For this to happen either agents of type m or g

must receive a positive amount of insurance. The proof of Proposition 2 shows that indeed

cm and cg cannot generate positive profits and that agents of type m and g purchase no

insurance and remain in autarky. At the heart of the proof there is a familiar argument

using cream-skimming strategies. The idea is that if agents of type g or m generate positive

profits in the aggregate, then an entrant will try to attract them by replicating one of the

profitable contracts offered by the incumbents to one of these two types. The proof is quite

lengthy and the main difficulties are to consider all the possible deviations of the agents

that might occur following a deviation of the entrant and second to show that in equilibrium

there cannot be a contract being offered that can simultaneously prevent a cream-skimming

16For the two type case Attar, Mariotti, and Salanié (2014) show that any separating equilibria must be
of Jaynes-Hellwig-Glosten type.
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strategy and be latent. As an example, consider the graphical argument used to discuss the

pooling equilibrium: Figure 1. Suppose that the pooling equilibrium in the figure is now

a pooling allocation between agent of type m and b only. As before contract τL allowing

to reach consumption allocation L from the endowment point makes τ̂ (allowing to reach a

consumption point in the shaded area) unprofitable. However it is easy to see that τL cannot

be latent in equilibrium. An entrant can exploit τL offering additional positive insurance at

a rate actuarially fair for agents of type b. This deviation is accepted by both agents of type

m and b improving on their original allocation.

Note that the proof of Proposition 2 relies on the ability of insurance providers to provide

negative insurance, specifically the arguments used on Lemma 3. This assumption has been

shown to be non essential in the two type case considered in Attar, Mariotti, and Salanié

(2014).17

As in Rothschild and Stiglitz (1976), a separating equilibrium may fail to exist. In our

environment, we require the following necessary condition on primitives to guarantee the

existence of an equilibrium.18

Assumption 1.
1− πg
πg

u′ (ωL)

u′ (ωH)
≤ 1− π

π
, (14)

1− πm
πm

u′ (ωL)

u′ (ωH)
≤ 1− πb,m

πb,m
. (15)

Condition (14) states that the indifference curve for g agents at the equilibrium allocation

is flatter than the market zero profits line (actuarially- fair price of insurance if all agents

buy it). It implies that the g agent only accept any additional insurance relative to the

endowment (either positive or negative) at a price that is not profitable if all agents accept

it also. Condition (15) states that the indifference curve for m agents at the equilibrium

allocation is flatter than the zero profits line of insurance if only agents b and m accept it. It

implies that agents m accept additional insurance only at price that is unprofitable if agents

b and m accept it. As an implication of (14) and (15) we have that agents of type g and m

prefer to remain in autarky rather than accept either the allocation of agents of type b. The

above conditions are satisfied if, for example, πg is large relative to πm and πb or if the spread

17It is also worth emphasizing that Propositions 1 and 4 do not depend on the firms’ ability to offer
negative insurance.

18An interesting extension left for future research is the characterization of equilibrium using random
menus. See Dasgupta and Maskin (1986a,b) for the study of existence of equilibrium in the case with
exclusive contracts. And also Carmona and Fajardo (2009) and Monteiro and Page (2008) for the case with
non-exclusive contracts.
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between ωL and ωH is sufficiently small. Assumption 1 is necessary for an equilibrium to

hold. As the following Proposition shows if any of the conditions where to be violated, then

there is always a profitable deviation for an insurance provider selling additional insurance

at either agents of type g and m at a price which is always profitable.

Proposition 3. If Assumption 1 does not hold, there is no equilibrium.

Proof. Suppose (14) in Assumption 1 is violated. Consider an entrant firm offering a menu

containing τ̂ = (ε,−αε) with ε > 0 and small, and α satisfying 1−πg
πg

u′(ωL)
u′(ωH)

> α > 1−π
π
.

The contract τ̂ is accepted by agents of type g since U g(ω + τ̂) > U g(ω). This implies that

πg[u(ωH−αε)−u(ωH)]+(1−πg)[u(ωL+ε)−u(ωL)] > 0. Since ε > 0 and πm < πg it follows that

πm[u(ωH−αε)−u(ωH)]+(1−πm)[u(ωL+ε)−u(ωL)] > 0, so that Um(ω+ τ̂) > Um(ω). Given

this, minimum profits are achieved when also agents of type b accept τ̂ . From the definition

of α this deviation is always profitable. This implies that the consumption allocation for

agents of type g and m is not cm = cg = ω, which contradicts Proposition 2.

If (15) in Assumption 1 is violated, then there exists an α > 0 so that 1−πm
πm

u′(ωL)
u′(ωH)

> α >
1−πb,m
πb,m

. Consider an entrant firm offering a menu τ̂ = (ε,−αε) with ε > 0 and small. τ̂ is

accepted by agents of type m. Minimum profits are achieved when only agents of type b and

m accept the contract and from the definition of α the entrant makes positive profits which

is a contradiction.

The necessary conditions for existence of equilibrium in Assumption 1 are stronger than

those found in Rothschild and Stiglitz (1976) and Wilson (1977). The previous proposition

provides an intuition on why this is the case. Relative to the case with exclusive contracts,

the non-exclusivity assumption introduces additional opportunities for profitable deviations.

These deviations cannot be prevented and are severe enough that might induce profits for

the incumbents to became strictly negative. The lack of existence result is also confirmed

in Attar, Mariotti, and Salanié (2014) in an environment with two types and without free

entry. Their environment, focusing on two types and without free entry, features the same

necessary conditions as in Assumption 1. One fundamental issue that leads to non-existence

result present in both our paper and RS is the lack of any capacity constraint. This issue

has been raised by Inderst and Wambach (2001) where the standard RS environment is

complemented with capacity constraints in the amount of insurance that an insurance can

provide. In this case it is shown that an equilibrium exists.19 In our environment (see also

the discussion in Attar, Mariotti, and Salanié (2014) section 3.5) each insurance provider

19Similarly, in Guerrieri, Shimer, and Wright (2010) the competitive search environment introduces a sort
of capacity constraint. In this paper an equilibrium always exists.
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can service the entire market. Hence, an entrant can exploit this by forcing an incumbent

firm to provide insurance to a larger number of types than it originally planned for.20

4 Implementation of Equilibrium

We now show that if Assumption 1 holds an equilibrium exists. The following proposition

shows, by construction, that the allocation (cb, cm, cg) characterized in Proposition 2 can be

sustained in equilibrium. Recall that in the proposed equilibrium cg = cm = ω and cb = ωb

with ωb = πbωH + (1− πb)ωL.

Proposition 4. Let {πg, πm, πb, ωH , ωL, u, pg, pm, pb} satisfy Assumption 1, then there exists

an equilibrium of the menu game.

The complete proof of Proposition 4 is provided in Appendix B. In what follows we show the

result in the simpler case with two types and when a deviating firm offers a contract that

attracts only agents of type g.21 Set pm = 0. In this case Assumption 1 reduces to condition

(14). Consider the following strategies by firms. Without loss of generality, let firms i = 1, 2

offer the menu Ci = Lb where the set Lb is defined as follows:

Lb =
{
xL ≥ 0, xH ≤ 0

∣∣∣ − πbxH − (1− πb)xL = 0
}
.

The set Lb constitutes the set of positive insurance at the actuarially fair price for agents

of type b. All remaining firms i 6= 1, 2 offer the menu: Ci = (0, 0). Let τ bL = πb(ωH − ωL),

τ bH = (1−πb)(ωL−ωH), it is easy to show that under Assumption 1, there exist an equilibrium

where agents of type b choose
(
τ bL/2, τ

b
H/2

)
from both firms 1 and 2 and (0, 0) from remaining

firms; type g chooses (0, 0) from all firms. In this equilibrium, all firms make zero profits.

Suppose that firm i deviates and offers the contract τ g = (τ gL, τ
g
H) targeting the good types

only. Consider the case with τ gL < 0: negative insurance is being offered to agents of type

g. Since U g(ω + τ g) > U g(ω), if τ gL < 0, it follows that Πg(τ g) < 0. This implies that the

profits from the deviation are negative, hence we rule out the case with τ gL < 0. Consider

now the case with τ gL > 0: positive insurance is being offered to agents of type g. Consider

the following transfer:

τ̂ =
(
πb(ωH − ωL + τ gH − τ

g
L),−(1− πb)(ωH − ωL + τ gH − τ

g
L)
)
.

20In the pure trade environment with linear preferences non exclusivity of Attar, Mariotti, and Salanié
(2011) an equilibrium always exists. In this case the capacity constraint is in the form of the limited supply
of goods that the seller is endowed with.

21We thank an anonymous referee for providing insights in simplifying the proof in this case.
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We have that τ̂ ∈ Lb22 and can be chosen from either firm i = 1, 2 (for this step it is crucial

to have at least two firms offering Lb in equilibrium, so that following a deviation of any firm

i, Lb is still available to agents of type b). When combined with τ g, contract τ̂ provides full

insurance for agents of type b: consumption in both states is given by ωb+πbτ
g
H +(1−πb)τ gL.

Since τ gL > 0, from Assumption 1 we have that Π(τ g) < 0; this also implies that Πb(τ g) < 0.

Hence ωb + πbτ
g
H + (1 − πb)τ gL > ωb: agents of type b can reach higher level of consumption

by choosing τ g and τ̂ than their original consumption allocation. If τ g is offered it is chosen

by both agents of type g and b delivering negative profits to the entrant. This argument is

displayed in Figure 3. The general proof for the case with pm 6= 0 and when a firm offers
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Figure 3: Sketch of proof of Proposition 4 for pm = 0.

contracts to all the three types is in Appendix B.23

From the proof of existence of equilibrium a key fact emerges. As in a Bertrand-like

environment where firm compete with exclusive contracts, at least two firms must be active

in equilibrium and offer contracts different than the null one. The reason is twofold. First,

as in the case with exclusive contracts, the fact that neither of the two firm is necessary to

reach consumption level cb implies that neither firm can deviate offering a contract to agents

of type b generating higher profits. Second, and differently than the case with exclusive

contracts, since neither firm is necessary to reach cb it implies that neither incumbents nor

22To show that τ̂ is in Lb we must have that ωH + τgH − ωL − τgL ≥ 0. From the definition of τg we have:
Ug(ω+ τg) ≥ Ug(ωb) and U b(ωb) ≥ U b(ω+ τg). Since Ug(ωb) = u(ωb) we have that (πg −πb)[u(ωH + τgH)−
u(ωL + τgL)] ≥ 0, hence ωH + τgH − ωL − τgL ≥ 0.

23Refer to Attar, Mariotti, and Salanié (2014) for a more general treatment of the two type case.
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entrant can deviate and offer additional insurance to agents of type m or g.

To expand on this last point consider any implementation of the equilibrium allocation

in wich ωb =
∑Ib

i=1 τ
b,i+ω and for any i′ ∈ Ib there exists a set of incumbent I ′ so that i′ /∈ I ′

and ωb =
∑I′

i=1 τ
b,i + ω. Suppose that either i′ or an entrant deviates and offers additional

insurance to agents of type m given by τm = (ε,−αε) with ε > 0 and small and where α > 0

satisfies:
1− πm
πm

u′(ωL)

u′(ωH)
> α > max

{
1− πm
πm

,
1− πg
πg

u′(ωL)

u′(ωH)

}
.

Note that such α > 0 always exists since ωL < ωH and πm < πg. It follows that Um(ω +

τm) > Um(ω). Given the definition of α, this deviation is not accepted by agents of type g.

Assumption 1 implies that
1−πb,m
πb,m

> α, hence the deviation is not profitable if agents of type

b accept it together with type m agents. Consider the following deviation of agents of type

b accept τm together with trades leading to cb (which is always available even following a

deviation of an incumbent firm). We have that from Assumption 1 U b(cb + τm) > U b(cb) so

that agents of type b accept the deviation making it unprofitable.

5 Conclusion

In this paper we characterize the equilibrium of a standard adverse selection economy in

which agents can sign simultaneous insurance contracts with more than one firm. We consider

an environment with free entry in the insurance market and with three types of agents: a

good a medium and a bad type. Worse types represent a higher probability of receiving

the low endowment. Agents are privately informed on their own types prior to signing any

insurance contract. In this environment we show that there is no pooling equilibrium and that

under certain parameter restrictions there is a unique equilibrium consumption allocation.

When those parameter restrictions are violated an equilibrium fails to exists. In the unique

equilibrium, the bad type receives full insurance at his actuarially-fair price. The good

and medium type receive no insurance. Overall in this environment, when an equilibrium

exists, the amount of insurance provided in equilibrium is reduced when compared with the

environment in which agents sign exclusive contracts as in Rothschild and Stiglitz (1976).

An important message of this paper is that non-exclusivity of contracts imposes strong

restrictions on the insurance contracts that are offered, reducing drastically the provision

of insurance. The non-exclusivity friction discussed in this paper can then be viewed as

a positive institutional foundation for the strong regulations observed in data against the

multiplicity of insurance contracts observed in several insurance markets, such as property
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and health insurance.
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Appendix

A Proofs of Section 3

Proof of Lemma 1

Proof. Suppose a pooling equilibrium c is such that equation (4) does not hold. In this case
we have that cH > cL. This implies there exists an α > 0 so that:

1− πb
πb

u′ (cL)

u′ (cH)
> α >

1− πb
πb

. (16)

Consider a firm not originally active in equilibrium, an entrant, deviating and offering a
menu comprised of the null contract (0, 0) and τ̂ = (ε,−αε) for some small ε > 0 with α
defined above. The contract τ̂ is chosen by agents of type b together with the original pooling
equilibrium. To see this: U b(c+ τ̂) = πbu (cH − αε)+(1− πb)u (cL + ε) , expanding for small

values of ε we have: U b(c + τ̂) = U b(c) + ε

[
− πbu′ (cH)α + (1− πb)u′ (cL)

]
+O(ε2), from

the first inequality in (16), ε can be chosen small enough so that U b(c+ τ̂) > U b (c). Let Π
be the profit of the entrant. Since ε > 0, τ̂ constitutes positive insurance hence minimum
profits for the entrant occur when only agents of type b accept τ̂ . So that Π ≥ Πb(τ̂) =
πbαε − (1− πb) ε > 0. Where the strict inequality follows from the second inequality of
(16). Since a profitable deviation exists we reach a contradiction with c being a pooling
equilibrium.

Let πm ≤ π. Suppose a pooling equilibrium c exist where (5) does not hold. This implies
there exists and α > 0 so that

1− πg
πg

u′ (cL)

u′ (cH)
< α <

1− π
π

. (17)

As in the previous case, consider an entrant offering τ̂ = c − ω + (−ε, αε) for some small
ε > 0 and α defined above. In this case, τ̂ is accepted by agents of type g. To see this we
have U g(ω + τ̂) = πgu (cH + αε) + (1− πg)u (cL − ε) expanding for small values of ε:

U g(ω + τ̂) = U g(c) + επgu
′ (cH)

[
α− 1− πg

πg

u′ (cL)

u′ (cH)

]
+O(ε2) > U g(c),

where the strict inequality follows from the first inequality in (17). Let Π be the profits of
the entrant. Let πx the probability of receiving a high realization of the endowment given
the types of agents that accept the entrant’s menu. By definition Π can be rewritten as:

Π = πx (ωH − cH − αε) + (1− πx) (ωL − cL + ε)

= πx (ωH − cH) + (1− πx) (ωL − cL) + ε(1− πx − πxα).
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Since agents of type g accept τ̂ , πx is equal to one of the following {πg, π, πb,g, πm,g}. From
equation (4) it follows that (ωH − cH) > (ωL − cL), this implies that for small enough
ε, profits are increasing in πx. From our assumption of πm ≤ π we have that π ≤ πb,g.
Minimum profits are achieved when πx = π: all agents accept the entrant contract. This
implies: Π ≥ Π(c − ω) + ε(1 − π − πα) > Π(c − ω) ≥ 0, where the second inequality is
given by the second inequality in equation (17) and the third inequality from the condition
on aggregate equilibrium profits Π(c − ω) being non negative. Since a profitable deviation
exists we reach a contradiction with c being a pooling equilibrium.

Let πm > π. Suppose (6) does not hold. This implies there exists an α > 0 so that:

1− πm
πm

u′ (cL)

u′ (cH)
< α <

1− π
π

, (18)

similarly to the previous case, consider an entrant offering τ̂ = c− ω + (−ε, αε) with ε > 0
and small. Given (18) and the fact that 1−πg

πg
< 1−πm

πm
there exist an α satisfying equation

(17). Proceeding as in the previous case we can show that the entrant contract is accepted
by both agents of type m and g. In this case minimum profits for the entrant are achieved
when all agents accept τ̂ . Hence, as in the previous case, the entrant always makes a strictly
positive profit. Since a profitable deviation exists we reach a contradiction with c being a
pooling equilibrium.

Proof of Lemma 2

Proof. Suppose condition (8) does not hold, so that cgH < cgL (the consumption of type g is
in the overinsurance region). If so, there exists an α so that:

1− πg
πg

u′(cgL)

u′(cgH)
< α <

1− πg
πg

. (19)

Consider an entrant offering τ̂ = (−ε, αε). This menu constitutes a form of negative insur-
ance. For small enough ε, we have that U g(cg + τ̂) > U g(cg), so that agents of type g accept
the entrant’s contract. Minimum profits from τ̂ occur when only agents of type g accept it.
Profits from the deviation Π, are such that Π ≥ −πgαε + (1 − πg)ε > 0, where the strict
inequality follows from the second inequality in (19). We thus reach a contradiction having
found a profitable deviation. The proof of condition (9) follows the same steps of the proof
of (4) in Lemma 1.

We next prove the condition in equation (10). We focus on the relation between quantities
for the agents of type g and m. The proof for the relation between quantities for agents of
type m and b is analogous. By contradiction suppose that cgH < cmH , from (7) it must also be
the case that cmL < cgL. In this case we have that:

u(cmH)− u(cmL ) > u(cgH)− u(cgL). (20)

From (7) we also have that Um(cm) ≥ Um(cg) and U g(cg) ≥ U g(cm), summing these two
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inequalities we get (πm − πg) [u(cmH)− u(cmL )− (u(cgH)− u(cgL))] ≥ 0. Substituting (20) we
get πm ≥ πg a contradiction since by assumption πg > πm.

The following lemmas determine restrictions on the equilibrium allocation derived from
profitable deviations of entrants. If any of the restrictions were not to hold, an entrant finds
it profitable to offer either additional or substitute contracts. Additional contracts offer
additional amounts of positive or negative insurance. These contracts are always chosen
in combination with contracts already offered in equilibrium. Substitute contracts, as the
name suggests, are accepted instead of the equilibrium allocation. We begin with Lemma 3.
Conditions (3.B), (3.C) and (3.D) were discussed in the body of the paper. We also show
condition (3.A) which states that the profits associated with the contract of the bad type
cannot be positive. If is violated, an entrant can provide a substitute contract to agents of
type b that provides additional insurance for type b and is always profitable.

Lemma 3. Any separating equilibrium allocation c = {cb, cm, cg} must satisfy:

Πb(cb − ω) ≤ 0; (3.A)

∀ j = g,m, Πb(cb − cj) ≤ 0; (3.B)

Πg(cg − cm) ≤ 0; (3.C)

Πb,m(cm − cg) ≤ 0. (3.D)

Proof.

Proof of (3.A)
Suppose (3.A) does not hold, we then have Πb(cb−ω) > 0. An entrant can offer the following
contract τ̂ = cb − ω + (ε, 0). With ε > 0 and small. We have that U b(ω + τ̂) > U b(cb):
agents of type b prefer τ̂ to their original equilibrium allocation. In addition, since cb

is in the overinsurance region from Lemma 2, profits for the entrant (Π) are such that
Π ≥ Πb(cb − ω) + Πb((ε, 0)) > 0 when ε is sufficiently small. We thus reach a contradiction
having found a deviation that is always profitable.

Proof of (3.B)
Suppose equation (3.B) does not hold. We then have πb(c

j
H − cbH) + (1 − πb)(cjL − cbL) > 0.

Consider an entrant deviating and offering τ̂ = cb− cj +(0, ε) with ε > 0 and small. τ̂ allows
an agent to reach consumption level cb starting from cj. In this case we have U b(cj + τ̂) =
πbu(cbH+ε)+(1−πb)u(cbL) > U b(cb) so that agents of type b pick τ̂ together with the allocation
originally chosen by agents of type j. As in the proof of Lemma 1, let πx be the probability of
receiving a high realization given the types of agents that accept the entrant’s menu. Profits
for the entrant are given by Π = πx(c

j
H − cbH − ε) + (1 − πx)(cjL − cbL). For small enough ε

profits are increasing in πx. This follows from (10) and the fact that from the contradicting
assumption we cannot simultaneously have cjH = cbH and cjL = cbL; hence minimum profits are
achieved when only agents of type b accept τ̂ : Π ≥ πb(c

j
H − cbH − ε) + (1− πb)(cjL − cbL) > 0.

Where the last inequality follows from the contradicting assumption and ε sufficiently small.
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We thus reach a contradiction having found a deviation that is always profitable.

Proof of (3.C)
Suppose by contradiction (3.C) does not hold: πg(c

m
H − c

g
H) + (1 − πg)(cmL − c

g
L) > 0. This

implies that we cannot simultaneously have cmL = cgL and cmH = cgH . In this case, consider the
following contract offered by an entrant τ̂ = cg − cm + (0, ε) with ε > 0 positive and small.
Since U g(cm+ τ̂) = πgu(cgH+ε)+(1−πg)u(cgL) > U g(cg), agents of type g accept the entrant’s
contract. Profits for the entrant are given by: Π = πx(c

m
H − c

g
H − ε) + (1−πx)(cmL − c

g
L), with

πx as above. From (10) we have that cgH ≥ cmH and cgL ≤ cmL together with the contradicting
assumption, it implies that profit are decreasing in πx, minimum profits are achieved when
only the g type accepts τ̂ , so that Π ≥ πg(c

m
H − cgH − ε) + (1 − πg)(c

m
L − cgL) > 0. Where

the last inequality follows from the contradicting assumption and a sufficiently small ε. We
reach a contradiction having found a profitable entry.

Proof of (3.D)
Suppose that by contradiction (3.D) is violated, then: Πb,m(cm−cg) > 0. Consider an entrant
deviating and offering the contract τ̂ = cm − cg + (0, ε) with ε > 0 and small. This contract
is accepted by m types together with cg. From the contradicting assumption we have that
Πb,m(cm − cg) > 0 so that we cannot simultaneously have cmL = cgL and cmH = cgH , then from
(10) and for ε sufficiently small it follows that profits are positive for any additional type
that also accepts the contract. We then reach a contradiction having found a deviation that
is always profitable.

We now move to Lemma 4. Condition (4.A) determines that agents of type m must be
purchasing either no insurance or positive insurance, else aggregate profits (defined in (3))
must be negative. The second condition (4.B) shows that the profits associated with the
allocation of either types m or g must be weakly positive if all agents accept it. This result
is a direct implication of conditions (3.B) and (3.D). We also show in (4.C) that aggregate
profits must be equal zero, if not, additional insurance can be offered to types m and g. The
last conditions, (4.D) and (4.E), strengthen the results showed in Lemma 3.

Lemma 4. The equilibrium allocation satisfies:

cmL ≥ ωL; cgL ≥ ωL. (4.A)

∀ j = g,m, Π(cj − ω) ≥ 0. (4.B)

Π =
∑

j=b,m,g

pjΠ
j(cj − ω) = 0. (4.C)

Πb(cb − cm) = 0. (4.D)

Πb,m(cm − cg) = 0. (4.E)

Proof.
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Proof of (4.A)
We first show that cmL ≥ ωL. Suppose not. From Lemma 2 it follows that cgL < ωL. Since
U j(cj) ≥ U j(ω) for j = m, g, it follows that Πj(cj − ω) < 0 for j = m, g. In addition, since
Πb(cb−ω) ≤ 0 from (3.A), aggregate profits Π =

∑
j=b,m,g pjΠ

j(cj −ω) < 0. Having reached
a contradiction, we conclude cmL ≥ ωL.

We next show that cgL ≥ ωL. Suppose not. Write aggregate profits as Π = pgΠ
g(cg−ω)+

(pb + pm)Πb,m(cm − ω) + pbΠ
b(cb − cm). Since cgL < ωL and U g(cg) ≥ U g(ω), we have that

Πg(cg−ω) < 0. Also Πb(cb−cm) ≤ 0 from (3.B) and Π ≥ 0 this implies that Πb,m(cm−ω) > 0.
From the previous step, it follows cmL > ωL. Consider an entrant offering τm = cm−ω+(ε, 0)
with ε > 0 and small. The entry is accepted by agents of type m and remains profitable for
any types that accepts it. We thus reach a contradiction.

Proof of (4.B)
To show (4.B) holds for j = g, rewrite aggregate profits defined in (3) as:

Π = pbΠ
b(cb − cm) + (pb + pm)Πb,m(cm − cg) + Π(cg − ω). (21)

The above can be interpreted as the profits originating from all agents choosing cg; agents
of type b and m choosing the transfer cm − cg and finally agents of type b choosing the
transfer cb − cm. Using conditions (3.B) and (3.D) in the above together with Π ≥ 0 im-
plies that Π(cg − ω) ≥ 0. To show (4.B) holds for j = m, rewrite aggregate profit as
Π = pbΠ

b(cb − cm) + Π(cm − ω) + pgΠ
g(cg − cm). Using conditions (3.B) and (3.C) in the

previous equation together with Π ≥ 0 implies that Π(cm − ω) ≥ 0.

Proof of (4.C)
Suppose (4.C) does not hold: Π > 0. Consider an entrant offering a menu τ̂ = {τ g, τm},
where τ g = cg − ω + (ε,0) and τm = cm − ω + (ε,0), where ε > 0 and small. Suppose
that agents of type g accept τ g. From (3.D) and (4.A) it follows that minimum profits are
achieved when agents of type b and m accept τm. In this case the profits of the entrant (Π)
satisfy:

Π = Π(cm − ω) + pgΠ
g(cm − cg) + Π((ε, 0)) ≥ Π + Π((ε, 0)) > 0.

Where the weak inequality follows from rewriting profits as Π = Π(cm − ω) + pgΠ
g(cm −

cg) + pbΠ
b(cb − cm) and Πb(cb − cm) ≤ 0 from (3.B) for j = m. The last (strict) inequality

follows from the contradicting assumption Π > 0 together with ε chosen small enough.
Suppose now that agents of type g prefer τm to τ g. In this case, the entrant offers τ̂ = τm.

Agents of type g andm accept τm. We have that Π = Π(cm−ω)+pbΠ
b(cb−cm)+pgΠ

g(cg−cm).
Since Π > 0 from the contradicting assumption and Πb(cb− cm) ≤ 0 from (3.B), using (3.C)
it follows that Π(cm − ω) > 0. Since from (4.A) cmL ≥ ωL, profits from the entry satisfy
Π ≥ Π(cm − ω) + Π((ε, 0)) > 0: the deviation makes positive profits for small enough ε.
Having found a profitable entry we reach a contradiction so that (4.C) holds.
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Proof of (4.D)
If (4.D) does not hold, from (3.B) for j = m, it follows that Πb(cb − cm) < 0. Consider an
entrant offering a menu τ̂ = {τ g, τm}, where τ g = cg − ω + (ε, 0) and τm = cm − ω + (ε, 0),
where ε > 0 and small. We have that U j(τ j + ω) > U j(cj) for j = m, g. Suppose, as a first
case, that agents of type g prefer τ g over τm. From (3.D) it follows that minimum profits
are achieved when agents of type b and m accept τm. In this case (if agents of type b do
not accept any contract from the entrant the proof follows similarly) total profits for the
entrant (Π) satisfy the following: Π ≥ Π − pbΠb(cb − cm) − Π((ε, 0)) > Π ≥ 0, where the
strict inequality follows from Πb(cb−cm) < 0 and ε sufficiently small. Hence the entry makes
strictly positive profits.

Suppose now agents of type g prefer τm to τ g. Consider an entrant offering τ̂ = τm.
Suppose first that cmL > ωL. Since agents of type m accept τm, minimum profits are achieved
when agents of type b also accept τm. Profits for the entrant satisfy: Π ≥ Π(τm) > 0,
where the second inequality follows from (4.B) together with Π ≥ 0 and the assumption
that Πb(cb − cm) < 0. Suppose now that cmL = ωL. From (4.A) this implies cgL = ωL and
cmH = cgH = ωH . We can write aggregate profits for the incumbent as Π = pbΠ

b(cb−ω). From
the contradicting assumption follows that Π < 0, reaching a contradiction. Having found a
profitable entry for every case, we reach a contradiction so that (4.D) holds.

Proof of (4.E)
If (4.E) does not hold, from (3.D) it must be the case that Πb,m(cm− cg) < 0. We have that
Π = Π(cg − ω) + (pb + pm)Πb,m(cm − cg) + pbΠ

b(cb − cm) ≥ 0. From (4.C), (4.D) and the
contradicting assumption it follows that Π(cg − ω) > 0.

Suppose first πm ≤ π. Consider an entrant offering τ g = cg − ω + (ε, 0). The entrant
always make positive profits since under the assumption of πm ≤ π, Πb,g(τ g) ≥ Π(τ g) > 0. In
addition min{Πg(τ g),Πm,g(τ g)} > Π(τ g) > 0, so the deviation is always profitable. Having
found a profitable entry we reach a contradiction.

Suppose now πm > π. If cmL = cgL the result is immediate. Suppose this is not the case,
from Lemma 2, it follows that cmL > cgL. We consider two cases cmL > cmH and cmL ≤ cmH .
Suppose first cmL > cmH . Define the following transfers: τm = cm − ω + (−εm, αεm) with

εm > 0 and α such that 1−πm
πm

u′(cmL )

u′(cmH )
< α < 1−πm

πm
; τ g = cg − ω + (εg, 0) with εg > 0. Given

these transfers, Um(τm + ω) > Um(cm) and U g(τ g + ω) > U g(cg). Given that πm > π,
from (4.B) it follows that Πm(cm − ω) > 0. We reach a contradiction (by choosing εm and
εg sufficiently small) unless agents of type g prefer τ g to τm and b,m prefer τm to τ g. In
this case suppose an entrant offers {τm, τ g}. Profits from the deviation can be written as:
Π = Π + pgΠ

g((εg, 0)) + (pb + pm)Πb,m((−εm, αεm)) > 0. Where the last inequality follows
from (4.C), the definition of α and by choosing εg small enough.

Consider now the case with cmL ≤ cmH . This implies cgL < cgH hence agents of type g are in
the region of under-insurance. Consider the following contracts τm = cm − ω + (εm, 0) and

τ g = cg − ω + (εg,−αgεg), with εg > 0 and αg such that 1−πg
πg

u′(cgL)

u′(cgH)
> αg >

1−πg
πg

. If agents

of type m accept a deviation comprised by τ g we reach a contradiction. Suppose this is not
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the case and consider a deviation comprised by {τm, τ g}.
Suppose agents of type g accept τ g. Suppose first that agents of type b accept τm.

In this case profits for the entrant are given by: Π = Π + pgΠ
g((εg,−αgεg)) + (pb +

pm)Πb,m((−εm, 0)) > 0. Where the last inequality follows from (4.C), the definition of αg
and by choosing εm small enough. Suppose now b and g choose τg and m chooses τm. Profits
are Π = (pb + pg)Π

b,g(τ g) + pmΠm(τm). Adding and subtracting pbΠ
b(cm − cg) we get:

Π = pgΠ
g(cg − ω) + (pb + pm)Πb,m(cm − ω)− pbΠb(cm − cg) +O(ε),

which (since from (4.D) Πb(cb − cm) = 0) is equal to: Π = Π − pbΠb(cm − cg) + O(ε) > 0,
where the inequality follows from the fact that 0 > Πb,m(cm−cg) > Πb(cm−cg) and choosing
ε sufficiently small.

Finally suppose now agents of type g accept τm (in this case only τm is offered). The
deviation is still profitable unless agent of type b accept τm and Π(cm − ω) = 0. In this
case however from (4.C) and (4.D) it follows that Πg(cg − cm) = 0. In this case an entrant
offering τ g = cg − cm + (εg,−αgεg) with εg and αg defined above will always make a profit,
from the definition of αg and the fact that cgL < cmL .

The previous Lemma implies the following:

Corollary 1. In equilibrium: (i) Π(cg − ω) = 0. (ii) If cmL > cgL then Π(cm − ω) > 0.

Proof. To show (i) write Aggregate profits as Π = Π(cg − ω) + (pb + pm)Πb,m(cm − cg) +
pbΠ

b(cb − cm). From (4.C), (4.D) and (4.E) it follows that Π(cg − ω) = 0. Condition (ii)
follows immediately from (i) and (4.E).

A.1 Proof of Proposition 2

Before proving Proposition 2 we prove a supporting lemma. Proposition 2 argues that the
unique equilibrium allocation features agents of type g and m pooling at the endowment
point cg = cm = ω and agents of type b reaching full insurance at the actuarially fair price
for their own type. The proof is by contradiction. For this purpose Lemma 5 characterizes
an implication that originates if the equilibrium differs from the proposed one and additional
properties that must hold in equilibrium: condition (5.A) considers the case when agent of
type g and m are not pooling. Also (5.B) shows that agents of type b receive more insurance
than agents of type m, while (5.C) shows that agents of type must receive full-insurance.

Lemma 5.

(A) If in equilibrium cmL > cgL, then:

1− πm
πm

u′ (cmL )

u′ (cmH)
=

1− πb,m
πb,m

. (5.A)
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(B) In any equilibrium:
cmL < cbL. (5.B)

(C) In any equilibrium:
cbL = cbH . (5.C)

Proof.

Proof of (5.A)
Suppose condition (5.A) is violated. As a first case suppose there exists an α > 0 so that:
1−πm
πm

u′(cmL )

u′(cmH )
> α >

1−πb,m
πb,m

. Given this α, consider an entrant offering τ̂ = (ε,−αε) with ε > 0

and small. The contract τ̂ is accepted by agents of type m. Minimum profits are realized
when only agents of type b and m accept the contract. In this case, from the definition of
α, the entrant makes positive profits which is a contradiction. Suppose now that there exist
an α > 0 such that:

1− πm
πm

u′(cmL )

u′(cmH)
< α <

1− πb,m
πb,m

. (22)

From (4.E) we have that Πb,m(cm−cg) = 0. Suppose an entrant offers τm = cm−cg+(−ε, αε)
with ε > 0 and small; agents of type m strictly prefer cg + τm to cm. Since cmL > cgL for small
enough ε we have that τm constitutes positive insurance. Minimum profits are realized when
also agents of type b accept τm. In this case we have: Π = (pb + pm)Πb,m(cm − cg) + (pb +
pm)Πb,m((−ε, αε)) > 0, where the strict inequality follows from Πb,m(cm − cg) = 0 and the
definition of α.

Proof of (5.B)
Suppose not, then from (10) in Lemma 2, cmL = cbL. Given the choices of the agents, this
implies cmH = cbH . From (10) in Lemma 2 and Proposition 1 it follows that cmL > cgL. Using
(5.A) we conclude that cmL < cmH since πb,m < πm. This implies cbL < cbH contradicting (9) in
Lemma 2.

Proof of (5.C)
Suppose not, then from (9) in Lemma 2, cbL > cbH . So that there exists an α such that
1−πb
πb

u′(cbL)

u′(cbH)
< α < 1−πb

πb
. Consider an entrant offering the contract τ̂ = cb − cm + (−ε, αε).

Since cbL > cmL from (5.B), then τ̂ constitutes positive insurance. Minimum profits are given
when only agents of type b accept it and are given by Π = Πb(cb − cm) + Πb(−ε, αε) > 0,
where the inequality follows from (4.D) and the definition of α.

We now go to the proof of Proposition 2.

Proof. The proof is divided in two steps. In Step 1 we show that cg = ω, in Step 2 we show
that cm = ω. The result then follows from (4.C) and (5.C).
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Step 1 Let cg =
∑

i∈Ig τ
g,i + ω with Ig ⊆ I. Let I+ ⊆ Ig be the set of i for which τ g,iL > 0,

similarly let I− ⊆ be the set of i for which τ g,iL < 0. We first show that if I+ 6= ∅ then
there exists an i ∈ I+ such that Π(τ g,i) ≥ 0. Suppose not, so that for all i ∈ I+ we have
that Π(τ g,i) < 0. Since from from Corollary 1, Π(cg − ω) = 0. It follows that I− 6= ∅ and
τ− =

∑
i∈I− τ

g,i is such that Π(τ−) > 0 and τ−L < 0.
Consider an entrant offering the following two contracts: τ̂m = τ− + (ε, 0) + cm − cg and

τ̂ b = τ−+ (ε, 0) + cb− cg with ε > 0 and small. For j = m, g, we have that τ̂ j plus additional
transfers from all incumbents in I+ is preferred to cj by agents of type j. If types b and m
respectively get τ̂ b and τ̂m, profits from the deviation are:

Π ≥ Π(τ−) + (pb + pm)Πb,m(cm − cg) + pbΠ
b(cb − cm) + Πb,m((ε, 0)) > 0.

where the inequalities follows from Πb,m(τ−) ≥ Π(τ−) > 0, from (4.D), (4.E) and choosing ε
sufficiently small. Profits are also positive if agents choose different τ̂ j.

We next show that I+ = ∅. Suppose not, from the previous step let i′ be the incumbent
offering τ g,i

′
such that τ g,i

′

L > 0 and Π(τ g,i
′
) ≥ 0. From (5.B), (5.C) and (10) in Lemma 2,

we have that agents of type g are strictly in the underinsurance region: cgH > cgL. Suppose

an entrant offers τ̂ g = τ g,i
′
+ (εg,−αεg) with εg > 0 and small and α satisfies 1−πg

πg

u′(cgL)

u′(cgH)
>

α > 1−πg
πg

. Agents of type g accept this deviation together with contracts Ig \ i′ available

with the incumbents. If the deviation is not accepted by agents of type b, it is profitable
thus reaching a contradiction. Suppose then agents of type b accept τ̂ g. There must exist τ ′

so that U b(τ̂ g + τ ′ + ω) ≥ U b(cb). This implies that U b(τ g,i
′
+ τ ′ + ω) ≥ U b(cb).

Suppose first U b(τ g,i
′
+ τ ′ + ω) > U b(cb). Let τ ′ =

∑
j∈I′ τ

′j, with I ′ ⊆ I. Incumbent
i′ must be necessary to reach τ ′. That is, i′ ∈ I ′ and does not exist another I ′′ ⊆ I \ i′ so
that τ ′ =

∑
j∈I′′ τ

j, for some τ j offered by firm j. If not, then agents of type b, by trading

with i′ and firms in I ′′, are able to reach τ g,i
′
+ τ ′, which is strictly preferred to cb, reaching

a contradiction. Since i′ is necessary to reach τ ′, i′ can deviate and instead of τ g,i
′

offer τ̂ g.
Given the condition on α, it is accepted by type g but not by type b and generates positive
profits for firm i′. This is a contradiction, since aggregate profits are zero and since no firm
makes strictly negative profit, it follows that every active firm in equilibrium makes zero
profits.

Suppose that U b(τ g,i
′
+ τ ′ + ω) = U b(cb). Suppose an entrant deviates and offers τ̂ =

{τ̂ b, τ̂ g} with τ̂ b = cb−cm+(εb, 0) and τ̂ g as defined before.24 If agents of type g accept τ̂ g and
agents of type b accept τ̂ b, minimum profits are achieved when agents of type m also accept
τ̂ g.25 In this case profits for the entrant are given by: (pm + pg)Π

m,g(τ̂ g) + pbΠ
b(cb − cm) +

pbΠ
b((εb, 0)) > 0. Where the strict inequality follows from the fact that Πm,g(τ̂ g) > Π(τ̂ g) > 0

and εg, εb small enough. We next show that is possible to choose εb so that agents of type b

24The two type deviation adopted is similar in spirit to Attar, Mariotti, and Salanié (2014). The key
difference here is that the response of each type needs to be considered in a case by case basis. Refer also to
Attar, Mariotti, and Salanié (2014) Section 5.3.

25If agents of type g accept τ̂ b profits are positive from (4.D) and (5.B).
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prefer τ̂ b to τ̂ g. We have that U b(τ̂ g + ω + τ ′)− U b(cb) = εg{−πbαu′(τ g,i
′

H + ωH + τ ′H) + (1−
πb)u

′(τ g,i
′

L + ωL + τ ′L)} +O(ε2g). Also U b(τ̂ b + cm) − U b(cb) = εm{(1 − πb)u′(cbL)} +O(ε2m) .

So U b(τ̂ b + cm) > U b(τ̂ g + ω + τ ′) if:

εb > εg max

{
−πbαu′(τ g,i

′

H + ωH + τ ′H) + (1− πb)u′(τ g,i
′

L + ωL + τ ′L)

(1− πb)u′(cbL)
, 1

}
.

Note that εb is of the same order of εg. Having found a profitable deviation we reach a
contradiction.

This implies that I+ = ∅. From (4.A) we must have that I− = ∅. This implies that
cg = ω. In addition, for all i ∈ Ig, τ g,i = (0, 0).

Step 2 We now show cm = ω. Suppose not, so that cmL > ωL. From the previous step and
(4.E) it follows Πb,m(cm − ω) = 0 so that Πm(cm − ω) > 0. Let cm =

∑
i∈Im τ

m,i + ω Since

Πm(cm − ω) > 0, it must exist at least one i′ ∈ Im for which Πm(τm,i
′
) > 0. Suppose first

that τm,i
′

L < 0. Since firm i′ makes zero profits and since from the previous step τ g,i
′
= (0, 0),

it follows that Πb(τ b,i
′
) < 0. Consider the deviation of i′ in which it withdraws τ b,i

′
. In

this case either agents of type b accept τm,i
′

or (without loss of generality) accept τ g,i
′
.

Since Πb,m(τm,i
′
) > 0, under both cases the profits for firm i′ are increased leading to a

contradiction.
Suppose now that τm,i

′

L > 0. Suppose an entrant offers τ̂m = τm,i
′
+ (εm,−αεm) where

α satisfies 1−πm
πm

u′(cmL )

u′(cmH )
> α > 1−πm

πm
. Since from (5.B), (5.C) and (10) in Lemma 2, agents of

type m are underinsured , for small enough εm, Um(τ̂m +
∑

i∈Im\i′ τ
m,i +ω) > Um(cm). The

deviation is profitable unless agents of type b also accept it (recall that τm,i
′

L > 0 so that
Πm,g(τm,i

′
) > Πm(τm,i

′
) > 0). Hence, there must exist additional contracts available with

the incumbents summing to a net trade τ ′, so that U b(τ̂m + ω + τ ′) ≥ U b(cb). Since τ̂m is
arbitrarily close to τm,i

′
, it must be the case that U b(τm,i

′
+ ω + τ ′) ≥ U b(cb). Consider first

the case in which U b(τm,i
′
+ ω + τ ′) > U b(cb). As in step 1, incumbent i′ must be necessary

to reach τ ′. If not then agents of type b trading with i′ and firms in I ′′ are able to reach
τm,i

′
+ τ ′, which is strictly preferred to cb, reaching a contradiction. Since i′ is necessary to

reach τ ′, i′ can deviate and instead of τm,i
′

offer τ̂m. Given the condition on α, it is accepted
by type m. Since profits of i′ are zero and since Πm,g(τ̂m,i

′
) > 0, the deviation is profitable.

We now consider the case in which U b(τm,i
′
+ ω + τ ′) = U b(cb). An entrant can deviate

offering τ̂ = {τ̂ b, τ̂m}, where τ̂m is defined above and τ̂ b = cb − cm + (εb, 0) with εb > 0 and
small. Since U b(τ̂ b+cm) > U b(cb), agents of type b choose either τ̂m or τ̂ b upon entry. If only
agents of type b choose τ̂ b and only agents of type m choose τ̂m, profits for the entrant are
Π = pmΠm(τ̂m)+pbΠ

b(cb−cm)+pbΠ
b((εb, 0)) > 0 where the strict inequality follows from the

assumption Πm(τ̂m) > 0; Πb(cb − cm) = 0 from (4.D) and choosing εb sufficiently small. We
now show that is possible to choose εb and εm so that U b(τ̂ b+cm) > U b(τ̂m+ω+τ ′). We have

that U b(τ̂m+ω+τ ′)−U b(cb) = εm{−πbαu′(τm,i
′

H +ωH+τ ′H)+(1−πb)u′(τm,i
′

L +ωL+τ ′L)}+O(ε2m).
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Also U b(τ̂ b + cm)− U b(cb) = (1− πb)εbu′(cbL) +O(ε2b). Let:

εb > εm max

{
−πbαu′(τm,i

′

H + ωH + τ ′H) + (1− πb)u′(τm,i
′

L + ωL + τ ′L)

(1− πb)u′(cbL)
, 1

}
.

Note that εb is of the order of εm. In addition the max in the definition of εb is required
since the term U b(τ̂m+ω+ τ ′)−U b(cb) can be negative (for example if α = 1−πb

πb
and τ̂m+ τ ′

is in the underinsurance region). For a given εm, the above choice of εb ensures that agents
of type b accept τ̂ b. When agents of type g and/or m accept τ̂ b the entry makes strictly
positive profits. This is because from (5.B) cbL > cmL . Finally, if agents of type g accept τ̂m

profits are increased since τm,i
′

L > 0. Hence no τ ′ exists so that U b(cm + τ ′) = U b(cb).
Given the above results, the only possible equilibrium allocation is one in which cg =

cm = ω. Then from (4.C) and (5.C), the allocation for type b agents is cb = ωb, concluding
the proof.

B Proof of Proposition 4

Proof.
The proof is by construction. We first describe strategies adopted by firms, and choices of
agents; then we show that no incumbent or entrant wishes to deviate from the proposed
equilibrium. Consider the following strategies for the firms. Let firms i = 1, 2 offer the menu
Ci = Lb where the set Lb is defined as follows:

Lb =
{
xL ≥ 0, xH ≤ 0

∣∣∣ − πbxH − (1− πb)xL = 0
}
.

Lb is the set of all positive insurance contracts priced at the actuarially fair price for agents
of type b. All remaining firms i 6= 1, 2 offer the menu: Ci = (0, 0). Let τ bL = πb(ωH − ωL),
τ bH = (1 − πb)(ωL − ωH), it is easy to show that under Assumption 1, the agents strategies
are (without loss of generality): agents of type b choose

(
τ bL/2, τ

b
H/2

)
from both firms 1

and 2 and (0, 0) from remaining firms; types m and g choose (0, 0) from all firms. In this
equilibrium, all firms make zero profits, and agents of type b, m and g receive allocations cb,
cm and cg respectively.

Suppose that firm i deviates and offers a menu containing {τ b, τm, τ g}, without loss of
generality suppose that agents of type b, m and g pick contracts denoted respectively by τ b,
τm and τ g (we don’t exclude the case that any two might be equal or that any might equal
(0, 0)). For firm i, profits are given by Π = pbΠ

b(τ b)+pmΠm(τm)+pgΠ
g(τ g). We can rewrite

profits as:
Π = Π(τ g) + (pm + pb)Π

b,m(τm − τ g) + pbΠ
b(τ b − τm).

Our goal is to show that Π < 0, we do this by showing that all the above terms are either
weakly or strictly negative.

We first show that Πb(τ b−τm) ≤ 0, suppose not. If τmL = τ bL the result follows immediately
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since it must also be the case that τmH = τ bL. Suppose first that τmL < τ bL.26 Denote by λi(τ) ∈
Lb the additional insurance that agent of type i accepts within Lb having accepted transfer τ
from the entrant. Consider the following choice from agents of type b: accept τm from firm i
and pick an additional transfer τ̂ +λb(τ b) ∈ Lb where τ̂ = [(τ bL− τmL ),−(1−πb)/πb(τ bL− τmL )].
Consumption in the low state is ĉL = ωL + τ bL + λbL(τ b): this strategy provides the same
amount of consumption in the low state as the original choice of agents of type b accepting
τ b. Consumption in the high state is ĉH = ωH + 1−πb

πb
(τmL − τ bL) + τmH + λbH(τ b). Since by

the contradicting assumption Πb(τ b − τm) > 0 we have that 1−πb
πb

(τmL − τ bL) > τ bH − τmH so

that ĉH > ωH + τ bH + λbH(τ b): this strategy provides strictly higher consumption in the high
state. Hence we reach a contradiction with τ b being preferred to τm by agents of type b.
Suppose now that τmL > τ bL, in this case the proof proceeds as before but now agents of type
m accept τ b and choose additional transfers in Lb. Having reached a contradiction it follows
that Πb(τ b − τm) ≤ 0.

We next show that Π(τ g) < 0. We first show that it must be the case that Πg(τ g) ≥ 0.
Suppose not so that Πg(τ g) < 0, since Πb(τ b) < 0 it follows that Πm(τm) > 0 so τmL > 0. We
have that Π < (pb +pm)Πb,m(τm) +pbΠ

b(τ b− τm). From the previous step: Πb(τ b− τm) ≤ 0,
and also Πb,m(τm) < 0. To see this, from (15) in Assumption 1 and τmL > 0 it follows
that Πb,m(τm + λm(τm)) < 0. Since λm(τm) ∈ Lb and Πb,m(λm(τm)) ≥ 0 which implies
Πb,m(τm) < 0. This implies Π < 0, reaching a contradiction hence it must be the case
Πg(τ g) ≥ 0. Since Πg(τ g) ≥ 0 and U g(ω + τ g + λg(τ g)) ≥ U g(ω), then τ gL > 0 and τ gH < 0.
Since τ gL > 0 from (14) in Assumption 1 it thus follows that Π(τ g + λg(τ g)) < 0, because
λg(τ g) ∈ Lb it implies Π(λg(τ g)) ≥ 0 hence Π(τ g) < 0.

Finally we show that Πb,m(τm − τ g) < 0. Given (15) in Assumption 1 and τ gL > 0 we
have:

1− πm
πm

u′ (ωL + τ gL)

u′ (ωH + τ gH)
≤ 1− πb,m

πb,m
. (23)

This implies that λm(τ g) = (0, 0). This is because the slope of the indifference curve of
agents of type m at ω+ τ g is flatter than the slope of the zero profit line for contracts chosen
by both b and m. Given the choices of agents of type m it must be the case that:

Um(ω + τm + λm(τm)) ≥ Um(ω + τ g).

The above, together with equation (23), then implies that Πb,m(τm+λm(τm)−τ g) < 0. Since
λm(τm) ∈ Lb , it follows that Πb,m(λm(τm)) ≥ 0 so Πb,m(τm−τ g) < 0. Since Πb,m(τm−τ g) <
0, combining with the previous results that Π(τ g) < 0 and Πb(τ b − τm) ≤ 0 it implies that
profits of the deviation are strictly negative: Π < 0 reaching a contradiction. Since there is
no profitable deviation we conclude that (cb, cm, cg) constitutes an equilibrium allocation.

26The relative ordering of τmL and τ bL cannot be established as we have done in Lemma 2 since now final
consumption for agents of type b and m also depends on the additional transfers available in Lb.

35


	Introduction
	Environment
	Characterization of Equilibrium
	Pooling Equilibrium
	Separating equilibrium

	Implementation of Equilibrium
	Conclusion
	Proofs of Section 3
	Proof of Proposition 2

	Proof of Proposition 4

